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Hickman4 and Daniela De Angelis1

1MRC Biostatistics Unit, University of Cambridge, University Forvie Site, Robinson
Way, Cambridge CB2 0SR, UK 2Dipartimento di Scienze Economico-sociali e

Matematico-statistiche (ESOMAS), University of Torino, Corso Unione Sovietica, 218
bis, Torino 10134, Italy 3Statistics, Modelling and Economics Department, Public

Health England, 61 Colindale Avenue, London NW9 5EQ, UK 4School of Social and
Community Medicine, University of Bristol, Oakfield Grove, Clifton, Bristol BS8 2BN,

UK

March 6, 2020

Abstract

A problem frequently encountered in many areas of scientific research is that of estimating the
impact of a non-randomised binary intervention on an outcome of interest using time-series data
on units that received the intervention (‘treated’) and units that did not (‘controls’). One popular
estimation method in this setting is based on the factor analysis (FA) model. The FA model is fitted
to the pre-intervention outcome data on treated units and all the outcome data on control units,
and the counterfactual treatment-free post-intervention outcomes of the former are predicted from
the fitted model. Intervention effects are estimated as the observed outcomes minus these predicted
counterfactual outcomes. In this article, we propose a model that extends the FA model for estimating
intervention effects by: 1) jointly modelling the multiple outcomes to exploit shared variability,
and 2) assuming an autoregressive structure on factors to account for temporal correlations in the
outcome. Using simulation studies, we show that the proposed method can improve the precision
of the intervention effect estimates and achieve better control of Type I error rate (compared to
the FA model), especially when either the number of pre-intervention measurements or the number
of control units is small. We apply our method to estimate the impact of stricter alcohol licensing
policies on alcohol-related harms.

1 Introduction

In this work, we consider the problem of estimating the causal effect of an intervention on an outcome
of interest in the setting where: i) the intervention is binary; ii) assignment of the sample units to the
intervention is non-randomised; iii) only a small number of units are treated; and iv) there are multiple
measurements of the outcome both before and after the intervention occurs.

This problem is frequently encountered in various fields of scientific research, including econometrics,
epidemiology, marketing, public health and political science. For example: Card (1990) studied the effect
that the mass migration in 1980 of Cubans to Miami had on the Miami’s labour market, by treating
Miami as having received the ‘intervention’ of mass Cuban migration and comparing it with other US
states not subject to such migrations; Cavallo et al. (2013) assessed the impact that large-scale natural
disasters, such as earthquakes and storms, had on the gross domestic product of a country by comparing
countries subject to such natural disasters (the ‘intervention’) with countries not experiencing such
disasters; de Vocht (2016) investigated whether the increased use of mobile phones (the ‘intervention’)
led to an increase in incidences of certain types of brain cancer in England.

A general difficulty when estimating the causal effect of an intervention from observational data is
the potential existence of confounding variables. These are variables which affect both the outcome of
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interest and the probability of being assigned to the intervention. Failure to account for confounding
can lead to biased estimation of causal effects. When the number of units receiving the intervention is
large, propensity score methods (Robins et al., 2000) can be used. However, when few units receive the
intervention, there is not enough information to fit propensity score models,. For this reason, several
new methodologies for causal inference in the setting where i)-iv) apply have recently been proposed.
For a recent review, see Samartsidis et al. (2019).

Many of these methods, including Abadie et al. (2010), Hsiao et al. (2012), Gobillon and Magnac
(2016), Chan and Kwok (2016) and Xu (2017), build upon the factor analysis (FA) model. FA is a natural
way to adjust for confounding. The model allows for unobserved confounders that remain constant over
time but have a time-varying effect on the outcome. However, current methodologies based on the FA
model have shortcomings. Firstly, they can only be applied to a single outcome at a time. When there is
more than one correlated outcome, it might be more efficient to model them jointly. Secondly, none of the
aforementioned methods explicitly models the temporal correlation between the multiple measurements
of the outcome. Modelling autocorrelation may improve efficiency. Thirdly, when the total number of
units is small, it is hard to perform inference for the causal effects using the existing methods. Finally,
some of the approaches above require specifying the number of factors in the model. Although guidance
is provided for how to use the data to choose this number, inference using these methods does not account
for this data-dependent choice and hence tends to be anti-conservative.

In this paper, we attempt to address these shortcomings. We consider extensions of the FA model that
can exploit the correlation between different outcomes and the temporal correlation within each outcome,
leading to more efficient estimates. Also, by taking a Bayesian approach, we can obtain credible intervals
for the causal effects that account for the uncertainty in the number of factors. We contribute to the
literature on causal inference in the setting where i)-iv) apply, in three ways. Firstly, we develop a novel
approach that uses multivariate outcomes. An alternative multivariate model is suggested by Robbins
et al. (2017). However, their method is designed for high-dimensional data and its utility in a small-
data setting is unclear. Secondly, our method is one of the few that model temporal correlation within
each outcome. Brodersen et al. (2015) recently proposed the Causal Impact method to account for such
correlation. However, Causal Impact can only be applied to a single treated unit and single outcome at a
time. Thirdly, our use of the Bayesian approach allows a more inference on the causal effects of interest
in comparison to other FA-based approaches.

Our method has connections with various applications of FA in contexts other than causal infer-
ence. More specifically, this is not the first time that a multivariate factor model has been used in
practice. De Vito et al. (2016, 2018) and Avalos-Pacheco et al. (2018) demonstrate the benefits of taking
a multivariate approach in genomic applications when dealing with multiple studies rather than multiple
outcomes. Assuming a temporal structure in the FA model is also not uncommon; see, for example,
McAlinn et al. (2017) for a recent application in macroeconomics. However, to our knowledge, this
is the first time that either of these extensions (joint outcome modelling and explicit modelling of the
temporal correlation) to the standard FA model has been implemented in a causal inference problem
and the benefits of using them demonstrated. Our methodology, together with other causal inference
methodologies based on FA, is related to the latent class analysis causal inference approach (Lanza
et al., 2013; Bartolucci et al., 2016; Tullio and Bartolucci, 2019, LCA). In LCA, there is a fixed number
of classes (the analogue of factors in FA) and the distribution of the outcomes on each unit and at each
time point depends on the unobserved class of that unit at that time point. Hence, both LCA and
FA attempt to model the variability in the outcome using latent variables. A difference between LCA
and FA is that classes are discrete whereas factors are continuous. Despite being similar in spirit to
FA approaches, LCA-based causal inference methods cannot be used in the setting where i)-iv) apply,
mainly because they require estimation of the propensity score, which is problematic when the number
of treated units is small. Moreover, these methods focus on the causal effect of the intervention on the
probability that an individual belongs to a certain class, whereas in our problem the interest is in the
effect of the intervention directly on the outcomes.

The paper is structured as follows. Section 2 introduces our motivating example. Section 3.1 intro-
duces the notation and causal framework. The standard FA model is formulated in Section 3.2. Section
3.3 presents the proposed methodology. Section 3.4 describes how our method accounts for the uncer-
tainty regarding the true number of factors. Prior distributions and posterior sampling are discussed in
Section 3.5. Section 3.6 describes how point estimates and inferences are obtained for the causal effects
of interest. In Section 4 we perform a series of simulation studies to evaluate the utility of the proposed
methodology, using the standard FA model as our benchmark. Section 5 describes the application of
methods to our motivating dataset. Finally, Section 6 contains a discussion and suggests some possible
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directions for future research.
The data that are analysed in the paper and the programs that were used to analyse them can be

obtained from www.url.co.uk.

2 Motivating example

Alcohol consumption has an adverse impact on society, being responsible for a number of harmful health
conditions and behaviours. National policy makers have long focused on the development of effective
strategies to limit these negative effects. For example, the 2003 Licensing Act1 in England and Wales
enables local authorities to develop cumulative impact policies (CIPs) that is, automatically reject new
licensing applications unless these are supported by evidence that grant will not negatively impact on
surrounding premises.

In a recent study, de Vocht et al. (2017) assessed the impact that CIPs had on alcohol-related harms.
They collected data on four alcohol-related outcomes: hospital admission rate per 10000 people; violent
crimes rate per 1000 people; sexual crime rate per 1000 people; and antisocial behaviour incidence rate
per 1000 people. The data on each outcome were collected quarterly for the period mid-2009 to 2015.
The authors defined intervention sites as local councils implementing a CIP in 2012, and control sites as
local councils that did not adopt a CIP at any time during the study period. They identified 5 treated
and 86 control sites in England and Wales.

In Section 5, we demonstrate our proposed methodology using a subset of data in de Vocht et al.
(2017). We exclude data from one treated site (Tyneside) because the intervention was implemented
earlier in this site and from 9 control sites because of missing values in some of the outcomes. Finally,
we only use data up to mid-2013, because trends in the following months might be due to changes in the
way crimes were reported (de Vocht et al., 2017). Figure 1 shows the data.
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Figure 1: The alcohol licensing dataset. Each plot shows the time-series for each unit for one of the
four outcomes. Control and treated councils are represented in grey and black colour, respectively. The
vertical grey line indicates the introduction of the intervention.

1http://www.legislation.gov.uk/ukpga/2003/17/contents
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3 Model specifications

3.1 Notation and causal framework

We have observations yitk, where i = 1, . . . , n indexes the units, t = 1, . . . , T indexes the time points
and k = 1, . . .K indexes the outcomes. The units are ordered so that the first n1 are the controls, i.e.
units that do not receive the intervention during the course of the study. For the remaining n2 = n−n1
units, there is a time point T1 after which they all receive the intervention. We refer to these units as the
treated units. Let ri be a binary indicator of whether unit i is treated. The study can be split into two
periods, the pre-intervention period consisting of the first T1 time points when none of the n units has
the intervention, and the post-intervention period consisting of the remaining T2 = T − T1 time points
when the intervention is in place for the n1 treated units.

In this paper, we adopt the Rubin causal model (Rubin, 1974; Holland, 1986). This means that for
each treated unit i (i > n1), time t after intervention (i.e. t > T1) and outcome k there are two potential

outcomes y
(0)
itk and y

(1)
itk ; y

(0)
itk represents the outcome that would have been observed if the intervention

had not been applied and y
(1)
itk is the outcome that would be observed if the intervention were applied.

Hence, the causal effect of the intervention for any i > n1, t > T1 and k is given by

θitk = y
(1)
itk − y

(0)
itk . (1)

We are further interested in the average treatment effect on outcome k at time t in the treated units,
ϑtk, defined as

ϑtk =
1

n2

n∑
i=n1+1

θitk. (2)

For treated units before intervention (i.e. i > n1 and t ≤ T1) and for control units at all times (i.e.

i ≤ n1 and all t), y
(0)
itk = yitk for all k, and so is observed. We do not observe y

(0)
itk for treated units after

intervention, and so causal effects (1) and (2) are not observed. Our approach is to assume a model

for y
(0)
itk , use this to obtain predictions ŷ

(0)
itk for the counterfactuals y

(0)
itk for i > n1 and t > T1, and then

estimate (1) and (2) as θ̂itk = y
(1)
itk − ŷ

(0)
itk and ϑ̂tk = 1

n2

∑n
i=n1+1 θ̂itk, respectively.

3.2 The factor analysis model for a single outcome

For time-series observational data, a model frequently used for y
(0)
itk is the FA model, also known as the

interactive fixed effects model (Bai, 2009). Gobillon and Magnac (2016), Chan and Kwok (2016) and Xu
(2017) use the FA model for causal inference in the setting we are investigating, i.e. that where i)-iv) apply.
Abadie et al. (2010) and Hsiao et al. (2012) show that their proposed estimators of the counterfactuals

y
(0)
itk (i > n1 and t > T1) are unbiased when the FA model is the data-generating mechanism.

The FA model for the k-th outcome assumes that

y
(0)
itk = γ>ikstk + εitk, (3)

where γik = (γik1, . . . , γikp1
)
>

is the p1-vector of unobserved unit-specific loadings for outcome k, stk =

(stk1, . . . , stkp1)
> ∼ Np1(0, I) is the p1-vector of unobserved time-specific factors for outcome k, and

εitk ∼ N(0, ψ2
ik) is the error term. One can view the loadings γik as unit characteristics that remain

constant over time and the factors stk as their time-varying effect on the potential outcome. Xu (2017)
refers to stk as ‘shocks’; γik describe the magnitude of the effect that these shocks have on unit i’s outcome

k. Variables that are predictive of y
(0)
itk but are not affected by the intervention can be incorporated as

covariates xit in the FA model by replacing Eqn. (3) with

y
(0)
itk = γ>ikstk + β>k xit + εitk. (4)

Such variables may include observed confounders measured before time T1. For simplicity, we shall omit
such covariates until Section 3.5.

We note in passing that a special case of the FA model is the difference-in-differences (DID) model
(Angrist and Pischke, 2009; Jones and Rice, 2011). This is the FA model with p1 = 2, stk1 = 1 and
γik2 = 1, i.e. fixed effects for units and time points. The DID model assumes that the ‘shocks’ at each
time point affect all the units in the same way. This model is frequently used for causal inference with
time-series observational data.
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Recall that the potential outcome y
(0)
itk is observed at all times (i.e. t = 1, . . . , T ) for control units

(ri = 0) but at only the pre-intervention times (i.e. t = 1, . . . , T1) for treated units (ri = 1). Model (3) is

fitted to these observed data, considering the post-intervention outcomes y
(0)
itk on treated units as missing.

The resulting estimator θ̂itk of the intervention effect on unit i and outcome k at time t is asymptotically
unbiased as n1 → ∞ and T1 → ∞, provided that ri is independent of εi1k, . . . , εiTk (and assuming
regularity conditions) (Xu, 2017).

There are two intuitive ways to understand why this asymptotic unbiasedness holds. First, as n1 and
T1 become larger (assuming fixed n− n1 and T − T1), the amount of data for learning about the factors

stk and the loadings γik increases, so that the factors and loadings (and hence the expectation of y
(0)
itk)

are increasingly accurately estimated. Second, by letting y
(0)
tk =

(
y
(0)
1tk, . . . , y

(0)
ntk

)>
, defining Γk as the

n× p1 matrix with i-th row γik, and letting εtk = (ε1tk, . . . , εNtk)
>

, Equation (3) implies that

y
(0)
tk = Γkstk + εtk, (5)

for all t and k. From this, marginally, i.e. integrating out the factors and error terms, we have that

Cov
(
y
(0)
tk

)
= ΓkΓ>k + Ψk, (6)

where Ψk = diag
{
ψ2
1k, . . . , ψ

2
nk

}
. Hence, the FA model assumes that the covariance of the potential

(treatment-free) outcomes of the n units is the same at all time points. The pre-intervention data are
used to learn about this covariance which is then used to predict the (counterfactual) potential outcomes
of the treated units after intervention from the (observed) potential outcomes of the control units after
intervention. The larger are n1 and T1, the more information is available to estimate Γk and Ψk, and

hence the more accurately we can estimate them (and, from them, the expectation of y
(0)
itk).

It is worth noting that the FA model allows for a certain form of unmeasured confounding. This is
because the aforementioned asymptotic unbiasedness property of θ̂itk does not require ri to be indepen-

dent of γik. If γik is indeed associated with ri then, because it is also associated with y
(0)
itk (see Eqn.

(3)), it is an (unobserved) confounder.

3.3 Extending the FA model

Our proposed model involves two extensions to the FA model: joint outcome modelling and temporal
dependence. We present these two extensions separately, although the model we finally propose, the
‘MVFA+AR’ model, includes both extensions.

Joint outcome modelling. The classical FA model considers each of the K different outcomes
independently; it makes no assumptions about correlations between outcomes k and k′ (k′ 6= k). In
situations where the different outcomes are measures of, or are influenced by, a common underlying
process, this may be an inefficient way to estimate intervention effects. For example, the outcomes GDP
and employment rate can be considered to be two measures of the underlying health of an economy; and
rates of hospital admission, violent crime, sexual crime and antisocial behaviour are all influenced by
problematic alcohol use. In these situations, part of the variability of the different outcomes is shared.
Such shared variability can be modelled using a multivariate FA (MVFA) model. As we explain below,
the MVFA model enables the counterfactual post-intervention k-th outcomes of the treated units to be
estimated using the data on all K outcomes, rather than (as in the FA model) just the data on the k-th
outcome. This makes it possible to estimate these counterfactual outcomes — and hence the intervention
effects — more precisely.

The MVFA model assumes that

y
(0)
itk = γ>ikstk + λ>i f tk + εitk, (7)

where γik and stk are as defined earlier (i.e. they are unit-specific loadings and time-specific factors, both
of which are specific to the k-th outcome), λi is the p2-vector of unit-specific loadings that are shared
across outcomes, f tk ∼ Np2

(0, I) is a p2-vector of time-specific factors for λi, and εitk ∼ N(0, ψ2
ik) is the

error term. Again, covariates can be included in the model by adding the term β>k xit to the right hand
side of Equation (7).

The interpretation of the MVFA model follows that of the FA model. More specifically, as well as γik,
we now have λi, which can be thought of as unit-specific unobserved variables that affect all outcomes;
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their effect on outcome k at time t is quantified by the factor f tk. One way to think about the benefit
of jointly modelling the outcomes when estimating the counterfactual outcomes is by appreciating that
the joint model learns about λi, the unit-specific loadings common to all the outcomes, from the data on
all the outcomes. This means that γ>ikstk + λ>i f tk, the expectation of the counterfactual k-th outcome,
is more accurately estimated than in the case when modelling the outcomes independently. A second,

alternative way to think about this benefit is to consider the covariance matrix for y
(0)
ik . For the FA

model, this is given by Equation (6). For the MVFA model, we have that

Cov
(
y
(0)
tk

)
= ΓkΓ>k + ΛΛ> + Ψk,

for each k and t, where Λ is the n × p2 matrix with i-th row λi. By modelling the outcomes jointly,
this covariance can be estimated more accurately, because the part attributable to the shared factors,
i.e. ΛΛ>, is estimated using data from all the K outcomes. Since this covariance is used to predict
the (counterfactual) potential outcomes of the treated units after the intervention, estimating it more
accurately should lead to more accurate estimation of those outcomes.

We expect the benefit of jointly modelling the outcomes to be greatest when T1 is small. In this
situation, there is little data to learn the unit-specific loadings, and so the gain from learning about some
of them (specifically λi) using all the outcomes is likely to be most marked. Also, the greater is the
proportion of factors that are common, i.e. the larger the p2/p1, the greater is likely to be the benefit
from using the MVFA model. Note that joint modelling of multiple outcomes should be beneficial in
terms of improving the precision of the estimate of the causal effect even when the effect of intervention
on only one of the K outcomes is of interest. Also note that time-dependent variables that are predictive

of y
(0)
itk but which are affected by the intervention cannot be included as covariates in the MVFA model

(as in Equation (4)). However, they can be used as additional outcomes in the MVFA model.
Modelling temporal dependence. The effect of the unit-specific loading γik (or λi) on the

outcomes at times t and t′ is represented by stk and st′k (or f tk and f t′k). It may be reasonable to
believe that this effect is likely to be more similar at two nearby times than at two distant times, e.g. stk
and st+1,k are likely to be more similar than stk and st+10,k. Neither the FA nor MVFA model described
above takes this time ordering into account. We can take into account the time ordering by assuming
that for each outcome k, the factors are generated by an AR(1) process. Specifically, we assume that,
for each k and j = 1, . . . , p1 + p2 we have that

stkj = ρkjst−1,kj + ηtkj , (8)

where stkj = ftk,j−p1
for p1 < j ≤ p1 + p2, ρkj ∈ (−1, 1) are persistent parameters, and ηtkj ∼ N(0, 1).

Assuming that factors are generated by an AR(1) process may improve prediction of the counterfac-

tual outcomes y
(0)
itk (i > n1, t > T1) and hence increase the precision of the intervention effect estimates.

This can become clear as follows. By integrating out the factors and error terms, we find that, for t′ 6= t,

Cov
(
y
(0)
tk ,y

(0)
t′k

)
= ΓkCov (stk, st′k) Γ>k + ΛCov (f tk,f t′k) Λ>. (9)

Equation (9) shows that by assuming an AR(1) prior for the factors, an a priori correlation both between
yitk and yit′k is allowed, as well as between yitk and yi′t′k, where i 6= i′. If these correlations are strong,
the sharing of information across time points can lead to more accurate estimates of the counterfactuals.
This does not happen in the standard FA model which assumes that ρkj = 0, and therefore the right
hand side of Eq. 9 reduces to 0.

We expect that assuming an AR structure for the factors will increase efficiency in settings where n1
is small and T1 large. In these settings, there are few observations per time point and therefore factors
cannot be estimated accurately. By assuming an AR(1) structure, we allow for the sharing of information
between nearby times points. When T1 is small, there may be less advantage, because there is then less
information to estimate ρkj .

We call the FA model with this AR(1) structure the ‘FA+AR’ model and the MVFA model with
AR(1) structure the ‘MVFA+AR’ model.

3.4 Choosing the number of factors

One of the challenges when implementing FA is choosing the total number of factors in the model.
Many authors have proposed solutions for this problem; for example, Bai and Ng (2002) propose some
criteria to choose the number of factors; Lopes and West (2004) develop a reversible jump Markov chain
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Monte Carlo (MCMC) algorithm to estimate the number of factors; Carvalho et al. (2008) take an
evolutionary stochastic model search approach; Srivastava et al. (2017) use a continuous shrinkage prior
on the loadings. In this work, we account for the uncertainty in p1 and p2 by assuming a multiplicative
Gamma shrinkage process (MGPS) prior (Bhattacharya and Dunson, 2011) on the loadings.

We use the MGPS for both the outcome-specific loadings γik and shared loadings λi. We shall
describe how this prior works for the outcome-specific loadings; for the shared loadings, the specifications
are analogous. Let the loading vector γik be of dimension p1 = ∞. The MGPS assumes that for each
j = 1, . . . ,∞ we have

γikj ∼ N

(
0,

1

φikjτkj

)
, (10)

where φikj and τkj (both > 0) are the local and global shrinkage parameters, respectively, such that

τkj =

j∏
`=1

δkj . (11)

For appropriately chosen priors on φikj and δkj , the product φikjτkj increases, thus encouraging the
magnitude of the elements of γik to decrease progressively towards zero. Hence, although the number
of columns in each matrix Γk is infinite there will be a column such that all columns after this column
have an L1 norm of almost zero, indicating that no more factors are required for the dataset under
consideration.

In practice, it is not possible to carry out computations when loadings are infinite-dimensional. So,
we let γik be of dimension k1 (and k2 for the shared loadings), where k1 is sufficiently large. This
approach can be computationally wasteful when p1 is much smaller than the specified k1. However, one
can easily detect this through a pilot run of the algorithm used to simulate from the posterior; if most of
the columns of Γik have an L1 norm that is very low, then it is recommended to decrease k1 in the final
run. Alternatively, an adaptive way to determine k1 is discussed by Bhattacharya and Dunson (2011).

The MGPS prior can be used to perform inference on the number of factors. At iteration ` of MCMC
(which we use to draw samples from the posterior), let d(`) denote the total number of columns in Γk

whose absolute elements |γ1kj |, . . . , |γnkj | are all below a pre-specified threshold m. The effective number
of factors at iteration ` is k1−d(`). Therefore, one can use the posterior distribution of k1−d(`) to estimate
the total number of factors in the model (e.g. as the posterior median of this distribution) and construct
credible intervals (using the quantiles). This approach is sensitive to the choice of threshold m.

The reasons that we use the MGPS prior instead of the other methods that we mention are twofold.
Firstly, the MGPS allows for a conjugate formulation of the model, which simplifies posterior sampling.
Secondly, it has been shown that this method performs well in a wide range of applications (e.g. Montagna
et al. (2012, 2018a,b).

3.5 Prior distributions and MCMC algorithm

Prior distributions are as follows. For all i and k, we let the variance parameters ψ2
ik ∼ InverseGamma(0.001, 0.001).

For the AR parameters, ρkj ∼ Uniform(−1, 1) for all k and j. For the shrinkage parameters, we follow
recommendations by Bhattacharya and Dunson (2011) and let φikj ∼ Gamma( 3

2 ,
3
2 ) for all i, k and j,

δk1 ∼ Gamma(2.1, 1) for all k, and δkj ∼ Gamma(3.1, 1) for j > 1. If covariates xit are included in the
MVFA+AR model, we let the regression coefficients βk ∼ N

(
0, 103I

)
for all k.

The posterior distribution resulting from the MVFA+AR model of Equations (7), (8), (10) and
(11) and the prior distributions stated this section is analytically intractable. We therefore use MCMC
to draw samples from it. In particular, we propose a hybrid Gibbs sampler where each parameter
(or block of parameters) is sampled from its full conditional given the remaining parameters, using
either Gibbs or Metropolis-Hastings steps. The main challenge is to simulate from high-dimensional

normal full conditionals. More specifically, the vector of factors fk =
(
s>1k,f

>
1k, . . . , s

>
Tk,f

>
Tk

)>
for

each outcome is drawn from a T (k1 + k2)-dimensional normal distribution, and the vector of loadings

λ̃i =
(
λ>i ,γ

>
i1, . . . ,γ

>
iK

)>
for each unit is drawn from a (Kk1 +k2)-dimensional normal distribution. We

perform both these updates with good computational efficiency using the method of Rue (2001). The
update of AR hyperparameters ρjk is also challenging, because these parameters have bounded support
and it is not possible to simulate them directly from their full conditionals. To overcome this issue, we
update ρjk with Metropolis-Hastings steps using the proposals developed by Kastner and Frühwirth-
Schnatter (2014). The remaining model parameters βk, φikj , δkj and ψ2

ik can be easily drawn from their
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full conditionals. For full details of the MCMC algorithm, see section A of the web-based supplementary
material, where we also provide a sketch of the sampler. Similar MCMC algorithms can be used to draw
from the posterior distribution of the FA, FA+AR and MVFA models.

We emphasise that the factors and loadings are not identifiable. Since we are not interested in
interpreting these parameters but only in the counterfactuals (which are identifiable), we choose not to
impose any identifiability constraints. Users interested in interpreting these parameters can resort to one
of the existing approaches for ensuring identifiability, see e.g. Section 12.1.3 of Murphy (2012) for a fairly
recent overview. One method is to restrict the loading matrix to the class of lower diagonal matrices
(Geweke and Zhou, 1996).

3.6 Point estimation and inference

Samples from the posterior distribution are used to obtain samples from the posterior distribution of
the causal effect θitk. First, we simulate from the posterior predictive distribution of the counterfactual
outcomes

y
(0,`)
itk = (γ

(`)
ik )>s

(`)
tk + (λ

(`)
i )>f

(`)
tk + ε

(`)
itk, (i > n1, t > T1) (12)

where ε
(`)
itk ∼ N(0, (ψ2

ik)(`)) and ` indexes the MCMC draw. Then, samples θ
(`)
itk from the posterior of the

individual effect θitk are readily available as θ
(`)
itk = yitk−y(0,`)itk . Similarly, samples ϑ

(`)
tk from the posterior

of the average treatment effect ϑtk are obtained as ϑ
(`)
tk = 1

n2

∑n
i=n1+1 θ

(`)
itk. We can use these to calculate

point estimates and perform inference. For instance, the point estimate of ϑtk will be 1
L

∑L
`=1 ϑ

(`)
tk , where

L is the number of MCMC samples and the 95% credible interval for ϑtk will be given by the 2.5% and

97.5% percentiles of the ϑ
(`)
tk . To test for a positive intervention effect, one can estimate the posterior

probability that ϑtk > 0 as 1
L

∑L
`=1 I

(
ϑ
(`)
tk > 0

)
, where I(·) is the indicator function.

4 Simulation studies

4.1 Setting

We performed a series of simulation studies to answer the question of whether one can obtain estimates
of ϑtk that are more precise than those obtained from the standard FA model by: (i) modelling multiple
outcomes jointly; (ii) assuming an AR(1) structure for the factors; and (iii) doing both simultaneously.

Each dataset (from a total of 10000) was simulated as follows. We used the MVFA+AR model to
generate data on n = 35 units with T1 = 40 pre-intervention and T2 = 5 post-intervention time points.
There were K = 3 outcomes, p1 = 2 outcome-specific loadings, p2 = 4 shared loadings, and the persistent
parameters of the factors were ρkj = 0.9 for all k and j2. s0kj were drawn from a N(0, 1) distribution.
For each k, i and j, we drew the loadings from a N(0, 1). Finally, for each k and i, we set ψ2

ik = 1/3.
We randomly chose n2 = 5 treated units from these 35 units using the expected values on the first

outcome. To introduce unobserved confounding, each unit had selection probability proportional to

expit

{
κ

45∑
t=41

[
γ>i1st1 + λ>i f t1

]}
,

of being selected to be a treated unit, where expit(·) = exp (·)/(1 + exp (·)). The value of κ controls
the degree of unobserved confounding; κ = 0 means no unobserved confounding, and κ > 0 means
that units with larger expected values of the post-intervention (possibly counterfactual) treatment-free
first outcome are more likely to be treated. We chose κ = 0.75 because we found that a simple t-test

comparing Y1 =
{
y
(0)
1,41,1, . . . , y

(0)
30,41,1

}
and Y2 =

{
y
(0)
31,41,1, . . . , y

(0)
35,41,1

}
had roughly 17.5% rejection rate

(this would be around 5% if the elements of Y1 and Y2 were exchangeable). This procedure gave us
datasets of n1 = 30 control units, n2 = 5 treated units (Setup I), and T1 = 40 and T2 = 5.

We expected the answers to questions (i)-(iii) to depend on T1 and n1. To obtain datasets with fewer
than 40 pre-intervention time points and/or fewer than 30 control units, we discarded the data in the
first 40− T1 pre-intervention time points and/or randomly discarded 30− n1 control units. The values
of (T1, n1) in setups II-IX are (40, 30), (40, 15) and (40, 5), (20, 30), (20, 15), (20, 5), (10, 30), (10, 15)

2We set the variance of the error terms ηtkj in Eq. (8) to 1/(1− ρjk) for all k and j, so that stkj ∼ N(0, 1) for all t, j
and k.
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and (10, 5), respectively. The total number of treated units (n2 = 5) and post-intervention observations
(T2 = 5) were common to all setups.

The point estimate of the ϑtk is

ϑ̂tk =
1

n2

n∑
i=n1+1

[
y
(1)
itk − ŷ

(0)
itk

]
= ϑtk +

1

n2

n∑
i=n1+1

[
y
(0)
itk − ŷ

(0)
itk

]
.

So, if the average (over simulated datasets and over treated units) value of ŷ
(0)
itk (i > n1 and t > T1) is

equal to the average (over simulated datasets and over treated units) of y
(0)
itk , then ϑ̂tk will be unbiased

for any value of θitk. Similarly, if the credible interval for
∑n

i=n1+1 y
(0)
itk contains the true value of this

sum, then the credible interval for ϑtk will also contain the true value of the ϑtk for any θitk. Thus, it
sufficed to study the case where θitk = 0.

We fit the following models to all datasets: FA, FA+AR, MVFA and MVFA+AR. Note that all these
models were correctly specified for the data that we generated. For all methods, we ran MCMC for
31250 iterations, applied a thinning factor of 25 to obtain a total of 1250 posterior draws, discarded the
first 250 as a burn-in and used the remaining 1000 for inference. Models FA and FA+AR are designed
for univariate outcomes and hence we applied these to each of the outcomes in turn. For all models, we
used the MGPS prior, setting k1 = k2 = 12. We used the posterior mean as the point estimate of the
ϑtk; credible intervals were obtained using the 2.5% and 97.5% quantiles of the posterior distribution.

We compared the performance of the models in terms of the bias and standard error of the point
estimates for the ϑtk’s, and mean width and false positive rate of the 95% credible intervals of the ϑtk’s.
As a measure of ‘power’, we used the probability of detecting an intervention effect when the true ϑtk was
not equal to zero. Here, we defined ‘detection’ as a credible interval that excludes zero. For convenience,
we assumed that θitk was the same for all units, times and outcomes.

4.2 Results

The results for the first outcome (k = 1) are summarised in Table 1 and Figures 2 and 3. Table 1
presents bias, standard error, mean credible interval width and false positive rate for (k, t) = (1, T1 + 1)
and (k, t) = (1, T ). Figures 2 and 3 show power for (k, t) = (1, T1 + 1) and (k, t) = (1, T ), respectively.
In Section B of the web-basead supplementary material, we present results for (k, t) = (2, T1 + 1) (Table
1 and Figure 1), and for (k, t) = (3, T ) (Table 1 and Figure 2).

To answer question (i), we compare the results obtained from the MVFA+AR and MVFA models to
the results obtained from the FA+AR and FA models, respectively. In settings where T1 < 40 and n1 ≥ 15
(i.e. Setups IV, V, VII and VIII), we see that joint modelling of outcomes leads to considerable gains in
precision: the MVFA+AR and MVFA models decrease the standard error of the point estimates and the
mean credible interval width in these settings (see Table 1 and Table 1 of the web-based supplementary
material Section B). The gains in efficiency are also apparent from the power: Figures 2–3 and 1–2 of
web-based supplementary material Section B show that the use of a multivariate model instead of a
univariate model can substantially improve the chance of detecting an intervention effect. For example,
for (k, t) = (1, T ) and Setup VII, we find that when ϑT1+1,1 = 1.2, the intervention effect is detected
by the MVFA model with probability 78% whereas it is detected by the FA model with probability
66%. The power curves for (k, T ) = (2, T1 + 1) and (k, t) = (3, T ) (web-based supplementary material
Section B) reveal a similar pattern. We find no settings in which the univariate models outperform the
corresponding multivariate models for any of the performance measures that we consider.

To answer question (ii), we compare the results obtained from the MVFA+AR and FA+AR models
to those obtained from the MVFA and FA models, respectively. We find that the inclusion of the AR
component leads to either improved or unchanged performance. The improvements occur mainly in
settings where n1 = 5 (i.e. Setups III, VI and IX). In these settings with few control units, the FA and
MVFA models perform very poorly in terms of bias and false positive rate for outcome k = 1 (see Table
1). The FA+AR and MVFA+AR models offer significant improvements in terms of both bias and false
positive rate compared to the FA and MVFA models. For example, for (k, t) = (1, T ) and Setup VI,
the false positive rate is 8.9% for the FA model whereas it is 5.7% for the MVFA+AR model. Note
that for outcomes k = 2 and k = 3, the bias and false positive rate in Setups III and VI are not as
high as for outcome k = 1 (see Table 1 of web-based supplementary material Section B). The reason is
that we have chosen the treated units using the expected outcomes on k = 1 and therefore the effect of
confounding is greater for k = 1. The inclusion of the AR component also leads to gains in efficiency in
Setups III and VI, as it reduces both the standard error of the point estimates and the mean credible
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interval width (Table 1). The gains in power can be moderate. For example, for (k, t) = (1, T ) and
Setup III, the intervention effect is detected with probability 90% by the FA+AR model and 83% by the
FA model when ϑT1+1,1 = 1.5 (Figure 2). The improvement in power is more prominent for outcome
k = 2 (because the bias of all methods is close to zero for this outcome). For instance, in Setup III, a
ϑT1+1,3 = 1.5 is detected with probability 86% by the FA+AR model and 72% by the FA model (Figure
1 of web-based supplementary material Section B).

We find no setups in which the MVFA+AR model performs better than both the MVFA and FA+AR
models. The reason is that, as we explained earlier in Section 3.3, the two proposed extensions (joint
outcome modelling and the AR(1) prior on factors) improve upon FA in very different settings: the
former when T1 is small and n1 is large; the latter when T1 is large and n1 is small. On the other
hand, we find no settings where either FA+AR or MVFA model outperforms the MVFA+AR model.
Therefore, the advantage of the MVFA+AR model is that it can be used in all settings. For this reason,
we suggest that this is the model that should be used in practice.

The efficiency gains obtained by using either the FA+AR, MVFA and MVFA+AR models will depend
not only on T1 and n1 but also on the total number of outcomes K, the number of factors p1 +p2 and the
ratio p1/p2. As K increases, λi will be estimated with higher precision. As the total number of factors
p1 + p2 increases, the total number of model parameters that need to be estimated increases. Hence,
sharing of information (either between outcomes using the MVFA/MVFA+AR models or between time
points using the FA+AR/MVFA+AR models) is more important for larger values of p1 + p2. Finally,
the MVFA and MVFA+AR models are well suited to applications where the ratio p1/p2 is low i.e. where
the number of shared loadings is large compared to the number of outcome-specific loadings.

5 Application to the motivating dataset

5.1 Model details

In this section we apply the proposed methodology to the alcohol licensing dataset introduced in Section
2. The dataset consists of data on K = 4 outcomes relating to the harms of alcohol consumption in
society. For each outcome, there are n1 = 72 control and n2 = 4 treated units. There are T = 16
observations per unit per outcome, T1 = 10 of which are in the pre-intervention period. The objectives
of the analysis are threefold. Firstly, we are interested in assessing the evidence for the existence of
common factors underlying the four outcomes. Secondly, we are aiming to investigate the impact of the
intervention on each of the four treated units (Derby, Enfield, Kingston upon Thames and Southwark)
individually. Thirdly, we wish to assess the evidence for a non zero average intervention effect ϑtk
(t > 10).

In order to achieve these goals, we fit our proposed MVFA+AR model. We set k1 = 20 and k2 = 10.
We run MCMC for 1500000 iterations3; the first 250000 samples are discarded as a burn-in and we
apply a thinning factor of 500 to the remaining draws. Therefore our MCMC sample consists of 2500
draws from the joint posterior of the model parameters. Convergence is assessed by visual inspection of
posterior traceplots for some randomly chosen shrinkage parameters δjk, variance parameters ψ2

ik and

the counterfactuals y
(0)
itk (i > 72 and t > 10). These indicate that the chain has reached its stationary

distribution. Further, we run an additional 9 chains and compare the posterior densities of these pa-
rameters with the ones obtained from the first chain. No major differences are found. Therefore, we
conclude that the chain has converged.

For each outcome, we also fit the univariate FA model with the MGPS prior and k1 = 20. However,
the conclusions that we reached regarding the impact of the intervention are very similar (except for
minor losses in precision of the causal effect estimates) to the ones obtained from the MVFA+AR model.
Thus, the results from the FA model are not discussed further.

5.2 Results

Figure 6 summarises the posterior distribution of
∑n1+n2

i=1 |γikj | i.e. the L1−norm of the j-th column of
the loadings matrix, where γikj = λik,j−k1 for j > k1. We see that the norm quickly decreases with j
for both outcome-specific and shared factors, demonstrating the shrinkage effects of the MGPS prior.
Inference on the number of non-negligible factors can be done as described in Section 3.4. If we use
m = 0.1, then the median posterior number of non-negligible shared factors is 2 (95% CI [2,4]) and the

3This took approximately 9 hours on a Linux machine with an Intel i7-6700 3.4GHz CPU.
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Results for time point t = T1 + 1 and outcome k = 1 (of K = 3 outcomes)

Figure 2: Results of the simulation study for the first outcome k = 1 and first post-intervention time
point t = T1 + 1. The figure presents the probability of detecting an intervention effect (y-axis) as
a function of ϑT1+1,1 (x-axis) in Setups I-IX. All results are based on 10000 datasets simulated from
the MVFA+AR model. The horizontal dashed lines indicate 5%, the desired detection rate when the
intervention ϑT1+1,1 = 0.
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Figure 3: Results of the simulation study for the first outcome k = 1 and last post-intervention time point
t = T . The figure presents the probability of detecting an intervention effect (y-axis) as a function of ϑT,1

(x-axis) in Setups I-IX. All results are based on 10000 datasets simulated from the MVFA+AR model.
The horizontal dashed lines indicate 5%, the desired detection rate when the intervention ϑT,1 = 0.
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median posterior number of factors specific to outcomes 1-4 is 6 (95% CI [4,7]), 4 (95% CI [3,5]), 14
(95% CI [10,19]) and 11 (95% CI [9,14]), respectively.

There is not enough evidence in the data to support a significant intervention effect in each unit
individually. This is evident in Figures 4 and 5 which show estimated counterfactuals along with their
95% credible intervals for Derby-Enfield and Kingston-Southwark, respectively. We see that for all
treated units and outcomes, the estimated counterfactuals do not appear to be systematically higher
than observed values. Further, the 95% credible intervals of the counterfactuals contain the observed
values yitk for the most of the combinations of i (i > 72), t (t > 10) and k. This suggests that the data
are compatible with what would have been observed had intervention not taken place.

The point estimates of ϑtk, the average (over units) intervention effect, for all post-intervention time
points 11-16 and outcomes, along with their 95% credible intervals, are shown in Table 2. We see that the
credible intervals for antisocial behaviour, violent crimes and sexual crimes are nearly symmetrical about
zero. Therefore we conclude that there is no evidence for an impact of the intervention on these outcomes.
For hospital admissions, the point estimates are all negative (a negative values means admissions would
be higher with no intervention). One of the advantages of the Bayesian approach is that it allows us to
estimate many interesting causal quantities directly from the posterior distribution of the counterfactuals.
Here we focus on the probability that ϑtk > 0 , which for hospital admissions and time points 11-16
is 0.41, 0.18, 0.16, 0.04, 0.10 and 0.07, respectively. Some of these values are low suggesting that the
intervention succeeded in reducing the rate of hospital admissions. However, most of them are higher
than 5% and therefore the evidence is inconclusive.
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Setup I II III IV V VI VII VIII IX
T1 40 40 40 20 20 20 10 10 10
n1 30 15 5 30 15 5 30 15 5

Results for k = 1 and t = T1 + 1
Bias

MVFA+AR 0.017 0.030 0.119 0.034 0.056 0.155 0.072 0.103 0.195
MVFA 0.035 0.075 0.327 0.055 0.105 0.332 0.100 0.158 0.357

FA+AR 0.026 0.043 0.126 0.065 0.090 0.166 0.126 0.146 0.209
FA 0.044 0.087 0.324 0.082 0.131 0.330 0.144 0.186 0.351

Standard error
MVFA+AR 0.314 0.354 0.480 0.347 0.388 0.508 0.396 0.440 0.539

MVFA 0.322 0.383 0.684 0.355 0.418 0.669 0.406 0.470 0.666
FA+AR 0.330 0.371 0.492 0.387 0.424 0.526 0.460 0.494 0.569

FA 0.335 0.398 0.691 0.392 0.449 0.677 0.466 0.517 0.680
Mean credible interval width

MVFA+AR 1.245 1.394 1.904 1.370 1.548 2.055 1.628 1.833 2.286
MVFA 1.262 1.471 2.429 1.386 1.618 2.450 1.653 1.912 2.614

FA+AR 1.309 1.465 1.934 1.539 1.707 2.104 1.902 2.045 2.357
FA 1.317 1.517 2.425 1.532 1.736 2.462 1.898 2.076 2.634

False positive rate
MVFA+AR 0.050 0.047 0.052 0.053 0.051 0.051 0.048 0.046 0.050

MVFA 0.054 0.055 0.085 0.059 0.058 0.088 0.051 0.056 0.074
FA+AR 0.048 0.049 0.052 0.051 0.049 0.057 0.049 0.050 0.057

FA 0.052 0.059 0.090 0.058 0.064 0.089 0.054 0.062 0.081

Results for k = 1 and t = T
Bias

MVFA+AR 0.014 0.032 0.208 0.043 0.074 0.263 0.113 0.170 0.333
MVFA 0.035 0.084 0.370 0.069 0.133 0.409 0.152 0.241 0.481

FA+AR 0.033 0.057 0.217 0.100 0.140 0.282 0.225 0.259 0.357
FA 0.054 0.107 0.372 0.121 0.186 0.420 0.246 0.308 0.490

Standard error
MVFA+AR 0.326 0.375 0.676 0.374 0.437 0.737 0.484 0.569 0.800

MVFA 0.331 0.398 0.780 0.383 0.467 0.825 0.496 0.606 0.877
FA+AR 0.355 0.414 0.703 0.465 0.538 0.784 0.640 0.703 0.861

FA 0.358 0.433 0.800 0.469 0.554 0.858 0.642 0.717 0.913
Mean credible interval width

MVFA+AR 1.284 1.485 2.483 1.485 1.746 2.660 1.913 2.216 2.931
MVFA 1.283 1.498 2.456 1.459 1.714 2.533 1.874 2.163 2.789

FA+AR 1.392 1.607 2.518 1.812 2.052 2.722 2.454 2.626 3.023
FA 1.373 1.574 2.462 1.728 1.920 2.570 2.341 2.471 2.863

False positive rate
MVFA+AR 0.050 0.050 0.066 0.049 0.049 0.078 0.052 0.058 0.084

MVFA 0.055 0.062 0.125 0.060 0.076 0.147 0.067 0.086 0.141
FA+AR 0.052 0.054 0.076 0.053 0.063 0.089 0.065 0.072 0.099

FA 0.057 0.074 0.133 0.070 0.091 0.159 0.082 0.102 0.155

Table 1: Results of the simulation study for the first outcome k = 1 and post-intervention time points
t = T1 + 1 and t = T . The table presents the bias of the point estimates of ϑt1, the standard error of
the point estimates, the mean width of the 95% credible intervals and the false positive rate. All results
are based on 10000 simulated datasets from the MVFA+AR model.
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Estimates of ϑtk

t Antisocial behaviour Violent crimes Hospital admissions Sexual crimes
11 -0.09 [-0.26,0.07] -0.1 [-0.29,0.09] -1.2 [-13.1,9.8] -0.003 [-0.013,0.007]
12 -0.04 [-0.27,0.19] -0.12 [-0.44,0.21] -5.6 [-18.6,6.7] -0.003 [-0.018,0.011]
13 -0.04 [-0.36,0.28] -0.22 [-0.63,0.23] -6.9 [-20.9,7.2] -0.008 [-0.026,0.011]
14 0.11 [-0.32,0.52] -0.22 [-0.7,0.27] -12.9 [-27.9,1.2] -0.008 [-0.028,0.012]
15 0.26 [-0.19,0.73] -0.09 [-0.6,0.45] -9.8 [-25.1,5] -0.01 [-0.031,0.012]
16 0.36 [-0.12,0.86] -0.06 [-0.58,0.49] -11.2 [-26.6,3.2] -0.009 [-0.029,0.013]

Mean observed values
t Antisocial behaviour Violent crimes Hospital admissions Sexual crimes

11 2.50 5.73 159.4 0.170
12 2.50 5.66 150.8 0.169
13 2.49 5.47 147.3 0.158
14 2.53 5.35 144.4 0.149
15 2.56 5.35 145.3 0.147
16 2.58 5.26 142.2 0.148

Table 2: Top panel: estimated average (over units) treatment effect for each outcome and post-
intervention time point. The 95% posterior credible intervals are shown in brackets. Bottom panel:
average (over units) observed values for each outcome and post-intervention time point.
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Figure 4: Results of the real data analysis for Derby and Enfield. The solid black lines represent the

observed data. The solid grey lines indicate the posterior mean of y
(0)
itk obtained by fitting the MVFA+AR

model. The shaded grey regions represent the 95% credible intervals of y
(0)
itk obtained from the same

model. Finally, the dashed black lines indicate the 95% credible intervals for y
(0)
itk obtained by analysing

each outcome in turn with the FA model.
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Figure 5: Results of the real data analysis for Kingston and Southwark. The solid black lines represent

the observed data. The solid grey lines indicate the posterior mean of y
(0)
itk obtained by fitting the

MVFA+AR model. The shaded grey regions represent the 95% credible intervals of y
(0)
itk obtained from

the same model. Finally, the dashed black lines indicate the 95% credible intervals for y
(0)
itk obtained by

analysing each outcome in turn with the FA model.
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Figure 6: Analysis of the alcohol licensing dataset using the proposed MVFA model. The figure presents posterior boxplots of
∑n

i=1 |γikj |, the L1-norm of the
j-th column of the loadings matrix. The boxplots are based on an MCMC sample of size 2500. Factors 1-20 are outcome-specific whereas factors 21-30 are shared
across outcomes.
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6 Discussion

In this work, we have introduced the MVFA+AR model for evaluating the impact of a dichotomous
intervention from time-series observational data. Our model extends in two ways the FA model frequently
used for causal inference in this setting. First, it models multiple correlated outcomes jointly. Second, it
accounts for autocorrelation within each of the outcomes. Both of these extensions enable more efficient
estimation of the effect of an intervention on all, or any one, of the multiple outcomes. An important
facet of the proposed model is that it provides posterior credible intervals for the causal effects of interest
that account for the uncertainty about the number of factors.

The ability to make inference is inherent to the Bayesian framework and therefore to our method. This
gives it an advantage over many existing approaches for causal inference using time-series observational
data, including frequentist approaches based on the FA model (Gobillon and Magnac, 2016; Chan and
Kwok, 2016; Xu, 2017; Li, 2018) and synthetic control-type approaches (Abadie et al., 2010; Hsiao
et al., 2012; Doudchenko and Imbens, 2016; Ben-Michael et al., 2018). The reason is that, to allow for
inference, these methods require assumptions to allow for inference that might be unlikely to hold in
some applications and therefore may yield confidence intervals that do not reflect the true uncertainty
in the estimates of the causal effect. For example, the parametric bootstrap approach of Xu relies on
the assumption that the error terms in the FA model are homoskedastic at each time point. For the
approaches of Abadie et al. (2010) and Hsiao et al. (2012), inference is typically done with a “placebo
test”, a procedure that is akin to a permutation test. However, the validity of this test is debatable
unless one is willing to assume that the unit that received the intervention was chosen at random (Ben-
Michael et al., 2018). These assumptions are not essential for our method, suggesting it can be a useful
alternative in applications where they are unlikely to hold.

Our simulation studies indicate that the estimates of intervention effects obtained from the MVFA+AR
model are more precise than those obtained from the standard FA model. This can lead to considerable
gains in power for detecting an intervention effect. Further, we found that the MVFA+AR model has
better type I error rate control compared to the standard FA model. Both these gains occur when either
the total number of pre-intervention time points or the total number of control units is relatively small.
This is the case in many practical problems.

We applied our methodology to estimate the impact of CIPs on alcohol related harms. We found
evidence for the existence of common factors driving the outcomes that we considered. We identified no
major impact of CIPs on the rate of antisocial behaviour incidents, violent crimes and sexual crimes. The
analysis provides some evidence that the intervention has led to a decrease in the rate of alcohol-related
hospital admissions. However, the effect is not significant, i.e. the 95% credible intervals contain zero.

There are limitations to the proposed method. Our model allows for loadings that are shared across
all outcomes. However, with K > 2 outcomes there is the possibility that there are loadings which are
shared only between k of them, where 2 ≤ k ≤ K − 1. There may be a benefit in extending the model
to allow for loadings that are common only to a subset of the outcomes. Another extension that may be
useful would replace the AR(1) structure that we assume with a more general ARMA process. However,
this may not be feasible, given the length of the time-series encountered in many practical applications.

Several possible directions for future research exist. The proposed model does not make use of the
geographical location of the units. Such information may be of value, since we expect the outcomes of
units with spatial proximity to be correlated. It may be worth extending the model to account for this.
Lopes et al. (2008) achieve this by assuming a spatial model for the loadings. Finally, although our
model should perform well when the normality assumption holds approximately, it cannot be used when
the data drastically deviate from this assumption, e.g. when the outcomes are dichotomous. Therefore,
it is important to develop a model for mixed outcomes. We shall consider such extensions in our future
research.

Acknowledgements

The authors thank Frank de Vocht for useful discussions regarding the real data application. This work
is funded by the NIHR Health Protection Unit on Evaluation of Interventions (PS); Medical Research
Council grants MC UU 00002/10 (SRS) and MC UU 00002/11 (DDA); and by Public Health England
(DDA). This study is further funded by the National Institute for Health Research (NIHR) Programme
Grants for Applied Research programme (Grant Reference Number RP-PG-0616-20008). The views
expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health
and Social Care

19



References

Abadie, A., Diamond, A., and Hainmueller, J. (2010). Synthetic control methods for comparative case
studies: Estimating the effect of California’s tobacco control program. Journal of the American sta-
tistical Association, 105(490), 493–505.

Angrist, J. D. and Pischke, J.-S. (2009). Mostly harmless econometrics: An empiricist’s companion.
Princeton University Press.

Avalos-Pacheco, A., Rossell, D., and Savage, R. S. (2018). Heterogeneous large datasets integration using
Bayesian factor regression. arXiv preprint arXiv:1810.09894 .

Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica, 77(4), 1229–1279.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. Economet-
rica, 70(1), 191–221.

Bartolucci, F., Pennoni, F., and Vittadini, G. (2016). Causal latent markov model for the comparison
of multiple treatments in observational longitudinal studies. Journal of Educational and Behavioral
Statistics, 41(2), 146–179.

Ben-Michael, E., Feller, A., and Rothstein, J. (2018). The augmented synthetic control method. arXiv
preprint arXiv:1811.04170 .

Bhattacharya, A. and Dunson, D. B. (2011). Sparse bayesian infinite factor models. Biometrika, 98(2),
291–306.

Brodersen, K. H., Gallusser, F., Koehler, J., Remy, N., and Scott, S. L. (2015). Inferring causal impact
using bayesian structural time-series models. The Annals of Applied Statistics, 9(1), 247–274.

Card, D. (1990). The impact of the mariel boatlift on the miami labor market. Industrial and Labor
Relation, 43(2), 245–257.

Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., and West, M. (2008). High-dimensional
sparse factor modeling: applications in gene expression genomics. Journal of the American Statistical
Association, 103(484), 1438–1456.

Cavallo, E., Galiani, S., Noy, I., and Pantano, J. (2013). Catastrophic natural disasters and economic
growth. The Review of Economics and Statistics, 95(5), 1549–1561.

Chan, M. and Kwok, S. (2016). Policy evaluation with interactive fixed effects.

De Vito, R., Bellio, R., Trippa, L., and Parmigiani, G. (2016). Multi-study factor analysis. arXiv preprint
arXiv:1611.06350 .

De Vito, R., Bellio, R., Trippa, L., and Parmigiani, G. (2018). Bayesian multi-study factor analysis for
high-throughput biological data. arXiv preprint arXiv:1806.09896 .

de Vocht, F. (2016). Inferring the 1985–2014 impact of mobile phone use on selected brain cancer
subtypes using Bayesian structural time series and synthetic controls. Environment International , 97,
100–107.

de Vocht, F., Tilling, K., Pliakas, T., Angus, C., Egan, M., Brennan, A., Campbell, R., and Hickman,
M. (2017). The intervention effect of local alcohol licensing policies on hospital admission and crime:
a natural experiment using a novel Bayesian synthetic time-series method. Journal of Epidemiology
& Community Health, 71(9), 912–918.

Doudchenko, N. and Imbens, G. W. (2016). Balancing, Regression, Difference-In-Differences and Syn-
thetic Control Methods: A Synthesis. arXiv preprint arXiv:1610.07748 .

Geweke, J. and Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing theory. The Review
of Financial Studies, 9(2), 557–587.

Gobillon, L. and Magnac, T. (2016). Regional policy evaluation: Interactive fixed effects and synthetic
controls. Review of Economics and Statistics, 98(3), 535–551.

20



Holland, P. W. (1986). Statistics and causal inference. Journal of the American statistical Association,
81(396), 945–960.

Hsiao, C., Ching, S. H., and Wan, S. K. (2012). A panel data approach for program evaluation: measuring
the benefits of political and economic integration of Hong Kong with mainland China. Journal of
Applied Econometrics, 27(5), 705–740.

Jones, A. M. and Rice, N. (2011). Econometric evaluation of health policies. In S. Glied and P. Smith,
editors, The Oxford Handbook of Health Economics, Oxford Handbooks, pages 890–923. OUP Oxford.
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