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We revise formal and numerical aspects of collinear and non-collinear density functional theory (DFT) in the
context of a two-component self-consistent treatment of spin-orbit coupling (SOC). While the extension of
the standard one-component theory to a non-collinear magnetization is formally well-defined within the local
density approximation (LDA), and therefore results in a numerically stable theory, this is not the case within
the generalized gradient approximation (GGA). Previously reported formulations of non-collinear DFT based
on GGA exchange-correlation potentials have several limitations: i) they fail at reducing (either formally or
numerically) to the proper collinear limit (i.e. when the magnetization is parallel to the z axis everywhere in
space); ii) they fail at ensuring a quantitative rotational invariance of the total energy and even a qualitative
rotational invariance of the spatial distribution of the magnetization when a SOC operator is included in
the Hamiltonian; iii) they are numerically very unstable in regions of small magnetization. All of the above
mentioned problems are here shown (both formally and through test examples) to be solved by using instead
a new formulation of non-collinear DFT for GGA functionals, which we call the “signed canonical” theory,
as combined with an effective screening algorithm for unstable terms of the exchange-correlation potential
in regions of small magnetization. All methods are implemented in the Crystal program and tests are
performed on simple molecules to compare the different formulations of non-collinear DFT.

Keywords: non-collinear DFT, relativistic DFT, spin-orbit coupling, collinear limit, rotational invariance

I. INTRODUCTION

There is great interest in the generalization of the den-
sity functional theory (DFT) to non-collinear (NC) spin
densities and spin-orbit coupling (SOC). This is in part
because, nowadays, the DFT is the method of choice
for studying extended systems from a first principles ap-
proach. A NC formulation of the DFT is necessary for
treating SOC because rotational invariance is otherwise
lost in the usual collinear theory, when a SOC opera-
tor is included in the Hamiltonian. While in principle
a well-defined strategy for the formal derivation of rela-
tivistic DFT has been formulated – based either on the
relativistic four-current density in the four-component
case or on the electron density, magnetization and orbital
current-density in the two-component case – in practice,
there is a lack of any density functional approximations
(DFAs) built using such a theory.1–4 As a consequence,
practical implementations of relativistic NC-DFT usu-
ally need to be formulated in a manner much closer to
its non-relativistic counterpart.5–16 In this respect, one
exception is represented by the use of such formal def-
inition of relativistic two-component DFT as combined

a)Electronic mail: jkd788@mail.usask.ca
b)Electronic mail: alessandro.erba@unito.it

with the so-called optimized effective potential method,
where the exact exchange functional is adopted. How-
ever, this approach turns out to be very similar to the
Hartree-Fock (HF) theory, and provides essentially no
advantages over the latter (apart from leading to a local
versus non-local potential), as it also lacks any treatment
of electron correlation.17,18

Wavefunction-based methods can be generalized in a
well-defined and formally straightforward way to NC spin
densities and spin-orbit coupling. For instance, this
is the case for the spin-orbit configuration-interaction
(SO-CI) approach19,20 and the two- or four-component
coupled-cluster (SO-CCSD) approach.21 However, such
approaches are often not applicable to extended systems,
either because they are too expensive (like in the case of
SO-CCSD) or because they are not size-extensive (like
in the case of SO-CI). This further exacerbates the need
for efficient generalizations of the DFT to NC magnetism
and SOC.

The most common method to generalize the DFT
to NC magnetism and SOC is the approach first de-
scribed by Kubler and co-workers, originally formulated
for the local-density approximation (LDA) and hereafter
referred to as the “canonical” non-collinear theory.5 At
variance with the usual non-relativistic collinear theory
(where the spin-quantisation axis is taken everywhere
along z), the quantisation axis is now allowed to vary
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from point to point and to locally adopt the direction
of the electron magnetization. When used with LDA
functionals, the theory is numerically very stable and
also reduces properly to the result of the correspond-
ing collinear functional when the magnetization is in-
deed parallel everywhere (the so-called “collinear limit”).
Considerable work has also gone towards implementing
this formulation for time-dependent DFT.22–28 Several
attempts have been made to generalize this canonical
non-collinear theory to functionals beyond the simple
LDA.7,8,10–12,29,30 In all cases, serious numerical prob-
lems have been reported. Sometimes, these problems
have been partly circumvented by throwing away unsta-
ble terms in the exchange-correlation (xc) potential.10–12

However, such a prescription is to be considered undesir-
able as, among other reasons, it can lead to inaccuracies
and non-variational energies, which can hamper subse-
quent calculations of energy derivatives. In other cases,
the actual approach used beyond LDA is not entirely
outlined,8 or the numerical instability of the implemen-
tation is acknowledged in later publications.6,7 Moreover,
there are also some formal problems with the canoni-
cal theory, which make straightforward generalizations
to generalized-gradient (GGA) or meta-GGA functionals
to no longer reduce to the proper collinear limit. This has
been previously acknowledged by Scalmani and Frisch.9

As a result, generalizations of the canonical NC theory
to functionals beyond the LDA is seldom used in appli-
cations.

In order to circumvent these numerical and formal
problems, Scalmani and Frisch (SF) have recently pro-
posed an alternative formulation of NC-DFT, originally
used in the absence of SOC, for functionals beyond the
LDA (GGAs and meta-GGAs).9 However, we show for
GGAs that while the SF xc functional reduces to the
proper collinear limit, the SF xc potential does not.

Motivated by these shortcomings, in this study we
present a new formulation of NC-DFT to be used with
and without SOC, which we call the “signed canoni-
cal” non-collinear theory. The enhanced stability, rota-
tional invariance and reduction to the proper collinear
limit are shown first through a comparative formal anal-
ysis against the previously proposed theories, and then
through explicit test examples on some small molecular
systems. Our suggested procedure is a modification of
the canonical non-collinear formulation, but in principle
it could also be used to modify the SF formulation. Our
NC-DFT theory will be shown in the following to be espe-
cially promising in conjunction with the generalized HF
procedure outlined in Part I for calculations with hybrid
functionals.31 All the formulations of NC-DFT discussed
in the paper have been implemented in a developmental
version of the public Crystal program.32

II. FORMAL ASPECTS

We refer to Part I of the paper for the description of the
adopted notation, in particular for a description of the
adopted notation for vectors and matrices.31 The present
implementation is based on a two-component Kramers-
unrestricted approach, where spin-orbit coupling (SOC),
as well as scalar-relativistic (SR), effects are both treated
self-consistently from relativistic effective-core potential
(RECP) operators. These are mono-electronic, non-
local operators which enter into the Hamiltonian and
are obtained by fitting a set of solid-spherical Gaussian
functions to potentials derived from comparatively very
accurate all-electron four-component atomic Dirac-Fock
calculations.33,34

The presence of the SOC operator implies that the
eigenfunctions of the Hamiltonian are complex two-
component spinors, which, in our case, are in turn ex-
panded as a linear combination of nf real-atomic orbitals
χµ(r):

Ψi(r) =

nf∑
µ=1

[(
cαµ,i
0

)
+

(
0

cβµ,i

)]
χµ(r) , (1)

where cσµ,i (with σ = α, β) are complex molecular orbital
(MO) coefficients that are determined by solving the cor-
responding self-consistent field (SCF) equations (either
Fock or Kohn-Sham). From the subset of occupied two-
component MO spinors in Eq. (1), a complex-Hermitian
one-particle density matrix is built as:

[
Dσσ′

]
µν
≡

occ∑
i

[
cσµi

]∗
cσ
′

νi . (2)

In the present implementation in the Crystal code,
the χµ atomic orbitals are expressed as a linear combina-
tion of real solid-spherical Gaussian-type functions up to
angular momentum quantum number l = 4 (i.e. g-type
functions).35

A. Fundamental Variables in Relativistic Density
Functional Theory

Any practical formulation of the density functional the-
ory requires a definition of fundamental variables (i.e.
basic ingredients) from which density functional approx-
imations (DFAs) are built. Although the most general
formulation of relativistic DFT would be based on the
four-current (i.e. the generalization of the electron den-
sity within a four-component relativistic treatment), in
practice no DFAs are built from it so that relativis-
tic exchange-correlation functionals are typically defined
in terms of variables more closely related to their non-
relativistic counterparts.2

As is now common-practice for most calculations on
systems bigger than one atom,2,5–14,36 here we consider
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DFAs based on the particle-number (or total) density:

n(r) ≡
occ∑
i

Ψ†i (r)Ψi(r) , (3)

and on the magnetization vector m(r), whose Cartesian
components are defined as:

mc(r) ≡
occ∑
i

Ψ†i (r)σ̂cΨi(r) , (4)

where c = x, y, z labels a Cartesian component and σ̂c
are the usual 2×2 complex Pauli matrices given in Eq. (4)
of Part I. By introducing the following compact notation:

n<σσ′(r) =
∑
µν

<
[
Dσσ′

]
µν
χµ(r)χν(r) ;

n=σσ′(r) =
∑
µν

=
[
Dσσ′

]
µν
χµ(r)χν(r) , (5)

the total density and magnetization can be expressed in
terms of the elements of the density matrix as follows:31

n(r) = n<αα(r) + n<ββ(r) ; (6)

mx(r) = n<αβ(r) + n<βα(r) ; (7)

my(r) = n=αβ(r)− n=βα(r) ; (8)

mz(r) = n<αα(r)− n<ββ(r) . (9)

The common restriction to DFAs built solely from n and
m introduced above represents a limitation in the context
of two-component relativistic DFT as it neglects contri-
butions from the so-called “orbital current-density”.3,37

Nonetheless, let us note here that, interestingly, the
physics contained in the orbital current-density can be
recovered into the two-component DFT description by
using so-called hybrid exchange-correlation functionals,
where a fraction of non-local exact Fock exchange is
included.37

B. Generalized DFT Treatment

We now discuss the treatment of SOC within the DFT
in a two-component framework. Here we show how
the approach can be generalized to local-density and
generalized-gradient approximations (LDA and GGA) of
the exchange-correlation (xc) operator, as well as LDA
and GGA hybrid functionals, where a fraction a of non-
local Fock exchange is included in its definition. That is
to say, we are interested in formulations of DFT associ-
ated with energy expressions of the form:

E = Tr
(
hD†

)
+

1

2
Tr
(
CD†

)
+
a

2
Tr
(
KD†

)
+ Exc .(10)

The exact form of the mono-electronic h matrix elements,
and bi-electronic Coulomb C and exchange K matrix el-
ements, as well as strategies for calculating the traces

above were discussed in Part I.31 The formal analyses
presented here depend on the formulation of the xc ap-
proximation (i.e. whether the functional is of LDA or
GGA type), but not on the specific form of the functional
itself. Exc is the exchange-correlation energy, which is
expressed using integrals over space of the exchange-
correlation functional Fxc:

Exc = (1− a)

∫
Fx[Q]dr +

∫
Fcorr[Q]dr , (11)

where the exchange-correlation functional has been writ-
ten as a sum of exchange Fx and correlation Fcorr contri-
butions:

Fxc[Q] ≡ Fx[Q] + Fcorr[Q] . (12)

For a = 0, the formalism reduces to that of plain LDA
or GGA formulations. In the above, the exchange-
correlation functional depends on a set of variables Q.
More explicitly, Q is spanned by density variables n±
and gradient variables γ±±:

Q(r) = [n+(r), n−(r), γ++(r), γ−−(r), γ+−(r)] . (13)

The density variables n± depend on the value of the total
density and magnetization at position r in space, while
the gradient variables γ±± depend on both the value and
gradients (with respect to r) of the total density and
magnetization at position r in space. So the variables
γ±± are proper to GGA functionals, whereas the n± are
present in both LDA and GGA functionals. More details
on the exact definitions of these variables are provided
in the following. In principle, meta-GGA forms of the
exchange-correlation operator could also be treated sim-
ilarly using however a larger set of variables, but we do
not discuss these explicitly here.

The Kohn-Sham Hamiltonian is built using the xc po-
tential V̂xc, which is also written as a sum of exchange
and correlation contributions:

V̂xc(r) ≡ V̂x(r) + V̂corr(r) , (14)

and, within a two-component generalisation of the the-
ory, is given by:5,7,38

V̂xc(r) = Exc(r)σ̂0 +
∑
c

Bxcc (r)σ̂c , (15)

where the σ̂c are the 2 × 2 complex Pauli matrices, σ̂0

is the 2 × 2 identity matrix, and both Exc and Bxcc are
defined in terms of functional derivatives of the xc energy.
More specifically, the xc electrostatic potential Exc reads:

Exc(r) =
δExc
δn+(r)

+
δExc
δn−(r)

, (16)

and the Cartesian components Bxcc of the so-called xc
magnetic field read:

Bxcc (r) =
mc(r)

m(r)

[
δExc
δn+(r)

− δExc
δn−(r)

]
, (17)



4

where m ≡|m| (in the NC theory, see below) or m ≡ mz

(in the collinear theory) and, in the expressions above, δ
is used to represent the functional derivative.

We can use the Bxc to define the local torque of the xc
magnetic field τxc as follows:18,39,40

τxc(r) = m(r)×Bxc(r) . (18)

The variables Q on which the functional depends can
in general be chosen such that the τxc is locally non-
vanishing, even though in general its integral over all
space

∫
τxc(r)dr should be null, such that it obeys the

so-called zero-torque theorem.18,39,40

The Kohn-Sham Hamiltonian matrix elements are ex-
pressed using mono-electronic (including SR and SOC)
and bi-electronic (Coulomb and exchange) integrals, as

well as the xc potential V̂xc introduced above. For the
diagonal spin-blocks we have:

[Hσσ
KS ]µν = [hσσ]µν + [Cσσ]µν + a [Kσσ]µν

+ (1− a) [V σσx ]µν + [V σσcorr]µν . (19)

For off-diagonal spin-blocks (i.e. for σ 6= σ′), all mono-
electronic integrals apart from SOC ones are null, as well
as the bi-electronic Coulomb integrals (as shown in Part
I), so that we have:[

Hσσ′

KS

]
µν

=
[
hσσ

′

SO

]
µν

+ a
[
Kσσ′

]
µν

+ (1− a)
[
V σσ

′

x

]
µν

+
[
V σσ

′

corr

]
µν

. (20)

The xc potential is described in the following according to
two competing theories: the collinear and non-collinear
formalisms.5–8,10–12,38 In the collinear formalism, the xc
potential is built from an xc functional which only de-
pends on the z component of the magnetization mz, that
is only the Bxcz component of the xc magnetic field is non-
vanishing in Eq. (15). In this case, the lack of x and y
components of the magnetization implies that the system
looses the rotational invariance of the energy (i.e. within
the collinear formulation, the energy of the system may
vary depending on its relative orientation with respect to
the Cartesian frame). On the contrary, the non-collinear
formalism makes use of all three Cartesian components
of the magnetization, such that rotational invariance is
ensured. More details are provided below in Sections II C
and II D on the two theories.

C. Collinear Density Functional Theory

In the collinear formalism, the variables Q entering the
exchange-correlation functional depend only on the to-
tal density n and z component of the magnetization mz,
while the x and y components of the magnetization are
set to zero. As a consequence, the x and y components of
the xc magnetic field introduced in Eq. (17) must vanish.
From Eq. (15), the xc potential thus reduces to:

colV̂xc(r) = colExc(r)σ̂0 + colBxcz (r)σ̂z . (21)

Given the real nature of both σ̂0 and σ̂z, the xc potential
therefore forms a real diagonal matrix in spin-space:

colVxc =

(
colVαα

xc 0αβ

0βα colVββ
xc

)
, (22)

whose matrix elements are real Hermitian:[
colV σσxc

]
µν

=
[

colV σσxc

]
νµ

. (23)

From Eq. (21) and by recalling the definition of the xc
electrostatic potential and xc magnetic field given in Eqs.
(16) and (17), we get the following expressions for the
collinear xc potential in terms of functional derivatives
of the collinear xc energy Ecol

xc with respect to variables
n+(r) and n−(r):

colV̂ ααxc (r) =
δEcol

xc

δn+(r)
(24)

colV̂ ββxc (r) =
δEcol

xc

δn−(r)
. (25)

The main advantage of the collinear formalism is that
little modifications of the non- or scalar-relativistic part
of an existing code that calculates the xc energy and the
xc potential matrix elements within a one-component ap-
proach are necessary to implement this theory. Moreover,
xc functionals made for non-relativistic calculations can
be used in exactly the same way as they were devised.

The disadvantage of the collinear theory is that rota-
tional invariance is lost when calculations are performed
in the presence of a SOC operator. The loss of rotational
invariance means that a rigid rotation of the molecule
will cause a change in energy. This occurs because the
collinear theory effectively consists of choosing the spin-
quantisation axis along z for the xc potential term. Given
that the SOC operator imparts an energy dependence on
the orientation of the spin-quantisation axis,31 the arbi-
trary and non-general choice of the z direction results in
loss of rotational invariance.

1. Collinear LDA

As introduced in Section II B, LDA xc functionals only
depend on n+(r) and n−(r), which, in the collinear for-
malism (in analogy to the non- or scalar-relativistic one-
component approach), are defined as:

ncol
+ (r) = n<αα(r) (26)

ncol
− (r) = n<ββ(r) , (27)

and are therefore built solely from the real part of the
αα and ββ blocks of the density matrix. The super-
script “col” indicates that these are the definitions of n±
specific to the collinear formalism. From Eqs. (6) and
(9), the variables above can be shown to depend only on
the total density n and z component of the magnetization
mz as:

ncol
± (r) =

1

2

[
n(r)±mz(r)

]
. (28)
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From calculus of variations, for LDA, the functional
derivatives of the energy in Eqs. (24) and (25) reduce
to the following partial derivatives of the xc functional:

colV̂ σσxc (r) =
∂F col

xc

∂n<σσ(r)
. (29)

2. Collinear GGA and Hybrids

As discussed above, apart from the n± introduced
above, GGA xc functionals (and GGA hybrids) also
depend on gradient variables γ±±, which, within the
collinear formalism (again, in analogy to the non-
relativistic one-component approach), are defined as:

γcol
±±(r) = ∇̂ncol

± (r) · ∇̂ncol
± (r) . (30)

From Eq. (28), it is easy to see that also these variables
only depend on the total density n and z component of

the magnetization mz:

γcol
±±(r) =

1

4
∇̂
[
n(r)±mz(r)

]
· ∇̂

[
n(r)±mz(r)

]
.(31)

For GGA, standard calculus of variations gives the fol-
lowing expression for the xc potential:41

colV̂ σσxc (r) =
∂F colxc

∂n<σσ(r)
− ∇̂ ·

[
2

∂F colxc

∂
∣∣∣∇̂n<σσ(r)

∣∣∣2 ∇̂n<σσ(r)

+
∂F colxc

∂γcol+−(r)
∇̂n<σ′σ′(r)

]
, (32)

where in the equation above σ 6= σ′. From Eq. (32),
for GGA functionals the evaluation of the xc potential
would require the second derivatives of the xc functional.
However, as was first noted by Pople and co-workers,41

the evaluation of the xc potential is actually not neces-
sary, because we are only interested in the evaluation of
the matrix elements of the xc potential and these can be
obtained through integration by parts, such that only the
first derivatives of the functional are required, as follows:

[
colV σσxc

]
µν

=

∫
∂F colxc

∂n<σσ(r)
χµ(r)χν(r)dr +

∫ [
2

∂F colxc

∂
∣∣∣∇̂n<σσ(r)

∣∣∣2 ∇̂n<σσ(r) +
∂F colxc

∂γcol+−(r)
∇̂n<σ′σ′(r)

]
· ∇̂χµ(r)χν(r)dr .(33)

D. Non-Collinear Density Functional Theory

In the non-collinear formalism, the variables entering
the exchange-correlation functional depend on the total
density n and on the three Cartesian components of the
magnetization m, so that rotational invariance is ensured
even in the presence of the SOC operator. Therefore,
from Eqs. (6) - (9), the xc functional depends on all
blocks of the density matrix apart form =Dαα and =Dββ .
We note in passing that these latter blocks enter the def-
inition of the orbital current density that thus would not
be correctly described. However, we also note that the
inclusion of a fraction of Fock exchange, as done in hy-
brid functionals, introduces the missing dependence on
these blocks of the density matrix and therefore allows
to better describe the orbital current density.

Given that the xc functional now depends on the to-
tal density and on the three Cartesian components of
the magnetization, the non-collinear xc potential has the
form shown on Eq. (15) and therefore forms a complex
matrix in spin-space:

Vxc =

(
Vαα
xc Vαβ

xc

Vβα
xc Vββ

xc

)
. (34)

Based on Eq. (15) and on the expressions for the Pauli
matrices, the following symmetry properties can be de-

rived. For the diagonal αα spin-block:

[V ααxc ]µν = [V ααxc ]νµ

= 〈χµ|Exc + Bxcz |χν〉 . (35)

For the diagonal ββ spin-block:[
V ββxc

]
µν

=
[
V ββxc

]
νµ

= 〈χµ|Exc − Bxcz |χν〉 . (36)

For the off-diagonal spin-blocks, the matrix elements read
as follows:[

V αβxc

]
µν

=
[
V αβxc

]
νµ

=
[
V βαxc

]∗
νµ

=
[
V βαxc

]∗
µν

= 〈χµ|Bxcx − iBxcy |χν〉 . (37)

So the diagonal αα and ββ spin-blocks of the xc potential
are real Hermitian so that only their upper (or lower)
triangular parts need to be computed. The off-diagonal
αβ and βα spin-blocks are complex symmetric so that
only the upper (or lower) triangular part of αβ needs to
be calculated.

Depending on the choice of the variables used in the
definition of the xc functional, several formulations of
non-collinear two-component DFT are possible. We are
going to review existing ones and present a new formula-
tion below, which is characterized by a higher numerical
stability.
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1. The Canonical Formulation

In the canonical formulation of the non-collinear DFT,
the variables on which Fxc depends are built starting
from the generalized density:5

n̄(r) =
1

2

[
n(r)σ̂0 +

∑
c

mc(r)σ̂c

]
. (38)

By recalling the exact form of the Pauli matrices given in
Eq. (4) of Part I, the generalized density can be written
explicitly as follows in terms of the total density and
components of the magnetization:

n̄(r) =
1

2

(
n(r) +mz(r) mx(r)− imy(r)
mx(r) + imy(r) n(r)−mz(r)

)
. (39)

By performing a unitary transformation on the general-
ized density n̄, which diagonalizes locally in space the
matrix above, one gets the n± variables used in the def-
inition of the xc functional:6

n̄(r)
diag
=

(
n+(r) 0

0 n−(r)

)
, (40)

where the eigenvalues of the matrix are:

n±(r) =
1

2

[
n(r)±m(r)

]
, (41)

where m = |m| is the magnitude of m. Comparison
of Eq. (41) with Eqs. (26) and (27), shows that the
non-collinear definition of the n± variables differs from
the collinear definition by replacing mz by m (i.e. the z
component of the magnetization by the absolute value of
the magnetization).

From the definitions of the xc electrostatic potential
and magnetic field given in Eqs. (16) and (17) in terms
of n± and from the expressions of n± derived in Eq. (41),
we can express the xc electrostatic potential and mag-
netic field as functional derivatives of the xc energy with
respect to the generalized density and magnetization, re-

spectively:

Exc =
1

2

δExc
δn

; (42)

Bxcc =
1

2

δExc
δmc

=
mc

2m

δExc
δm

, (43)

where from now on the dependence on r is dropped, and
where in the above we have used the fact that, from the
chain rule of differentiation:

δExc
δmc

=
δExc
δm

δm

δmc
=
δExc
δm

mc

m
. (44)

From Eq. (43) we see that the xc potential is parallel
to the magnetization. Finally, comparison of Eq. (15)
for the xc potential with Eq. (38) for the generalized
density, and use of the equalities in Eqs. (42) and (43),
shows that the xc potential operator can be written more
succinctly as a functional derivative of the xc energy with
respect to the generalized density:

V̂xc =
δExc
δn̄

. (45)

When considering an LDA xc functional, the functional
derivatives of the xc energy in Eqs. (42) and (43) reduce
to partial derivatives of the xc functional:

Exc =
1

2

∂Fxc
∂n

; Bxcc =
mc

2m

∂Fxc
∂m

. (46)

In a scalar- or non-relativistic code, the partial deriva-
tives of the xc functional with respect to n and mz are
available. So, for an LDA functional, one has to simply
replace mz by m in the existing code to generalize it to
the canonical non-collinear theory.

GGA xc functionals also depend on the gradient vari-
ables γ±± that, within the canonical formulation of non-
collinear DFT read:

γ±± =
1

4

{
∇̂ [n±m] · ∇̂ [n±m]

}
, (47)

where the gradient of the absolute magnetization is cal-
culated as follows:

∇̂m =
1

m

∑
c

mc∇̂mc . (48)

Later we are going to discuss some numerical issues and
corresponding solutions related to the treatment of these
terms. For application to GGA functionals, standard cal-
culus of variations leads to the following expressions for
the functional derivatives of the xc energy in Eqs. (42)
and (43):
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Exc =
1

2

{(
∂Fxc
∂n+

+
∂Fxc
∂n−

)
︸ ︷︷ ︸

Γ+

−∇̂ ·
[

2
∂Fxc
∂γ++

∇̂n+ + 2
∂Fxc
∂γ−−

∇̂n− +
∂Fxc
∂γ+−

(
∇̂n+ + ∇̂n−

)]
︸ ︷︷ ︸

Λ+

}
; (49)

and:

Bxcc =
mc

2m

{(
∂Fxc
∂n+

− ∂Fxc
∂n−

)
︸ ︷︷ ︸

Γ−

−∇̂ ·
[

2
∂Fxc
∂γ++

∇̂n+ − 2
∂Fxc
∂γ−−

∇̂n− −
∂Fxc
∂γ+−

(
∇̂n+ − ∇̂n−

)]
︸ ︷︷ ︸

Λ−

}
. (50)

From Eqs. (35), (36) and (37), we see that the matrix
elements of the GGA xc potential are built from [Exc]µν
and [Bxcc ]µν . Through integration by parts, we find the
following working expressions:

[Exc]µν =
1

2

[∫
χµχνΓ+dr +

∫
Λ+ · ∇̂

(
χµχν

)
dr

]
,

(51)
and:

[Bxcc ]µν =

∫
mc

2m
χµχνΓ−dr +

∫
mc

2m
Λ− · ∇̂

(
χµχν

)
dr .

(52)
In the end, the canonical formulation of the non-collinear
DFT works in terms of the n and m variables (and their
gradients for GGA functionals), at variance with the
standard non-relativistic one-component theory where
the variables n and mz are used. The expressions for
the matrix elements derived above are somewhat similar
to the corresponding Eqs. (32) and (33) for the collinear
approach described before. The major difference is that,
in the canonical non-collinear approach, the n± and γ±±
are built using the absolute value m of the magnetization
m. Thus, also mx and my Cartesian components of the
magnetization are needed.

2. The Scalmani-Frisch Formulation

Scalmani and Frisch have proposed an alternative for-
mulation of the non-collinear theory, which differs from

the canonical theory illustrated above for functionals be-
yond the LDA.9 This theory adopts the following defini-
tions for the GGA variables:

γ̄++ or γ̄−− =
1

4

[
∇̂n · ∇̂n+ ∇̂ m · ◦∇̂ m

]
± f∇

2

[(
∇̂n · ∇̂ m

)
◦
(
∇̂n · ∇̂ m

)] 1
2

︸ ︷︷ ︸
Ξ

,(53)

and:

γ̄+− =
1

4

[
∇̂n · ∇̂n− ∇̂ m · ◦∇̂ m

]
, (54)

where the bar accent indicates that these are the corre-
sponding definitions of the γ±± variables introduced in
Eq. (13). In this section, the dot product identified by

the symbol “·” runs over the components of ∇̂ while that
identified by the symbol “◦” runs over the components
of m. Finally, the f∇ is defined as:

f∇ = sgn

[
∇̂n ·

(
∇̂ m

)
◦m

]
, (55)

where the signum function “sgn” returns either 1 or -1
according to the sign of the argument. We obtain expres-
sions for the matrix elements of the theory of Scalmani
and Frisch from the calculus of variations. We do not
show details of the derivation, but report the final ex-
pressions, as follows:

[
Ēxc
]
µν

=
1

2

∫
Γ+χµχνdr +

1

2

∫ {(
∂Fxc
∂γ̄++

+
∂Fxc
∂γ̄−−

+
∂Fxc
∂γ̄+−

)
∇̂n

+

(
∂Fxc
∂γ̄++

− ∂Fxc
∂γ̄−−

)
f∇ Ξ−1

(
∇̂n · ∇̂ m

)
◦ ∇̂ m

}
· ∇̂

(
χµχν

)
dr , (56)

and: [
B̄xcc
]
µν

=
1

2

∫
mc

m
Γ−χµχνdr +

1

2

∫ {(
∂Fxc
∂γ̄++

+
∂Fxc
∂γ̄−−

− ∂Fxc
∂γ̄+−

)
∇̂mc

+

(
∂Fxc
∂γ̄++

− ∂Fxc
∂γ̄−−

)
f∇ Ξ−1

(
∇̂n · ∇̂mc

)
∇̂n

}
· ∇̂

(
χµχν

)
dr . (57)
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3. The Signed Canonical Formulation

In this Section, we introduce a new formulation of non-
collinear DFT, which represents a modification of the
canonical approach described in Section II D 1 that en-
sures a better physical description of non-collinear mag-
netization and a higher numerical stability. As we will
show, it turns out that such modification is necessary
to guarantee rotational invariance and reduction to the
proper collinear limit because these are otherwise not
achieved with either the canonical or SF formulations for
functionals beyond the LDA. We apply the modification
to the canonical formulation, but in principle the same
could be done for the SF formulation. In our modified
version of the canonical non-collinear DFT, a new set of
variables Q̃ is used in terms of which the xc functional is
defined:

Fxc[Q]→ Fxc[Q̃] . (58)

As we have discussed in Section II D 1, when passing from
the collinear formulation to the canonical non-collinear
formulation, the z component of the magnetization mz

is locally substituted by the absolute value of the mag-
netization m = |m| (i.e. a quantity that also depends on
the mx and my components of the magnetization), which
formally ensures the rotational invariance to the theory
for LDA functionals.

The new set of variables Q̃ is here found by first identi-
fying the problems associated with the canonical theory.
These arise from loss of information on the local sign of
the magnetization in the definition of the gradient vari-
ables γ±± of Eq. (47) needed for GGA functionals. In
particular, the problem is due to the sign of the gradient
of the absolute value of the magnetization ∇̂m, intro-
duced in Eq. (48), that is the variable that substitutes

∇̂mz when passing from the collinear to the canonical
non-collinear theory. In the collinear formulation, the
sign of ∇̂mz coincides with the sign of the gradient of the
z component of the magnetization. On the contrary, from
Eq. (48), in the canonical non-collinear theory, the sign of

∇̂m does not only depend on the sign of the gradients of
the Cartesian components of the magnetization ∇̂mc but
also on the sign of the Cartesian components themselves
mc. This implies, for example, that at a given point in
space where the gradients of the three Cartesian compo-
nents of the magnetization are all positive (i.e. ∇̂mc > 0

for c = x, y, z), the sign of the variable ∇̂m will not nec-
essarily be positive, if some of the mc are negative. For
the terms in Eq. (43), where we have factors of mc/m, a
similar problem occurs if the m has a different sign than
that of mc.

As a consequence of this inconsistency of signs, the
canonical non-collinear theory does not yield the same
solution as the collinear theory in the limit where the
magnetization is everywhere parallel (the collinear limit),
for GGA functionals. The canonical non-collinear theory
also suffers from SCF instabilities and slow convergence

as a result of the gradient variables having the wrong
sign. All of these issues of the canonical formulation,
some of which have been acknowledged before,9 are going
to be discussed in Section IV.

We call our modified version of the theory, “signed
canonical non-collinear DFT”. The new variables Q̃ on
which the xc functional Fxc depends are defined as fol-
lows:

ñ± =
1

2
(n± m̃) ; (59)

γ̃±±=
1

4

[(
∇̂n± ξ

)
·
(
∇̂n± ξ

)]
, (60)

where:

m̃= sgn
(
mx +my +mz

)
m ; (61)

ξ =
1

m

∑
c

|mc| ∇̂mc . (62)

The new variables ñ± and γ̃±± therefore only differ from
the canonical variables n± and γ±± on how the sign is
chosen for the magnetization and the gradient of the mag-
netization. These new signs follow the sign of the Carte-
sian components mc and their gradients ∇̂mc locally in
space. This implies that, by using the new variables,
the correct collinear limit can be obtained even for GGA
functionals, and the SCF is now devoid of instabilities
and convergence problems related to wrong signs of the
gradient variables. With the new variables, the expres-
sions for the xc potential are only slightly modified from
those provided in Section II D 1 for the unmodified canon-
ical theory. The only difference is that now in Eq. (43)
some factors are replaced as follows:

mc
δExc
δm

→|mc|
δExc
δm

. (63)

Therefore, from Eq. (52), the xc magnetic field matrix
elements now read:[
B̃xcc
]
µν

=

∫
|mc|
2m

χµχνΓ−dr+

∫
|mc|
2m

Λ− · ∇̂
(
χµχν

)
dr .

(64)
Otherwise, the electrostatic potential matrix elements
are equivalent to those from the canonical approach.

Let us stress that our modified version of the theory
is exact (as regards accounting for the local sign of the
magnetization) for all those cases in which, at each point
in space, the non-zero Cartesian components of the mag-
netization have the same sign. That is to say, the signed
canonical theory can deal exactly with some points in
space where, say, mx and mz are both positive while my

is zero, and other points in space where my and mz are
both negative while mx is zero. We note that the mod-
ified theory is not exact if there are points where the
magnetization has two relevant Cartesian components of
different sign. However, this should not be too restrictive,
as for most systems the orientation of the magnetization
does not vary more than 90◦ throughout space, so that
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often the system can be re-oriented so as to cope with
this condition. Nevertheless, few exotic electronic struc-
tures, such as 3D spin-spirals, could not fully conform
to this approach. We are going to discuss this point in
Section IV below.

4. On the Treatment of Unstable Terms of Non-Collinear
Exchange-Correlation Potentials

We discuss here algorithmic strategies for the evalua-
tion of delicate terms in the non-collinear xc potential.
Several previous authors have acknowledged numerical
issues associated with the evaluation of non-collinear xc
potentials, particularly so for xc functionals beyond the
LDA.6–12,15,40 However, to the best of our knowledge, an
effective screening algorithm for dealing with these prob-
lems is yet to be presented in the literature.

All of the difficulties previously noted in the literature
are related to factors Rc = mc/m, which are ill-defined
at those points in space where the magnetization is small.
In general, these factors appear both in the expressions
for the variables on which GGA xc functionals depend
and in the expression for the xc magnetic field (for all
functionals, including LDA). In the canonical and signed-
canonical theories, the challenging terms occur in both
the definition of the GGA variables – see Eq. (48) for the
canonical theory and Eq. (62) for the signed-canonical
theory – and in the xc potential, see Eq. (52) and Eq.
(64), respectively. For the theory of Scalmani and Frisch,
the problematic terms do not occur in the definition of
the GGA variables, but are still present in the definition
of the xc magnetic field term of the potential in Eq. (57).

For LDA functionals, points of small magnetization
can be safely disregarded because the mc/m factors in
the potential multiply other terms which are also van-
ishing for vanishing m. This is not the case for GGA
functionals, where the mc/m (or |mc| /m in the signed-
canonical theory) factors sometimes multiply gradients
of the magnetization, gradients of the total density, or
gradients of the atomic orbitals, which are not necessar-
ily small where m is small. See for example Eqs. (48)
and (52) for the canonical theory.

As a consequence, the treatment of these terms re-
quires a very careful local screening of the magnitude
of the magnetization m and of its individual Cartesian
components mc at each point of the DFT grid. Here we
introduce a screening algorithm that can be used with
any non-collinear formulation and sketch its main fea-
tures. The algorithm is presented for the case where the
mc/m terms multiply gradients of the magnetization in
the canonical theory but it can be very easily extended to
the cases where the mc/m (or |mc|/m in the case of the
signed-canonical theory) factors multiply instead gradi-
ents of the total density or gradients of the atomic or-
bitals.

At each point in space (i.e. at each point of the
DFT integration grid), the absolute value |mc| of the

three Cartesian components of the magnetization m are
screened according to a threshold (here set to 10−14 a.u.).
Two distinct cases are identified and treated differently:
1) all three components are individually smaller than the
threshold, or 2) at least one component is larger than the
threshold. We treat these two cases as follows:

1. The three components of the magnetization are all
small. We locally set:

m = 0 ;

∇̂m =
∑
c

〈
mc

m

〉
∇̂mc ,

where the gradient of the magnetization ∇̂m at
that point is expressed in terms of the gradients
of the three Cartesian components of the magne-
tization at the same point ∇̂mc while the pre-
factors 〈mc/m〉 are average values for mc/m over
the atomic basin to which the point belongs.42

These average values are essential to ensure numer-
ical stability at those (many) points where the mc

and m are so small that their ratio could not be
evaluated with any reasonable degree of confidence.
Moreover, they are also useful when mc is too small
to reasonably determine its sign (positive or nega-
tive). For these reasons, it is beneficial to instead
associate an average value to mc/m calculated over
the atomic basin of the current point in space.

2. At least one of the three Cartesian components of
the magnetization is large in absolute value. The
largest component, in absolute value, is determined
and the following signed quantity defined:

mmax = sgn
(
mx +my +mz

)
× max

(
|mx| ,

∣∣my

∣∣ ,|mz|
)
.

At this point, a screening on the “local collinearity”
is performed. The absolute value of the other two,
non-maximum, components of the magnetization is
checked relative to |mmax|. Two distinct cases are
identified, which are treated differently:

(a) Both non-maximum Cartesian components
are small relative to |mmax| and therefore the
system is locally collinear. The two small com-
ponents are put to zero and the problem re-
duces to the collinear one with the quantiza-
tion axis along |mmax|. In this case we set:

m = |mmax| ,
∇̂m = sgn(mmax)∇̂mmax .

(b) At least one of the non-maximum Cartesian
components is not small relative to |mmax|. In
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this case, we set explicitly:

m =
√
m2
x +m2

y +m2
z ,

∇̂m =
∑
c

Rc∇̂mc ,

where the factors Rc are determined as fol-
lows, based on the value of the ratios |mc| /m:
if the ratio|mc| /m is small than we setRc = 0,
otherwise we set it to Rc = mc/m.

We note that the use of this screening algorithm en-
sures a better numerical stability to all non-collinear for-
mulations discussed in Section II D. In the context of
the canonical and Scalmani-Frisch formulations, it is key
to correctly account for both the sign and magnitude
of the ratios mc/m. In our “signed canonical” theory,
the sign of those terms is already taken into explicit ac-
count so that the quantities of interest are the ratios
|mc| /m, which are always positive. The algorithm illus-
trated above still allows to effectively screen these terms
based on their magnitude.

Based on our experience, the majority of the numerical
issues of non-collinear potentials arise from local incon-
sistencies in the sign of the mc/m ratios, and to a lower
extent in their magnitude. As a result, a combination of
the above proposed screening algorithm with the “signed
canonical” theory illustrated in Section II D 3 results in a
very stable implementation, as will be shown in Section
IV.

III. COMPUTATIONAL DETAILS

We have implemented all of the DFT formulations dis-
cussed above in a developmental version of the Crys-
tal17 code.32 To validate our implementation and dis-
cuss numerical strategies for its use, we have chosen a test
set of small molecular systems, and have performed sim-
ilar calculations also with the latest public version of the
Dirac43 and Turbomole44 codes. In contrast to Part I,
here we cannot perform comparisons with the NWChem
code,36,45 because it appears that unlike our implementa-
tion, their calculation of the xc energy follows a prescrip-
tion which is inconsistent with the original formulation of
Hohenberg and Kohn.46 The systems are similar to those
discussed in Part I.31 That is, the I2, CH3I, IH and TlBr
molecules, in both a neutral state (closed-shell electronic
configurations) and a positively charged state obtained
by removing one electron from the molecules (open-shell
electronic configurations): namely, I+

2 , CH3I+, IH+ and
TlBr+. We refer the reader to Part I for details on the
used basis sets, ECPs and molecular geometries.

The numerical integration required for calculating the
xc energy and matrix elements was achieved with our
implementation on an unpruned grid containing 75 ra-
dial points and a Lebedev accuracy level of 16, corre-
sponding to 974 angular point for each radial point.47–49

TABLE I. Energies for the closed-shell electronic configura-
tions. The ∆ESOC = ESOC − E0 is the SOC contribution
to the energy as obtained with our implementation. The
∆∆EX = ∆EX − ∆ESOC is the difference between the SOC
energy contribution computed with the program X=TUR or
DIR (where TUR stands for Turbomole and DIR stands for
Dirac) and that with our implementation. All quantities are
reported in atomic units (Ha).

I2 CH3I IH TlBr

LDA

∆ESOC −7.7×10−3 −3.2×10−3 −3.0×10−3 −3.6×10−2

∆∆EDIR +4.8×10−9 +4.0×10−9 +1.0×10−9 -

∆∆ETUR +1.2×10−5 +1.3×10−6 +6.9×10−7 +2.6×10−6

PBE

∆ESOC −7.9×10−3 −3.2×10−3 −3.0×10−3 −3.5×10−2

∆∆EDIR +1.3×10−8 +1.8×10−9 +2.1×10−9 -

∆∆ETUR +1.4×10−5 +1.4×10−6 +2.9×10−7 +2.5×10−6

PBE0

∆ESOC −7.7×10−3 −3.1×10−3 −2.9×10−3 −3.4×10−2

∆∆EDIR +1.1×10−8 +1.1×10−9 +1.9×10−9 -

∆∆ETUR +1.3×10−5 +1.0×10−6 +3.6×10−7 +1.9×10−6

The quadrature weights proposed by Becke were used in
all calculations.50 For calculations with the Dirac and
Turbomole codes, the finest available grids were used,
which are similar to the one chosen with our implemen-
tation. Calculations were performed with the SVWN5
LDA functional,51,52 The PBE GGA functional,53 and
the PBE0 hybrid-GGA functional.54

IV. RESULTS AND DISCUSSION

We discuss below several aspects of the methodolo-
gies formally illustrated in Section II: i) we compare our
implementation to those available in other codes; ii) we
document the reduction to the collinear limit of differ-
ent non-collinear formulations of the DFT; iii) we quan-
tify the degree of rotational invariance of different non-
collinear formulations; iv) we explicitly investigate the
effect of the starting guess magnetization on the conver-
gence of the SCF and on the obtained electronic solution
for the various formulations.

A. Comparison with Previous Implementations

We first report comparisons of our implementation
with those available in the Dirac and Turbomole
codes, for validation purposes. We start by discussing re-
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sults on the closed-shell electronic configurations, where
since the magnetization is vanishingly small, all of the
formulations coincide. Energies were converged down
to 1×10−9 Ha for all implementations, and calculations
were performed with and without the SOC operator in-
cluded in the Hamiltonian, and the energy differences of
these two calculations, ∆ESOC, are tabulated.

In Table I, we report the ∆ESOC calculated with our
implementation, as well as the differences of the ∆ESOC

with respect to those calculated with the other imple-
mentations. These are denoted in the table as ∆∆EX,
where X denotes the code used for the calculation, that is
X = TUR or DIR. It can be seen from the table that the
agreement with Dirac is very satisfactory in all cases,
because the ∆∆EDIR is always on the order of 1×10−9

Ha, which is remarkably the same accuracy as the con-
vergence of the SCF. The only exception is the PBE or
PBE0 calculations on I2, where the ∆∆EDIR is instead
on the order of 1×10−8 Ha.

As was also noted in Part I,31 for the case of TlBr,
it was not possible to use the Dirac code in exactly
the same computational conditions as in the other codes.
This is due to the fact that the RECP-SOC implemen-
tation in Dirac is only available with a basis of Carte-
sian Gaussian-type functions that differ from spherical
Gaussian-type functions (used in our implementation as
well as in the Turbomole one) starting from angular
momentum l = 2 (i.e. starting from d-type functions).
Given that TlBr has occupied d orbitals in the valence, it
was not possible to perform the comparison with Dirac
in this case. For all other molecular systems, no l = 2
or higher angular momentum functions were included in
the valence basis sets, so that we were able to perform
the comparison.

The agreement with Turbomole is still very satisfac-
tory but less good because this implementation uses the
resolution of identity (RI) approximation for at least the
evaluation of the Coulomb integrals. The RI approxima-
tion introduces inaccuracies which do not perfectly cancel
between the calculations with and without SOC. As such,
the ∆∆ETUR are on the order of 1×10−5 Ha (for the I2

molecule) to 1×10−7 Ha (for the IH molecule). These
values are however still more than sufficient to confirm
the correctness of the implementation, being two to four
orders of magnitude smaller than the SOC contribution
to the energy. The agreement with both codes is gener-
ally better with LDA (where only the density needs to be
evaluated on the numerical grid), or with PBE0 (which
includes a significant portion of Fock exchange, and hence
is in a larger part analytical). A worst agreement is gen-
erally found using PBE, where both the density and its
gradient need to be evaluated on the numerical grid.

We now discuss the calculations on the open-shell elec-
tronic configurations, which are obtained by removing
one electron from the same molecules discussed above.
As in Part I, we were unable to perform comparable
calculations with the Dirac code on open-shell elec-
tronic configurations as, to the best of our knowledge,

TABLE II. Energies for the open-shell electronic configura-
tions. See caption of Table I for a definition of all quantities.
Values are given in atomic units (Ha). Calculations are per-
formed with the canonical non-collinear theory for LDA and
the collinear theory for PBE and PBE0.

I2
+ CH3I+ IH+ TlBr+

LDA

∆ESOC −2.2×10−2 −1.6×10−2 −1.6×10−2 −4.2×10−2

∆∆ETUR +8.9×10−5 +1.6×10−4 +1.3×10−4 +4.1×10−3

PBE

∆ESOC −2.1×10−2 −1.4×10−2 −1.4×10−2 −3.9×10−2

∆∆ETUR +9.8×10−5 +1.7×10−4 +1.5×10−4 +1.3×10−3

PBE0

∆ESOC −2.1×10−2 −1.4×10−2 −1.4×10−2 −3.9×10−2

∆∆ETUR +1.1×10−4 +1.8×10−4 +1.5×10−4 +2.1×10−3

it is not possible to perform single-determinant Kramers-
unrestricted calculations with the Dirac code at present.
So the comparison can only be made against the Tur-
bomole code. What is more, we are only able to use one
formulation for each functional, using the Turbomole
code. That is, the canonical non-collinear formulation
for the LDA and the collinear formulation for the GGA.
The comparison of calculations done using these formu-
lations with both implementations is reported in Table
II. It can be seen from Tables I and II that the SOC con-
tribution to the total energy, ∆ESOC, is now increased
by a factor of three to four by removing one electron
from all systems, except for TlBr, where the ∆ESOC in-
stead only increases by about 10%. A similar result was
reported in Part I with the HF theory. The comparison
with the Turbomole implementation is now slightly less
impressive than for the closed-shell systems, because the
evaluation of the xc matrix elements and potential now
also requires a numerical integration containing functions
of the magnetization (and possibly its gradient) and not
only the density. The ∆∆ETUR is now mostly on the or-
der of 1×10−4 Ha, except for TlBr+, where it is instead
on the order of 1×10−3 Ha. We note, however that the
∆∆ETUR is still at least one order of magnitude smaller
(in absolute value) than the ∆ESOC, which helps confirm
the correctness of the implementations.

B. The Reduction to the Collinear Limit of Non-Collinear
Theories

We discuss now the reduction to the collinear limit of
non-collinear formulations of the DFT, that is the ability
of non-collinear theories to provide the same energy of
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TABLE III. Deviation from the collinear limit of various
non-collinear formulations (C stands for “canonical”, SF for
“Scalmani-Frisch”, SC for our “signed canonical”). The re-
ported quantities are energy differences (in atomic units) be-
tween non-collinear formulations and the collinear one for the
open-shell electronic configurations in the absence of SOC.
The “n.c.” indicates that we were unable to converge the
CH3I+ case to the desired energy tolerance using the canoni-
cal non-collinear formulation with PBE and PBE0.

I2
+ CH3I+ IH+ TlBr+

LDA

C <10−15 −1.00×10−12 <10−15 <10−15

PBE

C −1.28×10−2 n.c. −4.31×10−2 −5.90×10−4

SF −1.16×10−2 −2.82×10−2 −3.42×10−2 −5.80×10−4

SC −1.61×10−8 −1.37×10−7 −4.87×10−8 +1.00×10−8

PBE0

C −1.03×10−2 n.c. −2.81×10−2 −6.47×10−4

SF −8.56×10−3 −1.92×10−2 −2.18×10−2 −6.00×10−4

SC −2.62×10−8 −3.91×10−8 −8.54×10−9 −1.95×10−8

the collinear theory in those cases where the magnetiza-
tion is everywhere collinear. To do so, we consider the
four open-shell systems where the molecules and guess
magnetization are both oriented along z. The calcula-
tions are performed without SOC (i.e. in the absence of
any torque that can rotate the initial magnetization) so
that the magnetization remains aligned to z everywhere.

Table III reports the energy differences between the
collinear theory and the different NC formulations (C
stands for “canonical”, SF for “Scalmani-Frisch”, SC for
our “signed canonical”). For the LDA, the three formula-
tions coincide, but they differ for the GGA. The SCF for
the more stable LDA and SC GGA formulations is con-
verged down to 1×10−15 Ha, while it is only converged
down to 1×10−8 Ha for the less stable C and SF GGA
formulations. If a NC formulation reduces mathemati-
cally (and also numerically) to the collinear limit, then
a vanishingly small energy difference should be found in
the table. In fact, the table does show that this is the
case for the NC formulation of the LDA, as the deviation
from the collinear limit is always smaller than 1×10−15

Ha (in absolute value), with the only exception being the
case of the CH3I+ molecule, where the energy difference
is however still a vanishingly small value of −1×10−12

Ha.
More interestingly, it is also clear that both the C and

SF formulations of GGA do not properly reduce to the
collinear limit, with energy differences on the order of
1×10−4 to 1×10−2 Ha. In this respect, we note that the
deviations are consistently slightly smaller for SF com-

pared to C. The SF formulation is also slightly more
numerically stable, as for example we were not able to
converge the GGA calculations on the CH3I+ molecule
using the C formulation while we were able to converge it
using the SF formulation. In contrast to the previously
reported formulations of non-collinear DFT, our “signed
canonical” formulation is seen to properly reduce to the
collinear limit, with deviations on the order of 1×10−7

to 1×10−9 Ha.

We now rationalize the failure of the C and SF non-
collinear formulations to reach the same solution as the
collinear theory in the collinear limit (i.e. when mx =
my = 0 everywhere). This failure originates from the
inconsistencies in the sign of certain terms in the expres-
sions for the xc magnetic field part of the potential Bxc,
which reduces to Bxc → Bxcz .

Before addressing the deficiencies of the GGA expres-
sions, let us start by discussing the LDA case. In the
collinear formulation for LDA, from Eqs. (21) and (26)-
(29), the Bxcz is a function of mz (i.e. Bxcz [mz]) and
each term in the xc magnetic field carries the sign of
mz. On the other hand, in the SF or C formulations,
from Eq. (15) as well as Eqs. (35)-(41), the derivatives
of the functionals contained in the xc magnetic field, in
the collinear limit reduce from functions of m to func-
tions of |mz|, so that the information on the sign of mz

would be lost. However, the sign is regained from the
mc/m pre-factors in Eq. (43), which reduce according
to mc/m → sgn(mz), such that the final expression for
the xc potential is equivalent in all three formulations,
for the LDA.

Now for the case of GGA, we first note that, within
the collinear formulation, considering also Eqs. (31) and
(32), the xc magnetic field is now a function of mz and

|∇mz|2 (i.e. Bxcz = Bxcz [mz,|∇mz|2]) and each term in
the xc magnetic field either carries the sign of mz or is
positive. On the other hand, in the SF or C formula-
tions, from Eqs. (47), (50) and (53)-(57), the derivatives
of the functionals contained in the xc magnetic field are
functions of m and |∇m|2 (for C) or functions of m and
other gradient variables like, for example, ∇ m · ◦∇ m
(for SF). In both cases (C and SF), in the collinear limit,

all of the variables reduce to |mz| and |∇mz|2, and some
terms are multiplied by the pre-factors mz/m in the ex-
pression for the xc magnetic field, see Eqs. (52) and (57),
such that now the gradient terms have the wrong sign,
when compared to the collinear formulation. As a result
of this inconsistency of signs, the C and SF formulations
yield erroneous solutions in the collinear limit. To be
more precise, while all terms are multiplied by the pre-
factors mz/m in the C formulation, only those terms of
the potential containing the functional derivatives with
respect to n+ and n− are multiplied by the pre-factors
mz/m in the SF formulation, which explains why the SF
formulation is slightly closer to the collinear limit than
the C one.
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TABLE IV. Rotational invariance of GGA collinear and non-collinear formulations of DFT with SOC. The linear I+2 molecule
is studied in seven different orientations (from parallel to the z axis, 0°, to the x axis, 90°). The atomic guess magnetization is
always parallel to the axis of the molecule. For all calculations, the SCF is converged down to 1×10−8 Ha. For each orientation,
the absolute difference (in Ha) between the computed energy and that obtained when the molecule is along z (|E−Ez|), and the
number of cycles needed to converge the SCF are reported. The last row reports the average over all the explored orientations,
|av|, of the absolute value of the quantities in their respective columns.

Collinear Non-Collinear

Canonical Scalmani-Frisch Signed Canonical

PBE PBE0 PBE PBE0 PBE PBE0 PBE PBE0

0° Ref. 27 Ref. 34 Ref. 94 Ref. 100 Ref. 94 Ref. 105 Ref. 23 Ref. 34

10° 7.7×10−5 27 6.3×10−5 41 4.5×10−4 95 4.0×10−4 109 6.4×10−3 589 3.5×10−4 125 1.0×10−5 29 1.1×10−6 35

22° 3.9×10−4 27 3.1×10−4 54 1.1×10−3 130 9.4×10−4 123 8.5×10−3 402 8.5×10−4 136 9.6×10−6 26 1.3×10−6 33

45° 1.5×10−3 28 1.2×10−3 74 1.4×10−3 99 1.1×10−3 100 1.5×10−3 99 1.1×10−3 67 9.7×10−6 29 4.8×10−7 32

68° 1.9×10−3 166 2.4×10−3 101 1.2×10−3 89 1.0×10−3 129 9.0×10−3 407 9.3×10−4 100 7.8×10−6 26 2.0×10−7 35

80° 1.7×10−3 90 3.0×10−3 116 6.2×10−4 101 5.4×10−4 100 6.9×10−3 694 4.9×10−4 170 1.4×10−5 27 1.1×10−6 31

90° 1.6×10−3 27 3.2×10−3 32 2.2×10−4 91 1.8×10−4 97 2.3×10−4 93 1.7×10−4 104 1.8×10−6 24 1.4×10−6 35

|av| 1.2×10−3 56 1.7×10−3 65 8.4×10−4 100 7.0×10−4 108 5.4×10−3 340 6.5×10−4 115 8.9×10−6 26 9.3×10−7 34

In contrast, in our SC formulation, the correct sign
(when compared with the corresponding expressions from
the collinear formulation) is included from the start in
the expressions for the variables on which the xc func-
tional (and potential) depends and therefore the correct
collinear limit can be achieved. We remind the reader
that this analysis is independent on the specific form
of the GGA functional and therefore formally holds for
all GGA functionals. Finally, we stress that, even with
our SC non-collinear formulation, the reduction to the
collinear limit for GGA is not quite as good as for LDA.
This is essentially because of the need for the screening
procedure described in Section II D 4, which does intro-
duce a certain amount of numerical noise.

C. The Rotational Invariance of Non-Collinear Theories

We now discuss the rotational invariance of the
collinear approach and of the various non-collinear for-
mulations, in the presence of SOC. The tests are per-
formed on the I+

2 linear molecule, for which seven differ-
ent orientations are explored: from parallel to the z axis,
0°, to parallel to the x axis, 90°. At each orientation, an
initial atomic guess for the magnetization is used, which
is parallel to the molecular axis. For all calculations, the
SCF is converged down to 1×10−8 Ha. The absolute dif-
ferences between the energies of the various orientations
with respect to that obtained when the molecule is along
z (taken as a reference) are reported in Table IV for the

plain GGA functional PBE and hybrid GGA functional
PBE0, or Table V for the LDA functional. In the ESI,
we provide additional data using instead the BLYP GGA
functional, which however yields similar results.55,56 The
last row of both tables reports average energy differences
over all the explored orientations. For perfectly rota-
tionally invariant formulations of the theory the reported
energy differences should be vanishingly small. Any sig-
nificant deviation from small values indicates either that
the formulation is formally not rotationally invariant, or
that it is excessively polluted by numerical noise in the
calculation procedure.

From Tables IV and V, it is clear that, as expected, the
collinear approach does not ensure rotational invariance
when the SOC operator is included in the Hamiltonian,
both at LDA and GGA level. Indeed, the average devi-
ation of the energy among different orientations is very
large, on the order of 1×10−3 Ha for LDA, PBE and
PBE0. For the case of LDA, the rotational invariance is
fully regained by the non-collinear formulation, as the av-
erage deviation becomes 1.7×10−8 Ha. It is interesting to
note that this is exactly the same value obtained for the
collinear formulation without SOC, thus indicating that
our implementation of non-collinear LDA is as numeri-
cally accurate as the previously existing one-component
collinear code.

On the other hand, for GGA xc functionals, the var-
ious non-collinear formulations show different behaviors
with regards to their rotational invariance. In particu-
lar, from Table IV, it is seen that both the C and SF
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TABLE V. Same as Table IV, but now results are reported for
the LDA, using both the collinear or non-collinear theories,
with and without the inclusion of the SOC operator in the
Hamiltonian.

Collinear Non-Collinear

with SOC without SOC with SOC without SOC

0° Ref. 25 Ref. 27 Ref. 25 Ref. 27

10° 7.1×10−5 25 7.1×10−9 27 8.9×10−9 25 7.1×10−9 27

22° 3.6×10−4 25 1.2×10−8 27 1.0×10−8 25 1.2×10−8 27

45° 1.4×10−3 27 6.4×10−8 27 6.5×10−8 25 6.5×10−8 27

68° 2.8×10−3 35 1.1×10−8 27 1.1×10−8 25 1.2×10−8 27

80° 1.9×10−3 95 8.8×10−9 27 8.9×10−9 25 7.1×10−9 27

90° 1.9×10−3 25 2.0×10−9 27 2.8×10−10 25 2.1×10−10 27

|av| 1.4×10−3 37 1.7×10−8 27 1.7×10−8 25 1.7×10−8 27

formulations clearly do not ensure rotational invariance,
and in fact only marginally improve with respect to a
purely collinear description, in this context (with average
energy deviations among different orientations on the or-
der of 5×10−3 to 8×10−4 Ha). In particular, with PBE
and the SF formulation, the average deviation, 5.4×10−3

Ha, is actually worse than from the collinear formulation,
1.2×10−3 Ha.

At variance with the previously suggested C and SF
formulations of non-collinear GGA, our “signed canoni-
cal” theory does ensure the desired rotational invariance,
as now the average energy deviation is on the order of
9×10−6 to 9×10−7 Ha. The reason for the failure of the
C and SF formulations to achieve rotational invariance
is two-fold. First, following the logic above giving formal
arguments for their failure to reach the collinear limit, we
expect that, on a given point in the DFT grid, certain
terms of the xc potential will carry the wrong sign, de-
pending on the local sign of the Cartesian components of
the magnetization and their derivatives. As the molecule
is rotated in the Cartesian frame, a greater or lesser num-

ber of points in the DFT grid can have associated terms
in the xc potential that carry the wrong sign, such that
the calculated energy is no longer rotationally invariant.
The second reason is that they depend more heavily on
the screening described in Section II D 4, given that they
are less numerically stable, and this of course introduces
numerical noise.

The higher numerical stability of our SC formulation
compared to the C and SF ones is also reflected in the
number of cycles needed to converge the SCF within the
same energy threshold of 1×10−8 Ha. These numbers
are also reported for each calculation in Tables IV and
V. For PBE calculations, our SC theory requires 26 cy-
cles to converge the SCF on average while the C formu-
lation takes 100 cycles and the SF one 340 cycles. For
PBE0 calculations, 34 iterations are needed with our SC
theory while 108 and 115 are required by the C and SF
formulations, respectively.

Table IV also allows to investigate the effect of the
inclusion into the xc functional of a fraction of Fock ex-
change, as in the hybrid PBE0 functional. While we dis-
cuss from a formal point of view the connection between
Fock exchange and the orbital current-density within
a two-component non-collinear formalism in a another
publication,37 here we note that the inclusion of Fock ex-
change systematically improves the rotational invariance
by about one order of magnitude for both the SF and SC
theories.

At the same time, the inclusion of Fock exchange al-
most always increases the amount of cycles needed to
converge the SCF. The exception is with the SF formula-
tion, where as will be discussed below, with PBE and for
certain orientations (namely 10°, 22°, 68° and 80° from
the z axis), the SCF falls into a qualitatively different
solution and this increases the amount of needed SCF
cycles. In this particular case, the inclusion of Fock ex-
change also helps retrieve rotational invariance of the en-
ergy (as the reported differences for PBE0 are smaller
than for PBE), regain a qualitatively similar solution as
obtained with the other orientations, but also (unlike in
the other cases) reduce the amount of needed SCF cycles.

So far, we have discussed the rotational invariance of
the different non-collinear GGA theories by looking at
the energy of different orientations. We now analyze the
spatial distribution of the magnetization as well. Figure 1
shows 2D maps of the computed magnetization of the I+

2

molecule in the xz plane as the molecule is rotated from
x (left panels) to z (right panels) for the C, SF and SC
formulations, with the PBE functional. At each orien-
tation, the initial atomic guess is consistently parallel to
the molecular axis. The small black arrows in the figure
have lengths which reflect the magnitude and direction

of the x and z components of the magnetization, while
the color represents the magnitude m of the magnetiza-
tion vector. The absolute value of the energy difference
of each solution with respect to that obtained with the
molecule along z is reported on top of the panels, as well
as the number of cycles needed to converge the SCF, on
the bottom of the panels.

Given that consistent conditions are used for each cal-
culation as the system is rotated, a satisfactory non-
collinear GGA formulation should yield at least a qualita-
tively similar distribution of magnetization in all cases. It
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FIG. 1. Spatial distribution of the electronic magnetization for the I+2 molecule in the xz plane, as computed with the PBE xc
functional, upon inclusion of SOC, with three formulations of the non-collinear GGA theory: canonical C, Scalmani-Frisch SF,
and “signed canonical” SC. The molecular axis and atomic guess magnetization is progressively rotated from the x axis (left)
to the z axis (right). The small black arrows in the figure have lengths which reflect the magnitude and direction of the x and
z components of the magnetization, while the color represents the magnitude m of the magnetization vector. The absolute
value of the energy difference of each solution with respect to that obtained with the molecule along z is reported on top of the
panels, as well as the number of cycles needed to converge the SCF, on the bottom of the panels. All quantities are reported
in atomic units.

can be seen from the figure that the C formulation, while
not providing a quantitatively invariant description (see
discussion on the energy above), provides electronic solu-
tions that are qualitatively similar for each plotted orien-
tation, with the magnetization being almost parallel to
the axis of the molecule everywhere. On the contrary,
the SF formulation yields even qualitatively different so-
lutions for two (second and fourth from the left) of the
five plotted orientations, with the magnetization pointing
perpendicular to the axis of the molecule in these cases.

The only formulation of non-collinear GGA that is
found to ensure both a quantitative rotational invariance
(from the point of view of the calculated energies) and a
qualitative rotational invariance (by looking at the plot

of the magnetization) is our “signed canonical” formula-
tion.

D. The Effect of the Initial Guess

We discuss the effect of the initial guess on the obtained
electronic solution and convergence of the SCF procedure
for the different formulations of non-collinear DFT in the
presence of a SOC operator.

We start by discussing the effect of different guesses
for the density matrix on LDA non-collinear calculations.
We consider different non-collinear guesses with the same
orientation of the guess magnetization on both centers of
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FIG. 2. The evolution of the energy during the SCF is shown
for the I+2 molecule as obtained with different non-collinear
formulations using the LDA (top panel) or a GGA xc func-
tional (bottom panel). Top panel: three different atomic
guesses are used, whose atomic magnetization is schemati-
cally represented in the inset. The color of the curves matches
that of the arrows defining the initial magnetization. Bottom
panel: non-collinear PBE0 calculations. For the SC formula-
tion, the same three atomic guesses are used (same colors and
symbols of top panel), along with guesses from density ma-
trices of previous GHF (filled circles) and non-collinear LDA
(open circles) calculations for the meta-stable (grey) and most
stable (green) electronic configurations. Similarly, the ma-
roon open and filled squares are calculations starting from
the LDA or GHF most stable solutions but now with the C
formulation; the orange open and filled triangles are calcu-
lations starting from the LDA or GHF most stable solutions
with the SF formulation.

the molecule. The SCF is converged down to 1×10−15

Ha. The top panel of Figure 2 shows SCF energy pro-
files for the I+

2 molecule, as obtained by starting from
different atomic guesses for the magnetization, imposed
based on the strategy outlined in Part I.31 Three different
atomic guesses are used, whose atomic magnetization is
schematically represented on the top right corner of the
figure, with the same notation used in Part I (i.e. the di-
rection of the colored arrows show the orientation of the
guess magnetization on each atomic center). The three
colored curves are SCF energy profiles obtained using the

three atomic guesses of the same color: the black guess is
parallel to the axis of the molecule (z direction), the red
guess is one degree off of the axis of the molecule, and
the blue guess is along the xyz diagonal. The values are
reported on a log-log scale.

Analogously to what already observed from GHF cal-
culations in Part I, also in this case, different atomic
guesses lead to different obtained solutions. It is seen
from the figure that the SCF reaches convergence at a
metastable solution (referred to in the following as the
LDA metastable solution) using both the red and black
guesses, while it reaches another solution (referred to in
the following as the LDA most stable solution) that is
9.87×10−5 Ha lower in energy using the blue guess. We
note that the blue curve goes through a plateau (i.e. a
region of relatively flat energy variation), whereby the en-
ergy difference between two successive cycles is as low as
1×10−12 Ha, as denoted with the δE on the figure. The
need to overcome such small energy variations in order to
reach the most stable electronic configuration makes the
numerical stability of the code of primary importance, as
was also the case for the HF theory in Part I.31 Luckily,
non-collinear LDA is a well-defined theory, which ensures
the required numerical stability.

Now, let us analyze the non-collinear GGA results, ob-
tained with the PBE0 xc functional: SCF energy profiles
are reported in the lower panel of Figure 2. The same
three atomic guesses discussed above for LDA are also
used here with the various non-collinear formulations.
Results are shown only for the SC theory (blue, red and
black circles in the lower panel of the figure) as the other
formulations yield similar results. It is evident that, in
this case, no atomic guess is able to drive the SCF to-
wards the most stable solution, and the metastable solu-
tion is always found. This is because, unlike LDA, the
more numerically sensitive GGA formulations are unable
to overcome the challenging plateau with energy vari-
ations as small as 1×10−12 Ha. This is a very criti-
cal limitation of non-collinear GGA formulations, which,
however, we were able to overcome. Indeed, by starting
the SCF with a previously calculated non-collinear LDA
(open symbols) or GHF (filled symbols) density matrix
corresponding to the most stable solution, we were able
to converge any non-collinear GGA formulation to the
right solution (C in maroon, SF in orange and SC in
green; the energy varies because different formulations
correspond to different xc potentials).

This highlights the usefulness of using a previously cal-
culated density matrix from a numerically more robust
theory, like non-collinear LDA or GHF before doing more
challenging GGA calculations. This is indeed the com-
putational strategy that we recommend when one wants
to possibly reach the true most stable electronic config-
uration.
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FIG. 3. Spatial distribution of the electronic magnetization for the I+2 molecule in the xz plane, as obtained for the meta-stable
electronic configuration (top panels) and the most stable electronic configuration (bottom panels) with the non-collinear LDA
and with the three different formulations of non-collinear PBE0. For PBE0 calculations, the corresponding LDA solution is
used as a starting guess. The ∆E reported on the top of the panels is the energy difference between the meta-stable and most
stable electronic configurations. The graphical representation is analogous to that of Figure 1.

We further note that for all of the formulations, the
GGA calculations converge in less cycles by using an LDA
starting guess rather than a GHF one. It can also be seen
that our SC formulation converges in much less cycles
and in a more regular way than the C and SF formula-
tions (compare green curves for SC versus maroon and
orange curves for C and SF). What is more, with both
previously reported theories (C and SF), by starting from
a GHF guess, the SCF has an un-satisfactory behavior,
whereby the energy surpasses the global minimum and
increases in value (see maroon and orange filled shapes
at the bottom of the panel). Given that this behavior is
noticed in the canonical but not in our “signed canoni-
cal” theory, and given that the only difference between
these two formulations is the assignment of the sign of
the magnetization in the xc potential, we conclude that
this non-variational increase in energy must be the result
of improper assignment of the sign in the xc potential for
the C and SF theories.

Finally, we want to analyze the obtained solutions in
terms of the spatial distribution of the magnetization.
Figure 3 reports 2D maps of the magnetization in the
xz plane, with the same graphical representation already
introduced for Figure 1. We see that, analogously to
what already observed from GHF calculations in Part
I, the metastable electronic configuration is character-
ized by a magnetization that is everywhere parallel to
the molecular axis while the most stable configuration
has a magnetization perpendicular to the molecular axis.
Non-collinear PBE0 calculations are performed by start-

ing the SCF from the corresponding LDA solutions as an
initial guess. We observe that the computational strategy
introduced before (i.e. by starting non-collinear GGA
calculations from the solution of a previous non-collinear
LDA or GHF solution) ensures to get the same electronic
solution (i.e. with the same qualitative distribution of the
magnetization) regardless of the xc functional or formu-
lation used, which is rather satisfactory.

V. CONCLUSIONS

The formalism of Kramers-unrestricted collinear and
all previously reported formulations of non-collinear den-
sity functional theory (DFT) for the self-consistent treat-
ment of spin-orbit coupling (SOC) in electronic structure
calculations has been revised. The various approaches
have been implemented in the Crystal program and
have been compared both formally and using test exam-
ples on small molecules.

While the existing approaches are satisfactory for use
with the local density approximation (LDA), the numer-
ical tests and formal analysis have allowed us to high-
light several deficiencies for their extension to the gen-
eralized gradient approximation (GGA). These include:
i) the failure of non-collinear theories to reduce to the
proper collinear limit; ii) the failure to ensure a quan-
titative rotational invariance of the total energy when a
SOC operator is included in the Hamiltonian; iii) the fail-
ure to provide a qualitative rotational invariance of the
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spatial distribution of the magnetization when a SOC
operator is included in the Hamiltonian; iv) a possible
non-variational behavior of the energy along the self-
consistent field process.

All of the above mentioned problems are shown (both
formally and through test examples) to be solved by using
instead a new formulation of non-collinear DFT for GGA
functionals, which we call the “signed canonical” theory.

The effect of the starting guess density matrix on
the obtained solution is discussed for the various non-
collinear theories. More specifically, we show the benefits
of using a GHF or non-collinear LDA solution as a start-
ing guess for subsequent non-collinear GGA calculations,
as this allows to surpass difficult obstacles in the rugged
energy landscape.

SUPPLEMENTARY MATERIAL

See supplementary material for a table showing the
degree of rotational invariance of our signed canonical
formulation when the BLYP functional is used.
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