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Abstract

This paper addresses a comparison between different approaches to time incon-

sistency for the mean-variance portfolio selection problem. We define a suitable in-

tertemporal preferences-driven reward and use it to compare three common approaches

to time inconsistency for the mean-variance portfolio selection problem over [t0, T ]:

precommitment approach, consistent planning or game theoretical approach, and dy-

namically optimal approach. We prove that, while the precommitment strategy beats

the other two strategies (that is a well-known obvious result), the consistent planning

strategy dominates the dynamically optimal strategy until a time point t∗ ∈ (t0, T )

and is dominated by the dynamically optimal strategy from t∗ onwards. Existence and

uniqueness of the break even point t∗ is proven.
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1 Introduction and review of the literature

The notion of time inconsistency for optimization problems dates back to Strotz (1956).

Broadly speaking, time inconsistency arises in an intertemporal optimization problem when

the optimal strategy selected at some time t is no longer optimal at time s > t. In other

words, a strategy is time-inconsistent when the individual at future time s > t is tempted to

deviate from the strategy decided at time t. It is well known that an optimization problem

gives raise to time-inconsistent strategies when the Bellman’s principle does not hold and

dynamic programming cannot be applied. In finance, a notable example of problem which is

time-inconsistent is the mean-variance problem, where the time inconsistency is due to the

fact that there is a non-linear function of the expectation of final wealth in the optimization

criterion (due to the presence of the variance of final wealth). Another important prob-

lem which produces a time-inconsistent behaviour is the investment-consumption problem

with non-exponential discounting. This was the case studied by Strotz (1956), and time

inconsistency arises because the initial point in time enters in an essential way the objective

criterion. A third major type of time inconsistency is due to the initial/present state entering

the investor’s utility function, see for example Christensen & Lindensjö (2018). For a clarify-

ing formalization of the possible sources of time inconsistency in intertemporal optimization

problems, see Björk & Murgoci (2014) for the discrete time framework and Björk, Khapko

& Murgoci (2017) for the continuous-time framework.

In the last two decades there has been a renewed interest in time inconsistency for financial

and economic problems. According to Strotz (1956) there are two possible ways to deal with

time-inconsistent problems: (i) precommitment approach; (ii) consistent planning or game

theoretical approach. In the precommitment approach, the controller fixes an initial point

(t0, x0) and finds the optimal control law û that maximizes the objective functional at time

t0 with wealth x0, J(t0, x0, u), disregarding the fact that at future time t > t0 the control law

û will not be the maximizer of the objective functional at time t with wealth x, J(t, x, u);

therefore, he precommits to follow the initial strategy û, despite the fact that at future dates

he will no longer be optimal according to his criterion. To do this, he must be able to

precommit his future selves to the strategy decided at time t0. In the consistent planning

approach, one tries to avoid time inconsistency by selecting the “best plan among those that
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he will actually follow” (Strotz, 1956). This approach translates into the search of a Nash

subgame perfect equilibrium point. Intuitively, sitting at time t the future time interval [t, T ]

can be seen as a continuum of players, each player s ≥ t being the “reincarnation” at time

s of the player who sits at time t. With this approach, a time-consistent equilibrium policy

is the collection of all decisions û (s, ·) taken by any player s ∈ [t, T ] , such that if player t

knows that all players coming after him (in (t, T )) will use the control û, then it is optimal

to him, too, to play control û.

The literature is full of examples of applications of the two approaches outlined. For

conciseness reasons, we here report only a few of them. For instance, the mean-variance

portfolio selection problem has been solved with the precommitment approach by Richardson

(1989), Bajeux-Besnainou & Portait (1998), Zhou & Li (2000) and Li & Ng (2000), the first

two with the martingale method, the last two with an embedding technique that transforms

the mean-variance problem into a standard linear-quadratic control problem. The game

theoretical solution to the mean-variance problem has been found originally by Basak &

Chabakauri (2010), then extended to a more general class of time-inconsistent problems by

Björk et al. (2017). Other papers on the consistent planning approach for the mean-variance

problem are Björk, Murgoci & Zhou (2014), Czichowsky (2013).

The precommitment strategy and the game theoretical approach are not the only ways

to attack a problem that gives raise to time inconsistency. An alternative approach has been

introduced by Pedersen & Peskir (2017) for the mean-variance portfolio selection problem,

namely, the dynamically optimal strategy. This approach is novel to treat time inconsis-

tency, although related work can be found in Karnam, Ma & Zhang (2017). The strategy

proposed by Pedersen & Peskir (2017) is time-consistent in the sense that it does not depend

on initial time and initial state variable, but differs from the subgame perfect equilibrium

strategy. Moreover, their policy is intuitive and formalizes a quite natural approach to time

inconsistency: it represents the behaviour of an optimizer who continuously revaluates his

position and solves infinitely many problems in an instantaneously optimal way. The dy-

namically optimal individual is similar to the continuous version of the naive individual

described by Pollak (1968). At each time t the dynamically optimal investor turns out to be

the “reincarnation” of the precommitted investor, for at time t he plays the strategy that the

time-t precommitted investor would play, forgetting about his past and ignoring his future,
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and deviates from it immediately after, by wearing the clothes of the time t+ precommitted

investor. It is worth noting that the dynamically optimal approach has strong similarities

also with the receding horizon procedure or the model predictive control — so-called rolling

horizon procedures, see Powell (2011) — that are well established methods of repeated opti-

mization over a rolling horizon for engineering optimization problems with an infinite time

horizon.1

It is reasonable to assume that which of the three approaches just described should be

used in a time-inconsistent optimization problem depends on the investor and on the nature

the specific economic phenomenon under consideration. This paper adds to the debate

on what is the “appropriate” approach to time inconsistency by investigating the differences

among the three approaches described above. We define a suitable intertemporal preferences-

driven reward and use it to compare the three outlined approaches to time inconsistency for

the mean-variance portfolio selection problem: precommitment, consistent planning and

dynamic optimality. The idea behind this intertemporal preferences-driven reward is simple:

the reward related to future time t (as evaluated at time t0) associated to a given approach

u is the expectation at initial time t0 of the performance criterion experienced at future time

t using the approach u. A preview of the results is the following. Expectedly and obviously,

the precommitment strategy beats the other strategies if the investor is able to precommit,

only cares at the view point at time t0 and is not concerned to be time-inconsistent in

(t0, T ); if instead he is not able to precommit he should go for one of the two time-consistent

strategies: in this case we find that the Nash-equilibrium strategy dominates the dynamically

optimal strategy until a time point t∗ ∈ (t0, T ) and is dominated by the dynamically optimal

strategy from t∗ onwards. We prove existence and uniqueness of the break even point t∗ and

provide a closed form for it. Interestingly, the break even point t∗ does not depend on wealth

and risk aversion, while it increases with the market price of risk and the time horizon T .

These results are in line with the results in Pedersen & Peskir (2017), who also address the

comparison among the two time-consistent strategies. Differently from them, we make the

comparison at any time t ∈ [t0, T ] and not only at initial time t0 and final time T .

This is not the only paper on the comparison among these three approaches to time in-

1In the problem considered in this paper the time interval over which the optimization is done shrinks
when time passes, while it remains fixed in the problems where the receding horizon procedure is applied.
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consistency. In a companion paper, Vigna (2017) disentangles the notion of time consistency

into the two notions of tail optimality of a control map and preferences consistency of an

optimizer, in the attempt to shed light on the differences between time-consistent and time-

inconsistent optimization problems, and between the three approaches to time inconsistency.

As for the comparison between two of the three approaches to time inconsistency, a compar-

ison between the naive and the sophisticated approaches is in Chen, Li & Zeng (2014), who

study the optimal dividend problem of an insurance company in the presence of time incon-

sistency generated by non-exponential discount factor; Cong & Oosterlee (2016) establish a

link between the time-consistent and the precommitment investment strategies in a defined

contribution pension scheme; Wang & Forsyth (2011) compare time-consistent versus pre-

commitment policies and compare their corresponding efficient frontiers for a mean-variance

optimization problem; Van Staden, Dang & Forsyth (2018) compare the precommitment

and the time-consistent strategies in the presence of realistic investment constraints; Cui,

Li & Shi (2017) highlight the drawbacks of precommitment and game theoretical strategies,

and investigate a self-coordination policy that aims at balancing global interest and local

interests of the decision-maker; Bensoussan, Wong & Yam (2019) analyze the effect of con-

straints on the value function of both precommitment and game theoretical approaches, and

find the unexpected result that for the game theoretical approach the presence of constraints

can improve the payoff, while for the precommitment approach this paradox does not oc-

cur; Menoncin & Vigna (2020) compare the precommitment and the dynamically optimal

strategies for a defined contribution pension scheme and find that the dynamically optimal

strategy reacts better to extreme scenarios of market returns (either good or bad) because

of the continuous adjustment of the final target. Two papers that attack with a different

angle the time inconsistency of the precommitment strategy are Cui, Li, Wang & Zhu (2012)

and Shi, Li & Cui (2017), who propose a weaker notion of time consistency (neither related

to the game theoretical nor to the dynamically optimal approach) and find that, while the

precommitment strategy in the continuous time in the presence of a pure diffusive market

satisfies it, the same is not true for the multi-period time or in a jump diffusion market; they

propose semi-self-financing revised mean-variance strategies that beat the precommitment

one.

The remainder of the paper is as follows. In Section 2, we formulate the mean-variance
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optimization problem, specify the financial market and list the strategies corresponding to

each of the three approaches to time inconsistency. In Section 3, we define the intertempo-

ral preferences-driven reward and compare the three strategies according to it at all times

between initial time and final time. Section 4 concludes.

2 The mean-variance portfolio selection problem

2.1 Statement of the problem

An investor, endowed with a wealth x0 > 0 at time t0 ≥ 0, is faced with a portfolio selection

problem on the time horizon [t0, T ], T ≥ t0. The financial market available for the portfolio

allocation problem is the Black-Scholes model (see e.g. Björk, 1998). This consists of two

assets, a riskless one, whose price B(t) follows the dynamics:

dB(t) = rB(t)dt,

where r > 0, and a risky asset, whose price dynamics S(t) follows a geometric Brownian

motion with drift λ ≥ r and volatility σ > 0:

dS(t) = λS(t)dt+ σS(t)dW (t),

where W (t) is a standard Brownian motion defined on a complete filtered probability space

(Ω,F ,F = {Ft}t∈[t0,T ],P), with Ft = σ{W (s) : s ≤ t} the natural filtration. The amount

of money invested in the risky asset at time t is denoted by u(t). The fund at time t under

control u, Xu(t), grows according to the following SDE:

dXu(t) = [u(t)(λ− r) + rXu(t)] dt+ u(t)σdW (t),

Xu(t0) = x0 > 0.
(1)

The investor is a mean-variance optimizer and his aim is to solve the problem

sup
u∈U

J(t0, x0, u) ≡ [Et0,x0(Xu(T ))− αVt0,x0(X
u(T ))], (2)
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where α > 0 is a measure of risk aversion, and U is the set of admissible strategies, defined

as the set of R-valued stochastic processes u = {u(t)}t∈[t0,T ] that are Ft-adapted and s.t. the

SDE (1) has a unique strong solution.

2.2 Three possible approaches

Because Problem (2) is time-inconsistent, the investor can adopt three alternative investment

strategies, that are optimal according to different perspectives. The three approaches are:

(i) precommitment (ii) consistent planning or Nash equilibrium (iii) dynamical optimality.

Precommitment approach

With the precommitment approach, one fixes the initial point (t0, x0) and finds, if it exists,

the control law up that maximizes only J(t0, x0, u), i.e., the precommitment strategy. This

is formalized by the following definition.

Definition 2.1. Given the mean-variance problem (2), the strategy up that maximizes J(t0, x0, u),

i.e., the control map

upt0,x0 : [t0, T ]× R→ R (3)

such that

J(t0, x0, u
p) = sup

u∈U
J(t0, x0, u)

if it exists, is called the precommitment strategy.

Consistent planning, Nash equilibrium approach

According to the consistent planning approach, in order to solve the mean-variance prob-

lem (2), one should choose “the best plan among those that he will actually follow”. The

construction of this strategy is based on the game theoretic interpretation: (i) consider a

non-cooperative game where to each point in time t is associated Player t; (ii) Player t

chooses the control at time t with the control function u(t, ·), so that if the value of the

wealth at time t is Xt Player t plays u(t,Xt); the collection of all the control functions of all

players for t ∈ [t0, T ] gives a feedback control law u : [t0, T ]× R→ R. The feedback control
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law ue is a subgame perfect Nash equilibrium if for each t the following property holds: if

for each s > t Players s plays ue(s, ·) then it is optimal for Player t too to play ue(t, ·).
More rigorously, the definition of subgame perfect equilibrium for the continuous time

case is as follows (see Björk et al., 2017):

Definition 2.2. Consider an admissible control law ue. Choose an arbitrary admissible

control law u ∈ U and a fixed real number h > 0. Fix an arbitrarily chosen initial point (t, x)

and define the control law uh by

uh(s, y) =

{
u(s, y) for t ≤ s < t+ h, y ∈ R
ue(s, y) for t+ h ≤ s ≤ T, y ∈ R

(4)

If

lim inf
h→0

J(t, x, ue)− J(t, x, uh)

h
≥ 0

for all u ∈ U , then we say that ue is an equilibrium strategy.

The equilibrium strategy for the mean-variance problem is found by solving an extended

Hamilton-Jacobi-Bellman equation for the value function, see Björk & Murgoci (2010),

Proposition 4.1 and Theorem 4.1.

Dynamically optimal approach

We illustrate the construction of the dynamically optimal strategy introduced by Pedersen

& Peskir (2017) for a the mean-variance problem (2) in 3 steps.

Step 1. Given the mean-variance problem (2), assume that for the fixed initial point

(t0, x0) the precommitment strategy maximizing the criterion J(t0, x0, u) exists2 and is given

by (see (3)):

upt0,x0 : [t0, T ]× R→ R. (5)

Step 2. Define the new control map

ud(s, y) = ups,y(s, y), for (s, y) ∈ [t0, T ]× R, (6)

2It is worth noting that Pedersen & Peskir (2017) proved existence of the static precommitment strategy.
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where the right hand side of (6) is obtained by replacing t0 with s and x0 with y in the

function (5).

Step 3. The strategy ud(s, y) : [t0, T ]×R→ R, is called the dynamically optimal strategy.

2.3 The three strategies

If the investor cares only at being optimal at time t0, is able to precommit his behaviour in

the future, and does not care of being time-inconsistent at future time t > t0, then he could

adopt the precommitment strategy up (see Zhou & Li, 2000):

1. precommitment policy upt0,x0(t, x) =
δ

σ

[
x0e

r(t−t0) − x+
1

2α
eδ

2(T−t0)−r(T−t)
]
, (7)

where δ = (λ− r)/σ is the market price of risk, or Sharpe ratio.

If the investor is not able to precommit and cares also at being time-consistent at future

time t > t0, then he can adopt either the time-consistent Nash equilibrium policy ue (see

Basak & Chabakauri, 2010, and Björk et al., 2014):

2. Nash equilibrium policy uet0,x0(t, x) =
δ

σ

1

2α
e−r(T−t), (8)

or the time-consistent dynamically optimal policy ud (see Pedersen & Peskir, 2017):

3. dynamically optimal policy udt0,x0(t, x) =
δ

σ

1

2α
e(δ

2−r)(T−t). (9)

If the investor selects the precommitment policy, his optimal wealth follows the dynamics:

Xp
t = x0e

r(t−t0) +
1

2α
e(δ

2−r)(T−t)
[
eδ

2(t−t0) − e−δ(Wt−Wt0 )−
δ2

2
(t−t0)

]
; (10)

if he selects the Nash-equilibrium policy, his optimal wealth follows the dynamics:

Xe
t = x0e

r(t−t0) +
δ

2α
e−r(T−t) [δ(t− t0) +Wt −Wt0 ] ; (11)
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if he selects the dynamically optimal policy, his optimal wealth follows the dynamics:

Xd
t = x0e

r(t−t0) +
1

2α
e(δ

2−r)(T−t)
[
eδ

2(t−t0) − 1 + δ

� t

t0

eδ
2(t−s)dWs

]
. (12)

In all cases, the value function associated to the adoption of strategy u is

V u : [t0, T ]× R → R

V u(t, x) = Et,x(Xu(T ))− αVt,x(X
u(T )).

(13)

3 Comparison among different strategies

In this section, we show how to make a comparison among the three approaches illustrated

in Section 2.2.

We shall start with a brief inspection of the distribution of final wealth in the three

approaches. Using (10), (11) and (12), we have:

Xp
T = x0e

r(T−t0) +
1

2α

[
eδ

2(T−t0) − e−δ(WT−Wt0 )−
δ2

2
(T−t0)

]
,

Xe
T = x0e

r(T−t0) +
δ

2α
[δ(T − t0) +WT −Wt0 ] ,

and

Xd
T = x0e

r(T−t0) +
1

2α

[
eδ

2(T−t0) − 1 + δ

� T

t0

eδ
2(T−s)dWs

]
.

Straightforward calculations yield

Et0,x0(X
p
T ) = Et0,x0(Xd

T ) = x0e
r(T−t0) +

1

2α

[
eδ

2(T−t0) − 1
]

while

Et0,x0(Xe
T ) = x0e

r(T−t0) +
1

2α

[
δ2(T − t0)

]
Because

eδ
2(T−t0) − 1 ≥ δ2(T − t0),
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we see that the expected final wealth of precommitment and dynamically optimal strategies

coincide and are larger than that of the Nash equilibrium strategy.

However, in order to provide a complete picture of the comparison, we need to incorpo-

rate also the mean-variance criterion and we need to perform the comparison at different

points in time. The comparison will be performed both at initial time t0 and also at future

time t > t0, by defining proper stochastic reward functions at time t for each strategy.

In order to make a comparison of the three strategies, we will henceforth imagine that

we have three investors: the precommitted static one (P-investor), the Nash-equilibrium one

(E-investor) and the dynamically optimal one (D-investor), who will adopt the policies (7),

(8) and (9), respectively.

3.1 Comparison among strategies at initial time t0

The comparison among the three strategies at initial time t0 is straightforward. It suffices

to compare the three value functions at t0.

Adopting the precommitment strategy (7), the value function at time t0 with wealth x0

is

V up(t0, x0) = Et0,x0(Xup(T ))− αVt0,x0(X
up(T )) = x0e

r(T−t0) +
eδ

2(T−t0) − 1

4α
. (14)

Adopting the Nash equilibrium strategy (8), the value function at time t0 with wealth x0 is

V ue(t0, x0) = Et0,x0(Xue(T ))− αVt0,x0(X
ue(T )) = x0e

r(T−t0) +
δ2(T − t0)

4α
. (15)

Adopting the dynamically optimal strategy (9), the value function at time t0 with wealth x0

is

V ud(t0, x0) = Et0,x0(Xud(T ))− αVt0,x0(X
ud(T )) = x0e

r(T−t0) +
4eδ

2(T−t0) − e2δ2(T−t0) − 3

8α
.

(16)

The following results hold:
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Proposition 3.1. For all t0 ≤ T and x0 > 0

V up(t0, x0) ≥ V ue(t0, x0) ≥ V ud(t0, x0). (17)

The equalities hold if and only if t0 = T , or δ = 0.

Proof. For the first of the two inequalities:

V up(t0, x0)− V ue(t0, x0) =
eδ

2(T−t0) − 1− δ2(T − t0)
4α

≥ 0,

where the inequality holds as an equality if and only if δ2(T − t0) = 0, that holds if and only

if t0 = T or δ = 0.

For the second of the two inequalities:

V ue(t0, x0)− V ud(t0, x0) =
e2δ

2(T−t0) + 2δ2(T − t0) + 3− 4eδ
2(T−t0)

8α
≥ 0,

where the inequality is due to the facts that (i) δ2(T − t0) ≥ 0, (ii) the function f(x) =

e2x + 2x + 3 − 4ex is strictly increasing, and (iii) f(0) = 0. (ii) and (iii) imply that the

inequality holds as an equality if and only if t0 = T or δ = 0.

Remark 1. We see from Proposition 3.1 that, considering the reward only at time t0, the

P-investor receives a higher value function than the E-investor and the D-investor. This is

obvious, because the precommitment strategy by definition maximizes the objective criterion

at initial time, see also Wang & Forsyth (2012). The second inequality, already found in

Pedersen & Peskir (2017), shows that at initial time t0 the Nash-equilibrium strategy provides

a higher value function than the dynamically optimal strategy. This is also expected and

consistent with the fact that, by construction, the Nash-equilibrium strategy is the best

among all the time-consistent strategies (see Strotz, 1956).
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3.2 Comparison among strategies at time t: Reward functions and

expected reward functions

The comparison cannot be done only at time t0, otherwise the obvious answer to the question

what is the best strategy to be adopted is “the precommitment strategy”, that beats all the

others from the point of view at t0 (provided that it will be actually followed also after t0).

Indeed, if the investor is able to precommit and only cares of being mean-variance at time

t0, he will select the precommitment strategy, and will not care of being time-inconsistent

after t0.

Suppose instead that the investor cannot precommit and is concerned of being time-consistent

at every t ∈ [t0, T ]. Then, assuming that he will not change his mean-variance preferences

and his risk aversion α, his criterion at every time t ∈ [t0, T ] will still be to maximize the

mean of final wealth while minimizing its variance. Therefore, it is reasonable to assume that

the reward for the mean-variance investor at time t with wealth x adopting strategy u

is:

Ju(t, x) = Et,x(Xu
T )− αVt,x(X

u
T ). (18)

Let us notice that the comparison among the three investors at time t > t0 is delicate,

because, while at time t0 they have the same wealth x0, at time t > t0 they have different

wealths, because they have been following three different investment strategies from t0 to

t. The P-investor will have wealth Xp
t given by (10), the E-investor will have wealth Xe

t

given by (11), the D-investor will have wealth Xd
t given by (12), and in general these levels

of wealth will be different from each other. Nevertheless, considering (18), their degree of

happiness can be measured by their rewards:

Jp(t,Xp
t ) = Et,Xp

t
(Xp

T )− αVt,Xp
t
(Xp

T ) reward for the P-investor at time t

Je(t,Xe
t ) = Et,Xe

t
(Xe

T )− αVt,Xe
t
(Xe

T ) = V e(t,Xe
t ) reward for the E-investor at time t

Jd(t,Xd
t ) = Et,Xd

t
(Xd

T )− αVt,Xd
t
(Xd

T ) = V d(t,Xd
t ) reward for the D-investor at time t .

We notice that in the last two cases, the reward at time t coincides with the value function
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at time t, because the Nash-equilibrium and the dynamically optimal strategies are time-

consistent. In the first case, the reward at time t does not coincide with the value function,

because the investor follows the time-inconsistent strategy decided at time t0 and therefore

does not optimize the mean-variance criterion at any time t > t0.

Notice that, standing at time t0, the rewards Jp(t,Xp
t ), V e(t,Xe

t ) and V d(t,Xd
t ) that re-

fer to time t > t0 are random variables. However, it is possible to compare them standing

at time t0, by comparing their time-t0 expectations. We thus define the following expected

reward functions:

R(t, up; t0, x0) = Et0,x0 (Jp(t,Xp
t )) (19)

R(t, ue; t0, x0) = Et0,x0 (V e(t,Xe
t )) (20)

R(t, ud; t0, x0) = Et0,x0
(
V d(t,Xd

t )
)
. (21)

In general, the expected value in t0 of the reward at time t of the investor who follows the

strategy u is

R(t, u; t0, x0) = Et0,x0
[
Et,Xu

t
(Xu

T )− αVt,Xu
t
(Xu

T )
]
. (22)

The motivation for this definition of expected reward function (on which we build the com-

parison among the strategies) is the following. If the investor preferences remain the same

throughout the time period from t0 to T , the investor’s happiness will be measured at each

future time t by the performance criterion Ju(t,Xu
t ) (u being the strategy adopted). Because

the wealth of the three investors is the same only at time t0, the simplest way to compare the

three stochastic processes Ju(t,Xu
t ) (where u = p, e, d) is to calculate their expected values

at time t0 as functions of time t, and then make a comparison between these functions at

different (relevant) points in time t ∈ [t0, T ].

Remark 2. The expected reward just introduced is probably the simplest way to deal with

the different intertemporal rewards provided by the adoption of different strategies. It is not

the only way. Another possible comparison among the three stochastic performance criteria

and a way to introduce different weights to different points in time would be to calculate for
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each strategy the quantity

� T

t0

w(t)R(t, u; t0, x0)dt u = p, e, d

and then compare these three quantities. Clearly, the function w(t) would reflect the sub-

jective importance that the time-t0 investor assigns to future time point t. We leave this

possible comparison to future research.

3.2.1 Comparison of expected reward functions at times t0 and T

For the comparison among the expected rewards of the three strategies at times t0 and T ,

the following results hold:

Proposition 3.2. If t0 < T , δ 6= 0, and x0 > 0, then

R(t0, u
p; t0, x0) > R(t0, u

e; t0, x0) > R(t0, u
d; t0, x0) (23)

and

R(T, up; t0, x0) = R(T, ud; t0, x0) > R(T, ue; t0, x0) (24)

Proof. For every strategy u

R(t0, u; t0, x0) = Et0,x0 [Et0,x0(Xu
T )− αVt0,x0(X

u
T )] = V u(t0, x0).

Claim (23) follows by Proposition 3.1.

For every strategy u,

ET,Xu
T
(Xu

T )− αVT,Xu
T
(Xu

T ) = Xu
T ⇒ R(T, u; t0, x0) = Et0,x0 (Xu

T ) .

Using the dynamics (10), (11) and (12), we get:

Et0,x0 (Xp
T ) = Et0,x0

(
Xd
T

)
= x0e

r(T−t0) +
1

2α

(
eδ

2(T−t0) − 1
)

(25)
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and

Et0,x0 (Xe
T ) = x0e

r(T−t0) +
δ2(T − t0)

2α
.

If δ2(T − t0) 6= 0, then eδ
2(T−t0) − 1 > δ2(T − t0). Therefore, claim (24) is obtained.

Remark 3. Result (24) was already found by Pedersen & Peskir (2017) (Equation (4.4)), in a

first attempt of comparison between the two time-consistent strategies for the mean-variance

problem. In their comparative analysis, they did not provide detailed argumentation for the

reasonableness of the method used for the comparison.

3.2.2 Comparison of expected reward functions at time t: comparison between

time-consistent strategies

From Proposition 3.2, we see that the Nash-equilibrium strategy provides a higher reward

than the dynamic strategy at initial time t0, and a lower reward than the dynamic strategy

at final time T , suggesting the occurrence of a swap between the two strategies at some time

t∗ ∈ (t0, T ). The next theorem shows the existence and uniqueness of such a break even

point.

Theorem 3.3. If t0 < T , δ 6= 0, and x0 > 0, there exists one and only one point t∗ ∈ (t0, T )

such that

R(t∗, ue; t0, x0) = R(t∗, ud; t0, x0). (26)

The break even point t∗ is the unique solution of the equation

e2δ
2(T−t) −

(
4eδ

2(T−t0) + 4δ2t0 − 3
)

+ 2δ2(T + t) = 0. (27)

Proof. By defining the function

∆Red(t) = R(t, ue; t0, x0)−R(t, ud; t0, x0), (28)

claim (26) is equivalent to prove the existence and the uniqueness of a root of the function

∆Red(t) in the interval (t0, T ). Proposition 3.2 yields:

∆Red(t0) > 0 and ∆Red(T ) < 0. (29)
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Recalling that both the Nash-equilibrium strategy and the dynamic strategy are time-

consistent, we can obtain V e(t,Xe
t ) and V d(t,Xd

t ) just by replacing t0 with t, and x0 with

Xe
t and Xd

t in (15) and (16), respectively.

V e(t,Xe
t ) = Xe

t e
r(T−t) +

δ2(T − t)
4α

. (30)

V d(t,Xd
t ) = Xd

t e
r(T−t) +

4eδ
2(T−t) − e2δ2(T−t) − 3

8α
. (31)

Using (20), (21), (30) and (31), we have

R(t, ue; t0, x0) = Et0,x0 (Xe
t ) e

r(T−t) +
δ2(T − t)

4α
, (32)

and

R(t, ud; t0, x0) = Et0,x0
(
Xd
t

)
er(T−t) +

4eδ
2(T−t) − e2δ2(T−t) − 3

8α
. (33)

Using the closed-form expressions (11) and (12), we get

Et0,x0 (Xe
t ) = x0e

r(t−t0) +
δ2

2α
(t− t0)e−r(T−t), (34)

and

Et0,x0
(
Xd
t

)
= x0e

r(t−t0) +
1

2α
e(δ

2−r)(T−t)
[
eδ

2(t−t0) − 1
]
. (35)

By plugging (34) and (35) into (32) and (33), respectively, and using (28), after some sim-

plifications we get

∆Red(t) =
e2δ

2(T−t) + (3− 4eδ
2(T−t0) − 4δ2t0) + 2δ2(T + t)

8α
. (36)

The function ∆Red(t) is continuous and, due to (29), it takes different signs at the extremes

of [t0, T ]. Moreover,

d

dt

(
∆Red(t)

)
= − δ

2

4α
(e2δ

2(T−t) − 1) < 0 for t ∈ [t0, T )
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that implies that ∆Red(t) is also strictly decreasing. Therefore, there exists a unique root

of ∆Red(t) in (t0, T ) and is given by the unique t∗ that nullifies the numerator of (36). This

concludes the proof.

Remark 4. Let us notice that Theorem 3.3 implies that

R(t, ue; t0, x0) > R(t, ud; t0, x0) ∀ t ∈ [t0, t
∗)

and

R(t, ue; t0, x0) < R(t, ud; t0, x0) ∀ t ∈ (t∗, T ],

meaning that, among the two time-consistent strategies for the mean-variance problem, the

Nash-equilibrium strategy provides on average a higher reward until time t∗, while the dy-

namic strategy provides on average a higher reward from time t∗ onwards. This result is

meaningful and suggests that the importance allocated by the decision-maker to different

points in time should affect his attitude toward time inconsistency, and should play a part

in the entire decision-making process. The first inequality is also consistent with the fact

that the Nash equilibrium strategy is the best plan among those that are time-consistent

(see Strotz, 1956): the criterion “best” here indicates the best at initial time t0, and in-

deed R(t0, u
e; t0, x0) > R(t0, u

d; t0, x0). Clearly, selecting the best time-consistent plan only

from the view point at time t0 can be considered insufficient for a decision-maker who is

intrinsically an intertemporal optimizer.

While a detailed analysis of the break even point is beyond the scope of this paper,

we notice that t∗ does not depend neither on wealth nor on risk aversion α. It depends

only on the market price of risk δ, on the time horizon T and on initial time t0. Table 1

reports the value of t∗ with some typical values of δ and T , when the initial time is t0 = 0:

δ = 0.1, 0.2, 0.3, 0.4, 0.5 and T = 10, 20, 30, 40 (see Vigna, 2014).

The break even point increases with δ and with T . This is expected, because when δ = 0

the three strategies collapse into the riskless strategy (where all the fund is invested con-

tinuously in the riskless asset) and there is no difference between portfolios, value functions

and reward functions. The value and reward functions are trivially the same also in the

degenerate case T = t0. We notice that t∗ varies between 0.16 years, i.e. two months for 10
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Sharpe ratio Time horizon T
δ 10 20 30 40

0.1 0.16 0.64 1.42 2.49
0.2 0.62 2.31 4.82 7.96
0.3 1.28 4.32 8.31 12.79
0.4 1.99 6.05 10.77 15.69
0.5 2.65 7.28 12.23 17.23

Table 1: Break even point t∗ with different Sharpe ratios δ and time horizons T (in years).

years and small δ (δ = 0.1) and 17 years for 40 years and high δ (δ = 0.5). In relative terms,

t∗ ranges between 1% and 6% of T for small δ, and between 26% and 43% of T for high δ.

The intuition behind the fact that t∗ increases with δ and T can be the following. The

dynamically optimal strategy is more aggressive than the Nash-equilibrium strategy by a

factor eδ
2(T−t) (see (8) and (9)). When δ or T increase, the dynamically optimal strategy

becomes even more aggressive than the Nash-equilibrium strategy. A more aggressive strat-

egy increases to a larger extent the variance of final wealth, and to a lower extent the mean

of final wealth, hence the global effect is a reduction of the intertemporal reward, and this

happens with higher severity with the dynamically optimal strategy than with the Nash-

equilibrium strategy. Therefore, an increase in δ or T moves the break even point (that

is the time point when the expected rewards of the two strategies switch) more far in the

future, i.e., t∗ increases.

Remark 5. The existence of a break even point between two strategies in a different context of

time inconsistency has been found also in Balter, Mahayni & Schweizer (2019): in an optimal

investment framework with ambiguity (where ambiguity is the source of time inconsistency)

they compare the precommitment against the time-consistent Nash equilibrium strategies,

and they find that there is a point of regret (that lies in the middle part of the investment

horizon) after which the precommitted investor regrets his decision. In their case, the ratio

t∗ to T is in the range [37%, 71%].
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3.2.3 Comparison of expected reward functions at time t: comparison among

time-inconsistent and time-consistent strategies

We now intend to compare at future time t the precommitment time-inconsistent strategy

with the two time-consistent strategies considered above. In order to do this, we need to

calculate the expected value in t0 of the reward function for the precommitment strategy

(19):

R(t, up; t0, x0) = Et0,x0 [Jp(t,Xp
t )] = Et0,x0

[
Et,Xp

t
(Xp

T )− αVt,Xp
t
(Xp

T )
]
.

As we noticed in Section 3.2, and differently from the other two cases, in the precommitment

case the value of the reward Jp(t,Xp
t ) does not coincide with the value function V p(t,Xp

t )

calculated at time t, because the precommitment strategy is not time-consistent. Indeed,

if the precommitted investor finds himself at time t with fund Xp
t , he will still apply the

precommitted strategy (7). Therefore, the value of his reward Jp(t,Xp
t ) will not be the

supremum of all possible values, the value function at (t,Xp
t ): the value function could be

reached only by applying a new precommitment strategy with starting point t and initial

wealth Xp
t . In other words, for the static precommitted investor the “value function” has

meaning only at time t0 and has no meaning after t0. However, inspired by (18), we can still

assume that the reward for the precommitted investor at time t with wealth Xp
t is given by

Jp(t,Xp
t ), and we can calculate its expectation at t0, Et0,x0 [Jp(t,Xp

t )].

If the static investor has wealth xpt at time t > t0, and adopts the investment strategy

(7), then his future wealth at time τ > t follows the dynamics given by the SDE:{
dXp

τ = Xp
τ [r + up(τ,Xp

τ )(λ− r)] dτ +Xp
τ u

p(τ,Xp
τ ) σdWτ

Xp
t = xpt

(37)

where

up(τ, x) =
δ

σ

1

x

(
Ke−r(T−τ) − x

)
with

K = x0e
r(T−t0) +

1

2α
eδ

2(T−t0). (38)
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Let us define the new stochastic process

Zτ = Ke−r(T−t0) −Xp
τ e
−r(τ−t0), (39)

with K given by (38). By applying Ito’s lemma to Zτ , we get its dynamics for τ > t:{
dZτ = −δ2Zτdτ − δZτdWτ

Zt = Ke−r(T−t0) −Xp
t e
−r(t−t0).

(40)

Therefore

Zτ = Zt e
− 3

2
δ2(τ−t)−δ(Wτ−Wt) (41)

where Zt is given by (40). Plugging (41) into (39), after some simplifications, we get the

solution to (37), i.e. the dynamics of Xp
τ for τ > t:

Xp
τ =

[
x0e

r(τ−t0) +
1

2α
eδ

2(T−t0)−r(T−τ)
]

+

+

[
xpt − x0er(t−t0) −

1

2α
eδ

2(T−t0)−r(T−t)
]
e(r−

3
2
δ2)(τ−t) · e−δ(Wτ−Wt). (42)

Therefore

Xp
T =

[
x0e

r(T−t0) +
1

2α
eδ

2(T−t0)
]

+

+

[
xpt − x0er(t−t0) −

1

2α
eδ

2(T−t0)−r(T−t)
]
e(r−

3
2
δ2)(T−t) · e−δ(WT−Wt). (43)

Thus

Et,xpt (Xp
T ) =

(
1− e−δ2(T−t)

)(
x0e

r(T−t0) +
1

2α
eδ

2(T−t0)
)

+ xpt e
(r−δ2)(T−t), (44)

and

Vt,xpt
(Xp

T ) =

[
xpt − x0er(t−t0) −

1

2α
eδ

2(T−t0)−r(T−t)
]2 (

e(2r−δ
2)(T−t) − e2(r−δ2)(T−t)

)
. (45)
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Therefore, the reward at time t for the precommitted investor is

Jp(t,Xp
t ) = Et,Xp

t
(Xp

T )− αVt,Xp
t
(Xp

T ) =(
1− e−δ2(T−t)

)(
x0e

r(T−t0) +
1

2α
eδ

2(T−t0)
)

+Xp
t e

(r−δ2)(T−t)+

− α
[
Xp
t − x0er(t−t0) −

1

2α
eδ

2(T−t0)−r(T−t)
]2 (

e(2r−δ
2)(T−t) − e2(r−δ2)(T−t)

)
. (46)

Taking expectation at time t0, we get:

Et0,x0 (Jp(t,Xp
t )) = Et0,x0

[
Et,Xp

t
(Xp

T )− αVt,Xp
t
(Xp

T )
]

=(
1− e−δ2(T−t)

)(
x0e

r(T−t0) +
1

2α
eδ

2(T−t0)
)

+ Et0,x0 (Xp
t ) e(r−δ

2)(T−t)+

− α
[
Et0,x0 (Xp

t )− x0er(t−t0) −
1

2α
eδ

2(T−t0)−r(T−t)
]2 (

e(2r−δ
2)(T−t) − e2(r−δ2)(T−t)

)
. (47)

Using the dynamics (10), we get

Et0,x0(X
p
t ) = x0e

r(t−t0) +
1

2α
e(δ

2−r)(T−t)
[
eδ

2(t−t0) − 1
]
. (48)

Plugging (48) into (47), after some simplifications, we get the expected value in t0 of the

reward function at time t for the precommitted investor:

R(t, up; t0, x0) = Et0,x0 (Jp(t,Xp
t )) = x0e

r(T−t0) +
1

4α

[
2eδ

2(T−t0) − eδ2(T−t) − 1
]
. (49)

Remark 6. Notice that using (49) to calculate R(t, up; t0, x0) in t0 and T , we get

R(t0, u
p; t0, x0) = x0e

r(T−t0) +
1

4α

[
eδ

2(T−t0) − 1
]
,

which, as expected, coincides with (14), and

R(T, up; t0, x0) = x0e
r(T−t0) +

1

2α

[
eδ

2(T−t0) − 1
]
,
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which, as expected, coincides with (25).

We are now ready to compare the static precommitment strategy with the time-consistent

strategies. The following results hold:

Theorem 3.4. If t0 < T , δ 6= 0, and x0 > 0,

R(t, up; t0, x0) > R(t, ue; t0, x0) for all t ∈ [t0, T ], (50)

R(t, up; t0, x0) > R(t, ud; t0, x0) for all t ∈ [t0, T ), (51)

and

R(T, up; t0, x0) = R(T, ud; t0, x0). (52)

Proof. By defining the function

∆Rpe(t) = R(t, up; t0, x0)−R(t, ue; t0, x0), (53)

claim (50) is equivalent to the strict positivity of ∆Rpe(t) over [t0, T ]. By plugging (49) and

(32) into (53), we get:

∆Rpe(t) =
1

4α

[
2eδ

2(T−t0) − eδ2(T−t) − 1− δ2(T + t− 2t0)
]
. (54)

The first derivatives of ∆Rpe(t) is

d (∆Rpe(t))

dt
=
δ2

4α

(
eδ

2(T−t) − 1
)
> 0 for t ∈ [t0, T ),

implying that ∆Rpe(t) is increasing over [t0, T ). Note that ∆Rpe(t0) > 0 by Proposition 3.2.

Then, claim (50) follows.

By defining the function

∆Rpd(t) = R(t, up; t0, x0)−R(t, ud; t0, x0), (55)

claim (51) is equivalent to the strict positivity of ∆Rpd(t) over [t0, T ), and claim (52) is
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equivalent to ∆Rpd(T ) = 0. By plugging (49) and (33) into (55), we get:

∆Rpd(t) =
1

8α

[
eδ

2(T−t) − 1
]2
. (56)

Then, claims (51) and (52) follow easily.

From Theorem 3.4 we see that the static precommitment strategy provides a higher ex-

pected reward for any time t ∈ [t0, T ] than the two time-consistent strategies, meaning that

the static precommitment strategy is never inferior to the other strategies. Similarly to Re-

mark 1, this is obvious and due to the fact that the criterion R(t, u; t0, x0) illustrates the

degree of happiness at time t of the mean-variance optimizer as measured at time t0. No

surprise that the precommitment strategy gives an outcome at least as good as the other

strategies. From Theorem 3.4 we also see that the difference ∆Rpe(t) between precommit-

ment and Nash-equilibrium strategies is increasing over [t0, T ], and reaches its maximum in

T : this means that the positive difference between expected rewards becomes larger when

time passes. On the contrary, the difference ∆Rpd(t) between precommitment and dynami-

cally optimal strategies is decreasing over [t0, T ], and is null in T : this means that the positive

difference between expected rewards becomes smaller when time passes, and disappears at

terminal time T .

3.3 Additional considerations about time consistency

In the previous sections we have compared the three strategies using an intertemporal reward-

driven criterion. It is worth adding a few considerations that can shed further light on the

differences among the three approaches.

In their seminal paper in Proposition 5.1 Björk & Murgoci (2010) prove that to each

time-inconsistent problem it is possible to associate a standard time-consistent problem such

that (i) the optimal value function of the standard problem is equal to the equilibrium

value function of the time-inconsistent problem; (ii) the optimal control law of the standard

problem is equal to the equilibrium strategy of the time-inconsistent problem.

This remarkable result implies that, given a time-inconsistent problem, there exist utility

functions U1(·) and U2(·) such that the Nash equilibrium strategy associated to the time-
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inconsistent problem coincides with the optimal control law found via dynamic programming

solution to the time-consistent problem

sup
u∈U

Et0,x0
[� T

t0

U1(s,Xs, us)ds+ U2(XT )

]
. (57)

In the case of the mean-variance problem we have U1(x) = 0 and U2(x) = −1/(2α)e−2αx

(see Basak & Chabakauri, 2010 and Vigna, 2017). Therefore, enforcing time consistency

with the Nash-equilibrium approach results in the application of the optimal policy for the

alternative time-consistent standard problem (57). According to Vigna (2017), the Nash-

equilibrium investor is not preferences-consistent (for the precise definition of preferences

consistency we refer the reader to Vigna, 2017).

We find a similar situation with the precommitment policy. Indeed, thanks to the em-

bedding result of Zhou & Li (2000), it is possible to prove that a target γ ∈ R exists such

that at any time t ∈ [t0, T ] the precommitted investor plays the optimal strategy for the

following target-based problem:

inf
u∈U

Et0,x0
[
(X (T )− γ)2

]
. (58)

This means that the precommitment strategy coincides with the strategy of an investor with

target-based preferences with target γ (see also Menoncin & Vigna, 2017 and Menoncin &

Vigna, 2020). Therefore, similar to the Nash-equilibrum strategy, also the precommitment

strategy turns out to be the solution of the alternative time-consistent standard problem

(58).

Thus, both the Nash equilibrium policy and the precommitment strategy are the optimal

policies associated to two time-consistent problems (respectively, Problems (57) and (58))

that are different from the original mean-variance problem. In this sense, both the Nash-

equilibrium investor and the precommitted investor lack preferences consistency (see Vigna,

2017).
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4 Concluding remarks

In this paper we have addressed a comparison between three common approaches to time

inconsistency for the mean-variance portfolio selection problem, namely, precommitment

approach, consistent planning approach and dynamical optimality approach. While the

comparison at initial time t0 is trivial, we have provided a comparison also at time t > t0,

by defining an intertemporal stochastic time-t-reward, based on the assumption that the

individual does not change his mean-variance preferences and risk aversion over time. A

comparison between the expected values at time t0 of the stochastic time-t-reward shows

that, standing at time t0, and expectedly, the precommitment approach beats the other two

approaches, at the cost of being time-inconsistent. The comparison between the two time-

consistent approaches, i.e., the consistent planning and the dynamical optimality approach,

shows that the former dominates the latter from t0 up to a unique break even point t∗ ∈
(t0, T ) and is dominated by the latter from t∗ to T .

The main message that one can probably get from this analysis is that when there is a

problem that gives rise to time inconsistency there is no clear-cut answer to the issue “what

is the right thing to do”. A normative approach that pretends to be universal fails to provide

convincing arguments, for the appropriate behaviour is dictated not only by the non-linear

optimizing criterion but also by other subjective factors, such as the attitude towards time

consistency, and the importance given to different time intervals and singular points in time.

Instead, we consider a philosophical approach more appropriate.
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