
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On the Expressivity of Total Reversible Programming Languages

Publisher:

Published version:

DOI:10.1007/978-3-030-52482-1_7

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1747639 since 2020-08-03T14:40:25Z

On the expressivity of total
reversible programming languages

Armando B. Matos1, Luca Paolini2[0000−0002−4126−0170], and Luca
Roversi2[0000−0002−1871−6109]

1 Universidade do Porto, Departamento de Ciência de Computadores
armandobcm@yahoo.com

2 Università degli Studi di Torino, Dipartimento di Informatica, Italy
{luca.paolini,luca.roversi}@unito.it

Abstract. SRL is a reversible programming language conceived as a re-
striction of imperative programming languages. Each SRL program that
mentions n registers defines a bijection on n-tuples of integers. Despite
its simplicity, SRL is strong enough to grasp a wide class of computable
bijections and to rise non-trivial programming issues. We advance in
the study of its expressivity. We show how to choose among alternative
program-branches by checking if a given value is positive or negative.
So, we answer some longstanding questions that the literature poses. In
particular, we prove that SRL is primitive recursive complete and that
its program equivalence is undecidable.

Keywords: Reversible Programming Languages · Imperative Program-
ming Languages · Primitive Recursive Functions · Decidability.

1 Introduction

Reversible computing is an unconventional form of computing that identifies an
interesting restriction of the classical digital computing model which, perhaps
surprisingly, still is Turing-complete [3]. Classical computation is deterministic
in a forward manner, i.e. each state is followed by a unique state. The reversible
computation is a classic computation which is also required to be backward-
deterministic: every state has a unique predecessor state.

The research interest for reversible computing is emerged in a plethora of
situations (see [25] for a survey). Inside the classical computing, often we come
across this subject inadvertently and accidentally. Think about lossless com-
pression, cryptographic procedures, view-update problem, and so on. However,
the interest for the reversible paradigm in the classical computing is far broader
than that, because it is linked to the ubiquitous backtracking mechanism. Albeit
specific researches on these classic arguments have been developed, the quest for
an overall theory of reversible computing has been initially motivated from a
different search: the interest for thermodynamic issues of the computation. This
research goal can potentially contribute to decrease energy consumption, sys-
tems overheat and, battery stockpiling in portable systems. Furthermore, we

2 A. Matos, L. Paolini, L. Roversi

like to remind that the reversible computation is intimately linked to emerging
computing models, like, for example, the quantum computing paradigm.

The literature proposes several reversible languages (see [25] for a survey).
We focus our attention on SRL and its variants, namely a family of total re-
versible programming languages introduced in [10]. These languages have been
conceived as a restriction of the LOOP language defined in [15, 14]. The LOOP
language identifies a sub-class of programs that exist inside WHILE program-
ming languages and which correspond the class of primitive recursive functions,
crucial in recursion theory. The distinguishing difference between SRL languages
and LOOP, or WHILE ones, is that their registers store both positive and negative
integers (like standard programming languages) and not only natural numbers.
The three instructions common to every variant of SRL are the increment (viz.
incr), the decrement (viz. decr) and the iteration (viz. for r(P), where P is
a subprogram that cannot modify the content of register r). Registers contain
values in Z and a program that mentions n registers defines a bijection Zn → Zn.

For each program P of SRL, we can build the program P−1 that reverses the
behavior of P in an effective way. I.e., executing P−1 just after P is equivalent
to the identity. Patently, increment and decrement are mutual inverses. On the
other hand, for r(P) iterates n times the execution of P , whenever n ≥ 0, and
iterates n times the execution of the inverse of P whenever n ≤ 0; so, it can be
used to invert itself.

Despite the instruction set of SRL is quite limited, its operational semantics
is unexpectedly complex. The literature [10, 12, 13, 18, 21] leaves many questions
open, mainly concerning the relation between SRL and the class of computable
bijections3, which form a core of computable functions [10, 19, 20, 22, 24, 23].

We aim at answering some of those questions.

1. Is the program equivalence of SRL decidable?
2. Is it decidable if a program of SRL behaves as the identity?
3. Is it possible to decide whether a given program is an inverse of a second

one?
4. Is SRL primitive-recursive complete?
5. Is SRL sufficiently expressive to represent RPP [21] or RPRF [18, 20]?

Patently, these questions are correlated in many ways. Quite trivially 1, 2 and 3
are equivalent. Also 4 and 5 are because RPP and RPRF are primitive-recursive
correct and complete. A positive answer to 4 would imply a positive answer to
5 and a negative one to 1 because the equivalence between primitive-recursive
functions is undecidable [26, Ch.3].

In this work we answer to all of them by solving the open problem in [21]:
“It is an open problem if the conditional instruction of RPP can be implemented
in SRL.” Encoding a conditional behavior as a program of SRL allows to com-
pile programs of RPP and RPRF in SRL, so answering question 5. Since RPP is

3 We remark that, traditionally, computable bijections are studied on natural numbers,
while in this setting, studies extend them, w.l.o.g., to the whole set of integers.

On the expressivity of total reversible programming languages 3

primitive-recursive complete [21], then SRL is, answering question 4. So, the pro-
gram equivalence for SRL is undecidable because that one of primitive recursive
functions is [26, Ch.3]. This answers questions 1,2 and 3.

Contents Section 2 introduces SRL and some useful notations. Section 3 intro-
duces the representation of truth values. Section 4 shows how to test numbers
and zero. Section 5 shows how RPP can be represented in SRL. Conclusions are
in Section 6.

2 The language SRL

SRL is a reversible programming language [10, 11, 25] that Armando Matos dis-
tills from a variant of Meyer and Ritchie’s LOOP language [15, 14]. Specifically,
SRL restricts a FOR language that, in its turn, is a total restriction of any WHILE
programming language (a.k.a. IMP) [5, 9, 26]. A FOR language is in [17] which re-
visits results in [15, 14] about the relation between programming and primitive
recursive functions.

The choice of letting SRL-languages to operate on all integers eases the design
of a reversible language because Z, endowed with sum, is a group while N is not.
Therefore, the registers that a program of SRL uses store values of Z. Each
program P defines a bijection Zn → Zn, where n ≥ 1 is an upper bound to the
number of registers that occur in P . As a terminology, we take “mentioned” and
“used” as synonymous of “occur” in a sentence like “registers that occur in P”.
The inverse of P is P−1, i.e. the inverse bijection that P represents. We shall
explain how to get P−1 from P in a few.

The minimal dialect of SRL languages we focus on is as follows:

Definition 1. Let r be a meta-variable denoting register names that we range
over by lowercase letters, possibly with subscripts and superscripts. Valid SRL-
programs are the programs generated by the following grammar:

P ::= incr | decr | for r(P) |P ;P (1)

that, additionally, satisfy the following linear constraint: for r(P) is part of a
valid program iff r is not used in P as argument of inc or dec .

The operational semantics of SRL says that (i) incx increments the content
of the register x by 1; (ii) decx decrements the content of the register x by 1;
(iii) P0;P1 is the sequential composition of 2 programs that we execute from left
to right; and, (iv) if n ∈ Z is the initial content of the register r then, for r(P)
executes, either P ; . . . ;P︸ ︷︷ ︸

n

whenever n ≥ 0, or P−1; . . . ;P−1︸ ︷︷ ︸
|n|

whenever n ≤ 0,

where |n| is the absolute value of n. We notice that executing for r(P) cannot
alter the value in r because of the linear constraint on the syntax.

The inverse of an SRL-program is obtained by transforming incx, decx, P0;P1

and for r(P) in decx, incx, P1
−1;P0

−1 and for r(P−1), respectively. More on SRL,
its extensions, as well as results about it, is in [10, 11, 21, 25].

4 A. Matos, L. Paolini, L. Roversi

For the sake of simplicity, the following notation concisely and formally allows
to see SRL programs as bijective functions.

Notation 1 (Register names). Without loss of generality, we shall only con-
sider SRL-programs whose registers’ names are a single letter, typically r, in-
dexed by means of different natural numbers. Also, we assume that, if a program
mentions n ∈ N registers, then r0, . . . , rn−1 are their names.

We use vectors of integers to denote the contents of all registers as a whole,
both for input and output. If a vector contains n integers then, we say that n is
its size and we index such integers from 0 to n− 1. The idea is that the content
of the register ri is in position i of the vector. As for quantum computing [16],
we represent such vectors as column arrays written downwards.

Notation 2. Let P be a SRL program that respects Notation 1. Let n ∈ N be
an upper bound of the indexes of the registers that P uses. Let |vin〉 and |vout〉
denote (column) vectors of size n. Then, |vin〉P |vout〉 denotes that P sets the
content of its register with the values in |vout〉 , starting from registers set to the
values in |vin〉 . Slightly abusing our notation:

|v1〉P1 |v2〉 · · · |vk〉Pk |vk+1〉

is the computation of P1; . . . ;Pn applied to |v1〉 with the value of the registers’
intermediate contents made explicitly.

We conclude with simple examples of SRL programs that use ancillary reg-
isters. Specifically, a register is said to be a “zero-ancilla” whenever we assume
that its initial value is 0; when its initial value is different, we are just not
interested in the behaviour of the program.

Lemma 1 (Integer-Negation). If r1 is used as a zero-ancilla then:

for r0(dec r1); for r1(inc r0); for r1(inc r0); for r0(dec r1); (2)

inverts the sign of the value in r0.

Proof. Let a ∈ Z. It is easy to see that:

a
0 for r0(dec r1); a

−a for r1(inc r0); 0
−a for r1(inc r0); −a−a for r0(dec r1); −a0 .

ut

We remark that (2) resets the zero-ancilla to zero, so that it can be reused for as
many applications of (2) as we need. So, we can use the macro neg ri as a name
of (2), hiding an additional zero-initialized ancillary register.

Lemma 2 (Swap). If r2 is used as a zero-ancilla then:

for r0(inc r2); for r2(dec r0); for r1(inc r0);

for r0(dec r1); for r2(inc r1); for r1(dec r2); (3)

swaps the content of r0 and r1, and leaves the zero-ancilla clean.

On the expressivity of total reversible programming languages 5

Proof. Let a, b ∈ Z. It is easy to see that:

a
b
0
for r0(inc r2);

a
b
a

for r2(dec r0);
0
b
a

for r1(inc r0);
b
b
a

for r0(dec r1);
b
0
a

for r2(inc r1);
b
a
a

for r1(dec r2);
b
a
0
.

ut

We shall use the macro:

swap(ri, rj) (4)

as a name of (3) which mentions two distinct registers ri and rj and which hides
an additional zero-initialized ancillary register. Remarkably, that unique silent
zero-ancilla can be used by all swaps and negations that possibly occur in a
program. For completeness, we recall that swap and negation, analogous to the
ones here above, are taken as primitive operations in variants of SRL [10, 11].

3 Representing Truth Values

In order to represent truth values in SRL, we conventionally use a pair of registers.

Definition 2 (Truth values). A pair of registers is called truth-pair whenever
one register contains 0 and the other contains 1. If 1 is in the first register, then
the truth-pair encodes true. Otherwise, 1 is in the second register and the truth-
pair encodes false.

Definition 2 recalls the representation of qbits in quantum computing [16] and,
indeed, it has been inspired by the quantum programming languages designed
in [22, 23]. Definition 2 relies on some observations:

1. “for ”, natively included in SRL, works as a basic conditional operator. If r
contains 1, then for r(P) executes P once. Furthermore, the program:

for r0(P); for r1(Q)

simulates an “if-then-else” whenever r0, r1 is a truth-pair which drives the
mutually exclusive selection between P and Q.

2. It is easy to negate a truth-value by means of swap(ri, rj), as defined in (3),
which, we recall, uses a silent additional ancilla.

A first application of truth-pairs is to check the parity of a register’s content.

Lemma 3 (isEven). Given the truth-pair r1, r2 set to true, for r0(swap(r1, r2))
decides the parity of the number in r0. It leaves r1, r2 set true iff the content of
r0 is even.

6 A. Matos, L. Paolini, L. Roversi

Proof. Let n ∈ Z. Then:

n
1
0

for r0(swap(r1, r2));
n

beven
bodd

, (5)

where both beven is 1 (bodd is zero) if and only if n is even and bodd is 1 (beven is
zero) if and only if n is odd. ut

We observe that a truth-pair can drive for r1(P); for r2(Q) to simulate an “if-then-
else” that chooses between P and Q. Once chosen, we can set the truth-pair back
to its initial content by applying the inverse of (5), i.e. Bennet’s trick [1–3], in
accordance with programming strategy widely used in [21]. In principle, Bennet’s
trick allows to reuse the truth-pair for a further parity test.

Lemma 3 justifies the use of the macro isEven(ri, rj , rk) as a name for (5), pro-
vided that ri, rj , rk are distinct registers and that rj , rk form a truth-pair. If the
content of ri is even the truth-value contained in rj , rk is not changed, otherwise
it is logically negated. We also note that the inverse of (5) is for ri(swap(rj , rk)),
because the swap is commutative on its arguments.

An Euclidean division by 2 on positive numbers, relying on Lemma 3, divides
the dividend, an integer, by the divisor, yielding a quotient and a remainder
smaller than the divisor.

Lemma 4 (Halve). Let r1, r2 be a truth-pair initialized to true. Let r3 be a
zero-ancilla. Then:

for r0(swap(r1, r2); for r1(inc r3)) (6)

halves the content of r0, leaves the quotient of the integer division by 2, which
is decremented by one in the case r0 contains a negative odd number, in r3 and,
finally, lives the remainder in r2.

Proof. Let n ≥ 0. Then:

n
1
0
0

for r0(swap(r1, r2); for r1(inc r3));

n
beven
bodd
n/2

where beven and bodd flag the parity of the value in r0 in accordance with
Lemma 3. In particular, r1, r2 contain 1, 0, respectively, iff the remainder of
the division is zero. Otherwise, r1, r2 contain 0, 1, respectively. If n < 0, then:

n
1
0
0

for r0(swap(r1, r2); for r1(inc r3));

n
beven
bodd

n/2− bodd

where beven and bodd flag the parity of the value in r0 in accordance with
Lemma 3. ut

Lemma 4 justifies the use of the macro halve(ri)(rj)(rk)(rh) as a name for (6)
in order to halve the value in ri, whenever ri, rj , rk and rh are pairwise distinct.
Clearly, halve silently assumes the use of an additional zero-ancilla.

On the expressivity of total reversible programming languages 7

4 Testing SRL-registers

We here discuss how to check if an integer number is smaller than −1 in order
to leave the answer in a truth-pair. The test is crucial to answer longstanding
questions about the expressivity of SRL, firstly posed in [10] and reiterated in
other papers [12, 13, 18, 20, 21].

The Fundamental Theorem of Arithmetic is the starting point [4, p.23]:

“. . . Any integer not zero can be expressed as a unit (±1) times a
product of positive primes. This expression is unique except for the order
on which the primes factors occur. . . . ”

Technically, every integer n 6= 0 has prime-decomposition (±1)2kp1p2 · · · pm,
unique up to the order of its factors. For every k,m ≥ 0 and 1 ≤ i ≤ m, the
factor pi is a prime, positive and odd number not smaller than 3. The odd-core
of n, decomposed as (±1)2kp1p2 · · · pm, is (±1)p1p2 · · · pm. For instance, 21 is
prime-decomposed as either (1) · 20 · 3 · 7 or (1) · 20 · 7 · 3 with odd-core 21, and
−90 is prime-decomposed in (−1) · 21 · 3 · 3 · 5 with odd-core −45.

Proposition 1. Let n 6= 0 be an integer and let (±1)2kp1p2 · · · pm be the prime-
decomposition of n, for some k,m ≥ 0.

1. k ≤ |n|, where |n| is the absolute value of n.
2. For each h ≤ k, the division of n by 2h returns (±1)2k−hp1p2 · · · pm as

quotient and 0 as remainder.
3. The division of n by 2k returns an odd number. So, dividing n by 2k+1 has

1 as its remainder.

Proof. Trivial. ut

Crucially, for each j ∈ N, if we divide 0 by 2j , then 0 is both remainder and
quotient. Therefore, given an integer N and an integer M greater than N , we
can show that a program of SRL exists which iteratively divides N by 2 for M
times. If N is 0, the only reminder we can obtain is 0. Otherwise, a remainder
equal to 1 necessarily shows up.

Theorem 3 here below defines the program. It assumes the existence of two
occurrences of N . One is the dividend, the other drives the iteration. We remark
that producing a copy of a given N costs just a single zero-ancilla more.

Theorem 3 (isLessThanOne). Let r2, r3 and r5, r6 be truth-pairs initialized
to true and let r4 be a zero-ancilla. Let both r0 and r1 contain the value N . Then:

for r0


for r5(for r1(swap(r2, r3); for r2(inc r4))); /* SP0 */

for r3(swap(r5, r6)); /* SP1 */

for r5(for r4(dec r1); for r1(dec r4)); /* SP2 */

for r6
(
for r1(for r2(dec r4); swap(r2, r3));
for r1(inc r4); for r4(inc r1)

)
/* SP3 */


(7)

leaves true in the truth-pair r5, r6 if and only if N is strictly lower than 1.

8 A. Matos, L. Paolini, L. Roversi

Proof. Both r0, r1 contain N because r0 iterates as many times as required, and
r1 is the dividend. Some remarks are worth doing.

– The comments /* SP0 */. . . name the part of program to their left that
begins with “for ”.

– We can think of r1, r2, r3, r4 as the arguments of halve, i.e. we could rewrite
SP0 as for r5(halve(r1, r2, r3, r4)). So, Lemma 4, implies that SP0 halves r1,
leaving the quotient in r4 and the remainder in r3.

– Only swap-operations modify truth pairs.
– It would be sufficient to initialize r0 with any number greater than the ex-

ponent of 2 in the prime-decomposition of N .
– Making explicit the statement requirements,

Register-Name | r0 r1 r2 r3 r4 r5 r6
Content | N N 1 0 0 1 0

sums up the input for SRL program (7).

The behaviour of the SRL program (7) can described by considering three cases:
N = 0, N > 0 and N < 0.

– Let N = 0. Then (7) does nothing and result is immediate. We remark that
the result does not change if we arbitrarily modify the value in r0.

– Let N ≥ 1. The outermost “for r0” iterates its body as many times as N and
the computation proceeds as discussed in the following.
1. Let us consider SP0. If the truth-pair r5, r6 contains true, the program (7)

executes halve(r1, r2, r3, r4) once. Lemma 4 implies that the value of r1
does not change, that the remainder is stored in the truth-pair r2, r3
and that the result of dividing r1 by 2 is in r4. Otherwise, the truth-pair
r5, r6 contains false and nothing is done.

2. Let us consider SP1. We observe that only SP1 can modify r5, r6. If the
truth-pair r2, r3 contains true, i.e. r1 has even value in it, then nothing
is done. Otherwise, the truth-pair r2, r3 contains false, i.e. r1 contains an
odd number. Then, SP1 yields the global result by setting the truth-pair
r5, r6 to false.

3. Let us consider SP2 which, we remark, is crucial that the program (7)
executes at most once. Let the truth-pair r5, r6 contain true. We both
subtract from r1 half of its value, which is in r4 after we execute SP0, and
we reset r4 to zero. This sets r1, r2, r3 and r4 for the next halve-iteration.
If the truth-pair r5, r6 contains false, then nothing is done.

4. Let us consider SP3. If the truth-pair r5, r6 contains true, then nothing
is done. Globally, this means that the body of SP3 cannot run until r1
is possibly set with an odd value. If the truth-pair r5, r6 contains false,
then we must consider two cases in order to ensure that SP3 leaves the
value false in the truth-pair r2, r3.
• Let r1 contain an odd value n after executing SP1, which sets r5, r6

to false, and which is followed by SP2 that, doing nothing, leaves
register’s contents unchanged. Since for r1(for r2(dec r4); swap(r2, r3))
is the inverse of halve(r1, r2, r3, r4), then:

On the expressivity of total reversible programming languages 9

N
n
0
1

n/2
0
1

for r1(for r2(dec r4); swap(r2, r3));︸ ︷︷ ︸
halve(r1,r2,r3,r4)−1

N
n
1
0
0
0
1

for r1(inc r4);

N
n
1
0
n
0
1

for r4(inc r1)

N
2n
1
0
n
0
1

.

To sum up, (i) the truth-pair r2, r3 is restored to true, (ii) the con-
tents of r1 and r4 are now both even. Specifically, r1 contains an
even value and r4 doubles that value.

• Let r1 contain an even value n. This sub-case can only occur when
the preceding sub-case, with r1 initially set to an odd value n, has
already occurred once. Moreover, both SP0, SP1 and SP2 cannot not
change the content of the registers anymore, because r5, r6 contain
the false and r1 is doubled by every iteration in order to permanently
maintain true in the pair r2, r3. Then:

N
n
1
0

n/2
0
1

for r1(for r2(dec r4); swap(r2, r3));︸ ︷︷ ︸
halve(r1,r2,r3,r4)−1

N
n
1
0
0
0
1

for r1(inc r4);

N
n
1
0
n
0
1

for r4(inc r1)

N
2n
1
0
n
0
1

.

To sum up, (i) the truth-pair r2, r3 remains true, (ii) the contents of
r1 and r4 are both even. Specifically, r1 contains an even value and
r4 doubles that value.

– Let N ≤ −1. By definition, for r0(P) executes P−1 as many times as n0 if n0
is the value of r0. We have to check that (7) doubles the content of r1 before
checking its parity. Hence, r1 can never be read off with an odd number in
it. Thus, (7) simply checks the parity of r1 and doubles r1, at every of its
iterations, according to the following details:
• Let us consider SP3. The body of the outermost “for ” of SP3 never exe-

cutes, for the truth-pair r5, r6 contains true all along the execution.
• Let us call BSP2 the body for r4(dec r1); for r1(dec r4) of SP2. Then, every

iteration of (7) executes BSP2. Since N is negative and r5 contains 1, we
have to consider B−1SP2, i.e. for r1(inc r4); for r4(inc r1). Moreover, since r1
contains a negative number, we remark that the outermost occurrence
of “for ” in B−1SP2 further inverts its body. Since N ≤ −1, we consider a
generic negative number n. Thus:

N
n < 0

1
0
0
1
0

for r1(dec r4);

N
n
1
0
−n
1
0

for r4(dec r1)

N
n + n

1
0
−n
1
0

,

where both n and n+ n are negative, so −n is positive.
• Let us consider SP1. Since the truth-pair r2, r3 is never changed from its

initial value true, the body of the outermost occurrence of “for ” in SP1
is always skipped.

10 A. Matos, L. Paolini, L. Roversi

• Let us consider SP0 and let name for r5(for r1(swap(r2, r3); for r2(inc r4))),
i.e. the body of SP0, as BSP0. Every iteration of (7) executes BSP0 because
the initial true value in the truth-pair r5, r6 never changes. Since N is
negative, we consider B−1SP0, i.e. for r5(for r1(for r2(dec r4); swap(r2, r3);)).
Nevertheless, also r1 contains a negative number, thus the body of for (r1)
is subject to a further inversion that annihilates the first one. Since
N ≤ −1, we consider a generic negative number n. Thus:

N
2n
1
0
−n
1
0

for r5(for r1(swap(r2, r3); for r2(inc r4)))

N
2n
1
0
0
1
0

.

Summing up, in the case N ≤ −1 each iteration executes two steps: (i) SP2
copies the content of r1 in r4 and doubles r1; (ii) SP0 resets r4 to zero and
leaves all other registers unchanged. ut

Concluding observations and remarks on (7) follow.
We can drop the constraint that both r0 and r1 contain the same value by

letting r1 be a zero-ancilla and starting (7) with for r0(inc r1), to recover the
current assumptions of Theorem 3. Therefore:

isLessThanOne(rj0 , rj1 , rj2 , rj3 , rj4 , rj5 , rj6) (8)

can be a name for the program (7) that we assume to apply to distinct registers
such that: (i) rj2 , rj3 and rj5 , rj6 are truth-pairs with initial value set true, and
(ii) rj1 , rj4 are variables with initial value set 0. Under these assumptions, after
executing isLessThanOne(rj0 , rj1 , rj2 , rj3 , rj4 , rj5 , rj6), the truth-pair rj5 , rj6 still
contains true if and only if rj0 was containing either zero or a negative integer.

Using one more additional zero-ancilla would allow to further simplify (7)
in the minimal version of SRL that we program with in this work: all the
explicit uses of the swap-macros would disappear. In accordance with Theo-
rem 3, isLessThanOne always returns the content of rj0 unchanged. Yet, in ac-
cordance with Theorem 3, isLessThanOne always returns the truth-pair rj2 , rj3
clean. Therefore, w.l.o.g., it is possible to use it silently. On the other hand, the
truth-pair rj5 , rj6 is used for the result and so it cannot be used silently. Worst,
the registers rj1 , rj4 are left “dirty”, i.e. containing useless values for our goal.
It is an open question if a program, equivalent to (7), exists that stops with all
ancillary variables, but the truth-pair r5, r6 that contains the result, clean, i.e.
with their starting values in them.

The program (7) of Theorem 3 and its sub-procedures, have been checked
by using the Haskell meta-interpreter in [11, page 86]. The main drawback of
isLessThanOne is that the value of r1 grows exponentially. More precisely, let N
be an integer different from zero and (±1)2kp1p2 · · · pm its prime-decomposition
with odd-core d = p1p2 · · · pm. If N is positive, then the above program leaves
the value d ∗ 2N−k in r1. If N is negative, then value is N ∗ 2N . We leave the
problem of eliminating the exponential blow up as open.

On the expressivity of total reversible programming languages 11

5 Expressivity

We here prove that SRL can represent all Primitive Recursive functions (PR). We
begin by recalling what Reversible Primitive Permutations (RPP) are. Second,
we show that SRL can represent every element of RPP. Since RPP can express
all PR [21], then SRL enjoys the same property.

By analogy with PR, we build RPP by means of composition schemes that we
apply to base functions. RPP contains total reversible endofunctions on tuples
of integers, i.e. elements of Zn for some n ∈ N.

Definition 3 (Reversible Primitive Permutations [21]). Reversible Prim-
itive Permutations (RPP) is a sub-class of endofunctions on Zn for some n ∈ N.
In order to identify the endofunctions of RPP specifically defined on Zk, for some
given k, we write RPPk with the following meaning:

– RPP1 includes the identity function I, the successor function S that incre-
ments an integer, the predecessor function P that decrements an integer, the
negation function N that inverts the sign of an integer;

– RPP2 includes the transposition χ that exchanges two integers;
– If f, g ∈ RPPk then, their series-composition (f #g) belongs to RPPk. It is the

function that sequentially applies f and g to the k-tuple of integers provided
as input (i.e., it is the programming composition that applies functions from
left to right);

– If f ∈ RPPj and g ∈ RPPk, for some j, k ∈ N, then the parallel composition
(f ‖ g) belongs to RPPj+k. It is the function that applies f on the first j
arguments and, in parallel, applies g on the other ones;

– If f ∈ RPPk, then the finite iteration It [f] belongs to RPPk+1 and it is the
function defined as:

It [f] (x1, . . . , xk, z) := ((

|z|︷ ︸︸ ︷
f # . . . # f) ‖ I) (x1, . . . , xk, z) ;

– Let f, g, h ∈ RPPk. The selection If [f, g, h] belongs to RPPk+1 and it is the
function defined as:

If [f, g, h] (〈x1, . . . , xk, z) :=


(f ‖ I) (〈x1, . . . , xk, z) if z > 0 ,

(g ‖ I) (〈x1, . . . , xk, z) if z = 0 ,

(h ‖ I) (〈x1, . . . , xk, z) if z < 0 .

Summing up, RPP [21] is a quite simple language that simplifies the reversible
language presented in [18]. We recall from [21] that no reversible programming
language can represent all and only the total reversible functions and that an
algorithm exists, which is linear both in time and space, able to generate the
inverse of every element in RPP.

Many notions of definability exist. Good references are [17, 20, 21], for ex-
ample. Typically, they deal with classes of functions that yield single value as
result. However, SRL-programs and RPP functions return tuples. In order to re-
late SRL and RPP to classes of single-value return functions we introduce what
definability means in our context:

12 A. Matos, L. Paolini, L. Roversi

Definition 4 (Definability). Let f be an endofunction on Zk. The function f
is definable whenever there is a program P that involves k+h registers, for some
h ∈ N, such that: if the first k registers are initialized to v0, . . . , vk−1 and the
others are initialized to zero, then the application of P sets the first k registers
to f(v0, . . . , vk−1). Moreover, f is r-definable whenever P ends by also resetting
the last h registers to zero.

Clearly, a reversible programming language like SRL can r-define reversible func-
tions only. Also, from the definition here above, it follows that the definition of
SRL and RPP can be strengthened to explicitly construct the inverse of any of
their elements. We mean that, if P is a program of SRL, for example, it is easy
to see that P r-defines f iff P−1 r-defines f−1.

Theorem 4 (RPP-definability). If f ∈ RPP, then there is an SRL-program
P that r-defines it.

Proof. By induction, if f ∈ RPPk, then we prove that there is a program P P ∗?
that r-defines f and uses k + h registers, for some h ∈ N.

– If f is either an identity, a successor or a predecessor, then it can be easily r-
defined with no additional register. If f is a negation, then it can be r-defined
by using the procedure of Lemma 1, by using one additional register. If f is
a transposition, then it can be r-defined by using the procedure of Lemma
2 with a one additional register.

– Let f = f1 # f2 ∈ RPPk. By induction, there is Pi that r-defines fi by using
the registers r0, . . . , rk+hi−1 (1 ≤ i ≤ 2). Then P1;P2 r-defines f by using
h = max{h1, h2} additional registers (reset to zero by both P1 and P2).

– Let f = (f1 ‖ f2) such that fi ∈ RPPki (1 ≤ i ≤ 2) and k1 + k2 = k. By
induction, there is Pi that r-defines fi by using the registers r0, . . . , rki+hi−1.
Let P ∗1 be the program P1 where rk1

, . . . , rk1+h1−1 (viz. its h additional reg-
isters) are simultaneously renamed rk, . . . , rk+h1−1. Let P ∗2 be the program
P2 where r0, . . . , rk2+h2−1 are simultaneously renamed rk1 , . . . , rk1+k2+h2−1.
Then f is r-defined by P ∗1 ;P ∗2 with max{h1, h2} additional registers.

– Let f = It [f ′] where f ′ ∈ RPPk′ (k = k′+1). By induction, there is P ′ using
the registers r0, . . . , rk′−1, . . . , rk′+h′−1 that r-defines f ′ with h′ additional
registers. The register rk is expected to drive the execution of It [f], thus
we denote P ∗ the program P ′ where each register with index ri (i ≥ k) are
renamed ri+1.

We use isLessThanOne in (8) in order to check the content of rk using 8 + 1
registers, the distinguished one being a zero-ancilla that occurrences of swap
in (4) relies on. In this work we do not focus on minimizing the number of
additional variables. We are looking for a program that receives the input
in the first k registers and it uses h′ + 8 + 1 additional zero-ancillae. Thus
r1, . . . , rk′+h′ (except rk) are used by P∗, while rk, rk+h′+1, . . . , rk+h′+7 are
the eight registers that supply the input of isLessThanOne and rk+h′+8 is
sometimes used to reverse a procedure.

On the expressivity of total reversible programming languages 13

We r-define It [f ′] by means of the following program (named PIt[f ′]):

inc rk+h′+1; inc rk+h′+5; (9)

inc rk; isLessThanOne(rk, rk+h′+1, . . . , rk+h′+6); dec rk; (10)

for rk+h′+6(for rk(P∗)); (11)

for rk+h′+5(dec rk+h′+8; for rk+h′+8(for rk(P∗)); inc rk+h′+8) (12)

inc rk;
(
isLessThanOne(rk, rk+h′+1, . . . , rk+h′+6)

)−1
; dec rk; (13)

dec rk+h′+5; dec rk+h′+1; (14)

Line (9) initializes the truth-pairs rk+h′+2, rk+h′+3 and rk+h′+5, rk+h′+6 to
true. I.e., it prepares the execution of isLessThanOne in accordance with the
requirements of Theorem 3. Line (10) increments the content of rk before
testing it. It results that the truth-pair rk+h′+5, rk+h′+6 is left to true if and
only if the content of rk is strictly less than zero. Finally, it restores rk to
its initial value. Let n be the content of rk. Line (11), if n is positive, then
rk+h′+5, rk+h′+6 is false and P∗ is executed n times. Otherwise, rk+h′+6

contains 0 and nothing is done. Line (12), if n is strictly negative, then
rk+h′+5 contains 1 and P∗ is executed |n| times because rk+h′+8 is set to
−1 so that for rk+h′+8 ensures the inversion of the application of P∗, which,
in its turn, was inverted by the negative value n. Lines (13) and (14) reset
all additional registers to zero, implementing Bennet’s trick locally to this
procedure.

Albeit the execution of It [f ′] amounts to a non predetermined number of
sequential compositions of f ′, we emphasize that the number of ancillae that
the translation PIt[f ′] requires is bounded because (i) the number of ancillae
that P ′ contain is, in its turn, bounded (by induction), and (ii) P ′ r-defines
f ′, meaning that P ′ leaves its ancillae clean at the end of each iteration,
whatever number of compositions are involved.

– Let f = If [f1, f0, f2] such that f1, f0, f2 ∈ RPPk. This case is simpler than
the preceding one. We need to adapt the construction in Theorem 3’s proof
in order to write two programs that check if the given argument is bigger, or
lesser, than one and that leave their answer in a truth-pair. We notice that
two nested for are necessary to trigger the application of g, because we have
to check that the value driving the selection is neither bigger, nor lesser than
one. ut

Since all primitive recursive functions are definable in RPP by [21, Th.5], The-
orem 4 immediately implies that SRL can express every element of PR. Therefore,
we answer the open questions that we recall in the introduction.

6 Conclusions

Many essential reversible programming languages appear in the literature. A
survey is in [25], albeit we should add many recent proposals as, for instance,

14 A. Matos, L. Paolini, L. Roversi

R-WHILE [6], R-CORE [7], RPRF [18], RPP [21], RFUN [8]. Some comparative
discussion is useful to frame the relevance of the presented result.

SRL has been conceived by distilling the reversible core of the language LOOP
[15, 14]. For this reason SRL enjoys two main characterizing features, up to some
details. First, it allows to program total procedures only. Second, it is also a
(reversible) core of a standard imperative programming language.

Almost all reversible programming languages are conceived to be Turing-
complete, so the first feature distinguishes SRL from them. We do not consider
this feature, that it shares with RPRF and RPP, as a limitation. The relevance
of studying classes of total functions only is unquestionable, since results about
Primitive Recursive Functions (see [17] as instance) like Kleene Normalization
Theorem, Grzegorczyk Hierarchies, and so on. Turing-complete languages are
not immediately suitable for such kinds of investigations until the identification
of a minimal total core of programs/functions in them. Thanks to its conciseness
and expressive power, that we studied in this paper, we consider SRL as the best
candidate for theoretical investigations in analogy with that done on primitive
recursive functions.

Let us consider the second feature. Janus has been the first reversible pro-
gramming language distilled from an imperative structured programming lan-
guage. Many interesting extensions and paradigmatic languages stem from it,
in particular the recent R-WHILE and R-CORE. Their primitives are based on
iterators that may not terminate (roughly while-iterators) and which are some-
what stretched to behave reversibly, by incorporating some form of “assertion”.
Quite interestingly, the introduction of R-CORE relies on the observation that a
possibly non terminating iterator of R-WHILE can encode the conditional. How-
ever, these languages neglect the very standard imperative total iterator for . It
is worth to emphasize that modifying the semantics of “for ” (in SRL) by not
inverting its body when applied to negative numbers, in analogy with the iter-
ator in RPP, we obtain a version of SRL straightforwardly included in the core
of standard imperative programming languages. Furthermore, our expressivity
results still hold for such a variant of SRL. On the other hand, we wonder if all
the reversible while-iterators have to be extended with some exiting-test, that
are not standard in classical languages. We leave this as a further open question.

References

1. Axelsen, H.B., Glück, R.: What do reversible programs compute? In: Hofmann, M.
(ed.) Foundations of Software Science and Computational Structures. pp. 42–56.
Springer (2011). https://doi.org/10.1007/s00236-015-0253-y

2. Axelsen, H.B., Glück, R.: On reversible turing machines and their function univer-
sality. Acta Informatica 53(5), 509–543 (2016). https://doi.org/10.1007/s00236-
015-0253-y, https://doi.org/10.1007/s00236-015-0253-y

3. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6), 525–532 (Nov 1973). https://doi.org/10.1147/rd.176.0525

4. Birkhoff, G., Mac Lane, S.: A Survey of Modern Algebra. Macmillan, New York,
fourth edn. (1977)

On the expressivity of total reversible programming languages 15

5. Calude, C.: Theories of Computational Complexity. Elsevier (1988), annals of Dis-
crete Mathematics – Monograph 35

6. Glück, R., Yokoyama, T.: A linear-time self-interpreter of a re-
versible imperative language. Computer Software 33(3), 108–128 (2016).
https://doi.org/10.11309/jssst.33.3 108

7. Glück, R., Kaarsgaard, R.: A categorical foundation for structured reversible
flowchart languages: Soundness and adequacy. Logical Methods in Computer
Science Volume 14, Issue 3 (Sep 2018). https://doi.org/10.23638/LMCS-
14(3:16)2018, https://lmcs.episciences.org/4802

8. Jacobsen, P.A.H., Kaarsgaard, R., Thomsen, M.K.: CoreFun: A typed functional
reversible core language. In: Kari, J., Ulidowski, I. (eds.) Reversible Computation.
pp. 304–321. Springer (2018)

9. Kristiansen, L., Niggl, K.H.: On the computational complexity of imperative pro-
gramming languages. Theoretical Computer Science 318(1-2), 139–161 (Jun 2004).
https://doi.org/10.1016/j.tcs.2003.10.016

10. Matos, A.B.: Linear programs in a simple reversible lan-
guage. Theoretical Computer Science 290(3), 2063–2074 (2003).
https://doi.org/https://doi.org/10.1016/S0304-3975(02)00486-3

11. Matos, A.B.: Register reversible languages (work in progress). Tech. rep., LIACC
(2014), https://www.dcc.fc.up.pt/˜acm/questionsv.pdf

12. Matos, A.B., Paolini, L., Roversi, L.: The fixed point problem for general and for
linear SRL programs is undecidable. In: Aldini, A., Bernardo, M. (eds.) Proceedings
of the 19th Italian Conference on Theoretical Computer Science, Urbino, Italy,
September 18-20, 2018. CEUR Workshop Proceedings, vol. 2243, pp. 128–139.
CEUR-WS.org (2018), http://ceur-ws.org/Vol-2243/paper12.pdf

13. Matos, A.B., Paolini, L., Roversi, L.: The Fixed Point Problem of a
Simple Reversible Language. Theoretical Computer Science 813, 143
– 154 (2020). https://doi.org/https://doi.org/10.1016/j.tcs.2019.10.005,
http://www.sciencedirect.com/science/article/pii/S0304397519306280

14. Meyer, A.R., Ritchie, D.M.: Computational complexity and program structure.
Tech. Rep. RC 1817, IBM (1967)

15. Meyer, A.R., Ritchie, D.M.: The complexity of loop programs. In: Proceedings of
the 22nd National Conference of the ACM. p. 465–469. ACM, New York, NY, USA
(1967). https://doi.org/10.1145/800196.806014

16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th
edn. (2011)

17. Odifreddi, P.: Classical Recursion Theory – The Theory of Functions and Sets of
Natural Numbers, vol. I. Studies in Logic and the Foundations of Mathematics.
Elsevier North Holland (1989)

18. Paolini, L., Piccolo, M., Roversi, L.: A Class of Reversible Primitive Recursive
Functions. Electronic Notes in Theoretical Computer Science 322(18605), 227–
242 (2016). https://doi.org/10.1016/j.entcs.2016.03.016

19. Paolini, L., Piccolo, M., Roversi, L.: A Certified Study of a Reversible Programming
Language. In: Uustalu, T. (ed.) 21st International Conference on Types for Proofs
and Programs (TYPES 2015). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 69, pp. 7:1–7:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany (2018). https://doi.org/10.4230/LIPIcs.TYPES.2015.7

20. Paolini, L., Piccolo, M., Roversi, L.: On a class of reversible primitive recursive
functions and its turing-complete extensions. New Generation Computing 36(3),
233–256 (Jul 2018). https://doi.org/10.1007/s00354-018-0039-1

16 A. Matos, L. Paolini, L. Roversi

21. Paolini, L., Piccolo, M., Roversi, L.: A class of Recursive Permuta-
tions which is Primitive Recursive complete. Theoretical Computer Science
813, 218 – 233 (2020). https://doi.org/https://doi.org/10.1016/j.tcs.2019.11.029,
http://www.sciencedirect.com/science/article/pii/S0304397519307558

22. Paolini, L., Piccolo, M., Zorzi, M.: QPCF: Higher-order languages and quantum
circuits. Journal of Automated Reasoning (2019). https://doi.org/10.1007/s10817-
019-09518-y

23. Paolini, L., Roversi, L., Zorzi, M.: Quantum programming made easy. In:
Ehrhard, T., Fernández, M., Paiva, V.d., Tortora de Falco, L. (eds.) Proceed-
ings Joint International Workshop on Linearity & Trends in Linear Logic and
Applications, Oxford, UK, 7-8 July 2018. Electronic Proceedings in Theoretical
Computer Science, vol. 292, pp. 133–147. Open Publishing Association (2019).
https://doi.org/10.4204/EPTCS.292.8

24. Paolini, L., Zorzi, M.: qPCF: a language for quantum circuit computations. In:
Gopal, T., Jäger, G., Steila, S. (eds.) 14th Annual Conference on Theory and
Applications of Models of Computation. Lecture Notes in Computer Science, vol.
10185, pp. 455–469. Springer, Germany (2017). https://doi.org/10.1007/978-3-319-
55911-7 33

25. Perumalla, K.: Introduction to Reversible Computing. CRC Press (2014)
26. Schoning, U.: Gems of Theoretical Computer Science. Springer-Verlag (1998)

