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We consider the transverse-momentum (pT ) distribution of Zγ pairs produced in hadronic collisions. 
Logarithmically enhanced contributions at small pT are resummed to all orders in QCD perturbation 
theory and combined with the fixed-order prediction. We achieve the most advanced prediction for the 
Zγ pT spectrum by matching next-to-next-to-next-to-leading logarithmic (N3LL) resummation to the 
integrated cross section at next-to-next-to-leading order (NNLO). By considering �+�−γ production at 
the fully differential level, including spin correlations, interferences and off-shell effects, arbitrary cuts 
can be applied to the leptons and the photon. We present results at the LHC in presence of fiducial cuts 
and find agreement with the 13 TeV ATLAS data at the few-percent level.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Vector-boson pair production processes are an integral part 
of the rich physics programme at the Large Hadron Collider 
(LHC). They play a crucial role in both precision measurements 
of Standard-Model (SM) rates and the search for new-physics 
phenomena. In particular, production processes of neutral vector 
bosons, like Zγ production, provide very clean experimental sig-
natures in the Z → �+�− decay channels, since the final state can 
be fully reconstructed. Their pure experimental signatures and rel-
atively large cross sections render them well suited to search for 
anomalous couplings. For instance, the measurement of a non-
zero Z Zγ coupling, which is absent in the SM, would be direct 
evidence of physics beyond the SM (BSM). Zγ production con-
tributes also as irreducible background to direct searches for BSM 
resonances and to Higgs boson measurements, see e.g. Ref. [1]. Al-
though the decay into a Zγ pair of the Higgs boson is a rare 
loop-induced process in the SM, new-physics extensions may sig-
nificantly enhance this decay channel.

The precise knowledge of rates and distributions in Zγ produc-
tion provides a strong test of the gauge structure of electroweak 
(EW) interactions and the mechanism of EW symmetry breaking. 
Measurements of Zγ production have been carried out at the LHC 
at 7 TeV [2–7], 8 TeV [8–11], and 13 TeV [12,13]. The latest mea-
surement of Ref. [13] is the first diboson analysis to use the full 
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Run II data set and achieves remarkably small experimental uncer-
tainties.

To match the precision achieved by the experiments a signif-
icant effort has been made to advance theoretical predictions for 
Zγ production in the past years. The next-to-leading order (NLO) 
QCD cross section has been known for some time both for on-
shell Z bosons [14] and including their leptonic decays [15]. The 
loop induced gluon-fusion contribution was the first contribution 
to the next-to-next-to-leading order (NNLO) QCD cross section to 
be computed [16–18]. In Ref. [19] the NLO cross section, includ-
ing photon radiation off the leptons, and the loop-induced gluon 
fusion contribution were combined. The complete NNLO QCD cor-
rections to �+�−γ production at the fully differential level were 
first calculated in Refs. [20,21] and later confirmed by an indepen-
dent calculation [22]. Electroweak (EW) corrections were presented 
in Refs. [23,24].

Two different mechanisms are relevant to produce isolated pho-
tons in the final state: a perturbative one through direct production 
in the underlying hard subprocess, and a non-perturbative one 
through fragmentation of a quark or a gluon. The latter production 
mechanism requires the knowledge of the respective fragmenta-
tion functions to absorb singularities related to collinear photon 
emissions, and those functions are determined from data with rel-
atively large uncertainties. In experimental analyses the fragmen-
tation component is typically suppressed by the criteria used to 
isolate photons. On the theoretical side, the separation between 
the two production mechanisms is delicate, as sharply isolating the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Feynman diagrams for the production of two charged leptons and a photon: (a-b) sample tree-level diagrams in the quark-annihilation channel contributing at LO; (c) 
sample loop-induced diagram in the gluon-fusion channel contributing at NNLO.
photon from the partons would spoil infrared (IR) safety. Remark-
ably, by exploiting Frixione smooth-cone photon isolation [25] the 
fragmentation component can be completely removed in an IR-safe 
manner, which has the further advantage of substantially simplify-
ing theoretical calculations of photon processes beyond the leading 
order (LO). Experimentally, the finite granularity of the calorimeter 
prevents a complete implementation of the smooth-cone isolation. 
As a consequence, experimental analyses rely instead on isolation 
criteria with a fixed cone. To facilitate data–theory comparisons, 
the smooth-cone parameters are typically tuned in comparisons 
with calculations including fragmentation functions in order to 
mimic the fixed-cone isolation criteria of the experiments, see 
e.g. Ref. [26]. Due to the large scale separation between the pho-
ton energy and the hadronic energy within the isolation cone, 
the presence of isolation cuts induces potentially large non-global 
(NG) logarithms, whose resummation is known up to leading-
logarithmic (LL) accuracy [27,28] (see also Ref. [29]).

In this paper we consider the transverse-momentum (pT ) dis-
tribution of Zγ pairs. This distribution is among the most impor-
tant differential observables in Zγ production, and it has recently 
been measured at a precision of a few percent by using the full 
Run II data set [13]. For the first time, we perform transverse-
momentum resummation of Zγ pairs at next-to-next-to-next-to-
leading logarithmic (N3LL) accuracy and match it to the NNLO 
integrated cross section. To this end, we calculate the process 
pp → �+�−γ with off-shell effects and spin correlations by con-
sistently including all resonant and non-resonant topologies. Our 
computation is fully differential in the momenta of the final-state 
leptons and the photon, which allows us to apply arbitrary fiducial 
cuts.

We employ the Matrix+RadISH interface [30], which combines 
NNLO calculations within Matrix [31,32] with the RadISH re-
summation formalism of Refs. [33–35]. All tree-level and one-loop 
amplitudes are evaluated with OpenLoops 2 [36–38]. At two-loop 
level we use the qq̄ → V γ amplitudes of Ref. [39]. NNLO accu-
racy is achieved by a fully general implementation of the qT -
subtraction formalism [40] within Matrix. The NLO parts therein 
(for Zγ and Zγ +1-jet) are calculated by Munich

1 [43], which 
uses the Catani–Seymour dipole subtraction method [44,45]. The
Matrix framework features NNLO QCD corrections to a large num-
ber of colour-singlet processes at hadron colliders. It has already 
been used to obtain several state-of-the-art NNLO QCD predictions 
[20,21,46–52],2 and for massive diboson processes it has been ex-
tended to combine NNLO QCD with NLO EW corrections [58] and 
with NLO QCD corrections to the loop-induced gluon fusion contri-
bution [59,60]. Through the recently implemented Matrix+RadISH

interface [30] it is now also possible to deal with the resummation 
of transverse observables such as the transverse momentum of the 
colour-singlet final state.

1 The Monte Carlo program Munich features a general implementation of an ef-
ficient, multi-channel based phase-space integration and computes both NLO QCD 
and NLO EW [41,42] corrections to arbitrary SM processes.

2 It was also used in the NNLO+NNLL computation of Ref. [53], and in the NNLOPS 
computations of Refs. [54–57].
We consider the process

pp → �+�− γ + X

for massless leptons � ∈ {e, μ}. Although our calculation also ap-
plies to the process pp → νν̄ γ + X , we do not consider it here, 
as the transverse momentum of the Zγ pair in that case can-
not be experimentally reconstructed. Representative LO diagrams 
are shown in Fig. 1 (a-b). They are driven by quark annihilation 
in the initial state and involve single-resonant t-channel Zγ pro-
duction (panel (a)) and single-resonant s-channel Drell–Yan (DY) 
topologies (panel (b)). Fig. 1 (c) shows a loop-induced diagram that 
is driven by gluon fusion in the initial state and enters the cross 
section at NNLO. The loop-induced gluon-fusion contribution is ef-
fectively only LO accurate and has Born kinematics. Therefore, it 
contributes trivially to the Zγ transverse-momentum (pT ,��γ ) dis-
tribution. Furthermore, its contribution is rather small, being less 
than 10% of the NNLO corrections and well below 1% of the full 
Zγ cross section at NNLO [31]. We thus refrain from including the 
loop-induced gluon-fusion contribution in our calculation.

The perturbative description of the Zγ transverse-momentum 
spectrum at fixed order breaks down in kinematic regimes domi-
nated by soft and collinear QCD radiation, i.e. at small pT ,��γ , due 
to the presence of large logarithms L = ln(m��γ /pT ,��γ ), with m��γ

being the invariant mass of the Zγ pair. Over the last four decades, 
a variety of formalisms has been developed to perform the resum-
mation of large logarithmic contributions in the transverse mo-
mentum pT of colour-singlet processes [33,34,61–70]. We employ 
the RadISH formalism of Refs. [33–35] to resum the relevant loga-
rithmic terms to all orders. The logarithmic accuracy is customarily 
defined in terms of the logarithm of the cumulative cross section 
lnσ(pT ). The dominant terms αn

S Ln+1 are referred to as leading 
logarithmic, terms of αn

S Ln as next-to-leading logarithmic (NLL), 
terms of αn

S Ln−1 as next-to-next-to-leading logarithmic (NNLL), 
and so on. We perform the resummation of the Zγ pT spectrum 
up to N3LL based on the formulæ presented in Ref. [34]. The re-
summation formalism has been implemented in the RadISH code 
for Higgs and Drell-Yan production. The application to more com-
plex colour-singlet processes, such as Zγ production, is achieved 
through the Matrix+RadISH interface [30]. We note that the LL re-
summation of the loop-induced gluon-fusion contribution to the 
Zγ cross section is formally of the same order as N3LL corrections 
to the qq̄ channel, and that both contributions can be treated com-
pletely independently. The proper treatment of the former would 
require to go beyond an effective LO+LL accuracy, by combining 
NLO QCD corrections to the loop-induced gluon-fusion contribu-
tion with NNLL resummation. Given its small numerical impact, 
we leave such study for future work.

In order for the theoretical prediction to be reliable over the 
entire spectrum, the resummation of large logarithms at small pT

must be combined with the fixed-order cross section, valid at high 
pT . We consistently match N3LL resummation for the pT ,��γ spec-
trum with NNLO corrections at the level of cumulative cross sec-
tion, defined as (κ = NNLO, N3LL)
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Table 1
Definition of phase-space cuts.

inclusive setup for pp → ��′γ + X, �, �′ ∈ {e,μ}
pT ,γ ≥ 10 GeV, |ηγ | ≤ 2.37, m�γ ≥ 4 GeV, 66 GeV ≤ m�� ≤ 116 GeV,

Frixione isolation with n = 2, δ0 = 0.1, and ε = 0.1.

fiducial setup for pp → ��′γ + X, �, �′ ∈ {e,μ}; used in the ATLAS 13 TeV analysis of Ref. [13]

pT ,�1 ≥ 30 GeV, pT ,�2 ≥ 25 GeV, |η�| ≤ 2.47, m�� ≥ 40 GeV,

pT ,γ ≥ 30 GeV, |ηγ | ≤ 2.37, m�� + m��γ ≥ 182 GeV, �R�γ > 0.4,

Frixione isolation with n = 2, δ0 = 0.1, and ε = 0.1, pcone0.2
T /pT ,γ < 0.07.
σκ(pveto
T ,��γ ) ≡

pveto
T ,��γ∫

0

dpT ,��γ
dσκ(pT ,��γ )

dpT ,��γ
. (1)

The cross sections should be understood as being fully differential 
in the Born phase space, which allows us to apply arbitrary IR-safe 
cuts on the kinematics of the leptons and the photon.

There is a certain level of freedom when defining matching pro-
cedures that differ from one another only by terms beyond the 
formal accuracy of the calculation. We study two different match-
ing schemes. The first scheme we consider is a customary additive 
scheme, which at NNLO+N3LL is defined as

σ add.match.
NNLO+N3LL(pveto

T ,��γ ) = σNNLO(pveto
T ,��γ ) −

[
σN3LL(pveto

T ,��γ )
]

NNLO

+ σN3LL(pveto
T ,��γ ) . (2)

The notation [. . .]NkLO is used to indicate that the expression in-
side the bracket is expanded in αS and truncated at NkLO. Thus, 
the second term corresponds to the expansion of the resummed 
cumulative cross section σN3LL(pveto

T ,��γ ) up to NNLO, i.e. O(α2
S ), 

which subtracts all logarithmically enhanced contributions at small 
pveto

T ,��γ from the fixed-order component. This term is necessary to 
render Eq. (2) finite in the pveto

T ,��γ → 0 limit and to remove the 
double counting between the first and the third term.

The second scheme we consider is a multiplicative scheme [71,
72], defined as

σ mult.match.
NNLO+N3LL (pveto

T ,��γ )

= σN3LL(pveto
T ,��γ )

σ
asym.

N3LL

⎡
⎢⎣σ

asym.

N3LL

σNNLO(pveto
T ,��γ )[

σN3LL(pveto
T ,��γ )

]
NNLO

⎤
⎥⎦

NNLO

, (3)

where σ
asym.

N3LL
is the asymptotic (pveto

T ,��γ → ∞) limit of the re-

summed cross section. In the limit pveto
T ,��γ → 0, Eq. (3) yields the 

resummed prediction, while for pveto
T ,��γ → ∞ it reproduces the 

fixed-order result. The detailed matching formulæ for the multi-
plicative scheme are reported in appendix A of ref. [71]. Since 
in both matching schemes the cumulative cross section tends to 
σNNLO when pveto

T ,��γ → ∞, by construction the differential distribu-
tion fulfils the unitarity constraint, i.e. its integral yields the NNLO 
cross section.

We present predictions for the LHC at 13 TeV. The EW param-
eters are evaluated through the Gμ scheme by setting the EW 
coupling to α = √

2 G F m2
W

(
1 − m2

W /m2
Z

)
/π and the mixing an-

gle to cos θ2
W = (m2

W − i�W mW )/(m2
Z − i�Z mZ ), employing the 

complex-mass scheme [73] throughout. We choose the PDG [74]
values for the input parameters: G F = 1.16639 × 10−5 GeV−2, 
mW = 80.385 GeV, �W = 2.0854 GeV, mZ = 91.1876 GeV, �Z =
2.4952 GeV. For each perturbative order we use the corresponding 
set of N f = 5 NNPDF3.0 [75] parton distributions with αS(mZ ) =
0.118. The renormalization scale (μR ) and the factorization scale 
(μF ) are chosen dynamically as

μR = μF = μ0 ≡
√

m2
�� + p2

T ,γ , (4)

while the resummation scale (Q ) is set to

Q = Q 0 ≡ 1

2
m��γ . (5)

Uncertainties from missing higher-order contributions are esti-
mated from customary 7-point renormalization- and factorization-
scale variations by a factor of two around μ0 for Q = Q 0 with 
the constraint 0.5 ≤ μR/μF ≤ 2, and by varying Q by a factor 
of two around Q 0 for μF = μR = μ0. The total scale uncertainty 
is evaluated as the envelope of the resulting nine variations. The 
resummation is turned off at high pT ,��γ by means of modified 
logarithms as defined in Ref. [34], with exponent p = 4. We have 
checked that our predictions have a negligible dependence on the 
value of p. Non-perturbative corrections have not been included in 
our results.

We study predictions for the pT ,��γ distribution in two se-
tups that involve different phase-space selection cuts, defined in 
Table 1: The first is a loose selection that solely aims at pre-
venting QED singularities, including transverse-momentum and ra-
pidity requirements for the photon, a lower invariant mass cut 
on the lepton–photon system, a Z -mass window for the lepton 
pair, and Frixione smooth-cone isolation [25]. This setup will be 
referred to as “inclusive” in the following. The second setup cor-
responds to the fiducial selection of the 13 TeV ATLAS analysis 
of Ref. [13], which uses a tighter requirement for the transverse 
momentum of the photon, a lower invariant-mass cut on the lep-
ton pair, transverse-momentum and rapidity requirements on the 
leading and subleading lepton, a lower bound for the sum of the 
invariant masses of the lepton pair and the ��γ system, a lepton–
photon separation in �R = √

�φ2 + �η2, and a two-fold photon 
isolation: in addition to a Frixione isolation with a rather small 
cone, the transverse energy of hadrons collimated with the photon 
is required not to exceed a small fraction of its transverse momen-
tum. In our parton-level calculation we define pcone0.2

T as the sum 
of the transverse momenta of all partons within a cone of R = 0.2
around the photon. The second setup is referred to as “fiducial” in 
the following. One should bear in mind that such isolation criteria 
induce NG logarithmic corrections, which we do not resum in our 
formalism. We will estimate their effect on the pT ,��γ spectrum 
below.

We start the discussion of our results by comparing the expan-
sion of the resummation with the fixed-order spectrum at small 
pT ,��γ in Fig. 2, which provides a strong check of our calculation. 
The plots demonstrate at a remarkable precision that the expan-
sion of the resummed cross section matches the fixed-order cross 
section at small transverse momenta both for the inclusive setup 
in panel (a) and (b) and the fiducial setup in panel (c) and (d). As 
can be seen from the lower frame in panel (a) and (c), the relative 
difference �rel between the NNLO distribution and the NNLO ex-
pansion of the N3LL distribution normalized to the latter (red solid 
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Fig. 2. Panel (a) and (c): transverse-momentum spectrum of the Zγ pair at NLO (purple, dot-dashed) and NNLO (orange, dashed), and the expansion of the NLL (blue, dotted) 
and N3LL (red, solid) cross section. The lower frame shows the relative difference between the fixed-order cross section and the expansion, normalized to the latter. Panel (b) 
and (d): the upper frame shows the difference at the cumulative level between NLO and NLL expansion (blue, dotted), and between NNLO and N3LL expansion (red, solid). 
The lower frame shows the same results for the derivative of the cumulative cross section with respect to ln(pT ,��γ /GeV).
curve) vanishes down to pT ,��γ = 0.01 GeV within the numerical 
errors at the permille level. In the upper frame of panel (b) and 
(d) we show the difference of the NNLO cross section and NNLO 
expansion of the N3LL cross section at the cumulative level (red 
solid curve). Since their difference tends to zero at low transverse 
momenta, also constant terms in pT ,��γ match between NNLO and 
N3LL. The fact that at NLO the difference with the NLL expansion 
(blue dotted curve) tends to a constant different from zero is ex-
pected, since our NLL result does not include the constant NLO 
terms in pT ,��γ . Finally, the lower frame in panel (b) and (d) shows 
that the absolute difference between the fixed-order result and the 
expansion of the resummation after taking the derivative of the cu-
mulative cross sections with respect to ln(pT ,��γ /GeV) yields zero 
within numerical uncertainties at small transverse momenta. This 
indicates that all logarithmic terms in pT ,��γ are correctly pre-
dicted. Not only do these comparisons provide stringent checks of 
the validity of our calculation, but they also show the excellent 
precision that our numerical framework can achieve.

We further notice from these plots that the logarithmically en-
hanced contributions become dominant over the regular terms at 
smaller values of transverse momentum compared to other pro-
cesses (cf. Ref. [30] for instance). Especially in the fiducial setup, 
regular contributions become non-negligible already at pT ,��γ ∼
1 GeV.3 Indeed, it has been shown before [31,76] that processes 
with identified photons in the final state receive rather large cor-
rections from power-suppressed terms at small transverse momen-

3 We notice that the fiducial cuts used in Ref. [13] enhance u- and t-channel 
production modes, see Fig. 1 (a), while suppressing the s-channel contribution, see 
Fig. 1 (b). Therefore, the fiducial setup enhances power corrections stemming from 
non-singular gluon emission off the virtual quark propagator, see Fig. 1 (a).
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Fig. 3. Panel (a) and (b): pT ,��γ spectrum at NLO (black, dotted), NLL (brown, dash-double-dotted), and NLO+NLL (magenta, dash-dotted) in the small-pT ,��γ (panel (a)) 
and large-pT ,��γ (panel (b)) region. The lower frames show the ratio to the central NLO+NLL prediction. Panel (c) and (d): pT ,��γ spectrum at NNLO (red, dashed), N3LL 
(green, double-dash-dotted), and NNLO+N3LL (blue, solid) in the small-pT ,��γ (panel (a)) and large-pT ,��γ (panel (b)) region. The lower frames show the ratio to the central 
NNLO+N3LL prediction.
tum. In the multiplicative scheme Eq. (3) those are suppressed by 
σN3LL(pveto

T ,��γ ) at small pT ,��γ . Although such effects are beyond 
the nominal accuracy, this suppression may induce numerically 
relevant corrections, in particular in the fiducial setup considered 
here. This behaviour is undesirable, since on the one hand these 
power corrections are a genuine non-singular contribution to the 
cross section, and on the other hand the suppression of the latter 
induced by Eq. (3) is not the one dictated by an all-order resum-
mation of such non-singular terms. For this reason we believe that 
the multiplicative scheme in Eq. (3), although formally correct, is 
not ideal when the fixed-order cross section features large power-
suppressed corrections, and consequently we choose the additive 
scheme in Eq. (2) as the default throughout this paper.4

4 We point out that, although the multiplicative scheme in Eq. (3) (which is the 
default in Matrix+RadISH) is suboptimal with respect to the additive scheme in 
Eq. (2) in cases where large power corrections are present, it should not be thought 
of as being suboptimal in general. In particular, for processes or setups where power 
corrections are moderate, their (undesirable) suppression, induced by the multi-
plicative matching, has very little impact on the physics results. Conversely a mul-
We now turn to discussing the resummed transverse-momen-
tum spectrum of the Zγ pair. Fig. 3 shows results in the inclu-
sive setup and compares the matched NLO+NLL spectrum to the 
NLL and the NLO results in panel (a) and (b), and the matched 
NNLO+N3LL spectrum to the N3LL and the NNLO results in panel 
(c) and (d). At large transverse momenta (panel (b) and (d)), the 
matched results nicely converge towards the fixed-order predic-
tions. At small transverse momenta (panel (a) and (c)), the NLO 
and NNLO predictions become unreliable, while the resummation 
yields physical results. The matched predictions are very close 
to the purely resummed ones at small transverse momenta and 
then progressively move farther apart at larger pT ,��γ . Looking 
at the scale uncertainties, we observe a substantial reduction in 
the size of the respective bands when moving from NLO+NLL to 
NNLO+N3LL: At large pT ,��γ they decrease by roughly a factor of 

tiplicative matching is numerically more stable at small transverse momenta, and, 
more importantly, it includes the constant contributions in pT through the match-
ing when those are not available in the resummation component, cf. Refs. [30,71].
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Fig. 4. pT ,��γ spectrum at NLO+NLL (magenta, dash-dotted) and NNLO+N3LL (blue, solid) in the inclusive (panel (a)) and fiducial (panel (b)) setup. The lower frames show 
the ratio to the central NNLO+N3LL prediction.
two, from 20% to 10%. At small pT ,��γ the reduction is even more 
significant. For pT ,��γ � 20 GeV the NLO+NLL uncertainty increases 
between about 10% to more than 30%, while it is at the few-
percent level at NNLO+N3LL, reaching at most ∼ 8% in the first 
bin.

Fig. 4 compares directly the results at NLO+NLL and NNLO+N3LL 
at small transverse momenta, both in the inclusive setup in panel 
(a) and in the fiducial setup in panel (b). Higher-order correc-
tions move the peak by 1–2 GeV towards larger values of pT ,��γ . 
The substantial reduction of scale uncertainties has already been 
pointed out for the inclusive case, and we find a quite similar 
picture in the fiducial case. For pT ,��γ � 10 GeV NLO+NLL and 
NNLO+N3LL results agree within uncertainties with each other, al-
though the corrections at pT ,��γ = 10 GeV are already about 15% in 
both setups. With increasing values of pT ,��γ the corrections be-
come progressively larger, reaching about 30% at pT ,��γ = 50 GeV. 
For pT ,��γ � 10 GeV the higher-order corrections are not covered 
by the scale-uncertainty band of the NLO+NLL prediction, which 
appears to be significantly underestimated. This behaviour is not 
unexpected, as it is directly inherited from the fixed-order calcula-
tion, where the relatively small NLO uncertainties do not cover the 
substantial NNLO corrections in the tail. We stress that in the tail 
of the pT ,��γ distribution the (N)NLO prediction is effectively only 
(N)LO accurate, which explains this observation, as LO uncertain-
ties generally tend to underestimate higher-order effects. While 
we find a fairly similar pattern in the two setups, the additional 
fiducial cuts tend to slightly increase the relative size of the cor-
rections.

In Fig. 5 we compare our default NNLO+N3LL predictions in the 
additive matching scheme of Eq. (2) with NNLO+N3LL predictions 
in the multiplicative matching scheme of Eq. (3) for the inclusive 
case in panel (a) and (b), and for the fiducial case in panel (c) 
and (d). For large transverse momenta (panel (b) and (d)), the two 
predictions are in good agreement within uncertainties, since both 
eventually approach the NNLO result in the tail of the distribution. 
At small transverse momenta (panel (a) and (c)), the situation is 
different for the two setups. By and large, in the inclusive setup 
we find good agreement between the two matching schemes with 
overlapping uncertainty bands and at most 2% differences in the 
central value. The difference can be understood as an uncertainty 
related to the inclusion of terms beyond nominal accuracy in the 
matched prediction. In the fiducial setup the differences are some-
what larger. Multiplicative and additive schemes differ by up to 
∼ 8% for pT ,��γ between 4 GeV and 20 GeV, and there is a gap 
between their uncertainty bands. This is in line with the large 
power corrections observed in the fiducial setup in Fig. 2 (c), which 
are suppressed in the multiplicative scheme and preserved in the 
additive one. As already stressed above, the suppression of such 
genuine non-singular contributions is undesirable, which justifies 
our preference for the additive scheme, especially in the fiducial 
setup, and we refrain from using the matching systematics as an 
additional uncertainty.

We continue by studying the impact of NG logarithmic terms 
stemming from photon isolation in Fig. 6. Such terms are not in-
cluded in our resummation approach and enter only through the 
matching to fixed order. Fig. 6 (a) compares the NNLO+N3LL pre-
dictions in the fiducial setup with and without the pcone0.2

T /pT ,γ <

0.07 isolation cut (which is additional to the smooth-cone isola-
tion). Their ratio indicates that at pT ,��γ values around the peak 
and smaller, the additional isolation has a minimal impact, as ex-
pected since it is power suppressed, while it induces effects of 
O(10%) in the tail of the distribution. We show the same ratio 
at NNLO in the lower frame, which is essentially indistinguishable 
from the one at NNLO+N3LL. In other words, isolation effects are 
adopted purely from the fixed-order prediction. In fact, the small 
effect at pT ,��γ � 10 GeV indicates that the resummation of those 
corrections should have a minor impact in that region. Further-
more, we estimate the all-order effects of including NG logarithmic 
contributions in the fiducial setup using the Pythia8 [77] parton 
shower (PS) matched to NLO calculations in the MC@NLO scheme 
[78] within MadGraph5_aMC@NLO [79]. To this end, Fig. 6 (b) 
shows NLO+PS results with and without pcone0.2

T /pT ,γ < 0.07 re-
quirement in the main frame and their ratio in the lower frame. 
For comparison we show the same ratio at LO+PS and at NLO. 
The effects of the additional isolation are vanishingly small at 
LO+PS, which can be considered a lower bound for the impact 
that NG logarithmic terms stemming from photon isolation have 
on the all-order prediction of pT ,��γ . The ratios at NLO+PS and 
at NLO are very similar to each other, with the matching to PS 
slightly reducing the effects due the additional isolation require-
ment. Their difference can be regarded as an estimate of the size 
of the NG logarithmic corrections beyond fixed order induced by 
the pcone0.2

T /pT ,γ < 0.07 requirement. Since the difference is very 
small at low pT ,��γ and at most ∼ 2% in the matching region, we 
neglect such effect from now on. We note that it is less straightfor-
ward to estimate the NG logarithmic contributions for the Frixione 
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Fig. 5. pT ,��γ spectrum at NNLO+N3LL in the additive matching scheme (blue, solid) and in the multiplicative matching scheme (green, long-dashed) in the inclusive (panel 
(a) and (b)) and fiducial (panel (c) and (d)) setup, showing the small-pT ,��γ (panel (a) and (c)) and large-pT ,��γ (panel (b) and (d)) region. The lower frames show the ratio 
to the central prediction in the additive scheme.
smooth-cone isolation, which for IR safety cannot be removed. 
However, we have verified that by varying the smooth-cone ra-
dius down to δ0 = 0.01 the analogous difference is only moderately 
affected and remains negligible at and below the peak of the spec-
trum.

We conclude our analysis by comparing our NNLO+N3LL predic-
tions to 13 TeV ATLAS data [13] in Fig. 7. The analysis of Ref. [13]
is the first diboson measurement that includes the full Run II 
data set. The agreement is truly remarkable, especially with the 
precision of both theoretical prediction and data being at the 
few-percent level. The shape of the distribution is very well de-
scribed by the predicted spectrum, and none of the data points 
are more than one standard deviation away from the theoretical 
uncertainty band. We observe that resummation and matching are 
crucial not only at small pT ,��γ , but also in the intermediate region 
40 � pT ,��γ � 200 GeV, where the comparison to data is signifi-
cantly improved with respect to the NNLO comparison carried out 
in Ref. [13]. Furthermore, our results are a clear improvement over 
the comparison against NLO+PS predictions in Ref. [13]. In conclu-
sion, our resummed results not only constitute the most precise 
prediction of the spectrum to date, but they also provide the most 
accurate description of the 13 TeV ATLAS data.

To summarize, we have presented the first calculation of the 
transverse-momentum spectrum of Zγ pairs at NNLO+N3LL. At 
high transverse momenta we exploit the most accurate fixed-order 
prediction known to date, while at small transverse momenta we 
perform transverse-momentum resummation at N3LL accuracy for 
the first time. Furthermore, our matching approach respects the 
unitarity of the spectrum, so that its integral yields exactly the 
total cross section at NNLO. Our results show that higher-order 
corrections in both the fixed-order and the logarithmic series are 
mandatory to obtain a reliable description of the distribution. Com-
paring NLO+NLL to NNLO+N3LL predictions we find corrections 
of more than 30% in the tail of the distribution both in our in-
clusive and our fiducial setup. Those are inherited directly from 
the large NNLO corrections. Around the peak of the spectrum, 
we find corrections between 10% and 20% with a clear change in 
shape of the distribution. Moreover, at NNLO+N3LL the peak moves 
by 1–2 GeV towards larger transverse momenta with respect to 
NLO+NLL. The inclusion of higher-order corrections substantially 
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Fig. 6. Panel (a): pT ,��γ spectrum at NNLO+N3LL in the fiducial setup (blue, solid) and without the additional pcone0.2
T /pT ,γ isolation (purple, dash-dotted). The lower frame 

shows the ratio to the central prediction with the pcone0.2
T /pT ,γ < 0.07 requirement as well as the result when taking the same ratio for the central predictions at NNLO 

(red, dashed). Panel (b): Same results for central predictions at NLO+PS with pcone0.2
T /pT ,γ < 0.07 requirement (light blue, solid) and without (grey-blue, long-dashed). The 

lower frame shows the ratio to the former as well as the same ratios at NLO (black, dotted) and at LO+PS (brown, dash-dotted).
Fig. 7. NNLO+N3LL prediction of the pT ,��γ spectrum (blue, solid) compared to AT-
LAS data [13] (green data points). The lower frame shows the ratio to the central 
NNLO+N3LL prediction.

reduces scale uncertainties, especially in the region of small trans-
verse momenta. Furthermore, by means of an NLO+PS simulation 
we have estimated the impact of including NG logarithmic contri-
butions beyond fixed order and found it to be minor with respect 
to the NNLO+N3LL scale uncertainties. Finally, we have compared 
our best prediction at NNLO+N3LL to ATLAS data at 13 TeV for the 
transverse-momentum spectrum of the Zγ pair, and found a re-
markable agreement within uncertainties at the few-percent level. 
We reckon that our results will play a crucial role in the rich 
physics programme that is based on precision studies of Zγ pro-
duction at the LHC.
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