
10 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Light combinators for finite fields arithmetic

Published version:

DOI:10.1016/j.scico.2015.04.001

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1526049 since 2020-08-19T09:57:00Z

Light combinators for finite fields arithmetic

D. Canavese1, E. Cesena2, R. Ouchary1, M. Pedicini3, L. Roversi4

Abstract

This work completes the definition of a library which provides the basic arith-
metic operations in binary finite fields as a set of functional terms with very
specific features. Such a functional terms have type in Typeable Functional As-
sembly (TFA). TFA is an extension of Dual Light Affine Logic (DLAL). DLAL is
a type assignment designed under the prescriptions of Implicit Computational
Complexity (ICC), which characterises polynomial time costing computations.

We plan to exploit the functional programming patterns of the terms in the
library to implement cryptographic primitives whose running-time efficiency can
be obtained by means of the least hand-made tuning as possible.

We propose the library as a benchmark. It fixes a kind of lower bound on
the difficulty of writing potentially interesting low cost programs inside lan-
guages that can express only computations with predetermined complexity. In
principle, every known and future ICC compliant programming language for
polynomially costing computations should supply a simplification over the en-
coding of the library we present, or some set of combinators of comparable
interest and difficulty.

We finally report on the applicative outcome that our library has and which
is a reward we get by programming in the very restrictive scenario that TFA
provides. The term of TFA which encodes the inversion in binary fields suggested
us a variant of a known and efficient imperative implementation of the inversion
itself given by Fong. Our variant, can outperform Fong’s implementation of
inversion on specific hardware architectures.

Keywords: Lambda calculus, Finite fields arithmetic, Type assignments,
Implicit computational complexity

Email addresses: daniele.canavese@polito.it (D. Canavese), ec@theneeds.com (E.
Cesena), rachid.ouchary@polito.it (R. Ouchary), pedicini@mat.uniroma3.it (M.
Pedicini), roversi@di.unito.it (L. Roversi)

1Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy
2Theneeds Inc., San Francisco, CA
3Università degli Studi Roma Tre, Dipartimento di Matematica e Fisica, Roma, Italy
4Università degli Studi di Torino, Dipartimento di Informatica, Torino, Italy

Preprint submitted to Science of Computer Programming Journal July 3, 2015

INPUT: a ∈ F2m , a 6= 0.

OUTPUT: a−1 mod f .

1. u← a, v ← f , g1 ← 1, g2 ← 0.

2. While z divides u do:

(a) u← u/z.
(b) If z divides g1 then g1 ← g1/z else g1 ← (g1 + f)/z.

3. If u = 1 then return(g1).

4. If deg(u) < deg(v) then u↔ v, g1 ↔ g2.

5. u← u+ v, g1 ← g1 + g2.

6. Goto Step 2.

where z is the standard name of the independent variable of the polynomial
basis representation of the finite filed F2m of order 2m and a, u, v, g1 and g2

are polynomials.

Figure 1: Binary-Field inversion as in Algorithm 2.2 at page 1048 in [3].

1. Introduction

This work completes a first step of a project which started in [1]. The long
term goal was, and still is, to exploit functional programming patterns which can
express only algorithms with predetermined complexity — typically polynomial
time one — to implement cryptographic libraries whose running-time efficiency
can be obtained by means of the least hand-made tuning as possible. We recall
that hand-crafted tuning can be quite onerous because, for example, it must be
tailored on the length of the word in the given running architecture.

Since we express the above polynomial time costing algorithms in a language
whose computational complexity is controlled by means of implicit features, this
work mainly contributes to the area of implicit computational complexity.

One contribution is pretty technical. This paper extends the set of functional
programs, as given in [1]. In there we implement the arithmetic operations
subtraction, multiplication, squaring and square root on binary finite fields.
The novelty of this work is multiplicative inverse.

Considered that the operations on binary finite fields constitute the core
of cryptographic primitives, this work supplies a library with potential real
applicative interest inside a so called light complexity programming language,
something not quite usual. The language we adopt is a fragment of pure λ-
calculus whose terms we can type by means of the type assignment system TFA
(Typed Functional Assembly). TFA, defined in [1], is a slight extension of Dual
Light Affine Logic [2]. The multiplicative inverse we define here is a λ-term we
call wInv and which encodes the algorithm BEA in Figure 1.

When trying to give a type to non obvious combinators inside TFA, like
the above operations are, the main obstacle is to apply the standard divide-
et-impera paradigm because of computational complexity limitations. Once a
problem that a combinator must solve has been successively split into simpler

2

ones until they become trivial, the composition of the partial results cannot
always proceed in the obvious way; the λ-terms with a type in TFA incorporate
mechanisms that force to preserve bounds on their computational complexity.
For example, if we supply the output of a sub-problem that an iteration produces
as the input of another iteration, then we may get a computational complexity
blowup. For example, this is why the naive manipulation of lists, for example,
that we represent as λ-terms in TFA can rapidly “degrade” to situations where
composition, which would be natural in standard functional programming, sim-
ply gets forbidden.

Due to the above limitations the pure λ-terms typeable with TFA and imple-
menting finite field operations are not always the natural ones we could write.
We mean that we followed as much as we could common ideas like those ones
in [4] which advocate the use of standard functional programming patterns like
map, map thread, fold to make functional programs more readable and reliable.

However, those patterns cannot always naturally apply inside TFA and they
only partially mitigated our programming difficulties.

In particular, the coding of BEA as the λ-term wInv is quite involved. It
requires to generalise the functional programming pattern that leads to the
definition of the predecessor of Church numerals, or similar structures, in Light
Affine Logic [5, 6], an ancestor of DLAL, hence of TFA. Let us call it light
predecessor pattern.

Our second contribution comes exactly from the need of using the non stan-
dard light predecessor pattern to implement BEA in wInv. The contribution is
somewhat of philosophical nature. It keeps nourishing the debate about how and
if intuitionistic deductive systems similar to TFA identify interesting functional
programming languages inside pure λ-calculus or alike.

The structural complexity of wInv doubtlessly argues against any possibility
of exploiting TFA-like systems for every day programming even for specialists.

However, we have arguments that can support the other perspective as well.
Writing programs with current light programming languages, even with the
most “primitive” ones, may have rewards whose relevance still requires full
assessment.

We told that the encoding of BEA as wInv relies on the light predecessor
patterns which is specific of type assignments that come from Light Affine Logic.
The relevance of a new programming pattern, or abstraction, may not be imme-
diately evident. For example, the MapReduce paradigm have been exploited as
in [7] far after its introduction which, morally, occurs in [8]. Of course, we are
not supporting the idea that light predecessor pattern is, or will be, as relevant
as MapReduce! However, the work [9], which we see as a natural companion of
this one, helps pursuing the idea that something interesting in connection with
light predecessor pattern exists. In [9] we show that the design of wInv in fact
suggests to rewrite BEA in Figure 1 in a new imperative algorithm DCEA. We
do not recall it here. Suffice it to say that DCEA rearranges the statements in
BEA. On standard architectures, under the same optimisations, the speed of C

implementations of BEA and DCEA are comparable with a slight prevalence of
BEA. Instead, on ARM architectures, under the same optimisations, DCEA can be

3

Cryptographic primitives: elliptic curves cryptog-
raphy, linear feedback shift register cryptography, . . .
Binary-field arithmetic: addition, (modular re-
duction), square, multiplication, inversion.
Core library: operations on bits (xor, and), oper-
ations on sequences (head-tail splitting), operations
on words (reverse, drop, conversion to sequence, pro-
jections); meta-combinators: fold, map, mapthread,
map with state, head-tail scheme.
Basic definitions and types: booleans, tuples,
numerals, words, sequences, basic type management
and duplication.

Figure 2: Library for binary-field arithmetic

up to 20% faster than BEA. Fully investigation of why this happens is on-going
work.

However, on one side, reporting on non obvious programming examples, like
the one we develop with wInv, is a contribution that may renew the interest
about the search of improvements on what we know on functional programming
and on their implementations. On the other, rephrasing an anonymous referee,
the library we supply becomes a first linguistic benchmark which future light
programming languages should refer to when the intensional completeness of a
light language to program with is among the design goals.

Structure of this work. Section 2 recalls TFA from [1]. Section 3 supplies the
two bottommost layers in Figure 2 recalling them from [1]. Section 4 supplies
the second topmost layer in Figure 2. One part comes from [1]. The content of
Subsection 4.5, namely the description of wInv, is new.

Appendix A details out the definition of the combinators in Section 3, of
which a very prototypical implementation is available for public download5.

Also, we have manually checked that all terms have types in DLAL. Some
type inference can be found in [2, 10]. Appendix B has some further typing
examples.

Finally, Appendix B gives pseudo-code details of wInv.

2. Typeable Functional Assembly

We call Typeable Functional Assembly (TFA) the deductive system in Fig-
ure 3. Its rules come from Dual Light Affine Logic (DLAL) [2]. “Assembly” as
part of the name comes from our programming experience inside TFA. When
programming inside TFA the goal is twofold. Writing the correct λ-term and

5 https://github.com/pis147879/TFA-wInv. It is necessary to have Wolfram Mathematica
or an interpreter for its language.

4

https://github.com/pis147879/TFA-wInv

∅ | x :A ` x :A
a

∆ | Γ ` M :A

∆,∆′ | Γ,Γ′ ` M :A
w

∆, x :A, y :A | Γ ` M :B

∆, z :A | Γ ` M{z/x z/y} :B
c

∆ | Γ, x :A ` M :B

∆ | Γ ` \x.M :A(B
(I

∆ | Γ ` M :A(B ∆′ | Γ′ ` N :A

∆,∆′ | Γ,Γ′ ` M N :B
(E

∆, x :A | Γ ` M :B

∆ | Γ ` \x.M :!A(B
⇒ I

∆ | Γ ` M :!A(B ∅ | ∆′ ` N :A |∆′| ≤ 1

∆,∆′ | Γ ` M N :B
⇒E

∅ | ∆,Γ ` M :A

∆ | §Γ ` M :§A
§I

∆ | Γ ` N :§A ∆′ | x :§A,Γ′ ` M :B

∆,∆′ | Γ,Γ′ ` M{N/x} :B
§E

∆ | Γ ` M :A α 6∈ fv(∆,Γ)

∆ | Γ ` M :∀α.A ∀I
∆ | Γ ` M :∀α.A

∆ | Γ ` M :A[B/α]
∀E

where the pairs ∆,∆′ and Γ,Γ′ give type to disjoint sets of variables in V.

Figure 3: Type assignment system TFA

lowering their computational complexity so that the λ-term gets typeable. It
generally results in λ-terms that work at a very low level in a style which recalls
the one typical of programming Turing machines.

Every judgment ∆ | Γ ` M :A has two different kinds of context ∆ and Γ, a
formula A and a λ-term M. The judgment assigns A to M with hypothesis from
the polynomial context ∆ and the linear context Γ. “Assembly” should make
it apparent that λ-terms provide the basic programming constructs that we
exploit to define every single ground data type from scratch, booleans included,
for example.

Formulas belongs to the language of the following grammar:

F ::= G | F(F | !F(F | ∀G.F | §F .

The countable set G contains variables we range over by lowercase Greek letters.
Uppercase Latin letters A,B,C,D will range over F . Modal formulas !A can
occur in negative positions only. The notation A[B/α] is the clash free substitu-
tion of B for every free occurrence of α in A. As usual, clash-free means that
occurrences of free variables of B are not bound in A[B/α].

The λ-term M belongs to Λ, the λ-calculus given by:

Λ ::= V | (\V.Λ) | (Λ Λ) . (1)

The set V contains variables. We range over it by any lowercase Teletype Latin
letter. Uppercase Teletype Latin letters M, N, P, Q, R will range over Λ. We shall
tend to write \x.M in place of (\x.M) and M1 M2 . . . Mn in place of ((M1 M2) . . . Mn).
We denote fv(M) the set of free variables of any λ-term M. The computation
mechanism on λ-terms is the β-reduction:

(\x.M) N→ M{N/x} . (2)

5

Its reflexive, transitive, and contextual closure is →∗. Since →∗ is Church-
Rosser, while considering λ-terms-as-programs, confluence ensures that no am-
biguity can arise in the result of any computation.

Both polynomial and linear contexts are maps {x1 : A1, . . . , xn : An} from
variables V to formulas. Variables of any polynomial context may occur an
arbitrary number of times in the subject M of the judgment ∆ | Γ ` M :A. Every
variable in the linear context must occur at most once in M. The notation §Γ is
a shorthand for {x1 :§A1, . . . , xn :§An}, if Γ is {x1 :A1, . . . , xn :An}.

There are formula schemes relevant for our purposes.
Let us define the following scheme:

Bn ≡ ∀α.
n+1︷ ︸︸ ︷

α(· · ·(α(α .

If we set n = 2, we get the formula we can assign to the canonical representatives
of “lifted” booleans:

1 ≡ \xyz.x : B2 0 ≡ \xyz.y : B2 ⊥ ≡ \xyz.z : B2 .

The combinator ⊥ (bottom) simplifies the programming of functions, for exam-
ple, when combining lists of different lengths.

Another useful scheme is:

(A1⊗. . .⊗An) ≡ ∀α.A1(· · ·(An(α ,

which we shorten as (⊗ nA) whenever A1 = . . . = An and which justifies we
introduce tuples as part of TFA. This means adding:

Λ ::= . . . |<Λ, . . . ,Λ> | \<V, . . . ,V >.Λ

to Definition (1), then extending β-reduction with:

(\<x1, . . . , xn>.M) <N1, . . . , Nn>→ M{N1/x1 , . . . ,
Nn/xn}

and finally showing that the following rules are derivable:

∆1 | Γ1 ` M1 :A1 . . . ∆n | Γn ` Mn :An

∆1, . . . ,∆n | Γ1, . . . ,Γn `<M1, . . . , Mn>: (A1⊗. . .⊗An)
⊗ I

∆ | Γ, x1 :A1, . . . , xn :An ` M :B

∆ | Γ ` \<x1, . . . , xn>.M : (A1⊗. . .⊗An)(B
(I ⊗

.

In fact, the way we derive the here above rules implies that:

<M1, . . . , Mn> is an abbreviation of \x.x M1 . . . Mn and

\<x1, . . . , xn>.M is an abbreviation of \p.p (\x1. . . . (\xn.M)) .

The final crucial recursive scheme is:

S ≡ ∀α.(B2(α)(((B2⊗S)(α)(α . (3)

Let the symbol ≈ denote the congruence on the set F of formulas, which
is defined as the reflexive, symmetric, transitive and contextual closure of (3).

6

By definition, F/≈ is the set of types that we denote as T . We shall assign
types to λ-terms, and not “only” formulas. This means that, for any M, if
M : S, then, in fact, we can also use M : ∀α.(B2 (α) (((B2⊗S) (α) (α or
M : ∀α.(B2(α)(((B2⊗(∀α.(B2(α)(((B2⊗S)(α)(α))(α)(α or

The scheme (3) is the type of Sequences of booleans, or simply Sequences,
with canonical representatives:

[ε] ≡ \tc.t⊥ : S
[bn−1 . . . b0] ≡ \tc.c<bn−1, [bn−2 . . . b0]> : S . (4)

In accordance with (3), the Sequence [bn−1 . . . b0] in (4) is a function that takes
two constructors as inputs and yields a Sequence. Only the second constructor
is used in (4) to build a Sequence out of a pair whose first element is bn−1, and
whose second element is — recursively! — another Sequence [bn−2 . . . b0]. The
recursive definition of S should be evidently crucial.

By convention, in every Sequence [bn−1 . . . b0], the least significant bit (lsb)
is b0 and the most significant bit (msb) is bn−1.

Notations we introduced on formulas, simply adapt to types, i.e. to equiva-
lence classes of formulas which, generally, we identify by means of the obvious
representative. Moreover, it is useful to call every pair x : A of any kind of
context as type assignment for a variable.

2.1. Summing up

TFA is DLAL [2] whose set of formulas is quotiented by a specific recursive
equation. We recall it is well known that, adding recursive equations among the
formulas of DLAL, is harmless as far as polynomial time soundness is concerned.
The reason is that the proof of polynomial time soundness of DLAL only depends
on its structural properties [6, 2]. It never relies on measures related to the
formulas. So, recursive types, whose structure is not well-founded, cannot create
concerns on complexity.

3. Basic Definitions, Types and the Core Library

From [1], we recall the meaning and the type of the λ-terms that forms the
two lowermost layers in Figure 2. We also recall their definition in Appendix
A.

Paragraph lift. We can derive the following rule in TFA:

∅ | ∅ ` M :A(B

∅ | ∅ ` §[M] :§A(§B
§L

where §[M] ≡ \x.M x is the paragraph lift of M. An obvious generalisation
is that n consecutive applications of the §L rule define a lifted term §n[M] ≡

7

\x.. . . (\x.M x) . . . x, that contains n nested §[·]. Its type is §nA(§nB. Bor-
rowing terminology from proof nets, the application of n paragraph lift of M
embeds it in n paragraph boxes, leaving the behavior of M unchanged:

§n[M] N→∗ M N.

3.1. Basic Definitions and Types

Church numerals. They have type:

U ≡ ∀α.U[α] where U[α] ≡ !(α(α)(§(α(α)

with canonical representatives:

uε ≡ \fx.x : U n ≡ \fx.f (. . . (f x) . . .) : U with n occurrences of f

They iterate the first argument on the second one. We use uε in place of 0
because we like to look at Church numerals as they were degenerate lists, of
which 0 is the neuter element.

Lists. They have type:

L(A) ≡ ∀α.L(A)[α] where L(A)[α] ≡ !(A(α(α)(§(α(α)

with canonical representatives:

{ε} ≡ \fx.x : L(A)

{Mn−1 . . . M0} ≡ \fx.f Mn−1 (. . . (f M0 x) . . .) : L(A) with n occurrences of f

that generalise the iterative structures of Church numerals.

Church words. A Church word is a list {bn−1 . . . b0} whose elements bis are
booleans, i.e. of type L2 ≡ L(B2). By convention, in every Church word
{bn−1 . . . b0}, or simply word, the least significant bit (lsb) is b0, while the most
significant bit (msb) is bn−1. The same convention holds for every Sequence
[bn−1 . . . b0].

The combinator bCastm : B2 (§m+1B2. It casts a boolean inside m+ 1 para-
graph boxes, without altering the boolean:

bCast
m
b →∗ b.

The combinator b∇t : B2 (⊗ t B2, for every t ≥ 2. It produces t copies of a
boolean:

b∇t b →∗<
t︷ ︸︸ ︷

b, . . . , b>.

Despite b∇t replicates its argument it has a linear type. The reason is that t is
fixed as one can appreciate from the definition of b∇t in Appendix A.

8

The combinator tCastm : (B2⊗B2)(§m+1(B2⊗B2), for every m ≥ 0. It casts
a pair of bits into m+ 1 paragraph boxes, without altering the structure of the
pair:

tCast
m<b0, b1>→∗ <b0, b1>.

The combinator wSuc : B2 (L2 (L2. It implements the successor on Church
words:

wSuc b {bn−1 . . . b0} →∗ {b bn−1 . . . b0} .

The combinator wCastm : L2 (§m+1L2, for every m ≥ 0. It embeds a word
into m+ 1 paragraph boxes, without altering the structure of the word:

wCast
m {bn−1 . . . b0} →∗ {bn−1 . . . b0} .

The combinator w∇mt : L2(§m+1(⊗ t L2), for every t ≥ 2,m ≥ 0. It produces
t copies of a word embedding the result into m+ 1 paragraph boxes:

w∇m
t {bn−1 . . . b0} →∗<

t︷ ︸︸ ︷
{bn−1 . . . b0} , . . . , {bn−1 . . . b0}>.

3.2. Core Library

The combinator Xor : B2(B2(B2. It extends the exclusive or as follows:

Xor 0 0→∗ 0 Xor 1 1→∗ 0
Xor 0 1→∗ 1 Xor 1 0→∗ 1
Xor⊥ b →∗ b Xor b⊥ →∗ b (where b : B2).

Whenever one argument is ⊥, then it gives back the other argument. This is
an application oriented choice. Later we shall see why.

The combinator And : B2(B2(B2. It extends the combinator and as follows:

And 0 0→∗ 0 And 1 1→∗ 1
And 0 1→∗ 0 And 1 0→∗ 0
And⊥ b →∗ ⊥ And b⊥ →∗ ⊥ (where b : B2).

Whenever one argument is ⊥ then the result is ⊥. Again, this is an application
oriented choice.

9

The combinator sSpl : S((B2⊗S). It splits the sequence it takes as input in
a pair with the m.s.b. and the corresponding tail:

sSpl [bn−1 . . . b0]→∗ <bn−1, [bn−2 . . . b0]>.

The combinator wRev : L2(L2. It reverses the bits of a word:

wRev {bn−1 . . . b0} →∗ {b0 . . . bn−1} .

The combinator wDrop⊥ : L2 (L2. It drops all the (initial) occurrences6 of ⊥
in a word:

wDrop⊥ {⊥ . . .⊥ bn−1 . . . b0} →∗ {bn−1 . . . b0} .

The combinator w2s : L2(§S. It translates a word into a sequence:

w2s {bn−1 . . . b0} →∗ [bn−1 . . . b0].

Its type inference is in Appendix B.

The combinator wProj1 : L(B2
2)(L2. It projects the first component of a list

of pairs:

wProj1 {<an−1, bn−1> . . .<a0, b0>} →∗ {an−1 . . . a0} .

Similarly, wProj2 : L(B2
2)(L2 projects the second component.

3.2.1. Meta-combinators

First we recall the meta-combinators from [1]. We used them to implement
addition, modular reduction, square and multiplication in layer three of Figure 2.

Then, we introduce a new meta-combinator that supplies the main program-
ming pattern to implement BEA as a λ-term of TFA.

Meta-combinators are λ-terms with one or two “holes” that allow to use
standard higher-order programming patterns to extend the API. Holes must be
filled with type constrained λ-terms.

The meta-combinator Map[·].. Let F : A(B be a closed term. Then, Map[F] :
L(A)(L(B) applies F to every element of the list that Map[F] takes as argument,
and yields the final list, assuming F bi →∗ b′i, for every 0 ≤ i ≤ n− 1:

Map[F] {bn−1 . . . b0} →∗
{
b
′
n−1 . . . b

′
0

}
.

Map[] →

F
bn−1 . . . b0

6The current definition actually drops all the occurrences of ⊥ in a Church word, however
we shall only apply wDrop⊥ to words that contain ⊥ in the most significant bits.

10

The meta-combinator Fold[·, ·]. Let F : A(B(B and S : B be closed terms.
Then, Fold[F, S] : L(A)(§B, starting from the initial value S, iterates F over
the input list and builds up a value, assuming ((F bi) b

′
i) →∗ b′i+1, for every

0 ≤ i ≤ n− 1, and setting b′0 ≡ S and b′n ≡ b′:

Fold[F, S] {bn−1 . . . b0} →∗ b′ .

Fold[,] →

F

S bn−1 . . . b0

The meta-combinator MapState[·]. Let F : (A⊗S)((B⊗S) be a closed term.
Then, MapState[F] : L(A)(S(L(B) applies F to the elements of the input
list, keeping track of a state of type S during the iteration. Specifically, if
F<bi, si>→∗ <b′i, si+1>, for every 0 ≤ i ≤ n− 1:

MapState[F] {bn−1 . . . b0} s0 →∗
{
b
′
n−1 . . . b

′
0

}
.

MapState[] →

F

bn−1 . . . b0 s0

The meta-combinator MapThread[·]. Let F : B2 (B2 (A be a closed term.
Then, MapThread[F] : L2 (L2 (L(A) applies F to the elements of the two

11

input lists which must have equal lengths. Specifically, if F ai bi →∗ ci, for
every 0 ≤ i ≤ n− 1:

MapThread[F] {an−1 . . . a0} {bn−1 . . . b0} →∗ {cn−1 . . . c0} .

In particular, MapThread[\ab.<a, b>] : L2(L2(L(B2
2) is such that:

MapThread[\ab.<a, b>] {an−1 . . . a0} {bn−1 . . . b0} →∗ {<an−1, bn−1> . . .<a0, b0>} .

MapThread[] →

F

→

an−1 . . . a0 bn−1 . . . b0

The meta-combinator wHeadTail[L, B]. It has two parameters L and B and builds
on the core mechanism of the predecessor for Church numerals [5, 6] inside
typing systems like TFA. For any types A,α, let X ≡ (A(α(α)⊗A⊗α. By
definition, wHeadTail[L, B] is as follows:

wHeadTail[L, B] ≡ \w f x.L (w (wHTStep[B] f) (wHTBase x))

wHTStep[B] ≡ \f e.\<ft, et, t>. B (5)

wHTBase ≡ \x.<\e l.l, ErsblEl, x> ,

where:

• L must be a closed λ-term with type X(α. It is the last step we apply
after the iteration driven by w concludes.

• wHTStep[B] is a step function with type (A(α(α)(A(X(X and
body B.

• The body B of the step function wHTStep[B] is such that:

– B has type X and

– every of f, e, ft, et and t must occur at most once free in B.

• wHTBase is the base function with type α(X.

Appendix B gives type to wHeadTail[L, B]. We now focus on the behavior
of wHeadTail[L,B]: L(A)(L(A) once applied to the list \g y.g b (g a y) with
a and b closed λ-terms that play the role of elements of the list of type A:

wHeadTail[L, B] (\g y.g b (g a y))

→∗ \f x.L (wHTStep[B] f b (wHTStep[B] f a (wHTBase x))) (6)

→∗ \f x.L ((\<ft, et, t>.B{f/f}{b/e})
((\<ft, et, t>.B{f/f}{a/e})<\e l.l, ErsblEl, x>)) .

12

It iterates of wHTStep[B] from (wHTBase x). The term ErsblEl, which
stands for “erasable element”, can always be different from any other possi-
ble list element for the set we can choose the list of elements from is finite. By
letting ErsblEl distinguishable from any other element, the rightmost occur-
rence of B in (6) knows that the iteration is performing its initial stepand it can
operate on a as consequence of this fact. More generally, with B we can identify
an initial sequence of iteration steps with predetermined length, say n. Then,
B can operate on the first n elements of the list in a specific way. Moreover, the
computation pattern that wHeadTail[L,B] develops is that B can have simul-
taneous stepwise access to two consecutive elements in the list. For example, B
in (6) can use a and ErsblEl at step zero. At step one it has access to b and et
and the latter may contain a or some element derived from it. This invariant is
crucial to implement a bitwise forwarding mechanism of the state in the term
of TFA that implements the multiplication inverse. For example, if we assume:

L ≡ \< , , l>.l (7)

B ≡<f, e, ft et t> ,

then we can implement a λ-term that pops the last element out of the input list.
We can check this by assuming (7) in the λ-terms of (6) which yields \f x.f a x.

BEA, implemented as a term of TFA, relies on some variants of the meta-
combinator wHeadTail[L,B].

4. TFA Combinators for Binary-Fields Arithmetic

In this section we introduce those λ-terms of TFA which implement basic
operations of the third layer in Figure 2; amongst them, inversion yields the most
elaborated construction built as a variant of the meta-combinator wHeadTail.

Let us recall some essentials on binary-fields arithmetic (See [11, Section
11.2] for wider details). Let p(X) ∈ F2[X] be an irreducible polynomial of
degree n over F2, and let β be a root of p(X) in the algebraic closure of F2.
Then, the finite-field F2n ' F2[X]/(p(X)) ' F2(β).

The set of elements {1, β, . . . , βn−1} is a basis of F2n as a vector space over
F2 and we can represent a generic element of F2n as a polynomial in β of degree
lower than n:

F2n 3 a =

n−1∑
i=0

aiβ
i = an−1β

n−1 + · · ·+ a1β + a0 , ai ∈ F2 .

Moreover, the isomorphism F2n ' F2[X]/(p(X)) allows us to implement the
arithmetic of F2n relying on the arithmetic of F2[X] and reduction modulo
p(X).

Since every ai ∈ F2 can be encoded as a bit, we can represent each element of
length n in F2n as a Church word of bits of type L2. For this reason, when useful,
we remark that a Church word is, in fact, a finite-field instance by replacing the
notation F2n , instead than L2, as type. So, L2, and F2n becomes essentially
interchangeable.

13

A first basic notation is n. It denotes the Church numeral that stands
for n = deg p(X). A second notation is p. It is the Church word p ≡pn . . . p0⊥ . . .⊥︸ ︷︷ ︸

n−1

. Every pi is the boolean term that encodes the coefficient

pi of p(X) =
∑
piX

i.
A first final remark is that p has length 2n. The occurrences of ⊥ in the

least significant positions serve for technical reasons.
A second final remark is about the way we must think of using the com-

binators we are going to introduce in the coming subsections. They build the
arithmetic operations of a given binary finite field which we must identify by
fixing the characterising parameters n and p. Once given the two parameters,
the combinators for addition, multiplication, etc. behave consequently.

4.1. Addition

Let a, b ∈ F2n . The addition a + b is computed component-wise, namely
setting a =

∑n−1
i=0 aiβ

i and b =
∑n−1
i=0 biβ

i, then a+ b =
∑n−1
i=0 (ai + bi)β

i. The
sum (ai+ bi) is done in F2 and corresponds to the bitwise exclusive or. This led
us to the following definition:
The combinator acting on lists Add : F2n (F2n (F2n is:

Add ≡ MapThread[Xor] . (8)

4.2. Modular Reduction

Reduction modulo p(X) is a fundamental building block to keep the size of
the operands constrained. Once fixed n and p, Modular Reduction is applied to
the result of the multiplication we shall define in Subsection 4.4. Multiplication
always yields 2n bits as result. Modular Reduction transforms it in the correct
n-long sequence of bits.

We implemented a näıve left-to-right Modular Reduction under the following
two mandatory assumptions: (1) both p(X) and n = deg p(X), which are fixed,
are parameters and (2) the length of the input is 2n which can be rearranged
by using n repetitions of a basic iteration.
The combinator wMod[n,p] : L2(§F2n is:

wMod[n,p] ≡
\d.§[wModEnd] (n (\l.MapState[wModFun] l<⊥, 0>) (wModBase[p] (wCast0 d)))

where:

wModEnd ≡ \l.wDrop⊥ (wRev (wProj1 l))

wModFun ≡ \<e, s>.(\<d, p>.((\<s0, s1>.s0 S0is1 S0is0 S0isB d p s1) s)) e

S0is1 ≡ \d p s.(\<p′, p′′>.<<Xor d p
′, s>,<1, p′′>>) (b∇2 p)

S0is0 ≡ \d p s.<<d, s>,<0, p>>
S0isB ≡ \d p s.<<⊥, s>,<d, p>>

wModBase[p] ≡ \d.MapThread[\ab.<a, b>] (wRev d) (wRevp) .

14

wMultStep ≡
\s l f x.wBMult[f] (l MSStep[f, wFMult] (MSBase[x] (tCast0 s)))

wBMult[f] ≡ \<w, s>.(\<M, m′′′>.f <m′′′, 0> w) s

MSStep[f, wFMult] ≡ \e.\<w, s>.(\<e′, s′>.<f e′ w, s′>) (wFMult e s)

MSBase[x] ≡ \s.<x, s>
wFMult ≡ \<m, r>.\<M, m′′′>.wFMultBody[m, r, M, m′′′]

wFMultBody[m, r, M, m′′′] ≡
(\ <m′, m′′> .

(\<M′, M′′>.<<m′′′, bMult[m′, M′, r]>,<M′′, m′′>>)(b∇2 m))(b∇2 M)

bMult[m′, M′, r] ≡ Xor (And m′ M′) r

wMultBase ≡ \m.MapThread[\a b.<a, b>] m {ε}
Figure 4: Combinators that compose the definition of wMult

The combinator MapState[·] implements the basic iteration operating on a list
{. . . <di, pi> . . .} of pairs of bits, where di are the bits of the input and pi the
bits of p. The core of the algorithm is the combinator wModFun : (B2

2 ⊗ B2
2)(

(B2
2 ⊗ B2

2), that behaves as follows:

wModFun<<di, pi>︸ ︷︷ ︸
elem. e

, <s0, pi+1>︸ ︷︷ ︸
status s

>→∗ <<di′, pi+1>︸ ︷︷ ︸
e′

, <s0
′, pi>︸ ︷︷ ︸
s′

> ,

where s0 keeps the m.s.b. of {. . . di . . .} and it is used to decide whether to
reduce or not at this iteration. Thus, di

′ = di + pi if s0 = 1; di
′ = di if s0 = 0;

and di
′ = ⊥ when s0 = ⊥ (that represents the initial state, when s0 still needs

to be set).
Note that the second component of the status is used to shift p (right shift

as the words have been reverted).

4.3. Square

Square in binary-fields is a linear map (it is the absolute Frobenius automor-
phism). If a ∈ F2n , a =

∑
aiβ

i, then a2 =
∑
aiβ

2i. This operation is obtained
by inserting zeros between the bits that represent a and leads to a polynomial
of degree 2n− 2, that needs to be reduced modulo p(X).

Therefore, we introduce two combinators: wSqr : L2 (§L2 that performs
the bit expansion, and Sqr : F2n (§2F2n that is the actual square in F2n . We
have:

Sqr ≡ \a.§[wMod[n,p]] (wSqr a) (9)

and wSqr ≡ \l f x.l wSqrStep[f] x, where wSqrStep[f] ≡ \e t.f 0 (f e t) has
type B2(α(α if f is a non linear variable with type B2(α(α.

15

4.4. Multiplication
Let a, b ∈ F2n . The multiplication ab is computed as polynomial multiplica-

tion, i.e., with the usual definition, ab =
∑
j+k=i(aj + bk)βi.

We currently implemented the näıve schoolbook method. A possible exten-
sion to the comb method is left as future straightforward work. On the contrary,
it is not clear how to implement the Karatsuba algorithm, which reduces the
multiplication of n-bit words to operations on n/2-bit words. The difficulty is
to represent the splitting of a word in its half upper and lower parts.

As for Sqr, we have to distinguish between multiplication of two arbitrary
degree polynomials represented as binary lists, wMult : L2 (L2 (§L2 and
the field operation Mult : F2n (F2n (§2F2n , obtained by composing with the
modular reduction. We have:

Mult ≡ \a b.§[wMod[n,p]] (wMult a b)

wMult ≡ \a b.§[wProj2] (b (\M l.wMultStep <M,⊥> l) (wMultBase (wCast0 a))) .

The internals of wMult are in Figure 4. It implements two nested iterations. The
parameter b controls the external, and a the internal one. The external iteration
(controlled by b) works on words of bit pairs. The combinator wMultStep : B2

2(
L(B2

2)(L(B2
2) behaves as follows:

wMultStep <M,⊥> {. . . <mi, ri> . . .} →∗ {. . . <mi−1, r′i> . . .}

where M is the current bit of the multiplier b, and every mi is a bit of the
multiplicand a, and every ri is a bit in the current result. The iteration is
enabled by the combinator wMultBase : L2 (L(B2

2), that, on input a, cre-
ates {<mn−1,⊥> . . .<m0,⊥>}, setting the initial bits of the result to ⊥. The
projection wProj2 returns the result when the iteration stops.

The internal iteration is used to update the above list of bit pairs. The core
of this iteration is the combinator wFMult : B2

2(B2
2((B2

2 ⊗ B2
2), that behaves

as follows:

wFMult <mi, ri>︸ ︷︷ ︸
elem. e

<M, mi−1>︸ ︷︷ ︸
status s

→∗ <<mi−1, M · mi + ri>︸ ︷︷ ︸
e′

, <M, mi>︸ ︷︷ ︸
s′

> .

For completeness, we list the type of the other combinators: MSStep[f, wFMult] :
B2

2((α⊗B2
2)((α⊗B2

2) , MSBase[x] : B2
2((α⊗B2

2) , wBMult[f] : (α⊗B2
2)(

α .

4.5. Multiplicative Inversion
We reformulate BEA in Figure 1 as a λ-term wInv of TFA as in Figure 5.

wInv starts building a list which it obtains by means of MapThread applied to
eleven lists. For example, let u = z2 and v = z3 + z + 1 and g1 = 1 and g2 = 0
be an input of BEA. We represent the polynomials as words:

U = \f.\x.f 0 (f 1 (f 0 (f 0 x)))

V = \f.\x.f 1 (f 0 (f 1 (f 1 x)))

G1 = \f.\x.f 0 (f 0 (f 0 (f 1 x)))

G2 = \f.\x.f 0 (f 0 (f 0 (f 0 x))) .

(10)

16

wInv =

\U. # Word in input.

(wProj # Extract the bits of G1 from the threaded word.

(D # Parameter of wInv. It is a Church numeral. Its value is

the square of the degree n of the binary field.

(\tw.wRevInit (BkwVst (wRev (FwdVst tw)))) # Step funct. of D.

) (MapThread[\u.\v.\g1.\g2.

\m.\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

<u,v,g1,g2,m,stop,sn,rs,fwdv,fwdg2,fwdm>

] U

[m_{n-1}...m_1 1] # V is a copy of the modulus.

[0... 0 1] # G1 with n components.

[0... 0 0] # G2 " " "

[m_{n-1}...m_1 1] # M is a copy of the modulus.

[0... 0 0] # Stop with n components.

[B... B B] # StpNmbr " " "

[B... B B] # RghtShft " " "

[0... 0 0] # FwfV " " "

[0... 0 0] # FwdG2 " " "

[0... 0 0] # FwdM " " "

) # Base function of D.

)

LEGENDA

Meaning | Text abbreviation | Name of variable

Step number | StpNmbr | sn

Right shift | RghtShft | rs

Forwarding of V | FwdV | fwdv

Forwarding of G2 | FwdG2 | fwdg2

Forwarding of M | FwdM | fwdm

Figure 5: Definition of wInv.

17

wInv builds an initial list by applying MapThread to the four words in (10) and
to further seven words which build the state of the computation. In our running
example, the whole initial list is:

\f.\x.# |------- This is a state ----------|

v v

U V G1 G2 M Stop StpNmb RghtShft FwdV FwdG2 FwdM

f <0,1, 0, 0,1, 0, B, B, 0, 0, 0> # msb

(f <1,0, 0, 0,0, 0, B, B, 0, 0, 0>

(f <0,1, 0, 0,1, 0, B, B, 0, 0, 0>

(f <0,1, 1, 0,1, 0 B, B, 0, 0, 0> # lsb

x))) .

(11)

We call threaded words vector the list (11) that wInv builds in its first step.
We shall call threaded words vector every list whose tuples have eleven boolean
elements with the same position meaning as the comments in (11) fix. The
ith element of column U is U[i]. We adopt analogous notation on V, G1, etc..
We write <V,..,M>[i], or <V[i],..,M[i]> to denote the projection of the bits
in column V, G1, G2 and M out of the ith element. Analogous notation holds
for arbitrary sub-sequences we need to project out of U, . . . , FwdM. The most
significant bit (msb) of any threaded words vector is on top; its least significant
bit (lsb) is at the bottom.

The variable D which appears in Figure 5 takes the type of a Church numeral
and the term which follows \tw.wRevInit (BkwVst (wRev (FwdVst tw))) is
the step function which is iterated starting from a threaded words vector built
like (11) was. The step function implements steps from 2 through 5 of BEA in
Figure 1. The iteration that D implements is the outermost loop which starts
at step 2 and stops at step 6. FwdVst shortens forward visit. wRev reverses
the threaded words vector it takes as input. BkwdVst stands for backward visit.
wRevInit reverses the threaded words vector it gets in input while reinitialising
the bits in positions StpNmb, RghtShft, FwdV, FwdG2 and FwdM.

FwdVst builds on the pattern of the meta-combinator wHeadTail[L,B]. Its
input is a threaded words vector which we call wFwdVstInput. Its output is
again a threaded words vector wFwdVstOutput. FwdVst can distinguish its step
zero, and its last step. Yet, for every 0<i<=msb, FwdVst builds the ith ele-
ment of wFwdVstOutput on the base of <U,V,..,FwdM>[i] which it takes from
wFwdVstInput and moreover <U,V,..,FwdM>[i-1] taken from wFwdVstOutput.

The identification of step zero allows FwdVst to simultaneously check which
of the following mutually exclusive questions has a positive answer:

“Is Stop[0]=1?” (12)

“Does z divide both u and g1?” (13)

“Does z divide u but not g1?” (14)

“Neither of the previous questions has positive answer?”. (15)

If (12) holds, FwdVst must behave as the identity. Such a situation is equivalent
to saying that bits in position G1 contain the result.

18

Let us assume instead that (13) or (14) holds. Answering the first question
requires to verify U[0]=0 and G1[0]=0 in wFwdVstInput. Answering the second
one needs to check both U[0]=0 and G1[0]=1 in wFwdVstInput. Under our
conditions, just after reading wFwdVstInput, the combinator FwdVst generates
the following first element, i.e. the lsb, of wFwdVstOutput:

<U[0],B,g1,B,B,B,0,rs,V[0],G2[0],M[0]> . (16)

If (13) holds, then g1 is G1[0] and rs is 1. If (14) holds, then g1 is Xor G1[0]

M[0] and rs is 0. For building (16) we first record V[0], G2[0] and M[0], which
wFwdVstInput supplies, in position FwdV[0], FwdG2[0] and FwdM[0], respec-
tively, of wFwdVstOutput. Then we set V[0]=G2[0]=M[0]=B in wFwdVstOutput.

After the generation of the first element (16), for every 0<i<=msb, the iter-
ation that FwdVst implements proceeds as follows. It focuses on two elements
at step i:

<U,V,G1,G2,M,Stop,StpNmbr,RghtShft,FwdV,FwdG2,FwdM>[i]

<U,V,G1,G2,M,Stop,StpNmbr,RghtShft,FwdV,FwdG2,FwdM>[i-1] . (17)

The tuple with index i belongs to wFwdVstInput. The one with index i-1

is the i-1th element of wFwdVstOutput. So, FwdVst generates the new ith
element of wFwdVstOutput from them which will become the i-1th element of
wFwdVstOutput in the succeeding step:

<U[i],FwdV[i-1],g1,FwdG2[i-1],FwdM[i-1],B,0,rs,V[i],G2[i],M[i]> . (18)

Yet, g1 and rs depend on u and g1 being divisible by z.
Finally, under the above condition that (13) or (14) holds, the last step

of FwdVst adds two elements to wFwdVstOutput. Let msb be the length of
wFwdVstInput. The two last elements of wFwdVstOutput are:

<0,V[msb],0,G2[msb],M[msb],B,0,rs,B,B,B> # msb of wFwdVstOutput

<U[msb],FwdV[msb-1],g1,FwdG2[msb-1],FwdM[msb-1],B,0,rs,B,B,B> . (19)

As before, g1 and rs keeps depending on which between (13) or (14) holds. The
elements FwdV[msb-1], FwdG2[msb-1] and FwdM[msb-1] come from the term
wFwdVstOutput. The elements U[msb], V[msb], G2[msb] and M[msb] belong to
the last element of wFwdVstInput.

Even though this might sound a bit paradoxically, the overall effect of iterat-
ing the process we have just described — the one which exploits the simultane-
ous access to an element of both wFwdVstInput and wFwdVstOutput and which
adds two last elements to wFwdVstOutput as specified in (19) — amounts to
shifting the bits in positions V, G2 and M of wFwdVstInput one step to their left.
Instead, it leaves the bits of position U and G1 as they were in wFwdVstInput

so that they, in fact, shift one step to their right if we are able to erase the lsb

of wFwdVstOutput. We shall erase such a lsb by means of BkwdVst. Roughly,

19

Let l be the position of the last element of wFwdVstOutput.

1. If <Stop,StpNmbr,RghtShft>[l]=<1, , >, then FwdVst has verified that u
is 1. I.e., U[0]=1 and U[i]=0 for every i>0.

2. If <Stop,StpNmbr,RghtShft>[l]=<0,1, >, then FwdVst has verified that z
does not divide u and that u is different from 1. I.e., there are two distinct
indexes i and j such that U[i]=1 and U[j]=1.

3. If <Stop,StpNmbr,RghtShft>[l]=<B, ,0> or
<Stop,StpNmbr,RghtShft>[l]=<B, ,1>, then FwdVst has verified that z di-
vides at least u at step zero, i.e. that U[0]=0. Simultaneously, FwdVst also
has checked if z divides g1. In case of a negative answer FwdVst bitwise
added G1 and M in the course of its whole iteration.

Figure 6: Relevant combinations of <Stop,StpNmb,RghtShft> as given by FwdVst.

only a correct concatenation of both FwdVst and BkwdVst shifts to the right ev-
ery U[i] and G1[i], or Xor G1[i] M[i], while preserving the position of every
other element.

The description of how FwdVst works concludes by the assumption that
neither Condition (13) nor Condition (14) hold. This occurs when U[0]=1.
FwdVst must forcefully answer to: “Is u different from 1?”. Answering the
question requires a complete visit of the threaded words vector that FwdVst takes
in input. The visit serves to verify whether some j>0 exists such that U[j]=1.
The non existence of j implies that FwdVst sets Stop[msb]=1. This will impede
any further change of any bit in any position of the threaded words generated
so far. If, instead, j such that U[j]=1 exists, then the last step of FwdVst adds
a tuple to wFwdVstOutput that contains <Stop,StpNmb>[msb]=<0,1>. This
records that the result of FwdVst must be subject to the implementation in
TFA of Step 4 and 5 of BEA in Figure1.

To sum up, one of the goal of FwdVst is to let the last element of the
term wFwdVstOutput contain <Stop,StpNmbr,RghtShft> in one of the three
configurations of Figure 6.

Then, wRev reverses the result of FwdVst exchanging lsb and msb. Let us
call wBkwdVstInput the threaded words vector wFwdVstOutput that wBkwdVst

takes in input.
BkwdVst behaves in accordance with the lsb of wBkwdVstInput.
Let wBkwdVstInput be such that <Stop,StpNmb,RghtShft>[lsb]=<1, , >

which, in accordance with Figure 6, implies that u is 1. So, G1[lsb], . . . ,
G1[msb] contain the result of the inversion of u and we must avoid any change
on them. BkwdVst reacts by filling every Stop[i] of wBkwdVstInput with the
value 1. This implements Step 3 of BEA.

Let wBkwdVstInput be such that <Stop,StpNmb,RghtShft>[lsb]=<0,1, >.
In accordance with Figure 6, we know that z does not divide u and that u
is different from 1. In this case BkwdVst implements Step 4 and 5 of BEA in
Figure 1. For every element i of wBkwdVstInput, it sets U[i] with Xor U[i]

V[i] and G1[i] with Xor G1[i] G2[i] until it eventually finds the least j>=0

20

such that V[j]=1 and U[j]=0. If j exists, then BkwdVst sets V[i] with Xor

V[i] U[i] and G2[i] with Xor G2[i] G1[i].
The last case is with <Stop,StpNmbr,RghtShft>[msb]=<B, ,rs> with rs

different from B. We are in this case only when FwdVst verified that one be-
tween (13) and (14) holds. Then, BkwdVst erases the msb of wBkwdVstInput.
This is possible exactly because BkwdVst builds on the programming pattern of
the meta-combinator wHeadTail[L,B]. Erasing the msb is equivalent to erase
the lsb of wFwdVstOutput. I.e., we realize the one-step shift to the right of U

and of one between G1 or G1 + F. Instead, while V, G2 and M which were shifted
one place to the left survive the erasure.

4.6. A simple running example

Let us focus on (11) which we apply FwdVst to. FwdVst can check U[0]=0

and G1[0]=1 and determines that (14) holds. The result is:

\f.\x.

U V G1 G2 M Stop StpNmb RghtShft FwdV FwdG2 FwdM

f <0,1, 0, 0,1, B, B, 0, B, B, B># msb

(f <0,0,Xor 0 1, 0,0, B, 0, 0, 1, 0, 1>

(f <1,1,Xor 0 0, 0,1, B, 0, 0, 0, 0, 0>

(f <0,1,Xor 0 1, 0,1, B, 0, 0, 1, 0, 1># new lsb

(f <0,B,Xor 1 1, 0,1, B, 0, 0, 1, 0, 1># org lsb

x))))

(20)

The threaded words vector (20) is the input of wRev giving the following instance
of
wBkwdVstInput:

\f.\x.

U V G1 G2 M Stop StpNmb RghtShft FwdV FwdG2 FwdM

f <0,B,Xor 1 1, 0,1, B, 0, 0, 1, 0, 1># org lsb

(f <0,1,Xor 0 1, 0,1, B, 0, 0, 1, 0, 1># new lsb

(f <1,1,Xor 0 0, 0,1, B, 0, 0, 0, 0, 0>

(f <0,0,Xor 0 1, 0,0, B, 0, 0, 1, 0, 1>

(f <0,1, 0, 0,1, B, B, 0, B, B, B># msb

x))))

(21)

BkwdVst applies to (21). It finds that Stop[0]=B and RghtShft[0]=0 which
requires to shift all the bits of U and G1 one position to the their right. BkwdVst
commits the requirement by erasing the topmost element of (21). The result is:

\f.\x.

U V G1 G2 M Stop StpNmb RghtShft FwdV FwdG2 FwdM

f <0,1,Xor 0 1, 0,1, B, 0, 0, B, B, B>

(f <1,1,Xor 0 0, 0,1, B, 0, 0, B, B, B>

(f <0,0,Xor 0 1, 0,0, B, 0, 0, B, B, B>

(f <0,1, 0, 0,1, B, B, 0, B, B, B> x)))

(22)

21

Finally, wRevInit reverses (22), yielding:

\f.\x.

U V G1 G2 M Stop StpNmb RghtShft FwdV FwdG2 FwdM

f <0,1, 0, 0,1, B, B, B, 0, 0, 0>

(f <0,0,Xor 0 1, 0,0, B, B, B, 0, 0, 0>

(f <1,1,Xor 0 0, 0,1, B, B, B, 0, 0, 0>

(f <0,1,Xor 0 1, 0,1, B, B, B, 0, 0, 0> x)))

(23)

Let us compare (23) and (20). All the bits of position U and G1 have been
shifted while those ones of position V, G2 and M have not. Moreover, the bits of
position Stop, . . . , FwdM have been reinitialised so that (23) is a consistent input
for FwdVst. We remark that the whole process of shifting the bits of positions
U and G1 requires the concatenation of both FwdVst and BkwdVst up to some
reverse. The first one shifts the bits of position V, G2 and M to the left while
operates on those of position U and G1. The latter erases the correct element
and fully realises the shift to the right.

4.7. The code of FwdVst and of BkwdVst

Appendix C contains the detailed definitions of FwdVst and BkwdVst, the
two main components of wInv. This paragraph is to help those readers who
want to get some more catch on the structure of FwdVst and BkwdVst without
looking directly at the code in Appendix C.

Both FwdVst and BkwdVst follow the pattern, namely the metacombinator
wHeadTail[L,B]. Both of them have step functions and a “last step functions”,
the latter useful to correctly manipulate the final tuple. Their step functions as
well as their last step functions are branching functions. Every choice among
the branch to follow depends on the values of the bits that belong to the state
or on the values of some bits of U or G1.

Trying to improve readability of the branching structures we use an explicit
switch as syntactic sugar:

switch (N) {

case 1: M1

case 0: M0

case B: MB }

(24)

Depending on the value of N, which must be of type B2, the above switch

behaves as the application N M1 M0 MB eventually choosing one among M1, M0
and MB.

We take the definition of LastStepFwdVst in Figure 7 as a paradigmatic
example of all the terms that contribute to define FwdVst and BkwdVst.

Every variable in Figure 7 recalls its meaning. The name stopt stands for
“Stop that comes from step msb-1”, the name rst stands for “RghtShft that
comes from step msb-1” and snt stands for “StpNmbr that comes from step
msb-1”.

22

LastStepFwdVst =

\f.

\<ft,et,t>. # Element from step i-1.

(\<ut,vt,g1t,g2t,mt,stopt,snt,rst,fwdvt,fwdg2t,fwdmt>.

(switch (stopt) {

case 1: # of stopt. We checked U=1. The whole wInv must be

the identity.

\f.\ft.\ut.\vt.\g1t.\g2t.\mt.\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(ft <ut,vt,g1t,g2t,mt,1,B,B,B,B,B> t)

case 0: # of stopt. So we have also RghtShft=B and U[0]=1.

switch (snt) {

case 1: # of snt. U is different from 1.

\f.\ft.\ut.\vt.\g1t.\g2t.\mt.\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(ft <ut,vt,g1t,g2t,mt,0,1,B,B,B,B> t)

case 0: # of snt. Here we detect that U=1 and we set Stop=1 !!!!

\f.\ft.\ut.\vt.\g1t.\g2t.\mt.\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(ft <ut,vt,g1t,g2t,mt,1,B,B,B,B,B> t)

case B: # of snt. Can never occur.

\f.\ft.\ut.\vt.\g1t.\g2t.\mt.\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(ft <ut,vt,g1t,g2t,mt,0,B,B,B,B,B> t)

}

case B: # of stopt. We have U[0]=0 and RghtShft=0 or RghtShft=1.

switch (rst) {

case 1: # of rst. U[0]=0 and G1[0]=0. We are shifting and we

have to add a new msb to the threaded words.

\f.\ft.\ut.\vt.\g1t.\g2t.\mt.\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(\<fwdvt1,fwdvt2>. (\<fwdmt1,fwdmt2>. (\<fwdg2t1,fwdg2t2,fwdg2t3>.

(f <0,fwdvt1,0,fwdg2t1,fwdmt1,B,B,1,B,B,B >

(ft <ut,vt,g1t,fwdg2t2,mt,B,snt,1,fwdvt2,fwdg2t3,fwdmt2> t))

(fwdg2t1 <1,1,1> <0,0,0> <B,B,B>)) (fwdmt <1,1> <0,0> <B,B>))

(fwdvt <1,1> <0,0> <B,B>))

case 0: # of rst. U[0]=0 and G1[0]=1. We are shifting and we

have to add a new msb to the threaded words vector.

\f.\ft.\ut.\vt.\g1t.\g2t.\mt.\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(\<fwdvt1,fwdvt2>. (\<fwdmt1,fwdmt2>. (\<fwdg2t1,fwdg2t2,fwdg2t3>.

(f <0,fwdvt,0,fwdg2t,fwdmt,B,B,0,B,B,B >

(ft <ut,vt,g1t,fwdg2t,mt,B,snt,0,fwdvt,fwdg2t,fwdmt> t))

(fwdg2t1 <1,1,1> <0,0,0> <B,B,B>)) (fwdmt <1,1> <0,0> <B,B>))

(fwdvt <1,1> <0,0> <B,B>))

case B: # of rst. Can never occur.

\f.\ft.\ut.\vt.\g1t.\g2t.\mt.\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(ft <ut,vt,g1t,g2t,mt,B,B,B,B,B,B> t)

}

}

) f ft ut vt g1t g2t mt snt rst fwdvt fwdg2t fwdmt t

) et

Figure 7: Definition of LastStepFwdVst.

23

St
op
[m
sb
]

Rg
ht
Sh
ft
[m
sb
]=
1

St
pN
mb
r[
ms
b]
=1

St
op
[m
sb
+1
]=
B

St
op
[m
sb
]=
B

St
pN
mb
r[
ms
b+
1]
=B

St
pN
mb
r[
ms
b]
=B

Rg
ht
Sh
ft
[m
sb
+1
]=
0

Rg
ht
Sh
ft
[m
sb
]=
0

St
op
[m
sb
+1
]=
B

St
op
[m
sb
]=
B

St
pN
mb
r[
ms
b+
1]
=B

St
pN
mb
r[
ms
b]
=B

Rg
ht
Sh
ft
[m
sb
+1
]=
1

Rg
ht
Sh
ft
[m
sb
]=
1

St
op
[m
sb
]=
1

St
pN
mb
r[
ms
b]
=B

Rg
ht
Sh
ft
[m
sb
]=
B

St
op
[m
sb
]=
0

St
pN
mb
r[
ms
b]
=1

Rg
ht
Sh
ft
[m
sb
]=
B

W
e
kn

ow
U6=

1,
G1
[0
]=
1

0

N
ev
er

oc
cu
rs

B

W
e
kn

ow
U6=

1,
G1
[0
]=
0

1

W
e
kn

ow
U
is
1

1

U[
0]

=0
an

d
Rg

ht
Sh

ft
=0

or
Rg

ht
Sh

ft
=1

B

U[
0]
=1

an
d

Rg
ht
Sh
ft
=B

0

W
e
kn

ow
U6=

1,
∀i

.R
gh
tS
hf
t[
i]
=B

1

W
e
ha
ve

ju
st

de
te
ct
ed

U=
1

0

N
ev
er

oc
cu
rs B

Figure 8: Flow-chart of the decision network that LastStepFwdVst implements.

24

Figure 9 depicts the essence LastStepFwdVst. Its rightmost path from the
topmost decision diamond corresponds to the first branch in Figure 7. In this
case nothing has to be done apart from propagating the current content of the
threaded words vector. This is why, eventually, the chosen branch of the λ-term
gives a λ-function which behaves as the identity. The result of the remaining
paths in Figure 9 depends in one case from the value of snt and in the other on
the one of rst. Globally, they give a λ-abstraction as a result which correctly
sets the bits in the state in accordance with points 2 and 3 in Figure 6.

Decision networks analogous to the one in Figure 8 exist for all the compo-
nents of wInv. For example, Figure 9, 10 , 11 and 12 summarise the essentials
of the decision network that the step function SFwdVst (see Appendix C) of
FwdVst implements. The goal is to help the reader trace how the names of vari-
ables in the flow-chart link to the names of variables of the corresponding term.
If we assume we are at step i, then stopt is Stop[i-1], rst is RghtShft[i-1],
uba, ubb are U[i], gb is G1[i] and sntb1, sntb2 are StpNbmr[i].

4.8. Typeability of wInv

Let us recall that B11
2 ≡

11︷ ︸︸ ︷
B2⊗. . .⊗B2 and L(B11

2) ≡ ∀α. !(B11
2 (α (

α) (§(α (α). Let us take F ≡ \a1 . . . a11.<a1, . . . , a11> : B11
2 . Figure 13

lists the types of the main components of wInv. We remark that FwdVst,
BkwdVst, LastStepFwdVst and wRevInit map a threaded words vector to an-
other threaded words vector. So their composition can be used, as we do, as a
step function in a iteration.

We do not detail out all the type derivations because quite impractical.
Instead, we highlight the main reasons why the terms in Figure 13 have a type.

Both MapThread[F] and wRevInit are iterations that work at the lowest
possible level of their syntactic components. Ideally, we can view MapThread[F]
and wRevInit as adaptations and generalisations of the same programming
pattern that uSuc relies on and whose type derivation is in Appendix B.

We already underlined that both FwdVst and BkwdVst adjust the program-
ming pattern of wHeadTail[L,B] to our purposes. Appendix B recalls the
type inference of wHeadTail[L,B] with L and B as in (7) which can be sim-
ply adapted to type FwdVst and BkwdVst. Mainly, FwdVst and BkwdVst use
SFwdVst, BFwdVst, . . . to find the right branch in decision networks like those
ones in Figure 9 and Figure 8. The main point to assure we can give a type to
SFwdVst, BFwdVst, . . . is to organise them so that every possible choice results
in a closed term. This maintains as much linear as we can the whole term, so
letting it iterable and simply composable.

5. Conclusions and future work

We introduce a library that implements basic arithmetic on binary finite
fields as a set of λ-terms which have type in TFA, a type assignment system
that certifies the polynomial time complexity of the λ-terms it gives types to.

25

St
op

[i
-1
]

St
pN

mb
r[

i-
1]

U[
i]

Se
eF

igu
re

10
Se

eF
igu

re
11

Se
eF

igu
re

12
St
op

[i
]=

0

St
pN
mb

r[
i]

=1
sig

na
lsU
6=1

Rg
ht
Sh
ft

[i
]=

B

We
are

at
ste

p0

B

We
kn

ow
U=

1

1

We
are

at
ste

p>
0.

We
kn

ow
U[
0]
=1

0

We
are

at
ste

p0

B

Ne
ver

oc
cur

s

1

We
are

at
ste

p>
0

0

Ne
ver

oc
cur

s

B

U[
0]

=1
,

U[
j]
=1

wit
hj

¿0

1

0

Figure 9: Flow-chart of the decision network that the step function SFwdVst of FwdVst imple-
ments.

26

U[0]

G1[0]=0

Stop[i]=B

StpNmbr[i]=0

RghtShft[i]=1

Stop[i]=B

StpNmbr[i]=0

RghtShft[i]=0

Stop[i]=0

StpNmbr[i]=0

RghtShft[i]=B

Never occurs

B

U[0]=1,
U may be 1

1

z divides U[0] 0

z divides G1 0

Never occurs

B

z does not
divide G1

1

Figure 10: First component of the decision network that the step function SFwdVst of FwdVst

implements.

RghtShft[i-1]

Stop[i]=0

StpNmbr[i]=0

RghtShft[i]=B

Stop[i]=B

StpNmbr[i]=0

RghtShft[i]=0

Stop[i]=B

StpNmbr[i]=0

RghtShft[i]=1

U, G1 do
not shift

B

U, G1 shift

1

U, G1+F shift 0

Figure 11: Second component of the decision network that the step function SFwdVst of FwdVst
implements.

27

StpNmbr[i-1]

Stop[i]=0

StpNmbr[i]=0

RghtShft[i]=B

Stop[i]=0

StpNmbr[i]=1

RghtShft[i]=B

Never occurs

B

0

1

Still unknown if
U6=1 or G1=0

Figure 12: Third component of the decision network that the step function SFwdVst of FwdVst
implements.

28

MapThread[F] : L2(. . .(L2︸ ︷︷ ︸
11

(L(B11
2)

FwdVst : L(B11
2)(L(B11

2)

SFwdVst :

(B11
2 (α(α)(B11

2 (

((B11
2 (α(α)⊗B11

2 ⊗α)(((B11
2 (α(α)⊗B11

2 ⊗α)

BFwdVst : (B11
2 (α(α)⊗B11

2 ⊗α

LastStepFwdVst : (B11
2 (α(α)(((B11

2 (α(α)⊗B11
2 ⊗α)(α

BkwdVst : L(B11
2)(L(B11

2)

SBkwdVst :

(B11
2 (α(α)(B11

2 (

((B11
2 (α(α)⊗B11

2 ⊗α)(((B11
2 (α(α)⊗B11

2 ⊗α)

BBkwdVst : (B11
2 (α(α)⊗B11

2 ⊗α

LastStepBkwdVst : ((B11
2 (α(α)⊗B11

2 ⊗α)(α

wRevInit : L(B11
2)(L(B11

2)

Figure 13: The types of the main sub-terms of wInv.

In the course of the design of all the λ-terms, but the multiplicative inverse
wInv, we have been able to apply standard functional programming patterns to
a certain extent. Instead, wInv requires to adopt what we called predecessor
functional pattern which generalises the pattern one has to use for writing the
predecessor on Church numerals-like terms inside type assignments similar to
TFA.

The set of λ-terms we write can work as a benchmark to assess the ex-
tensional expressiveness of those languages proposed to become a reference for
programming with predetermined computational cost. Such languages should,
in fact, simplify programming of truly interesting libraries like the one we supply.

Clearly, our library does not candidate TFA as an every-day light program-
ming language, potentially tampering the usefulness of any language derived
from light logical system similar to TFA for widespread use.

However, the programming solution we have been forced to adopt suggest
research direction we think are worth exploring.

wInv suggests how to rearrange BEA in Figure 1 into another imperative al-
gorithm with improved running time on specific architectures [9]. This suggests
to look at the predecessor programming pattern as the potential source for the
design of a domain specific language whose computational time complexity can
be certified and which is expressive enough to encode interesting algorithms. We
plan a bottom-up synthesis of such a domain specific language so going through
the opposite top-down path that, generally speaking, proposers of languages

29

with predetermined computational complexity followed so far when suggesting
a new programming language with limited complexity.

Moreover, being the λ-calculus our programming language of reference, any
of its known interpreters can be used to evaluate the implementation perfor-
mance of the library we supply. Since interpreters differ in the way they evalu-
ates terms, we plan to compare their performance without getting back to the
imperative paradigm like we do in [9]. We plan to assess performance exper-
iments on PELCR [12] which looks at λ-terms as they were algorithms whose
components we can interpret in parallel on a cluster. Once more this might sug-
gest domain specific primitives that may become as relevant as the MapReduce

paradigm [7].

References

[1] E. Cesena, M. Pedicini, L. Roversi, Typing a Core Binary-Field Arithmetic
in a Light Logic, in: R. Peña, M. van Eekelen, O. Shkaravska (Eds.),
Foundational and Practical Aspects of Resource Analysis (subtitle: 2nd
International Workshop on Foundational and Practical Aspects of Resource
Analysis, FOPARA 2011), Vol. 7177 of Lecture Notes in Computer Science,
Springer, 2012, pp. 19 – 35.

[2] P. Baillot, K. Terui, Light types for polynomial time computation in lambda
calculus, Information and Computation 207 (1) (2009) 41–62.
URL http://dx.doi.org/10.1016/j.ic.2008.08.005

[3] K. Fong, D. Hankerson, J. Lopez, A. Menezes, Field inversion and point
halving revisited, IEEE Trans. Comput. 53 (8) (2004) 1047–1059.

[4] G. Hutton, A tutorial on the universality and expressiveness of Fold, Jour-
nal of Functional Programming 9 (4) (1999) 355–372.

[5] L. Roversi, A P-Time Completeness Proof for Light Logics, in: Ninth An-
nual Conference of the EACSL (CSL’99), Vol. 1683 of Lecture Notes in
Computer Science, Springer-Verlag, Madrid (Spain), 1999, pp. 469 – 483.

[6] A. Asperti, L. Roversi, Intuitionistic light affine logic, ACM Transactions
on Computational Logic 3 (1) (2002) 1–39.

[7] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large
clusters, Communications of the ACM 51 (2008) 107–113.
URL http://dx.doi.org/10.1145/1327452.1327492

[8] J. Backus, Can Programming Be Liberated from the von Neumann Style?
A Functional Style and Its Algebra of Programs, Communications of the
Association for Computing Machinery 21 (8) (1978) 613–641.

[9] D. Canavese, E. Cesena, R. Ouchary, M. Pedicini, L. Roversi, Can a light
typing discipline be compatible with an efficient implementation of finite

30

http://dx.doi.org/10.1016/j.ic.2008.08.005
http://dx.doi.org/10.1016/j.ic.2008.08.005
http://dx.doi.org/10.1016/j.ic.2008.08.005
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492

fields inversion?, in: U. Dal Lago, R. Peña (Eds.), Foundational and Practi-
cal Aspects of Resource Analysis (subtitle: 3rd International Workshop on
Foundational and Practical Aspects of Resource Analysis, FOPARA 2013),
Vol. 8552 of LNCS, Springer, 2014, pp. 38 – 57.

[10] V. Atassi, P. Baillot, K. Terui, Verification of PTIME reducibility for Sys-
tem F terms: Type inference in dual light affine logic, Logical Methods in
Computer Science 3 (4).

[11] R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, F. Ver-
cauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography,
CRC Press, 2005.

[12] M. Pedicini, F. Quaglia, PELCR: parallel environment for optimal lambda-
calculus reduction, ACM Trans. Comput. Log. 8 (3).
URL http://dx.doi.org/10.1145/1243996.1243997

Appendix A. Definition of Basic Combinators

We recall the following definitions from [1].

bCastm is \b.b 1 0 ⊥.

b∇t is \b.b <
t︷ ︸︸ ︷

1 . . . 1><

t︷ ︸︸ ︷
0 . . . 0 ><

t︷ ︸︸ ︷
⊥ . . .⊥>, for every t ≥ 2.

tCastm is, for every m ≥ 0:

tCast0 ≡ \<a, b>.a aIsOne aIsZero aIsBottom b

aIsOne ≡ \x.x <1, 1> <1, 0> <1,⊥>
aIsZero ≡ \x.x <0, 1> <0, 0> <0,⊥>

aIsBottom ≡ \x.x <⊥, 1> <⊥, 0> <⊥,⊥>
tCastm+1 ≡ \p.§[tCastm] (tCast0 p) .

wSuc is \b p.\f x.f (bCast0 b) (p f x).

wCastm is, for every m ≥ 0:

wCast0 ≡ \l.l (wSuc 0) (wSuc 1) (wSuc ⊥) {ε}
wCastm+1 ≡ \l.§[wCastm] (wCast0 l) .

w∇mt , for every t ≥ 2, and m ≥ 0 is:

w∇0
t ≡ \l.l (w∇Step 0) (w∇Step 1) w∇Base

w∇m+1
t ≡ \l.§[w∇m

t] (w∇0
t l)

w∇Step ≡ \b.\<x1 . . . xt>.<
t︷ ︸︸ ︷

wSuc b x1 . . . wSuc b xt>

w∇Base ≡<
t︷ ︸︸ ︷

{ε} . . . {ε}> .

31

http://dx.doi.org/10.1145/1243996.1243997
http://dx.doi.org/10.1145/1243996.1243997
http://dx.doi.org/10.1145/1243996.1243997

Xor is \b c. b (\x.x 0 1 1) (\x.x 1 0 0) (\x.x) c.

And is \b c.b (\x.x) (\x.x 0 0 ⊥) ⊥ c.

sSpl is \s.s (\t.<⊥, [ε]>) (\x.x).

wRev is \l f x.l wRevStep[f] (\x.x) x with:
wRevStep[f] ≡ \e r x.r (f e x) : B2((α(α)(α(α, when
f :B2(α(α.

wDrop⊥ is \l f x.l (\e.e (\f.f 1) (\f.f 0) (\f z.z) f) x.

w2s is \l.l (\e s t c.c <e, s>) [ε].

wProj1 is \l f x.l (\<a, b>.f a) x.

wProj2 is \l f x.l (\<a, b>.f b) x.

Map[F] is \l f x.l (\e.f (F e)) x, with F : A(B closed.

Fold[F, S] is \l.l (\e z.F e z) (Cast0 S), with F : A(B(B
and S : B closed.

MapState[F] is \l s f x.(\<w, s′>.w) (l MSStep[F, f] (MSBase[x] (Cast0 s)))
with F : (A⊗S)((B⊗S) closed, and:

MSStep[F, f] ≡ \e.\<w, s>.(\<e′, s′>.<f e′ w, s′>) (F <e, s>)

MSBase[x] ≡ \s.<x, s> .

In particular MSStep[F, f] : (A⊗ S)((α ⊗ S)((α ⊗ S) and MSBase[x] :
S((α⊗S).

MapThread[F] is
\l m f x.(\<w, s>.w) (l MTStep[F, f] (MTBase (w2s (wRev m)))) with F :
B2(B2(A closed and w2s (wRev m) : §S whenever m : L2 and:

MTStep[F, f] ≡ \a.\<w, s>.(\<b, s′>.<f (F a b) w, s′>) (sSpl s)

MTBase ≡ \x.<x, m> .

In particular MTStep[F, f] : B2((S⊗S)((S⊗S) and MTBase : S(S⊗S.

Appendix B. Some examples of type inference

Typing uSuc. A first example is the typing of the successor

uSuc ≡ \n.\f x.f ((n f) x)

of Church numerals. The type of uSuc is U(U, in accordance with the type
inference in Figure B.14.

Few steps, required to conclude the typing, are missing on top of the right-
most occurrence of(E. We leave finding them as a simple exercise.

32

∅
|n

:U
`
n

:U
a

∅
|n

:U
`
n

:!
(α

(
α

)(
§(
α
(
α

)
∀E

∅
|g

:α
(
α
`
g

:α
(
α

a

g
:α

(
α
|n

:U
`
n
g

:§
(α

(
α

)
⇒

E

. . .
∅
|h
,w

:α
(
α
,x

:α
`
h

(w
x
):
α
(

E

∅
|h
,w

:α
(
α
`
\x
.h

(w
x
):
α
(
α
(

I

∅
|h
,w

:§
(α

(
α

)
`
\x
.h

(w
x
):
§(
α
(
α

)
§I

g
:α

(
α
|n

:U
,h

:§
(α

(
α

)
`
\x
.h

((
n
g
)
x
):
§(
α
(
α

)
§E

f
:α

(
α
|n

:U
`
\x
.f

((
n
f
)
x
):
§(
α
(
α

)
c
i

∅
|n

:U
`
\f

x
.f

((
n
f
)
x
):

!(
α
(
α

)
(
§(
α
(
α

)
⇒

I

∅
|n

:U
`
\f

x
.f

((
n
f
)
x
):
U

∀I

∅
|∅
`
\n
.\
f
x
.f

((
n
f
)
x
):
U
(

U
(

I

Figure B.14: The type inference of uSuc.

33

Typing uSuc is interesting because it is a simple term that keeps the di-
mension of the derivation acceptable, and shows how using the rule §E, whose
application is not apparent from the structure of uSuc itself. Similar use of(E
occurs in typing tCastm, wSuc, wCastm, w∇mt , wRev, for example, and, more gen-
erally, whenever a λ-terms that results from an iteration becomes the argument
of a function.

Typing a predecessor built on wHeadTail[L, B]. Let X ≡ (A(α(α) ⊗ A ⊗ α
and L(A) ≡ ∀α. !(A(α(α) (§(α(α). Let L and B be defined as in (7).
This means that L : X(α and B : X. The type assignment of wHeadTail[L, B]
follows:

Π1 Π2

f :A(α(α | w :L(A) ` w (wHTStep[B] f) :§(X(X)
⇒E

Π3

f :A(α(α | w :L(A) ` \x.L (w (wHTStep[B] f) (wHTBase x)) :§(α(α)
§E

∅ | w :L(A) ` \f x.L (w (wHTStep[B] f) (wHTBase x)) :!(A(α(α)(§(α(α)
⇒ I

∅ | w :L(A) ` \f x.L (w (wHTStep[B] f) (wHTBase x)) :L(A)
∀I

∅ | ∅ ` \w f x.L (w (wHTStep[B][B] f) (wHTBase x)) :L(A)(L(A)
(I

where Π1 is:
∅ | w :L(A) ` w :L(A)

a

∅ | w :L(A) ` w :!(A(X(X)(§(X(X)
∀E

and Π2 is:

∅ | ∅ ` wHTStep[B] : (A(α(α)((A(X(X) ∅ | f :A(α(α ` f :A(α(α
a

∅ | f :A(α(α ` wHTStep[B] f :A(X(X
(E

and Π3 is:

∅ | ∅ ` L :X(α

∅ | y :X(X ` y :X(X
a
∅ | ∅ ` wHTBase :α(X ∅ | x :α ` x :α

a

∅ | x :α ` wHTBase x :X
(E

∅ | y :X(X, x :α ` y (wHTBase x) :X
(E

∅ | y :X(X, x :α ` L (y (wHTBase x)) :α(α

∅ | y :X(X ` \x.L (y (wHTBase x)) :α(α
(I

∅ | y :§(X(X) ` \x.L (y (wHTBase x)) :§(α(α)
§I

.

Appendix C. Pseudocode of the main components of wInv

FwdVst =

\tw. # Threaded words vector that FwdVst visits in forward

direction. In the main text we call it wFwdVstInput.

\f.\x. (LastStepFwdVst f) (tw (SFwdVst f) (BFwdVst x))

SFwdVst =

\f.

\<u,v,g1,g2,m,stop,sn,rs,fwdv,fwdg2,fwdm>.

\<ft,et,t>.

34

(\<ut,vt,g1t,g2t,mt

,stopt,snt,rst,fwdvt,fwdg2t,fwdmt>. # Get the i-1th element

(\<uba, ubb, ue>. # three copies of u[i]:

-) the first two for branching

-) one to be inserted in the list

\<gb,ge>. # two copies of G1[i]:

-) one for branching

-) one to be inserted in the list

\<sntb1,sntb2>. # copies of sn[i-1] for branching

(switch (stopt) {

case 1: # of stopt. We checked U=1. wInv must be

the identity

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

<f, < u,v,g1,g2,m,1,sn,rs,B,B,B>

,ft <ut,vt,g1t,g2t,mt,1,snt,rst,B,B,B> t>

case 0: # of stopt. We are at a step>0 and we know

U[0]=1. We do not have to shift anything

switch (uba) {

case 1: # of uba. U contains at least two occurrences

of 1. I.e. U[0]=1, U[j]=1 and j>0

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

<f,<1,v,g1,g2,m # Values from this step.

,1 # Stop keeps recording that U[0]=1

,sn # StepNumber keeps recording we are at step>0

It also signals U[0]=1, U[j]=1 and j>0,

This means the whole U!=1

,rs # RightShift keeps recording that

neither of U, G1 shift

I.e. z does not divide U and G1

,B,B,B > # Dummy values.

,ft <ut,vt,g1t,g2t,mt,0,snt,rst,fwdvt,fwdg2t,fwdmt> t>

case 0: # of uba.

switch (sntb1) {

case 1: # of sntb1.

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

<f,<0,v,g1,g2,m # Values from this step.

,0 # Stop keeps recording U[0]=1

,1 # StepNumber keeps recording we are at step>0

It also signals U[0]=1, U[j]=1 and j>0,

,B # RightShift keeps recording neither

of U,G1 shift

35

I.e. z does not divide U ad G1

,B,B,B > # Dummy values

,ft <ut,vt,g1t,g2t,mt,0,1,rst,fwdvt,fwdg2t,fwdmt> t>

case 0: # of sntb1.

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

<f,<0,v,g1,g2,m # Values from this step

,0 # Stop keeps recording that U[0]=1

,0 # StepNumber keeps recording we are at step>0

We do not know whether U!=1 or U=1 yet

,B # RightShift keeps recording that neither

of U,G1 shift i.e. U[0]=1

,B,B,B > # Dummy values.

,ft <ut,vt,g1t,g2t,mt,0,0,rst,fwdvt,fwdg2t,fwdmt> t>

case B: # of sntb1. Can never happen

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

<f,<0,v,g1,g2,m,0,0,B,B,B,B >

,ft <ut,vt,g1t,g2t,mt,0,B,rst,fwdvt,fwdg2t,fwdmt> t>

} # switch of sntb1 end

case B: # of uba. Can never happen

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

<f,<0,v,g1,g2,m,0,0,B,B,B,B >

,ft <ut,vt,g1t,g2t,mt,0,B,rst,fwdvt,fwdg2t,fwdmt> t>

} # switch uba end.

case B: # of stopt. We are at step 0

switch (sntb2) {

case 1: # Cannot occur. As soon as one of the

previous cases sets StpNmbr[j]=1,

for some j<=i-1, then Stop[k]=0,

for every k>=j

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

<f,<u,v,g1,g2,m,0,1,B,B,B,B >

,ft <ut,vt,g1t,g2t,mt,B,1,rst,fwdvt,fwdg2t,fwdmt> t>

case 0: # of sntb2. We are at step>0

switch (rst) {

case 1: # of rst. U and G1 shift to the right.

I.e. U[0]=0, G1[0]=0

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

36

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(\<fwdvt1,fwdvt2>. (\<fwdmt1,fwdmt2>. (\<fwdg2t1,fwdg2t2>.

<f,<u # Value of this step

,fwdvt # Value from step i-1

,g1 # Value of this step

,fwdg2t1 # Value from step i-1

,fwdmt1 # Value from step i-1

,B # Stop keeps recording that U[0]=0

,0 # StepNumber keeps recording we are at step>0

,1 # RightShift keeps recording that U, G1 shift

,v # Forwarding the three bits that

must shift to the left

,g2

,m >

,ft <ut,vt1,g1t,g2t,mt,B,0,1,vt2,fwdg2t2,fwdmt2> t>)

(fwdg2t <1,1> <0,0> <B,B>)) (fwdmt <1,1> <0,0> <B,B>))

(fwdvt <1,1> <0,0> <B,B>))

case 0: # of rst. U and G1+F shift to the right

I.e. U[0]=0, G1[0]=1

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(\<fwdmt1,fwdmt2>. # two copies of mt to build elements

(\<fwdg2t1,fwdg2t2>. # two copies of fwdg2t to build elements

(\<me1,me2>. # two copies of m to build elements

<f,<u # Value of this step

,fwdvt # Value from step i-1

,Xor g1 me1 # Values of this step

,B # Value from step i-1

,fwdmt1 # Value from step i-1

,B # Stop keeps storing that U[0]=0

,0 # StepNumber keeps recording

we are at step>0

,0 # RightShift keeps recording that

U, G1+F shift

,v # Forwarding the three bits that

must shift to the left

,g2

,me2 >

,ft <ut,vt,g1t,fwdg2t1,mt,B,0,0,fwdvt,fwdg2t2,fwdmt2> t>

(m <1,1> <0,0> <B,B>)) (fwdg2t <1,1> <0,0> <B,B>))

(fwdmt <1,1> <0,0> <B,B>))

case B: # Neither of U, G1 shift to the right.

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(\<fwdmt1,fwdmt2>. # two copies of mt to build elements

37

(\<fwdg2t1,fwdg2t2>.

(\<fwdvt1,fwdvt2>.

<f,<1,fwdvt1,g1,fwdg2t1,fwdmt1

,0 # Stop keeps storing that U[0]=1

,0 # StepNumber keeps recording

we are at step>0

,B # RightShift keeps recording that

neither of U, G1 shift

,v,g2,m >

,ft <ut,vt,g1t,g2t,mt,B,0,B,fwdvt2,fwdg2t2,fwdmt2> t>

(fwdvt <1,1> <0,0> <B,B>))

(fwdg2t <1,1> <0,0> <B,B>))

(fwdmt <1,1> <0,0> <B,B>))

} # switch rst end.

case B: # of sntb2. We are at step 0

We must check the value of U[lsb], G1[lsb]

switch (ubb) {

case 1: # of ubb. z does not divide U.

I.e. U[0]=1. Moreover, U may be 1.

I.e. the only bit equal to 1 is U[0]

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(\<g2c,g2d>.

<f,<1,v,g1,g2c,m

,0 # Stop records that U[0]=1

,0 # StepNumber ’increases’ by 1

,B # RightShift records that neither of U, G1 shift

,v,g2d,m >

,ft <ut,vt,g1t,g2t,mt,B,B,rst,fwdvt,fwdg2t,fwdmt> t>

(g2 <1,1> <0,0> <B,B>))

case 0: # of ubb. z divides U i.e. U[0]=0

switch (gb) {

case 1: # of gb. z does not divide G1, i.e. G1[0]=1.

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(\<fwdmt1,fwdmt2,fwdmt3>.

(\<fwdg2t1,fwdg2t2>.

(\<fwdvt1,fwdvt2>.

(\<me1,me2>. # two copies of m to build elements

<f,<0

,fwdvt1 # This is the lsb of V.

We shall erase it

,Xor g1 me1

,fwdg2t1 # This is G2[lsb]

We shall erase it.

,fwdmt1 # This is the M[lsb].

38

We shall erase it

,B # Forward Stop which records that U[0]=0

,0 # Forward StepNumber

,0 # Forward RightShift which records

that U, G1+F must shift

,v # Forward the three bits that

must shift to the left

,g2

,me2 >

,ft <ut,vt,g1t,g2t,fwdmt2,B,B,rst,fwdvt2,fwdg2t2,fwdmt3> t>

(m <1,1> <0,0> <B,B>)) (fwdvt <1,1> <0,0> <B,B>))

(fwdg2t <1,1> <0,0> <B,B>)) (fwdmt <1,1,1> <0,0,0> <B,B,B>))

case 0: # of gb. z divides G1, i.e. G1[0]=0

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

(\<fwdmt1,fwdmt2,fwdmt3>.

(\<fwdg2t1,fwdg2t2>.

(\<fwdvt1,fwdvt2>.

<f,<0

,fwdvt1 # This is V[lsb].

We shall erase it

,0

,fwdg2t1 # This is G2[lsb].

We shall erase it

,fwdmt1 # This is M[lsb].

We shall erase it

,B # Forward Stop which records that U[0]=0

,0 # Forward StepNumber

,1 # Forward RightShift which records

that U, G1 must shift.

,v # Forwarding the three bits that

must shift to the left

,g2

,m >

,ft <ut,vt,g1t,g2t,fwdmt2,B,B,rst,fwdvt2,fwdg2t2,fwdmt3> t>

(fwdvt <1,1> <0,0> <B,B>)) (fwdg2t <1,1> <0,0> <B,B>))

(fwdmt <1,1,1> <0,0,0> <B,B,B>))

case B: # of gb can never happen

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

<f,<0,v,B,g2,m,B,B,B,B,B,B >

,ft <ut,vt,g1t,g2t,mt,B,B,rst,fwdvt,fwdg2t,fwdmt> t>

} # switch of gb end

case B: # of ubb.

\f.\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\fwdv.\fwdg2.\fwdm.

39

\ut.\vt.\g1t.\g2t.\mt.

\snt.\rst.\fwdvt.\fwdg2t.\fwdmt.\t.

<f,<B,v,B,g2,m,B,B,B,B,B,B >

,ft <ut,vt,g1t,g2t,mt,B,B,rst,fwdvt,fwdg2t,fwdmt> t>

} # switch ubb end

} # switch sntb2 end

} # switch of stopt

) f # is the ’virtual’ successor of the threaded words given

as output. It must be used linearly, after we choose

what to do on the threaded words. Analogously to f,

after we choose what to do on the threaded words, we

use linearly (a copy) ue (of u), v, g1, g2, m, fwdv,

fwdgb and fwdp.

ue v ge g2 m stop sn rs fwdv fwdg2 fwdm

ut vt g1t g2t mt snt rst fwdvt fwdg2t fwdmt t

) (u <1,1,1> <0,0,0> <B,B,B>) # The first copy of u[i] may

serve for branching. The

second one serves to build a

new state. The first copy of

(g1 <1,1> <0,0> <B,B>) # G1[i] may serve for branching.

The second one serves to

build a new state.

(snt <1,1> <0,0> <B,B>) # Both copies of sn[i-1] serve

for branching.

) et

BFwdVst =

\x.<(\w.\z.z),<B # This is U[0]

,B # This is V[0]

,B # This is G1[0]

,B # This is G2[0]

,B # This is M[0]

,B # This is Stop[0]

,B # This is StpNmbr[0]. We are at step 0

,B # This is RghtShft[0]

,B # This is FwdV[0]

,B # This is FwdG2[0]

,B # This is FwdM[0]

> ,x>

BkwdVst =

\tw. # Threaded words vector that BkwdVst visits in backward direction.

In the main text we call it wBkwdVstInput.

\f.\x. (LastStepBkwdVst f) (tw (SBkwdVst f) (BBkwdVst x))

BBkwdVst =

\x.<(\w.\z.z),<B # This is U[0].

,B # This is V[0].

,B # This is G1[0].

40

,B # This is G2[0].

,B # This is M[0].

,B # This is Stop[0].

,B # This is StpNmbr[0].

,B # This is RghtShft[0].

,B # This is FwdV[0].

,B # This is FwdG2[0].

,B # This is FwdM[0].

> ,x> .

SBkwdVst =

\f.

\<u,v,g1,g2,m,stop,sn,rs,fwdv,fwdg2,fwdm>.

\<ft,et,t>.

(\<ut,vt,g1t,g2t,mt,stopt,snt,rst,fwdvt,fwdg2t,fwdmt>.

(switch (stopt) {

case 1: # of stopt means U=1. Keep propagating Stop=1

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

<f,<u,v,g1,g2,m,

,1 # Propagation of Stop=1.

,sn,rs,fwdv,fwdg2,fwdm>

>

,ft <ut,vt,g1t,g2t,mt,1,snt,rst,fwdvt,fwdg2t,fwdmt> x>

case 0: # of stopt. So U[0]=1, U1=1. Keep executing

Step 4, 5 of BEA. StepNumber keeps recording

the relation between deg(U), deg(V)

switch (rs) {

case 1: # of rs. deg(U)<deg(V) detected.

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

((\<ua,ub>.\<g1a,g1b>.

<f,<Xor v ua,ub,Xor g2 g1a,g1b,m

,0 # Propagate stop=0.

,1 # Propagate deg(U) < deg(V).

,rs,B,B,B>

,ft <ut,vt,g1t,g2t,mt,0,snt,1,B,B,B> t>

) (u <1,1> <0,0> <B,B>)) (g1 <1,1> <0,0> <B,B>)

case 0: # of rst. deg(U)>deg(V) detected.

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

((\<va,vb>.\<g2a,g2b>.

<f,<Xor u va,vb,Xor g1 g2a,g2a,m

,0 # Propagate stop=0.

,0 # Propagate deg(U) > deg(V).

,rs,B,B,B>

,ft <ut,vt,g1t,g2t,mt,0,snt,0,B,B,B> t>

) (v <1,1> <0,0> <B,B>)) (g2 <1,1> <0,0> <B,B>)

case B: # of rst. Relation between deg(U), deg(V)

still unknown

41

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

((\<va,vb>.\<g2a,g2b>.

<f,<Xor u va,vb,Xor g1 g2a,g2b,m

,0 # Propagate Stop=0.

,B # Set StepNumber=B to propagate that the

relation between deg(U) and deg(V)

is unknown

,rs,B,B,B>

,ft <ut,vt,g1t,g2t,mt,0,snt,B,B,B,B> t>

) (v <1,1> <0,0> <B,B>)) (g2 <1,1> <0,0> <B,B>)

} # switch rst

case B: # of stopt

switch (rs) {

case 1: # of rs. So U[0]=0. Keep propagating

RightShift=1. The last step will compute

the predecessor of the input threaded words

to implement the shift to the right U and one

between G1 or G1+F

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

<f,<u,v,g1,g2,m,

,B # Propagation of Stop=B.

,sn #

,1 # Keep propagating RightShift=1 which implies

we shall calculate the predecessor on the

threaded words in input

,B,B,B> # Dummy values.

,ft <ut,vt,g1t,g2t,mt,B,snt

,1 # Propagates the previous value of RightShift

,B,B,B> x

>

case 0: # of rs. Never occurs because the base case, i.e.

stopt=B and rs=B and Stop=B, sets RightShift=1

which the case here above with rs=1 keeps

propagating. This is not a mistake because it is

important to calculate the predecessor in the

course of the very last step

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

<f,<u,v,g1,g2,m,

,B # Propagation of Stop=B

,sn #

,0 # Keep propagating RightShift=0 which implies we

shall calculate the predecessor on the threaded

words in input

,B,B,B> # Dummy values

,ft <ut,vt,g1t,g2t,mt,B,snt

,0 # Propagates RightShift=0 from the previous step

,B,B,B> x>

42

case B: # of rst.

Base case. Start propagating the relevant bits

switch (stop) {

case 1: # of stop. So U=1. The iteration must be

an identity. We start propagating Stop=1

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

<f,<u,v,g1,g2,m,

,1 # Propagation of Stop=1.

,B,B,B,B,B> #

,ft <ut,vt,g1t,g2t,mt,stopt,snt,rst,B,B,B> x>

case 0: # of stop. I.e. U[0]=1, U!=1.

Start executing Step 4, 5 of BEA

Need to compare u and v

switch (u) {

case 1: # of u

switch (v) {

case 1: # of v

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

(\<g2a,g2b>.

<f,<Xor 1 1,1,Xor g1 g2a,g2a,m

,0 # Propagate Stop=0

,B # StepNumber=B says we do not know

the relation between deg(U), deg(V)

,rs,B,B,B>

,ft <ut,vt,g1t,g2t,mt,stopt,snt,rst,B,B,B> t>

) (g2 <1,1> <0,0> <B,B>)

case 0: # of v

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

(\<g2a,g2b>.

<f,<Xor 1 0,0,Xor g1 g2a,g2b,m

,0 # Propagate Stop=0

,0 # StepNumber=0 records deg(U)>deg(V)

,rs,B,B,B>

,ft <ut,vt,g1t,g2t,mt,stopt,snt,rst,B,B,B> t>

) (g2 <1,1> <0,0> <B,B>)

case B: # of v. Never occurs.

SBkwVst45NeverOccurs

} # switch v

case 0: # of u

switch (v) {

case 1: # of v

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

(\<g1a,g1b>.

<f,<Xor 1 0,0,Xor g2 g1a,g1b,m

,0 # Propagate Stop=0

,1 # StepNumber=0 records deg(U)<deg(V)

43

,rs,B,B,B>

,ft <ut,vt,g1t,g2t,mt,stopt,snt,rst,B,B,B> t>

) (g1 <1,1> <0,0> <B,B>)

case 0: # of v. I.e. deg(U)=deg(V)

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

(\<g2a,g2b>.

<f,<Xor 0 0,0,Xor g1 g2a,g2b,m

,0 # Propagate stop=0

,B # StepNumber=B propagates we do not know

the relation between deg(U),deg(V)

,rs,B,B,B>

,ft <ut,vt,g1t,g2t,mt,stopt,snt,rst,B,B,B> t>

) (g2 <1,1> <0,0> <B,B>)

case B: # of v. Never occurs.

SBkwVst45NeverOccurs

} # switch v

case B: # of u. Never occurs.

SBkwVst45NeverOccurs

} # switch u

case B: # of stop. So U[0]=0. Start propagating

RightShift=1. The last step will compute the

predecessor of the input list

to implement the shift to the right of U and

one between G1 or G1+F.

\u.\v.\g1.\g2.\m.\stop.\sn.\rs.

\ut.\vt.\g1t.\g2t.\mt.\stopt.\snt.\rst.

<f,<u,v,g1,g2,m,

,B # Propagation of Stop=B.

,B # Dummy value.

,1 # Propagate RightShift=1. I.e. we shall calculate

the predecessor on the threaded words in input.

The predecessor realises the shift to the right.

Propagating 0 in place of 1 would yield the

same result

,B,B,B> # Dummy values.

,ft <ut,vt,g1t,g2t,mt,stopt,snt,rst,B,B,B> x>

} # switch stop

} # switch rst

} # switch stopt

) u v g1 g2 m stop sn rs ut vt g1t g2t mt stopt snt rst

) et

where

SBkwVst45NeverOccurs =

\u.\v.\g1.\g2.\m.

\stop.\sn.\rs.\ut.\vt.\g1t.\g2t.\mt.

\stopt.\snt.\rst.

<f,<u,v,g1,g2,m,stop,sn,rs,B,B,B>

44

,ft <ut,vt,g1t,g2t,mt,stopt,snt,rst,B,B,B> t>

LastStepBkwdVst =

\<f,e,t>.

(\<u,v,g1,g2,m,_,_,_,_,_,_>.

(switch (stop) {

case 1: # of stop says that U=1. Do nothing

\u.\v.\g1.\g2.\m.f <u,v,g1,g2,m,B,B,B,B,B,B> t

case 0: # of stop. Conclude an iteration that

implements Step 4 and 5 of BEA

switch (rs) {

case 1: # of rs. deg(U)<deg(V) detected

\u.\v.\g1.\g2.\m.

((\<ua,ub>.\<g1a,g1b>.

f <Xor v ua,ub,Xor g2 g1a,g1b,m,B,B,B,B,B,B> t

) (u <1,1> <0,0> <B,B>)) (g1 <1,1> <0,0> <B,B>)

case 0: # of rs. deg(U)>deg(V) detected.

\u.\v.\g1.\g2.\m.

((\<va,vb>.\<g2a,g2b>.

f <Xor u va,vb,Xor g1 g2a,g2b,m,B,B,B,B,B,B> t

) (v <1,1> <0,0> <B,B>)) (g2 <1,1> <0,0> <B,B>)

case B: # of rs. We know deg(U)=deg(V)

\u.\v.\g1.\g2.\m.

((\<va,vb>.\<g2a,g2b>.

f <Xor u va,vb,Xor g1 g2a,g2b,m,B,B,B,B,B,B> t

) (v <1,1> <0,0> <B,B>)) (g2 <1,1> <0,0> <B,B>)

} # switch rs

case B: # of stop. Conclude an iteration that must

implement a shift to the right. Do not insert

the last element of the threaded list. I.e.,

calculate the predecessor

\u.\v.\g1.\g2.\m.t

} # switch stop

) u v g1 g2 m

) e

wRevInit =

\w.\f.w (wRevInitS f) wRevInitB

wRevInitS =

\f. \e. (\<u,v,g1,g2,m,stop,_,_,_,_,_>.

(\e.\r.\z.r (f <u,v,g1,g2,m,stop,B,B,0,0,0> z)) e

wRevInitB = \x.x

45

	Introduction
	Typeable Functional Assembly
	Summing up

	Basic Definitions, Types and the Core Library
	Basic Definitions and Types
	Core Library
	Meta-combinators

	TFA Combinators for Binary-Fields Arithmetic
	Addition
	Modular Reduction
	Square
	Multiplication
	Multiplicative Inversion
	A simple running example
	The code of FwdVst and of BkwdVst
	Typeability of wInv

	Conclusions and future work
	Definition of Basic Combinators
	Some examples of type inference
	Pseudocode of the main components of wInv

