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Abstract 

Cancer cells are characterized by a metabolic shift in cellular energy production, orchestrated by the transcription factor 

HIF-1α, from mitochondrial oxidative phosphorylation to increased glycolysis, regardless of oxygen availability 

(Warburg effect). The constitutive upregulation of glycolysis leads to an overproduction of acidic metabolic products, 

resulting in enhanced acidification of the extracellular pH (pHe ~ 6.5), which is a salient feature of the tumor 

microenvironment. Despite the importance of pH and tumor acidosis, there is currently no established clinical tool 

available to image the spatial distribution of tumor pHe. The purpose of this review is to describe various imaging 

modalities for measuring intracellular and extracellular tumor pH. For each technique we will discuss main advantages 

and limitations, pH accuracy and sensitivity of the applied pH responsive probes and potential translatability to the clinic. 

Particular attention is devoted to methods that can provide pH measurements at high spatial resolution useful to address 

the task of tumor heterogeneity and to studies that explored tumor pH imaging for assessing treatment response to 

anticancer therapies.  
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1. Introduction 

Solid tumors are characterized by a highly heterogeneous microenvironment, resulting from the combination of poor 

vascular perfusion and regional hypoxia [1]. Metabolic adaptation represents a canonical response of tumor cells to 

survive, orchestrated by the transcription factor HIF-1α, which modulates genes involved in angiogenesis, glycolysis, 

proliferation and metastasis. This metabolic shift is characterized by elevated glycolysis and lactate production, regardless 

of oxygen availability (Warburg effect) [2,3]. The constitutive upregulation of glycolysis leads to the exaggerated 

generation of metabolites, including acidic products such as lactate and protons that, upon accumulation in the cytoplasm, 

might result in intracellular acidosis. Therefore, tumor cells require additional activities in order to maintain an 

intracellular pH (pHi) compatible with the biochemical processes typical of cells characterized by high proliferation rates 

[4,5]. This task is taken up by several and redundant families of proton transporters that excrete lactate molecules and 

protons into the extracellular-extravascular compartment, which induces extracellular acidification, resulting in the 

reversed extracellular pH (pHe) gradient in tumors in comparison to healthy tissues [6]. 

Clinical investigations support the view that the acidic microenvironment in tumors results in less favorable prognosis 

associated to increased metastatic potential and resistance to chemo- and radio-therapy [7]. Therefore, acid production 

(or extracellular acidification) is even more important than the altered glucose metabolism [8,9]. Because survival in the 

tumor microenvironment depends on the control of pH, interference with pH regulating systems is considered a relevant 

therapeutic goal [10]. Thus extracellular acidosis of solid tumors acquires a prognostic value and therapeutic manipulation 

of tumor acidosis might represent a novel strategy for a successful treatment of cancer [11,12]. 

On the basis of the above considerations, the need for advanced medical imaging approaches, based on mapping of tumor 

pHe that allow early detection of treatment effect upon the impairment of tumor pH dynamics are urgently needed. The 

development/exploitation of imaging-based procedures able to quantitatively measure tumor pHe may provide a non-

invasive additional information to currently used nuclear medicine techniques (18F-FDG/PET) for cancer assessment. If 

pH regulation is an essential component of tumor cell survival and its impairment may halt proliferation of the primary 

tumor and formation of metastases, a tool able to non-invasively quantify tumor pHe appears to have optimal chances to 

be translated to the clinic. 

This article surveys the imaging-related methods that have been proposed, and validated in vivo, for measuring tumor 

acidosis, including magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear medicine (positron emission 

tomography, PET), electron paramagnetic resonance (EPR), optical imaging (OI) and photoacoustic imaging (PAI). For 

each method, the basic principles are described together with the most representative pH sensitive probes and approaches 

that have been exploited for attaining in vivo tumor pH maps. 

 

2. Magnetic Resonance Imaging Methods 

 



2.1. Magnetic Resonance Spectroscopy (MRS) 

Magnetic Resonance Spectroscopy (MRS) has been proposed in the early days of in vivo Nuclear Magnetic Resonance 

(NMR) applications as a direct approach to the detection and quantification of metabolites in living tissues. In the 

oncological field, MRS allows the assessment of abnormal metabolic profiles that may act as useful prognostic 

biomarkers. In addition to metabolites, MRS has also been exploited for assessing pH in the intracellular (pHi) and 

extracellular (pHe) compartments of tumors cells by combining acceptable sensitivity threshold with spatial resolution. 

Intense efforts have been devoted to design suitable pH reporters with the aim of satisfying the criteria of favorable 

pharmacokinetics, pKa suitable for the physiological pH range, good sensitivity and low toxicity. The measurements of 

pH by MRS is based on the chemical shift difference between a pH-dependent resonance and a pH-independent peak 

taken as reference. 31P, 1H and 19F have been the most investigated NMR active nuclei for selecting pH-dependent 

resonances containing species.  

 

2.1.1. MRS – 31P 

31P MRS has been the first technique applied for measuring pH in tumors.  Phosphorus-31 is 100% abundant and several 

phosphorus-based metabolites are intracellularly present at a concentration of 0.1-5.0 mM.  Among them, inorganic 

phosphate (Pi) is routinely used for measuring pH in vivo due to the dependence of its chemical shift on pH changes in 

the physiological range (pKa ~6.8). As pH-independent reference peaks, the signals from endogenous nucleoside 

triphosphates (NTP) and phosphocreatine (PCr) are usually considered. Concerns regarding the use of different reference 

spectra on pH determination have been raised, however, a recent comparative study involving healthy volunteers and 

patients with non-Hodgkin’s lymphoma demonstrated that the direct Pi-αATP method is more reliable for measuring pH 

in tumors, showing low variation among patients and reasonable repeatability [13]. Considering that intracellular Pi is 

present at a concentration of 2-3 mM, whereas in the extracellular compartment it is present at a concentration of 1 mM, 

it can be calculated that, for an extracellular volume below 55%, most of the Pi MRS-based signal is coming from the 

intracellular compartment, thus indicating that the observed shift of Pi is essentially a reporter of intracellular pH [14]. 

This statement has been validated in vivo by exploiting the intracellular pH reporter 2-deoxyglucose (2DG), that is 

phosphorylated to 2DG6P and accumulates within cells overcoming the glycolytic process [15]. 31P MRS of fibrosarcoma 

xenograft tumors revealed a good correspondence between pH values obtained from Pi and from 2DG6P measurements, 

confirming that Pi-MRS measurements definitely report on intracellular pH. To supply the lack of extracellular pH 

reporter probes for 31P-MRS, exogenous phosphonate agents have also been developed. Despite the fact that several 

extracellular phosphonate-based probes showed good characteristics [16], most in vivo applications have historically 

involved the use of 3-aminopropylphosphonate (3-APP). This compound shows a pKa in the physiological range and 

accurately reports the pHe with little influence of temperature and ion effect [17]. Therefore, simultaneous acquisition of 

Pi and 3-APP can be combined for assessing the pH values within tissue compartments and quantitative parameters can 

be extrapolated for an extensive characterization [18]. 31P-MRS measurements elucidated in vivo the concept of the 

cellular pH gradient of tumors, indicating that intracellular pH in tumor is usually more alkaline in comparison to normal 

tissue, whereas extracellular pH is generally more acidic. This peculiar information has been exploited in several studies 

aiming at reverting the acidic-base pH gradient as a potential approach for treating cancer. This idea is based on the fact 

that the kinetic uptake of drugs strongly depends on their ionization state in relation to a specific pHi/pHe condition [19]. 

Several in vivo investigations showed increased cytotoxic activity of chemotherapeutic drugs as mitoxantrone and 

doxorubicin upon induced tumor alkalinization with sodium bicarbonate, which raises the extracellular pH of 0.4-0.8 



units. [20,21] Moreover, inhibitors of mitochondrial metabolism in combination with hyperglycemic conditions induced 

selective acidification of human melanoma xenografts, with a significant decrease of both intra and extracellular pH [22].  

Furthermore, 31P MRS approach was recently used in a mouse model to evaluate early intracellular pH changes upon 

antiangiogenic treatment of recurrent glioblastoma [23].  This approach can therefore provide assessments of both intra- 

and extra-cellular tumor pH by combining endogenous and exogenous 31P-containing molecules. However, the potential 

neurotoxicity of 3-APP (analog of the γ-aminobutyric acid neurotransmitter) in presence of compromised blood brain 

barriers is a concern for human use and the low spatial resolution and long acquisition times combined with the 

requirement of dedicated coils limit its application in vivo. 

 

2.1.2. MRS – 19F 

31P MRS has 15-times less sensitivity in comparison to 1H spectroscopy, conversely, sensitivity of 19F is reasonably close 

to proton spectroscopy (83%) and its isotopic abundance is 100%. The main advantage of 19F-MRS for in vivo application 

relies on the minimal NMR background interference from endogenous signal and the large chemical shift range (~300 

ppm) that allowed the development of several fluorinated probes able to report microenvironment changes of pO2, 

hypoxia, enzyme activity, and pH [24]. Aromatic molecules, such as the vitamin B6 analogue fluoropyridoxol, were 

reported for assessing pH in vivo thanks to the larger chemical shift response (~9.5 ppm) to changes in pH in comparison 

to fluoroalanine-based probes (~2 ppm) [25]. Early studies demonstrated the capability of 6-Fluoropyridoxol (6-FPOL) 

to simultaneously measure the dynamic changes of pHe/pHi in perfused rat hearth with a time resolution of 2 minutes 

[24]. As the pKa (~8.2) of 6-FPOL is not ideal, a novel membrane-impermeant CF3-modified 

6‑Trifluoromethylpyridoxine with a pKa in the physiological range was designed. This new molecule was successfully 

detected in mammary and prostate tumor xenografts allowing the measurement of the extracellular pH with a sensitivity 

of 0.40 ppm/pH unit [26]. However, fluorophenols have the drawback of ion-binding, thus limiting their application in 

vivo. An additional 19F-MRS probe, the fluoroaniline sulphonamide ZK-150471, has been validated as a valid pH reporter 

in different tumor xenograft models. The aromatic fluorine signal of ZK-150471 showed a chemical shift highly 

dependent on pH, whereas the trifluoromethyl group served as the intramolecular pH-independent reference. In vivo, ZK-

150471 demonstrated to distribute only within the extracellular space of the perfused regions, showing good 

correspondence with microelectrodes pHe measurements [27]. Further, the capability of ZK-150471 to report pHe was 

compared with the 31P-MRS probe 3-APP in tumors. Although pHe values were not significantly different, the fluorinated 

probe has the advantage of a lower toxicity, thus allowing the administration of higher doses for investigating pH 

heterogeneity in tumors. The main limitations for in vivo applications is the relative instability of fluorinated probes, and 

their nonspecific accumulation in tissues due to their hydrophobicity. To overcome these issues, new formulations based 

on the encapsulation of 19F compounds have been proposed. Promising results were obtained with PEGylated nanogels 

that showed variation in size in accordance to pH changes, in the range of 6.8-7.3, indicating that extracellular pH can be 

indirectly estimated from measuring the diameter of nanoprobes by 19F-MRS [28]. Similarly, an on/off strategy based on 

micelles encapsulating 19F containing species allowed the encoding of narrow pH transition (0.25 pH unit) through 

barcode map generated from specific 19F signatures [29]. Despite the absence of a background signal that improves the 

specificity of this approach, the moderate sensitivity still limits the spatial resolution achievable by 19F-MRS, even at 

higher magnetic fields. 

 

2.1.3. MRS - 1H 



To overcome both 31P and 19F-MRS  issues, proton spectroscopy represents a valid alternative in terms of increased 

sensitivity due to its highest gyromagnetic ratio and a natural abundance of 99.98 %. These properties represent a great 

advantage for gaining in spatial resolution with reduced acquisition time  but a technical challenge since the broad and 

intense peak arising from the bulk water molecules need to be nullified for observing the smaller resonances of the 

exploited probes. For instance a 1H-NMR pH sensitive probe was reported by Aime and coworkers, exploiting a 

paramagnetic complex of Ytterbium, a lanthanide ion able to induce large paramagnetic shifts of nearby nuclei [30]. This 

compound was shown in vitro to represent an excellent NMR pH indicator since the chemical shift separation between a 

selected pair of resonances is strongly pH dependent and not affected by changes in concentration or in ionic strength. 

Moreover, the NMR resonances of the paramagnetic complex cover a much wider chemical shift region than those of 

diamagnetic systems, providing higher pH sensitivity since the NMR resonances are easily distinguishable from that of 

endogenous molecules. Further details of the in vivo exploitation of the large 1H-chemical shift of paramagnetic metal 

complexes as pH indicators can be found in the PARACEST paragraph. 

For measuring in vivo pH by 1H-MRS, histidine and imidazole-containing molecules were initially considered 

due to i) their pKa (~7.0) close to the physiological values and ii) their proton NMR peaks that resonate enough away 

from the very intense water signal. First studies exploited histidine, a precursor of imidazole, since the presence of two 

resonances that show a pH-dependent chemical shift due to the protonation and deprotonation of the amine group [31]. 

Exploiting an oral histidine loading to increase the natural concentration of this molecule in the brain, they were able to 

report pH values in healthy human brains. The most significant results were achieved with 2-imidazole-1-yl-3-

ethoxycarbonyl propionic acid (IEPA), that demonstrated to remain well confined in the extracellular environment. H2-

IEPA shows a chemical shift that is highly dependent on pH with a titratable range of 7.8-8.9 ppm and a good  pH accuracy 

of 0.1 pH units, thus providing the first in vivo tumor pHe map  [32]. This approach was further explored in a C6 

glioblastoma multiforme model implanted in rats with a spatial resolution of 1x1x4 mm3 [33]. In this study, IEPA 

demonstrated that a more acidic pH occurs in tumors in comparison to normal tissues. In addition, this approach allowed 

mapping the distribution of IEPA, metabolic compounds and lactate within the same acquisition experiment. Although it 

was expected a spatial correlation with lactate and proton concentration, a local mismatch between the two measurements 

was reported. This result was further elaborated in a subsequent paper devoted to the use of a new imidazole-derivative, 

the (±)2-(imidazole-1-yl)succinic acid (ISUCA, Fig. 1a) that demonstrated superior pharmacokinetic properties in 

comparison to IEPA and a chemical shift strongly dependent on pH changes, Fig. 1b,c [34]. Similarly, a voxel by voxel 

comparison showed a different spatial distribution of acidity and lactate in gliomas, suggesting that intra and extracellular 

flow of protons might influence acidosis at distant sites from lactate accumulation. More recently, ISUCA was exploited 

to monitor the activity of the isoenzyme carbonic anhydrase IX (see Pastorikova this volume) that produces H+ and HCO3
- 

in the extracellular environment from the hydration of CO2, and is associated with the most aggressive forms of cancer 

[35]. This mechanism of acidification has been validated in vivo on colorectal tumor xenografts with different expression 

level of CAIX. Interestingly, mapping of pHe with ISUCA revealed that high CAIX expression decreased the steady state 

pH of the extracellular compartment in comparison to low CAIX expressing tumors, whereas no evident differences in 

pHi measurements by 1H-MRS were observed (Fig. 1d,e).  

Although the accuracy and sensitivity on reporting pH changes offered by this method, the poor spatial resolution and the 

long acquisition times markedly affect pHe estimation and represent a limitation for accurate quantification of pHe 

heterogeneity. Another concern on using imidazole-based compound was raised due to the alkalization effect of non-

volatile buffer that might affect pH measurements. Indeed, IEPA demonstrated buffering capabilities and chronic 

administration of IEPA influenced the extracellular acidity of tumors and reduced the formation of lung metastasis in an 



experimental model of prostate cancer [36]. In addition, the rapid elimination by renal clearance and the presence of only 

one H2 proton in IEPA and ISUCA, limit the sensitivity of this approach for in vivo application. To overcome this issue, 

the design of diimidazoles probes with higher polarity and double H2 resonances intensity is currently under investigation, 

with promising results for in vivo pHe measurements [37].    

 

2.2. MRI Relaxometry-based pH sensitive probes 

Magnetic resonance imaging (MRI) has been widely used as a routine diagnostic tool in modern clinical medicine. The 

majority of clinically used MRI contrast agents are paramagnetic gadolinium (Gd3+) chelates, able to increase the signal 

intensity by shortening the longitudinal (T1) or the transversal (T2)  relaxation times of water protons close to the region 

where the metal complex distributes [38-41]. 

pH-dependent paramagnetic metal complexes allows the evaluation of pH changes in extracellular tumor 

microenvironment by altering their T1 MR relaxation [42,43].  The first approach to measure extracellular pH was 

described by Sherry and co-workers who exploited the protonation of the pendant arm of the Gd3+ complex of a 

tetraamide-based ligand. The changes in T1 relaxation times reflect changes in the number of inner sphere water molecules 

which is determined by the protonated/deprotonated state of the ligand [44]. The in vivo application of this pH responsive 

agent was investigated with the tetraphosphonate gadolinium complex Gd-DOTA-4Amp in both C6 glioma and renal 

carcinoma[45,46]. However, with this approach, changes in water proton relaxation times are dependent on both the 

concentration of the agent and its pH-responsiveness, therefore a direct readout of the solution pH is not possible. To 

overcome this limitation, a double injection of two similar contrast agents was proposed, one whose relaxivity is pH-

independent (Gd-DOTP) to estimate the concentration within the tissue of interest and the second one, with its relaxivity 

dependent on pH. By setting up a ratiometric method (i.e. by dividing the measured estimates) it is possible to calculate 

the pH. Unfortunately, the main drawbacks of this approach are: i) the administration of two contrast agents, ii) one has 

to assume analogous pharmacokinetic and biodistribution of the two agents within the same anatomical region. A similar 

approach has been exploited following the simultaneous injection of two paramagnetic agents, in which the pH sensitive 

Gd-DOTA-4Amp was mixed with the pH-insensitive T2
* dysprosium-DOTP agent (Fig. 2) [47]. Although this protocol 

allowed the investigators to obtain high-resolution pHe maps using relatively standard doses (0.2 mmol Gd/Kg), still 

changes in T2
* need to be measured before and after the injection of the agents, assuming no competing effects in T1/ T2

* 

times between the two contrast agents. Moreover, a similar biodistribution of the two probes within the tumor region must 

be proven for correctly quantifying tumor pHe. Other Gd-based agents have been investigated for mapping pH in a 

concentration independent manner, but unfortunately without in vivo validation studies. A Gd-based complex covalently 

bound to an oligopeptide that undergoes pH dependent configuration changes resulting in T1/T2 relaxation variations. 

Also, Aime and co-workers have demonstrated in vitro that Gd-DO3Asa-loaded liposomes provide a method for 

measuring pH by ratioing the measured relaxivities at different magnetic field strengths , opening new ways for 

relaxometric approaches [48,49]. Other approaches, combining dual 1H and 19F containing probes using the heteronuclear 
19F signal to normalize the contrast enhancement values due to a pH-sensitive Gd-complex have also been investigated 

[50]. 

 

2.3. MRI Chemical Exchange Saturation Transfer (CEST) Imaging 



Chemical exchange saturation transfer (CEST) imaging is a MRI contrast mechanism that allows non-invasive detection 

of molecules or microenvironmental tumor properties such as pH, redox status, enzymatic activity, etc. [51]  CEST 

method is based on the detection of changes of the water protons signal that decreases upon saturation magnetization at 

specific frequencies from an exchanging pool of protons, which can be from endogenous or exogenous sources. When 

RF pulses are applied, exchangeable protons from the contrast agent molecule become saturated and transfer their 

saturation to bulk water protons according to the chemical exchange rate, inducing a partial loss of net water signal.  By 

applying a series of pulses, the saturation is transferred continuously to the water protons and is possible to detect the 

presence of molecules with mobile protons within MR images [52-54]. By recording the changes in the water signal 

intensity as a function of the applied RF pulses at different resonances (frequencies) one can obtain the so-called Z-

spectrum that provides information on the exchanging molecule. 

Proton exchange process depends on several factors, including concentration, temperature and, very often, pH. Many 

agents show an exchange rate that is usually slower at low pH than at high pH due to the occurrence of base-catalyzed 

proton exchange [55]. To date, several pH-responsive CEST MRI agents have been developed and in general CEST has 

some advantages compared to other imaging modalities. First, CEST MRI has a great spatial resolution (less than 1mm) 

can provide tomographic images exploiting standard 1H coils available in clinical MRI scanners. In addition, in contrast 

to MRI-relaxivity methods, CEST can take advantage of the ratiometric approach for ruling out the concentration provided 

that in the same agent there are two different pools of exchanging protons. On the other hand, it suffers of limited 

sensitivity as it needs mM concentrations of mobile protons. The MRI-CEST approach can be further sub-divided 

according to the chemistry of the molecule containing the exchanging protons in DIACEST (diamagnetic molecules, 

including both endogenous or exogenous molecules) or PARACEST (paramagnetic molecules, mainly represented by 

metal complexes) agents [56,57]. The versatility of the CEST approach and probes enables different ways for measuring 

in vivo tumor acidosis. 

 

2.3.1. Endogenous DIACEST pH methods 

The chemical shift of typical endogenous diamagnetic exchangeable protons is within a few ppm from bulk water protons 

(0-4ppm) and since the exchange is base-catalyzed, the exchange rate is lower at acidic pH values. Amide protons 

contained in endogenous proteins and peptides have been the first source of mobile protons to be imaged and investigated 

for obtaining pH measurements according to their CEST contrast dependence from pH. This approach, called amide 

proton transfer (APT) imaging, has been exploited to obtain pH maps occurring in  experimental models of brain stroke  

[58], since the reduced pH level in the ischemic region leads to a reduction in APT exchange rate, i.e. to a decrease of the 

CEST effect [59,60]. This endogenous pH mapping method has also been shown to detect changes in pH following 

ischemia damage, but not yet applied to map tumor pH [61]. APT pH mapping has some limitations, since is not possible 

to distinguish between the intracellular and extracellular contribution of amide mobile protons, hence the derived pH 

values are a weighted estimate of both intracellular and extracellular pH. Secondly, the concentration of amide protons 

may vary in tumor, therefore accurate pH values cannot be calculated. To overcome these limitations, Sun and colleagues 

have proposed and investigated different correction approaches to isolate the exchange rate (i.e. pH-weighted) 

contribution in human brain [62-65]. On the other hand,  Bartha’s group set up an amine/amide concentration – 

independent detection method (AACID) based on a ratiometric approach [66]. CEST effects originating at 2.75 ppm for 

amine groups and at 3.5 ppm for amide protons belonging to endogenous mobile peptides and proteins are ratioed (i.e. 

divided), allowing removal of the concentration term from the calculated pH values. With the AACID approach, they 



were able to detect in vivo intracellular pH changes after administration of different anticancer treatments in a 

glioblastoma murine model. Following the treatment with topiramate, an inhibitor of lactate transporters, they observed 

a reduction of the intracellular tumor pH (corresponding to an increase in AACID values of 0.15 units) (Fig. 3) [67]. The 

method is sensitive enough to detect the slight changes in intracellular acidification of a implanted brain tumor following 

a single dose administration of different drugs, such as topiramate and dichloroacetate, targeting carbonic anhydrase 

isozymes and pyruvate dehydrogenase kinase, respectively [68,69]. More recently the same group applied this approach  

to monitor the therapeutic effect of quercetin, a monocarboxylate transporter inhibitor, on intracellular tumor acidification 

[70]. Since this approach does not require the administration of exogenous agents, it can be readily translated to the clinic. 

However, the above-mentioned limitations of mixing intracellular and extracellular contribution on the calculated pH still 

holds true.  

 

2.3.2. Exogenous DIACEST pH responsive probes 

Exogenous DIACEST agents have mobile protons with a chemical shift in the range 0-10 ppm from the water resonance. 

The main advantage in using exogenous agents relies on their capability to provide a net quantification of the extracellular 

tumor pH, since following the extravasation from the leaky tumor vasculature they remain in the extracellular 

extravascular space and do not enter the intracellular compartment. Iodinated or X-ray contrast agents, following the 

clever intuition of Silvio Aime [71], gained a lot of attention as DIACEST pH sensitive agents for several reasons, namely: 

i) the chemical structure of these molecules contains exchangeable amide protons that can be selectively saturated and 

provide CEST contrast in the 4-6 ppm range, far enough from water for a selective irradiation even at the magnetic field 

of 3T; ii) the CEST contrast is pH dependent and by applying a ratiometric approach, the pH measurement can be made 

concentration-independent; iii) they are FDA-approved contrast agents used in the last 40 years for computed tomography 

(CT) investigations and have demonstrated a very high safety profile. Ongoing studies are also evaluating these molecules 

as alternatives to Gd-based agents for studying tumor perfusion [72,73].  

Iopamidol (Isovue®, Bracco Diagnostics) was the first CT agent investigated as a MRI-CEST contrast agent, due to the 

high number of mobile protons (three amide protons and five hydroxyl protons) [74]. In particular, Iopamidol has two 

amide groups that resonate at 4.2 and 5.5 ppm, endowed with a pH dependent exchange rate that allows to set-up the 

proper ratiometric approach for measuring pH. In fact, it has been shown to provide good pH sensitivity and high pH 

accuracy in the 5.5-7.9 range (Fig. 4) [75,76] . While the first in vivo validation dealt with measuring renal pH and the 

assessment of pH changes in several models of kidneys injuries [77,78], subsequent investigations demonstrated the 

usefulness of this approach in providing accurate tumor pHe maps. Notably, the first in vivo validation of the relationship 

between tumor dysregulated glycolysis and acidosis was reported by combining MRI-CEST tumor pHe mapping with 

Iopamidol and PET imaging following 18F-FDG injection [79]. This work showed the feasibility of pH mapping using a 

clinical magnetic field strength of 3T and using homogenates of murine tumors for building the pH calibration curve (Fig. 

5a). In addition, we showed that the method can monitor tumor pHe changes following sodium bicarbonate treatment 

(Fig. 5b), which neutralizes tumor acidity. Our group provided a clear evidence of the relationship between tumor 

metabolism and acidosis since tumor regions with higher FDG uptake displayed lower pHe values in a HER2 positive 

breast cancer model (Fig. 5c). Thanks to the high spatial resolution attainable by the MRI modality, the obtained tumor 

pHe maps showed the occurrence of a large heterogeneity in tumor acidosis that was not possible to investigate so far 

with other imaging modalities (Fig. 5d-e), therefore providing complementary information to the gold standard 18F-FDG 

PET for assessing tumor metabolism. Furthermore, it has been found that in vivo MRI-CEST pH mapping is a valuable 



tool for monitoring the therapeutic effect of novel anticancer therapies targeting tumor metabolism [10,80,11]. 

Dichloroacetate (DCA) is a small mitochondria-targeting molecule that is able to revert the glycolytic phenotype by 

blocking the pyruvate conversion to lactate, thus potentially reducing the extracellular tumor acidification [81]. Breast 

tumor bearing mice treated with DCA showed a marked increase of tumor pHe values just three days after DCA 

administration, indicating the capability of CEST pH mapping to monitor early treatment effects that were associated to 

the decrease of lactate production (Fig. 6)  [82]. Moreover, this approach was able to detect the onset of the resistance to 

the DCA treatment after 15 days, when tumor pHe returned to more acidic values. Overall these results highlight the 

relationship between glycolysis, lactate and acidosis and how the overall picture can be well investigated using MRI 

CEST pH imaging.  

An analogous validation of DIACEST tumor pH mapping has been accomplished by Pagel’s group, who used another 

pH-sensitive X-ray contrast agent, Iopromide (Ultravist®, Bayer Healthcare). Similarly to Iopamidol, the presence of two 

amide protons resonating at 4.2 and 5.6.ppm allows a ratiometric approach for measuring pH in the range 6.6 to 7.2 with 

good pH precision [83]. Additional studies demonstrated that tumor pHe maps were correlated with biomarkers associated 

with tumor metabolism,  showing tumor pHe differences between preclinical models of mammary carcinoma [84]. In 

vivo comparative studies between Iopamidol and Iopromide in two different tumor murine models of Raji lymphoma and 

of MCF-7 breast cancer xenograft revealed that Iopamidol can detect more precisely the tumor pHe [85]  and that 

Iopamidol pHe mapping combined with 18F-FDG PET can provide additional information for evaluating the therapeutic 

efficacy to metformin treatment in a pancreatic cancer model [86]. Since iodinated contrast media are approved for CT 

investigations, owing to the high safety profile, they have already been used in clinical trials for MRI-CEST pH mapping 

[87]. Of note, Iopamidol has been exploited for providing tumor pHe mapping in patients with ovarian or mammary 

cancers, showing, for the first time, clinical images of tumor acidosis (Fig. 7) [88]. Such important results are paving the 

way for further studies needed to confirm the diagnostic utility of tumor pHe mapping in the clinical scenario for both 

diagnostic and therapeutic monitoring. 

In the above-reported ratiometric approach there is the requirement of two resonances with different chemical shift for 

carrying out their selective irradiation. To extend the capability of DIACEST molecules to act as pH sensors, a novel 

ratiometric approach for molecules possessing only one mobile proton pool (hence potentially transforming every CEST 

compound in a pH sensitive agent) was developed. This approach has been validated by using another FDA-approved X-

ray agent, Iobitridol (Xenetix®, Guerbet), with only one amide group resonating at 5.6 ppm (Fig. 8). It was shown that 

irradiating the same mobile proton pool with different power level, the measured contrast curves (with distinct pH 

dependence) can be ratioed, still preserving a good pH response in the pH range from 6 to 7.4 [89]. In vivo validation was 

demonstrated in a murine breast tumor model, where the measured pHe maps showed acidification of the tumor interstitial 

space, in good agreement with the corresponding Iopamidol-based tumor pHe maps. Further evolution of the power-based 

ratiometric approach has been demonstrated also for Iodixanol (Visipaque®, GE Healthcare), by exploiting a pulsed train 

saturation scheme [90].   

Other pH sensors such as imidazole-4-5-dicarboxamides (I45DCs) have also been explored to provide CEST signal at 

frequencies quite far from water, up to 9 ppm, that can guarantee better detection. These systems have shown a good pH 

sensitivity and accuracy, but so far they have been exploited only for measuring pH in kidneys and not yet in tumors [91]. 

 
2.3.3. Paramagnetic pH responsive probes (PARACEST) 



A significant limitation of DIACEST contrast agents is the small chemical shift separation between mobile protons and 

water resonances itself.  This small frequency difference not only impedes detection, but it also limits the types of 

chemistries that can be used to keep the hydrogen exchange in the slow-to-intermediate time scale. In turn, this term is 

responsible for the reduced sensitivity of DIACEST agents, in particular at low magnetic fields. Paramagnetic CEST 

contrast agents (i.e. metal complexes of lanthanides or other metal cations) may display a markedly increased chemical 

shift separations from the water resonance, which allow to access faster exchange rates before signal coalescence takes 

place [92]. The presence of mobile protons belonging to the coordinated water molecule or to chemical groups close to 

the coordinating metal cation has been exploited for generating the CEST contrast, which can be sensitized to a pH-

dependent exchange rate. CEST properties of lanthanide (Ln= Eu, Dy, Ho, Er, Tm, Yb) complexes with the macrocyclic 

DOTAM-Gly ligand have been investigated for this purpose [93]. These complexes possess two groups of exchangeable 

protons at different chemical shifts: the pH-sensitive amide protons as well as the directly metal-coordinated water 

protons. Among the investigated Ln-complexes, Yb-DOTAM-Gly showed the highest pH responsiveness in the pH range 

5.5-8.1. However, to provide pH measurement independent from concentration, a mixture of two complexes, Eu-

DOTAM-Gly and Yb-DOTAM-Gly need to be used to set up a ratiometric method, although this approach has not yet 

been validated in vivo. A solution to overcome the problem of the double (or cocktail) injection (i.e. the occurrence of 

different pharmacokinetics and biodistribution of two agents) was presented by Delli Castelli et al. who proposed a 

ratiometric approach based on ratioing the saturation transfer effects from the amide group (pH sensitive) and water (pH-

independent) occurring in the same molecule [94]. Another solution was proposed with  the Ytterbium (Yb) lanthanide 

analogue of the clinical Gd-based HPDO3A (Prohance) contrast agent that was considered as a PARACEST pH 

responsive agent [95]. Within this molecule, the presence of two equilibrium diastereoisomers  of Yb3+-HPDO3A in 

solution results in two CEST signals arising from the same hydroxyl proton close to the paramagnetic center with different 

MR absorption frequencies (77 and 91 ppm, respectively), thus allowing a ratiometric approach (Fig. 9). Yb3+-HPDO3A 

showed a pH sensitivity in the range 6.5-8.0 at a field strength of 7T and demonstrated in vivo tumor pHe maps in a 

murine melanoma model [96]. In a recent study using Yb3+-HPDO3A it was shown that tumor pHe mapping can also 

provide information about tumor aggressiveness in a rat glioma model [97]. The advantage of PARACEST agents 

endowed with highly shifted resonances is further witnessed in the case of Tm3+-HPDO3A pH sensitive agent, which 

allows in vivo tumor pH mapping at lower magnetic fields (~ 1 Tesla), due to the far shifted hydroxyl resonances of the 

two diastereoisomers (71 and 185 ppm, respectively) [98]. PARACEST agents possessing two set of exchangeable 

protons in the same structure were also investigated by Pagel’s group who reported that, in Yb3+DO3A-oAA, a complex 

containing both amide and aryl amine protons, the formation of intramolecular hydrogen bond with a proximal 

carboxylate ligand resulted in a reduction of the amine exchange rate thus generating a second CEST effect [99]. By 

combining high magnetic field and moderate power saturation levels; intratumoral injection of the paramagnetic agent 

was used to produce a parametric map of tumor pHe. 

Since PARACEST agents display resonances with large chemical shifts, the position of the resonating peak(s) can be 

exploited as an alternative approach for reporting on pH values. Sherry and coworkers developed an Europium-based 

contrast agent possessing a quite large shift in frequency of the metal-bound water molecule due to the delocalization of 

negative charge coming from the deprotonation of phenolic residue [100]. This process is driven by pH changes, where a 

change from 6.0 to 7.6 at 298K leads to a shift for the water 1H-signal of 4 ppm, i.e. from 50.5 to 54.5 ppm respectively. 

By recording the CEST spectrum on a 9.4T scanner, the measurement of the chemical shift of the absorbance peak 

provides a direct estimates of tissue pH in a concentration-independent manner without the need to set up a ratiometric 

approach [101]. Although promising, it has not yet been validated for measuring tumor pHe. Moreover, since PARACEST 



agents are sensitive to temperature changes, accurate maintenance of temperature homogeneity is necessary for a correct 

pH estimation. 

As the PARACEST method detects proton exchange between bulk water and any exchangeable sites (on the ligand itself 

or the inner sphere of bound water) that are shifted by the paramagnetic Ln3+ ion, another approach has been exploited 

interrogating non-exchangeable protons, in line with the early report of Aime et al. [30]. This method, dubbed biosensor 

imaging of redundant deviation in shifts (BIRDS) utilizes shifts of non-exchangeable protons from macrocyclic chelates 

complexed with paramagnetic lanthanide ions to generate pHe maps [102,103]. The most recent application of the BIRD 

approach used TmDOTP- to investigate tumor pHe differences in two glioma rat models, showing more acidic peritumoral 

pHe values in the more aggressive tumors [104]. A major concern regarding this approach was that renal ligation was 

needed to stop the renal clearance of the agent in order to allow a higher accumulation inside the tumor and, consequently, 

get higher sensitivity . In addition, very high magnetic fields (11.7T) were needed to finely resolve small shifts in the 

resonances, limiting the attainable pH accuracy. 

As a final remark on PARACEST agents, one may note that they are more sensitive than DIACEST agents as they are 

not influenced by the water-indirect saturation or by concomitant effects arising from the endogenous semisolid protein-

based components. However, high doses are still required to reach sufficient concentrations at the region of interest for 

attaining detectable CEST signals, as well as high power levels are required for an efficient saturation of the fast 

exchanging protons, which is not readily available on clinical scanners. 

 

2.4. MRI – Spin Lock 

Besides the slow/intermediate exchange regime that is the basis of CEST, fast chemical exchange of mobile protons with 

water can be exploited for generating contrast in MR images, using a method based on the “Spin-Lock” (SL) technique 

[105]. With this approach, the water magnetization is first flipped from the Z-axis and then locked by radiofrequency 

pulses. During the applied SL pulse, the longitudinal water magnetization decay in the rotating frame (T1ρ) is sensitive to 

chemical exchange contributions, therefore providing an alternative method for exploring chemical exchange-based 

contrast [106]. In this context, molecules possessing fast-exchanging hydroxyl protons such as glucose, can be detected 

more easily with the SL than with CEST [107,108]. Iodinated X-ray agents possessing hydroxyl groups, have also been 

investigated by the SL approach by Gore and coworkers [109]. The same group has exploited Iohexol (Omnipaque®, GE 

Healthcare), a CT contrast medium for mapping rat brain tumor pHe by exploiting the Spin-Lock approach at very high 

magnetic field (9.4T) [110]. By measuring the differences in the T1ρ dispersion profiles (i.e. a measure of T1ρ values as a 

function of the power of the locking field) before and after the injection, and then fitting this ΔT1ρ dispersion difference, 

it was possible to quantify the characteristics of the exchanging proton pools. According to a measured calibration curve, 

the tumor pHe values correspond to an extracellular pH ranging from 6.6 to 7.0 (Fig. 10). Compared with CEST imaging 

of X-ray contrast, the SL technique requires higher powers and longer acquisition times to improve image quality, but 

translation to clinical scanners may be feasible. 

 

2.5. MRI-hyperpolarized 



Dynamic Nuclear Polarization (DNP) transfers polarization from electrons to nuclei, which provides a dramatic increase 

of sensitivity in MRS, particularly for low-γ nuclei, such as 13C [111]. A mix of 13C-labeled molecules with small 

quantities of a stable free radical, cooled to ~1 K in a magnetic field and continuously irradiated at the electron 

paramagnetic resonance (EPR) absorption frequency of the radical species.  This results in the transfer of polarization 

from the unpaired electron to the 13C nuclei [112]. Because the resonance frequencies of electrons are thousands of times 

higher than that of NMR nuclei, this transfer dramatically increases the polarization of the NMR nuclei, directly increasing 

the sensitivity theoretically up to 50,000 fold.  In practice, increases in the signal-to-noise ratio of 10,000 are routinely 

achieved for DNP-hyperpolarized 13C-labeled molecules, allowing their direct detection with spectroscopic imaging, 

MRSI  [113,114]. The development of hyperpolarized molecules whose chemical shift is pH dependent can provide 

another method for in vivo pH imaging with high sensitivity.  

Brindle et al. firstly described the injection of hyperpolarized 13C-bicarbonate as a pH responsive agent, exploiting the 

acid-base equilibrium between H13CO3
- and 13CO2 that show distinct chemical shifts. According to the Henderson–

Hasselbalch equation, the ratio of H13CO3
- and 13CO2 resonance intensities can be exploited for assessing pH. The method 

has been tested for mapping the extracellular pH in a lymphoma tumor murine model [115]. The pH map calculated after 

the intravenous injection of 100 mM hyperpolarized 13C-bicarbonate gave an average calculated pH of 6.71±0.14. Scholl 

and coworkers applied this technique for studying temporal changes of tumor pHi and pHe during tumor growth in a rat 

glioma model [116]. Despite 13C labeled bicarbonate has been initially proposed as a probe for tumor pHe imaging, the 

transport of CO2 and bicarbonate in and out the cells results in a mixed contribution of intra- and extra- cellular values to 

the measured pH. 

Recently, a new pH responsive probe has been introduced based on the chemical structure of the [1,5-13C2] zymonic acid 

(ZA) [117]. ZA was identified as an impurity within 13C-pyruvic acid and it was subsequently shown to act as a pH 

sensitive molecule. The in vivo application described by Schwaiger, Schilling et al. of this new probe in mammary MAT 

B III tumors showed the detection of extravascular acid compartment by ZA signal that was in good agreement with three 

other independent pH measurements, suggesting the ability of ZA to measure and discriminate between extravascular pH 

and intravascular pH. The accuracy of pH measurement (0.1 pH units) as well as the long signal lifetime (T1 of 17 s at 7 

T in vivo) makes this new reporter valuable for further preclinical and clinical studies. Further, perdeuteration of ZA 

increased the T1 relaxation time significantly, prolonging hyperpolarization and increasing sensitivity [118], allowing 

dynamic monitoring of pH changes in vivo (Fig. 11). Likely, the development of novel MRI sequences for fast image 

acquisition and the improvement in signal detection by optimal design of the receiver coils will allow this technique to 

reach the sub-millimeter spatial resolution in the near future for high-resolution pH imaging. Unfortunately, the 

requirements of dedicated 13C coils and the technical challenges for producing, via DNP, hyperpolarized molecules still 

hamper the clinical adoption of this promising technique. Other routes for generating hyperpolarized molecules are 

currently under investigation as they may allow more versatile approaches to the field [119,120]. 

 

3. Electron Paramagnetic Resonance Imaging 
 
Electron Paramagnetic Resonance (EPR) is a spectroscopic technique based on the detection of unpaired electrons 

(radicals) in paramagnetic species, exposing the sample to a sweep of microwave frequency irradiation. Because of the 

insufficient amount of radical species in viable tissues combined with their fast relaxation, the use of paramagnetic probes 

to reach a sufficient concentration at the site of interest is required [121]. Whereas direct detection of paramagnetic probes 



guarantees high specificity, development of probes endowed with good biocompatibility, long stability during the 

measurement, low toxicity and optimal spectral sensitivity is not a straightforward task.  Moreover, unlike MRI 

measurements, EPR experiments are performed in a continuous wave mode, resulting in long acquisition times, small 

sample size and restricted to surface tissues. Electron paramagnetic resonance imaging (EPRI) is challenging for anatomic 

co-localization since, at low magnetic field, the small polarization of the 1H spin is not sufficient to generate MR images. 

Two approaches have been developed for imaging purposes, namely i) the use of pulsed irradiations (pulsed-EPRI), which 

shortens the acquisition time [122], but still lacking of anatomical information, and ii) the exploitation of the Overhauser 

effect.  This technique, called OMRI (Overhauser enhanced Magnetic Resonance Imaging), also known as Proton 

Electron Double Resonance Imaging (PEDRI) was developed by Lurie et al. in 1988 [123]. In this case, the electron spin 

polarization is transferred to 1H polarization with subsequent MR image acquisition, resulting in an indirect detection of 

the radical probe [124]. Unlike EPRI, higher resolution can be achieved. 

Khramtsov and coworkers have designed a pH-sensitive nitroxide R1 and its deutero-substituted analog, R2, for 

EPR monitoring of pHe in breast cancer models [125]. The enhanced stability of the proposed probe conjugated with its 

extracellular localization and pH sensitivity in the range of 6.5-7.5 allowed ready detection of pHe. The same group 

investigated a dual probe pTAM (deuterated derivative of the phosphonated Triaryl methyl or TAM)  for simultaneous 

pH and oxygen monitoring thanks to the extraordinary stability toward tissue redox processes, longer relaxation time and 

narrower line width of this probe compared to nitroxide-based probes [126]. Suffering of the lack of EPR spectral 

information, the conventional PEDRI approach was recently improved with the variable field and variable radio frequency 

(VRF) PEDRI, where the pH map was obtained from two PEDRI acquisitions performed at the EPR frequencies of 

protonated and unprotonated form of a deuterated pH sensitive probe, Im6, in Met-1 tumor bearing mice  [127]. The VRF 

PEDRI technique was applied to obtain the pH map distribution in tumor with an average value of extracellular pH of 6.8 

± 0.1 in agreement with the averaged pH values measured with the pH microelectrode. 

More recently, Komarov and coworkers implemented three-dimensional (3D) EPR pH mapping in animal models by 

applying fast projection scanning with a constant magnetic field. Both dedicated instrumentations and complex 

reconstruction algorithms are needed for deriving pH images from the measured EPR spectra, following the 

administration of a pH sensitive nitroxyl radical probe (dR-SG) [128]. This newly proposed EPR method was 

demonstrated in mapping pH of tumor progression in a murine squamous cell carcinoma model (Fig. 12).  

EPR approaches are promising in offering accurate pH measurements and multiple functional information, beside 

tumor pH, simultaneously. However, several drawbacks, including low spatial resolution (2-3 mm3 voxels, comparable 

to MRS), possible toxicity of the radical probes at the high required doses, demanding technical requirements, and high 

power radiofrequency irradiations, need to be solved before a large adoption of this approach can be foreseen.  

 

4. Positron Emission Tomography (PET) Imaging 

Positron emission tomography (PET) imaging is widely used in both preclinical and clinical imaging.  It is characterized 

by a high sensitivity, limitless penetration depth and allows absolute quantification of the concentration of the injected 

tracer. However, PET is characterized by a low spatial resolution (~2 mm3) that limits its application for evaluation of 

heterogeneity in tumors [129]. Until now, only few pH sensitive probes have been designed and tested, but have not yet 

been able to provide quantitative tumor pH images. Indeed, these probes can report on the presence of acidic extracellular 

environment only on the basis of their preferential accumulation, instead of providing a readout of the actual pH values. 

The first of these pH-responsive probe was a peptide (pHLIP) that changes its conformation in a pH dependent manner 



(from random coil to alpha-helix), promoting its penetration into the cellular membranes at low extracellular pH values 

(Fig. 13) [130]. In vitro tests showed that at pH 7.4 less than 5% of the compound is incorporated into the membrane, 

while at pH 6 this value is more than 25%. In a preliminary study 64Cu-DOTA-pHLIP was successfully imaged in prostate 

tumors (LNCaP and PC-3) showing a higher uptake and retention in the LNCaP tumors, whereas the uptake was reduced 

in mice that received seven days of bicarbonated water [131]. In another  study, pHLIP was bound to two positron emitting 

radionuclides (64Cu and 18F) and tested in breast (4T1), prostatic (LNCaP and PC3) and melanoma (B16-f10) tumor 

models [132]. 64Cu has a moderately short half-life and high spatial resolution that is an advantage for clinical application; 

however, its production is complicated and expensive. Conversely, 18F has longer half-life but it is routinely produced at 

numerous sites worldwide. In the slower growing tumors (PC3 and LNCaP), the tumor environment is less acidic, 

resulting in a lower accumulation; conversely in more acidic and faster growing 4T1 and B16-F10 tumors, the 

accumulation was higher. Alternatively to pHLIP, Flavell et al. proposed an acid-labile precursor imaging tracer based 

on 18F-FDG with a glycosylamine linkage. In an acidic environment, the probe decomposes to release the 18F-FDG that 

accumulates in the cancerous cells. The probe was tested in a PC3 xenograft tumor model, showing a similar tumor uptake 

when compared to 18F-FDG, but capable of distinguishing changes in tumor acidosis following bicarbonate treatment 

[133]. This new class of PET tracer represent a promising strategy for addressing tumor acidosis, with the advantage of 

using the 18F-FDG derivatives at tracer doses. However, the accumulation of this tracer is still dependent on the presence 

of GLUT transporters, therefore reducing the exploitation in less glucose avid tumors, as for 18F-FDG. Overall the PET-

based approaches can only provide qualitative information of tumor acidosis with limited spatial resolution. 

 

5. Optical Imaging 

Optical Imaging is characterized by high in-plane resolution and sensitivity, and excellent sensitivity and temporal 

resolution. However, it is limited in depth penetration and quantification, due to the well-known issues of absorption, 

reflection, and refraction processes when the emitted photons travel within biological tissues [134]. Importantly, in the 

NIR range (650-900nm) photons travel through tissue deeper than photons in the visible range, and this wavelength range, 

called in-vivo optical window, has been extensively exploited for addressing biological questions following the 

development of fluorescent responsive probes [135]. 

SNARF-1 (semi-napthorhodafluorescein-1) is a fluorescent molecule that exhibits a pH dependent emission spectral shift 

from 580 to 640 nm. The ratio of the measured fluorescent signals between these two wavelengths allows accurate pH 

measurements. Since the excitation and emission wavelengths are in the visible range, this probe can be applied in cell 

cultures or in superficial tumors like in rabbit ear chambers [136] or in intravital microscopy with the support of a window 

chamber [8]. To date, several studies using the window chamber tumor model have addressed important questions 

regarding the role of tumor acidosis in driving tumor invasion. In particular, by using this probe, Gillies and coworkers 

demonstrated that regions of highest tumor invasion correspond to areas of lowest pH [9]. On this basis, the administration 

of sodium bicarbonate to reduce tumor acidity (as demonstrated by the increase of the measured tumor pH values by this 

approach) was proposed as a novel therapeutic strategy to reduce tumor metastases [137]. Although the dorsal skinfold 

window chamber is commonly used to evaluate the microvasculature in various settings in vivo, it has to be stressed that 

a surgical operation is needed for implanting the window chamber and this operation could influence angiogenic 

processes. Moreover,  pH measurements via SNARF-1 can be affected by difference in temperature between the 

calibration curve and the imaged tissue, as well as upon interaction of the fluorescent probe with extracellular proteins 

that can affect the pH dependence of the fluorescent spectra [138].   



To measure in vivo tumor pH without the support of a window chamber different probes with excitation and emission 

wavelength in the NIR region have been developed. Most of these approaches require two fluorescent probes, one pH 

sensitive and one pH insensitive, to set-up a ratiometric approach for measuring pH values independently from the probes’ 

concentration. The conjugation of the two fluorescent dyes to a nanosized carrier guarantees the same concentration of 

the two molecules, solving the limitations associated to the assumption of the similar pharmacokinetic and biodistribution. 

However, the increase in the size of the resulting adducts, according to the final size and charge of the nanosystem, may 

limit the extravasation in poor perfused tumors or promote macrophage uptake and reduce the elimination rate, raising 

obvious toxicity issues. As an example, a pH-sensitive cyanine dye (CypHer5E), and a pH-insensitive fluorescent dye 

(Oyster800) have been conjugated on the surface of a biocompatible sphere with a diameter of 100 nm. CypHer5E has 

minimal fluorescence at neutral pH but becomes highly fluorescent with an emission peak at about 670 nm in an acidic 

environment. By taking the ratio of fluorescence intensities at different wavelengths it was possible to detect tumor pH 

changes during tumor progression in a melanoma (B16f10) tumor murine model [139].  

Another pH-ratiometric approach can be set-up by using fluorescent dyes displaying two absorption peaks, one pH 

independent and the second pH-dependent, respectively. The ratio of the fluorescent emission signals following the 

excitation at these two peaks makes the pH measurement independent of concentration. Besides the SNARF-1 pH sensor 

discussed above, rhodamine molecules were also proposed, with promising properties thanks to strong resistance to 

photobleaching, high water solubility, and high fluorescence quantum yields for both the protonated and deprotonated 

forms. Recently, a modified rhodamine bound to dextran (Dex-Me-pEPPR) has been synthetized and tested as a 

ratiometric NIR pH sensitive probe. The intravenous administration of Dex-Me-pEPPR showed a more acidic value in 

the tumor region compared to healthy region (Fig. 14), in good agreement with the  pH values measured using a pH 

electrode [140].  

Finally, a different class of NIR pH-sensitive probes composed of systems that are activated by acidic pH has been 

proposed. For example, Gao and coworkers synthetized a 30 nm nanoparticle made of a pH sensitive copolymer and 

loaded with the Cy5.5 dye. At blood pH values (7.4) the fluorescence is quenched, but at acidic pH values (6.9) the 

micelles dissociate, resulting in a marked increase of the fluorescence signal that allows detection of the acidic 

microenvironment of tumors [141]. A similar approach has been adopted to detect tumor acidosis by exploiting two NIR 

fluorophores (IR783) conjugated via a flexible and acid liable linkage. At neutral pH conditions the fluorescence of this 

probe is quenched due to intramolecular dimeric aggregate. In the acidic conditions of the tumor microenvironment the 

cleavage of pH liable linkage with the concomitant disruption of aggregates results in a remarkable fluorescence 

enhancement with a high tumor/background ratio. The ratio changed more dramatically upon time in a more metastatic 

hepatic tumor model (HCCLM3-GFP) in comparison to a less metastatic one (HepG2) [142].  

 

6. Photoacoustic Imaging 

Optoacoustic or photoacoustic imaging (PAI) combines optical absorption with ultrasound detection for providing high 

spatial and temporal resolution images [143,144].  Since highly penetrant soundwaves are detected instead of light, 

optoacoustic imaging has greater penetration depth than optical imaging modalities [145]. Moreover, optoacoustic 

imaging offers greater specificity than conventional ultrasound due to detection of ultrasound emissions from light-

absorbing chromophore-containing molecules, which can be exogenous probes, as well as endogenous systems such as 

hemoglobin, melanin, and lipids [146-149]. The ideal optoacoustic contrast agent should be characterized by a strong 



absorption in the optical window to maximize penetration depth and by a low quantum yield (the ratio of the number of 

photons emitted to the number of photons absorbed), as the non-radiative conversion of light energy to heat is maximized 

[150]. The capability of providing pH information is dependent on the absorption/emission properties of the fluorescent 

dyes, therefore ratiometric approaches for measuring tumor pH such as those described above have been developed also 

for PAI probes. This task has been accomplished by assembling a pH-sensitive dye with a pH-inert dye in a nanoprobe. 

Benzo-α-phenoxazine (a pH responsive dye) and IR825 (a pH-inert dye) can self-assemble onto human serum albumin 

(HSA) to form nanoparticles that allow assessment of tumor pH by ratioing signal intensities produced by excitations at 

680 and 825 nm, for pH-sensitive and -insensitive emissions, respectively [151]. In a similar way, the pH-responsive 

near-infrared croconine dye can induce self-assembly on serum albumin nanoparticles for real-time ratiometric (680 and 

810 nm) optoacoustic tumor pH imaging [152]. Other classes of nano-systems can be exploited by this approach, such as 

semiconducting oligomers that, following the binding with the pH-responsive boron-dipyrromethene dye, which can 

provide tumor pH mapping by ratioing the measured optoacoustic signals at 680 and 750 nm. It has been shown that this 

method readily distinguishes healthy and tumor tissues [153]. Polyacrylamide nanoparticles encapsulated with an optical 

pH indicator (SNARF-5F) have also been reported as pH-sensing nanoprobes. The capability of fast multi-wavelength 

PAI combined with spectral un-mixing techniques can provide accurate tumor pH measurements not susceptible to the 

background optical absorption of endogenous biomolecules, i.e., oxy- and deoxy-hemoglobin (Fig. 15) [154].  

The major limitations of these probes are related to the stability of the self-assembled nanoparticles that usually require 

further conjugation via glutaraldehyde to induce covalent cross-linking and to the toxicity profiles and biodistribution 

properties that need to be further optimized for their clinical translation. In addition, the non-linear response of the 

ratiometric curve to changes in pH, coupled to the non-linear optical properties of the photoacoustic effect make them 

more useful for detecting rapid or relative pH changes, rather than pH values. Despite these limitations, optoacoustic pH 

imaging overcomes the penetration depth limit of optical imaging, so it has the potential to measure tumor pH in vivo in 

superficial tumors up to 5-7 mm depth or in endoscopically accessible tumors at clinical level. 

 

7. Summary 

A wide range of imaging-based techniques have been investigated to monitor tumor pH. In the last decade, several 

approaches have solved the limitations associated with first studies, including spatial and temporal resolution, pH 

sensitivity, and clinical translatability. To date, among the proposed techniques, MRI, and in particular MRI-CEST 

methods have emerged as those endowed with good pH sensitivity for assessing tumor acidosis and pH- changes following 

therapeutic treatments and with high spatial resolution for evaluating heterogeneity of the extracellular acidification. In 

addition, MRI-CEST using Iopamidol has been used to map tumor pH at clinical level, thus providing a novel imaging 

protocol for assessing fundamental questions in tumor biology, for evaluating the relationship between tumor acidosis 

and aggressiveness, and for monitoring treatment response to novel anticancer therapies. However, critical evaluation of 

this approach in single-site and multi-site studies should be encouraged to validate the clinical utility of imaging tumor 

acidosis as a novel non-invasive diagnostic tool. 
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Figure Legends 
Fig. 1  

MRS imaging of tumor pH. Chemical formula of ISUCA and indications of proton resonances (pH-dependent H2, red 

arrow) on the imidazole ring (a). Plasmatic MR spectra of ISUCA at different pH values indicate the chemical shift 

dependency of H2 from pH changes (b). pH calibration curve of the chemical shift of H2 with changes in pH (c). 

Parametric pHe map over-imposed on T2-weighted MR images of high expressing CAIX (CA9) and low expression CAIX 

(EV) tumors (d) and median pHe value for CA9 and EV tumors (e). Adapted with permission from British Journal of 

Cancer 2018, 119, 622-630 

 

Fig. 2  

MRI-based relaxometry imaging of tumor pH. Chemical structure of the pH-insensitive T2 agent, Dy-DOTP (a) and of 

the pH-sensitive T1 agent, Gd-DOTA-4AmP (b). pH dependence of GdDOTA-4AmP relaxivity (c). Tumor pHe maps 

obtained following the injection of the cocktail of the two agents (d) and histograms of pH values (e) and standard 

deviations (f) within a region of interest. Reproduced with permission from NMR in Biomedicine 2011, 24, 1380-1391  

 

Fig. 3 

MRI-CEST imaging of tumor pH using endogenous DIACEST approach. T2-weighted MR image of a mouse brain with 

a U87 GBM tumor showing (a) region of interests (ROI) for the tumor region (dashed line) and for the contralateral region 

(solid line). b and c, CEST spectra from the contralateral and from the tumor tissue ROIs at baseline (blue) and ~75 min 

(red) after administration of 120 mg/kg of topiramate (TPM). The AACID measurement from the amine (2.75 ppm) and 

the amide (3.5 ppm) signal allows the calculation of the AACID maps before and ~75 min after i.p. injection of TPM (d 

and e, respectively) and the calculation of the AACID change map showing tumor selective acidification (f). Adapted 

with permission from Journal of Neuro-Oncology 2016, 130, 465-472 

 

Fig. 4  

MRI-CEST imaging of tumor pH using exogenous DIACEST probes. Chemical structure of Iopamidol (a), pH 

dependence of the ratiometric values (b) calculated by ratioing the ST% contrast for the two amide groups (4.2 ppm and 

5.5 ppm) and accuracy of the proposed method by comparing calculated vs. measured pH values (c) at 7 T. Adapted with 



permission by John Wiley and Sons from Magnetic Resonance in Medicine 2011, 65, 202-211. Representative T2w 

anatomical images of a TS/A mammary bearing tumor mouse with tumor ROI highlighted in green (d). Contrast ST% 

difference map calculated at 4.2 ppm (e) and 5.5 ppm (f) after Iopamidol i.v. injection (as ST% post – ST% pre injection) 

and corresponding calculated tumor pHe map over-imposed on the anatomical image (g) 

 

Fig. 5  

First in vivo demonstration of the relationship between increased glucose uptake and tumor acidosis. Plot of the pH 

dependence of the ratiometric (RST) values in the pH range from 6 to 7.4 for Iopamidol in phosphate buffer solution and 

in tumor tissue homogenate at 3 T (a). Average tumor pHe values calculated in mice drinking natural or sodium 

bicarbonated water showing a statistically significant increase of tumor pHe after 5 days (b). Scatterplots with regression 

line (solid line) showing a marked and significant correlation between 18F-FDG-PET %ID/g uptake and MRI-CEST 

derived tumor acidosis (c). Combined MRI T2w/CEST pH (d) and 18F-FDG PET/CT (e) images of a representative TS/A 

tumor bearing mouse. The tumor on the right side (ROI 1) shows a higher 18F-FDG uptake in the PET image, 

corresponding to more acidic pHe values in the MRI-CEST pHe map, whereas tumor on the left side (ROI 2) is 

characterized by lower 18F-FDG uptake values and corresponding less acidic pH values, as shown in the histogram plot 

(g). Adapted with permission from Cancer Research 2016, 76, 6463-6470 

 

Fig. 6  

MRI-CEST tumor pH assessment of treatment response to novel anticancer therapies. Tumor extracellular pH maps 

(measured following Iopamidol injection) for representative mice at baseline, 3 days and 15 days for control group (a) 

or upon dichloroacetate (DCA) treatment (b) showing increased reduction of tumor acidosis. Changes in mean tumor 

pH values (in comparison to baseline tumor pH values) between untreated and treated mice with DCA at different time 

points (c) and correlation with lactate level measured in excised tumors (d). Adapted with permission from International 

Journal of Oncology 2017, 51, 498-506 

 

Fig. 7  

MRI-CEST imaging of tumor pH at clinical level. Representative patient with high-grade invasive ductal carcinoma and 

anatomical T2-weighted image (a) and parametric iopamidol concentration map (b) and tumor pHe map calculated by 

Bloch fitting (c) or by Lorentzian fitting (d) procedures overlaid on the anatomical image, showing, for the first time, 

tumor acidosis in patients. Adapted by permission from Springer Nature, Molecular Imaging and Biology 2017, 19, 617-

625 

 

Fig. 8 

MRI-CEST imaging of tumor pH using exogenous DIACEST probes. Iobitridol chemical structure (a). Iobitridol MRI-

CEST contrast (ST%) dependence with pH at three different RF saturation powers (b). Ratiometric approach between 

two different power levels allows to set up a pH calibration curve (c). Representative pH maps of a TS/A tumor bearing 

mouse obtained upon rationing the difference ST map at 1.5 μT and at 6 μT after Iobitridol i.v. injection (d). Adapted 

with permission from Journal of the American Chemical Society 2014, 136, 14333-14336, 

https://pubs.acs.org/doi/10.1021/ja5059313. Copyright 2014 American Chemical Society 

 

Fig. 9 



MRI-CEST imaging of tumor pH using exogenous PARACEST probes. Chemical structure of Yb-HPDO3A (a), Z-

spectrum from the bladder region 15 min after the i.v. injection of Yb-HPDO3A (b) and pH calibration curve measured 

at 33 °C (c). T2w image (d) and ST maps calculated when the irradiation offset is set at 66 ppm (e) and at 92 ppm (f) post 

2 min after the i.v. injection of Yb-HPDO3A and measured tumor pH map (g). Adapted with permission from Magnetic 

Resonance in Medicine 2014, 71, 326-332 

 

Fig. 10 

MRI-Spin Lock imaging of tumor pH. Measured R1ρ dispersion curves for Iohexol at several pH values but constant agent 

concentration (a) and calibration curve for the fitted s0 parameter as a function of pH (b). ΔR1ρ difference map at 10 min 

after injection (c) and corresponding pH map from the tumor-bearing rat brain calculated as average of six ΔR1ρ difference 

maps at different time points after iohexol i.v. injection (d). Adapted with permission from Magnetic Resonance in 

Medicine 2018, 79, 298-305 

 

Fig. 11  

MRI-Hyperpolarized imaging of tumor pH. Chemical structure of [1,5-13C2, 3,6,6,6-D4] zymonic acid (ZAd) with T1 

values and pH-dependent chemical shifts of the C1 and C5 carbon atoms (a). In vivo signal intensity images acquired 

after tail-vein injection of ZA (b) and ZAd (c) overlaid on anatomical T1-weighted 1H images. pH images calculated from 

the chemical shift differences of C5 and urea, weighted by the respective signal intensities, show an acidification of the 

tumor microenvironment for both ZA (d) and ZAd (e). Reproduced with permission from ChemPhysChem 2017, 18, 

2422-2425 

 

Fig. 12  

EPR-based imaging of tumor pH. Chemical structures and scheme of protonation of the pH-sensitive nitroxyl radical (R-

SG) and its deuterium-enriched (dR-SG) analog (a). First derivative EPR spectra of 2 mM dR-SG measured at 750 MHz 

in alkaline (pH = 10.0, blue line) and acidic (pH = 3.0, red line) solutions (b). T2-weighted proton MR anatomical images 

of the SCC VII tumor-bearing mouse leg in the sagittal plane, acquired at day 5 (c) and 8 (d), respectively, and 

representative images of EPR signal intensity reconstructed from the 3D data (e, f) and corresponding tumor pHe maps 

at the two time points (g, h). The white scale bar on the images corresponds to 5 mm. Adapted with permission from 

Analytical Chemistry 2018, 90, 13938–13945 

 

Fig. 13  

PET-based imaging of tumor pH. Schematic cartoon of the different folding states of pHLIP peptide in decreasing 

extracellular pH conditions (a). pH dependent bilayer insertion of NO2A-cysVar3 constructs (b) and graph (c) of the ex-

vivo tumor uptake (%ID /g) for different radiolabeled peptides (64Cu and 18F) in several tumor models (prostate: PC3 and 

LNCaP, melanoma: B16F10, and breast: 4T1) and time points (4, 6, and 24 h). Slices and maximum intensity projections 

(MIP) PET images of radiolabeled peptides in tumor models at 4 h (d). The yellow arrowheads indicate where the tumor 

is located in each mouse. Adapted with permission from Bioconjugate Chemistry 2016, 27, 2014-2023 

 

Fig. 14 

Optical Imaging of tumor pH. Chemical structure of phosphorus-substituted rhodamine-based probe (a). pH calibration 

curves of several substituted rhodamine probes based on the ratio of fluorescence intensity at 650 nm and 705 nm  with 



pKa values of the probes given in parentheses (b). In vivo fluorescence ratio images of mice with subcutaneous tumors 

(c, K: kidney, N: normal tissue, T: tumor). Graph of mean pH values for normal tissue and tumor (d). Adapted with 

permission from Journal of the American Chemical Society 2018, 140, 5925-5933, doi:10.1021/jacs.8b00277. Copyright 

2018 American Chemical Society 

 

Fig. 15 

Photoacoustic Imaging of tumor pH. Spectral properties of SNARF-5F encapsulated polyacrylamide based nanoparticle 

(NP) at different pH values (a). Boxplot showing the measured pH levels in tumor and healthy tissues (b) and quantitative 

PAI pH maps after SNARF-PAA NP injection in healthy (c) and in tumor (d) tissues overlaid to B-mode ultrasound 

images. Adapted with permission from Nature Communications 2017, 8, 471 
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