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We discuss the treatment of spin-orbit coupling (SOC) in time reversal symmetry broken periodic
systems for relativistic electronic structure calculations of materials within the generalized non-
collinear Kohn-Sham density functional theory (GKS-DFT). We treat SOC self-consistently and
express the GKS orbitals in a two-component spinor basis. Crucially, we present a methodology
(and its corresponding implementation) for the simultaneous self-consistent treatment of SOC and
exact non-local Fock exchange operators. The many advantages of the inclusion of non-local Fock
exchange in the self-consistent treatment of SOC, as practically done in hybrid exchange-correlation
functionals, are both formally derived and illustrated through numerical examples: i) it imparts a
local magnetic torque (i.e. the ability of the two-electron potential to locally rotate the magnetization
with respect to a starting guess configuration) that is key to converge to the right solution in
non-collinear DFT regardless of the initial guess for the magnetization; ii) because of the local
magnetic torque, it improves the rotational invariance of non-collinear formulations of the DFT; iii)
it introduces the dependence on specific pieces of the spinors (i.e. those mapped onto otherwise
missing spin-blocks of the complex density matrix) into the two-electron potential, which are key
to the correct description of the orbital- and spin-current densities and their coupling with the
magnetization; iv) when space-inversion symmetry is broken, it allows for the full breaking of time-
reversal symmetry in momentum space, which would otherwise be constrained by a sum-rule linking
the electronic band structure at opposite points in the Brillouin zone (k and -k). The presented
methodology is implemented in a developmental version of the public Crystal code. Numerical
tests are performed on the model system of an infinite radical chain of Ge2H with both space-
inversion and time-reversal symmetries broken, which allows to highlight all the above-mentioned
effects.

Keywords:

I. INTRODUCTION

Symmetry breaking is of fundamental interest to con-
densed matter physics as it leads to the advent of many
phenomena in materials, particularly so for magnetic sys-
tems. For example, the breaking of space inversion sym-
metry is a prerequisite for the appearance of piezoelec-
tricity, optical activity in chiral materials,1 and for the
Dzyaloshinskii-Moriya effect, which plays a central role
in the creation of magnetic skyrmions.2 Moreover, the
breaking of time-reversal symmetry is required for the ap-
pearance of the magneto-optical effect,1 and the anoma-
lous Hall effect.3

In the broad field of spintronics, in which electronic de-
vices are devised by manipulating the charge and spin de-
grees of freedom, the most interesting materials are those
in which both space inversion and time-reversal symme-
tries are simultaneously broken.4 On the one hand, the
breaking of time-reversal symmetry possibly leads to a
sizable spin current available for manipulation. On the
other hand, the breaking of space inversion symmetry
has significant consequences in the presence of a strong
spin-orbit coupling (SOC). In such a fully relativistic pic-
ture, the breaking of space inversion symmetry indeed re-

sults in the creation of an effective internal magnetic field
through the Rashba spin-orbit interaction (in 2D mate-
rials) or the Dresselhaus spin-orbit interaction (in bulk
3D crystals),5,6 which play a key role in the appearance
of non-trivial topological states of matter, such as topo-
logical insulators, Weyl semimetals, magnetic hopfions
and Majorana fermions, as well as the related quantum
spin-Hall effect.3,4,7,8 As a consequence, there is great
interest in the possibility of developing accurate formal
and computational schemes capable of describing time-
reversal symmetry broken periodic systems within a fully
relativistic framework.

Although the treatment of time-reversal symmetry
broken (TRSB) systems can be achieved in a formally
well defined way from wavefunction-based methods, us-
ing for example the most general four-component the-
ory of Dirac (or also two-component variants), the cor-
responding methodologies can hardly be applied to ma-
terials of interest.9–11 Practical calculations in computa-
tional materials science are typically performed within
the density functional theory (DFT) instead. How-
ever, explicit relativistic exchange-correlation functionals
for TRSB systems (with a dependence on the particle-
number density n, the magnetization vector m =
[mx,my,mz], as well as the SOC-induced orbital-current
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density vector j = [jx, jy, jz], and the three spin-current
density vectors Jx = [Jxx, Jxy, Jxz], Jy = [Jyx, Jyy, Jyz],

Jz = [Jzx, Jzy, Jzz]) are still to be devised.12–17,46 In
practice, relativistic calculations are usually performed
with the so-called collinear or non-collinear formula-
tions of the DFT, where use is made of standard non-
relativistic functionals modified to only include the ex-
plicit dependence on n and mz (collinear) or n and m
(non-collinear).9,16,18–30 In this paper we analyze some
of the limitations due to the lack of such explicit rela-
tivistic functionals for calculations on TRSB materials
and we present a strategy to overcome most of them.

Our interest here is the density functional treatment
of TRSB materials in the absence of external magnetic
and electric fields. However, it is worth acknowledg-
ing important formal advancements within the so-called
spin-current-DFT (SCDFT):31 a theoretical framework
initially formulated for treating external fields in a scalar-
relativistic context that was then generalized to the de-
scription of SOC.32 In the presence of an external mag-
netic field with an arbitrary direction, the exchange-
correlation functional approximations within the SCDFT
should depend explicitly on the particle-number density
n, the magnetization vector m, the field-induced orbital-
current density vector j and on the three spin-current

density vectors Jx, Jy and Jz.
31 In this context (i.e.

scalar-relativistic description in the presence of external
fields), exchange-correlation functionals that also include
a dependence on the field-induced j have been devised for

treating TRSB systems and tested for such purposes.33–40

Let us stress that, while these functionals have been de-
veloped and used for calculations with external fields,
their practical ability to perform equally well on fully rel-
ativistic calculations remains an unanswered and inter-
esting research topic. Elsewhere, a scheme has been pro-
posed to generalize existing standard meta generalized
gradient approximation (meta-GGA) functionals to also
include j for finite field scalar-relativistic calculations.41

This approach performs a simple substitution of the de-
pendence of the functional on the kinetic-energy density
τ to an expression involving the scalar product of j with
itself. However, such an approach poses a few major
challenges to be overcome before its practical use will be
possible to run actual relativistic calculations on TRSB
systems and also does not provide a means to include
the Jx, Jy and Jz. The root of such challenges stem
from the need for simultaneously treating also the non-
collinear magnetization m using these same meta-GGA
functionals. Indeed, the treatment of non-collinear mag-
netization in functionals beyond the simple local density
approximation (LDA) involves significant numerical in-
stability problems (mainly related to the evaluation of
gradients of the magnetization at points in space of small
magnetization), which are now well documented in the
literature.16,21,22,24,42,43 Furthermore, we have recently
shown that even for the simpler GGA functionals, ex-
isting non-collinear formulations were not even rotation-
ally invariant, because of the inconsistent use of signs of

the different components of the magnetization in the ex-
pression of the exchange-correlation potential.16 It is also
worth mentionning, that the non-collinear formulation of
Scalmani and Frisch does not reproduce the dependence
on the transverse spin gradients obtained non-empirically
by Eich and co-workers from the spin-polarized homoge-
neous electron gas.24,44,45 This means that the formula-
tion and implementation of new non-collinear schemes
for calculations involving a dependence of the functional
on m, j and the Jc would be useful. Along these lines,
an interesting research direction towards the simultane-
ous treatment of m, j and the Jc in functionals beyond
the LDA is represented by the alternative substitution
schemes for the (spin-)current and magnetization gradi-
ent variables theorized by Pittalis et al..46

Bearing in mind the afore-mentioned difficulties, while
the use of orbital-current density j and spin-current den-
sity Jc dependent functionals for fully-relativistic calcula-
tions on TRSB systems is an interesting future prospect,
it is far from being common. As a matter of fact, most
practical fully-relativistic DFT calculations are still per-
formed with functionals that do not have a proper depen-
dence on j and the Jc, with consequences to be addressed
in this paper.

We show that the consequence of the lack of explicit
treatment of current-densities in standard KS-DFT cal-
culations can result in unphysical distributions of both
the magnetization m and the current densities, and hence
in a poor description of the electronic structure of the
system when a SOC operator is included in the Hamil-
tonian. Moreover, we discuss how plain DFT functionals
belonging to either the LDA or the GGA produce a two-
electron potential that lacks in local magnetic torque (i.e.
the ability of the two-electron potential to locally rotate
the magnetization during the SCF procedure, with re-
spect to a starting guess configuration).16,48–50 We show
how this can sometimes lead to the inability of KS-DFT
calculations to converge to the right spatial distribution
for the magnetization, and how it affects the rotational
invariance of the theory. We note that such a local mag-
netic torque was first discussed in TRSB materials, also
taking into account orbital currents in a previous study
by Sharma and co-workers.51 Furthermore, we derive a
sum-rule for the electronic band structure in TRSB peri-
odic systems, which shows that standard KS-DFT calcu-
lations are unable to fully break time-reversal symmetry
in momentum space, and access the full range of possible
TRSB states.

Finally, through a formal analysis and numerical tests
we show that all of the afore-mentioned limitations of
practical relativistic KS-DFT calculations can be re-
solved by including a fraction of exact non-local Fock
exchange in the Hamiltonian, as done in so-called hybrid
exchange-correlation functionals, thus providing with a
simple practical recipe. In this light, we here present the
first implementation of a code for self-consistently treat-
ing both SOC and non-local Fock exchange in periodic
systems in a fully two-component relativistic framework.
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Before closing the introduction we stress the following
two points:

1. These benefits of an inclusion of non-local Fock
exchange occur because of its self-consistent treat-
ment along with SOC in a two-component spinor
basis. This point implies that those benefits would
not be achieved in a calculation where the Fock
exchange operator were to be evaluated instead in
a one-component basis, as would be the case, for
example, using the popular second-variational ap-
proach to SOC of existing implementations.52–57

2. Such a treatment also allows to include the effects
of electron correlation. This point represents a
distinction with respect to the previous work by
Trushin and Görling for treating Fock exchange
in periodic systems from a local rather than non-
local potential from the optimized effective poten-
tial method with the exact exchange functional
(EXX-OEP) within the SCDFT.11,51,58

II. FORMAL ASPECTS

A. Theoretical Framework

The standard non- or scalar-relativistic (SR) approach
for treating time-reversal symmetry broken electronic
states (often referred to as open-shell electronic configu-
rations) is based on the unrestricted Hartree-Fock (UHF)
or unrestricted (G)KS-DFT approaches, which both in-
volve solving a set of two uncoupled secular equations,
one for the α spin:

H̃α
{k}C

α
{k} = Sα{k}C

α
{k}E

α
{k} , (1a)

and one for the β spin:

H̃β
{k}C

β
{k} = Sβ{k}C

β
{k}E

β
{k} , (1b)

where k is a point in momentum space, H̃{k} is the
Hamiltonian matrix in momentum space, which is ob-
tained as a Fourier transform of the matrix in position
space (the symbol tilde labels the SR Hamiltonian to dis-
tinguish it from the fully relativistic one to be introduced
below), C{k} is the matrix of the eigenvectors defining
the crystalline orbitals (COs), S{k} is the overlap ma-
trix and E{k} is the diagonal matrix of energy levels at
point k in the band structure of the system. To fix the
notation, here matrices denoted with an upper-case latin
letter have size n × n, where n is the number of basis
functions, while bold-underlined quantities are Cartesian
vectors with size 3×1. The scheme sketched above is
referred to as a one-component (1c) approach.

The procedure for performing instead fully relativis-
tic calculations which also include SOC contributions is
rather different. Indeed the SOC operator is distinct
from other operators because i) it is complex in posi-
tion space, and ii) it couples α and β components of the

wave-function, such that it is no longer possible to solve
for pure α and β states. This leads to the need to rep-
resent the wavefunction in terms of two-component (2c)
spinors Ψi(r; k), which are written as a linear combina-
tion of Bloch functions as:

Ψi(r; k) =
∑
µ

[
cαµi{k}α + cβµi{k}β

]
φµ(r; k) , (2)

where the cµi{k} are the complex coefficients of the COs,
and α and β are the simultaneous eigenfunctions of the
spin operators Ŝ2 and Ŝz, which form a complete basis
in spin space:

α =

(
1
0

)
and β =

(
0
1

)
. (3)

In our approach, the Bloch functions are expressed
in terms of atom-centered functions, according to the
so-called linear-combination of atomic orbitals (LCAO)
framework, as follows:

φµ(r; k) =
1√
Ωr

∑
g

χµ(r− g − aµ)eik·g , (4)

where χµ is an AO, aµ its position vector in the refer-
ence lattice cell, g is a direct lattice vector and Ωr is the
volume of the reciprocal primitive cell (the so-called first
Brillouin zone). Our approach has been implemented in
a developmental version of the Crystal17 code.59 We
adopt a Kramers-unrestricted protocol, where the AOs
are expressed in terms of real-solid-spherical Gaussian-
type functions (GTF) up to angular momentum l = 4.60

Both SR and SOC operators are represented in terms of
relativistic effective-core potentials (RECP). Indeed, the
RECP can be conveniently written as a sum of a purely
SR term (the so-called averaged relativistic effective po-
tential, AREP) and a purely SOC term (the so-called
spin-orbit effectif potential, SOREP).16,48,61,62

The electronic structure of time-reversal symmetry
broken systems from such a two-component theoret-
ical framework in the presence of a SOC operator
can be determined by self-consistently solving the gen-
eralized Hartree-Fock (GHF) or (G)KS-DFT secular
equations:16,48[

Hαα
{k} Hαβ

{k}
Hβα
{k} Hββ

{k}

][
cα{k}
cβ{k}

]
=

[
Sαα{k} 0

0 Sββ{k}

][
cα{k}
cβ{k}

]
ε{k} , (5)

which, unlike Eq. (1) now couple α and β components,
and where matrices denoted with lower-case latin letters
have size n×2n and ε{k} is the diagonal matrix of energy
levels, with a size of 2n× 2n.

As long as time-reversal symmetry is preserved, Eq.
(5) can be solved in a formally well-defined way for
both GHF and generalized DFT methods. This is also
true for TRSB systems for GHF. On the other hand,
the situation is more challenging for methods based on
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the DFT. This is because the standard collinear for-
mulation of unrestricted (G)KS-DFT29 does not result
in a rotationally invariant theory for TRSB systems,
when a SOC operator is included in the Hamiltonian.
The rotational invariance can be regained in the local-
density and generalized-gradient approximations (LDA
and GGA) using appropriate non-collinear formulations
of the DFT.16,20,24 More specific details on our imple-
mentation of the GHF and generalized collinear and non-
collinear DFT methods have been presented elsewhere for
molecular (i.e. non-periodic) systems.16,48

The aspects discussed above on the consequences of the
presence of the SOC operator in the Hamiltonian, change
the symmetry properties of all operators in both position
and momentum spaces, as well as the manner in which
they are transformed from one space to another. In the
following, we illustrate the properties of all operators in
position and momentum space that are relevant to the
self-consistent treatment of SOC for TRSB systems.

1. Matrix Elements in Position Space

We adopt a compact notation for the representation of
matrix elements of operators in the direct lattice in the
basis of AOs, as follows:

Hσσ′

µν{g} ≡ 〈χ
σ
µ{0}|Ĥ|χ

σ′

ν{g}〉

=

∫
dr χµ(r− aµ)σT Ĥσ′χν(r− g − aν) ,(6)

where σ, σ′ = α, β and σ, σ′ = α, β, Ĥ is the Hamilto-
nian operator, which has a 2× 2 structure in spin space
and T is the transpose operator. The matrix elements
above can be written as the following sum of terms:

Hσσ′

µν{g} = hσσ
′

µν{g} + bσσ
′

µν{g} +Cσσ
′

µν{g} + aKσσ′

µν{g} + V σσ
′

µν{g} ,

(7)

where ĥ is the SR monoelectronic operator, b̂ is the SOC
operator, Ĉ is the Coulomb (or Hartree) operator, K̂ is
the exact Fock exchange operator, a is the fraction of
exact Fock exchange and V̂ is the exchange-correlation
(xc) operator, written as a sum of exchange V̂x and cor-

relation V̂c contributions:

V̂ = (1− a)V̂x + V̂c . (8)

Eqs. (7) and (8) reduce to the corresponding GHF ex-

pressions for a = 1 and V̂c = 0. By exploitation of trans-
lational invariance, it can be shown that the Hamiltonian
matrix is complex-Hermitian, such that the following re-
lation holds for its matrix elements follows:

Hσσ′

µν{g} =
[
Hσ′σ
νµ{−g}

]∗
. (9)

As a consequence, all other matrix elements in Eq. (7)
also have the same property. For the Fock exchange op-
erator, this is the only relation among its matrix ele-
ments. On the contrary, from the specific expressions of

all other operators in the Hamiltonian, it is possible to
derive further symmetry relations that can be exploited
in the construction of the full matrix. For the Coulomb
term, the matrix is real-Hermitian and block-diagonal in
spin space, such that the following properties hold for its
matrix elements:

Cσσµν{g} = Cσσνµ{−g} = Cσ
′σ′

µν{g} = Cσ
′σ′

νµ{−g} . (10)

The matrix elements hσσ
′

µν{g} of the SR mono-electronic

operator exhibit the same features of the Coulomb oper-
ator. For the xc operator, the matrix within each spin
block is complex-symmetric:

V σσ
′

µν{g} = V σσ
′

νµ{−g} =
[
V σ

′σ
µν{g}

]∗
=
[
V σ

′σ
νµ{−g}

]∗
. (11)

Finally, for the SOC operator, the diagonal spin-
blocks are purely imaginary and each spin-block is anti-
symmetric, such that the matrix elements satisfy the fol-
lowing relations:

bααµν{g} = −bαανµ{−g} = −bββµν{g} = bββνµ{−g} , (12)

and for the off-diagonal (σ 6= σ′) spin-blocks, they are
complex-anti-symmetric:

bαβµν{g} = −bαβνµ{−g} = −
[
bβαµν{g}

]∗
=
[
bβανµ{−g}

]∗
. (13)

In the present implementation, we make explicit use of all
the relations among matrix elements from Eqs. (9)-(13),
such that we compute and store in memory explicitly
only a fraction of the total number of matrix elements
(at most half of them, for the Fock exchange operator).

2. Matrix Elements in Momentum Space

Hamiltonian matrix elements in momentum space are
written using the following compact notation:

Hσσ′

µν{k} ≡ Ωr〈φσµ{k}|Ĥ|φ
σ′

ν{k}〉

= Ωr

∫
dr φ∗µ(r; k)σT Ĥσ′φν(r; k) . (14)

The matrix elements in momentum space are obtained
as a Fourier transform of those in position space:

Hσσ′

µν{k} =
∑
g

Hσσ′

µν{g}e
ik·g , (15)

where the sum runs over all lattice vectors. To facilitate
the generalization of existing SR programs, instead of us-
ing directly Eq. (15), it is advantageous to first transform
individually the real and imaginary parts of the position
space matrix elements:

RHσσ′

µν{k} =
∑
g

<
[
Hσσ′

µν{g}

]
eik·g , (16)
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and:

IHσσ′

µν{k} =
∑
g

=
[
Hσσ′

µν{g}

]
eik·g . (17)

We stress that both quantities on the lhs of Eqs. (16)
and (17) are complex while the superscripts R and I only
refer to the pure real and pure imaginary character of
the objects being transformed on the corresponding rhs.
These complex quantities can then be combined to form
the real and imaginary parts of the matrix elements in
momentum space as follows:

<
[
Hσσ′

µν{k}

]
= <

[
RHσσ′

µν{k}

]
−=

[
IHσσ′

µν{k}

]
, (18)

and

=
[
Hσσ′

µν{k}

]
= =

[
RHσσ′

µν{k}

]
+ <

[
IHσσ′

µν{k}

]
. (19)

From the Hermiticity of the Hamiltonian matrix in posi-
tion space (9), it follows that the Hamiltonian matrix is
complex Hermitian for each point k in momentum space:

Hσσ′

µν{k} =
[
Hσ′σ
νµ{k}

]∗
. (20)

3. The Density Matrix

Once the secular equations (5) have been solved in
momentum space by diagonalization of the Hamiltonian
matrix at a set of k points on a Monkhorst-Pack mesh,
complex two-component COs with coefficients cσµi{k} are

obtained, and with corresponding energies εi{k}. The
occupied bands are then determined through the auf-
bau principle. For metallic systems, the Fermi energy εF
must also be determined. This is achieved by numerical
quadrature over the volume of the first Brillouin zone Ωr
of the Heaviside step functions q(k) =

∑
i θ[εF − εi{k}],

with the index i running over all bands. The correct value
of the Fermi energy εF is the value for which the numer-
ical quadrature

∫
Ωr
q(k)dk gives the number of electrons

in the cell times Ωr. More algorithmic details on how
to efficiently perform the required numerical quadrature
are presented in Ref. 63. In the existing 1c procedure
for TRSB systems, the aufbau and numerical quadrature
procedures are performed separately, first on the n pure
α and then on the n pure β spin states. The extension to
the treatment of 2c spinors involves instead performing
the two procedures on the whole set of 2n mixed spin
states. The density matrix Pσσ

′

µν{k} is subsequently con-

structed from the occupied COs in momentum space, as
follows:

Pσσ
′

µν{k} =
1

Ωr

occ∑
i

[cσµi{k}]
∗cσ

′

νi{k}θ[εF − εi{k}] . (21)

Finally, the density matrix must be back-Fourier trans-
formed to position space:

Pσσ
′

µν{g} =

∫
Ωr

dk Pσσ
′

µν{k}e
ik·g , (22)

because this latter quantity is used in the construction
of the Hamiltonian matrix for the next self-consistent
field (SCF) cycle. In Appendix A, we provide working
expressions for constructing the real and imaginary parts
of the position space density matrix from the occupied
COs.

B. Time Reversal Symmetry Breaking in
Momentum Space

1. General Considerations

The reversal of time has a well-established effect on
position, electron momentum and spin, as follows:9,64

r 7→ r (23a)

k 7→ −k (23b)

α 7→ β (23c)

β 7→ −α . (23d)

Eq. (24) gives the following representation of the time-
reversal operator in a two-component spinor basis:9

T̂ = −iσ̂yK̂ =

(
0 −1
1 0

)
K̂ , (24)

where K̂ represents the complex-conjugation operator
and the σ̂c are the complex 2×2 Pauli matrices, with
c = x, y, z being a Cartesian index. Substituting Eq.
(24) in Eq. (14), we obtain the following for the action

of T̂ on the elements of the Hamiltonian matrix. For
diagonal spin-blocks:

〈φσµ{k}|T̂
†
ĤT̂ |φσν{k}〉 ≡ 〈T̂ φσµ{k}|Ĥ|T̂ φσν{k}〉

= 〈φσ
′

µ{−k}|Ĥ|φ
σ′

ν{−k}〉 , (25)

and for off-diagonal spin-blocks:

〈φσµ{k}|T̂
†
ĤT̂ |φσ

′

ν{k}〉 ≡ 〈T̂ φσµ{k}|Ĥ|T̂ φσ
′

ν{k}〉

= −〈φσ
′

µ{−k}|Ĥ|φ
σ
ν{−k}〉 ,(26)

where in Eqs. (25) and (26), we assume that σ 6= σ′.
Indeed, Eqs. (25) and (26) show that for open-shell sys-
tems time-reversal symmetry is broken because of the
presence of unpaired electrons. As an example of this,
let us suppose that the Hamiltonian commutes with the

time-reversal operator (so that T̂
†
ĤT̂ = Ĥ), then Eq.

(25) would imply:

Hαα
µν{k} = Hββ

µν{−k} . (27)

Clearly Eq. (27) is not satisfied for open-shell systems,
where the Hamiltonian matrix elements of α spinors can-
not be related to those of β spinors.
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Another aspect that is relevant to this discussion is
space inversion symmetry. In inversion symmetric sys-
tems, the band structure at k equals that at −k. The
computational consequence of the latter is that, for sys-
tems with space inversion symmetry, the secular equa-
tions need not be explicitly built and diagonalised at
both k and −k. However, if the system does not exhibit
space inversion symmetry, and if time-reversal symme-
try is broken, there are in general no relations between
the energy levels or matrix elements at k and −k. So in
absence of time-reversal and space inversion symmetries,
the computational consequence is that the secular equa-
tions need to be explicitly built and diagonalised at both
k and −k.

A special exception to the above discussion is repre-
sented by the SR case (i.e. in the absence of SOC), where

the Hamiltonian matrix elements H̃σ
µν{g} are purely real

in position space so that one may write:

H̃σ
µν{−k} =

∑
g

H̃σ
µν{g}e

−ik·g

=

∑
g

H̃σ
µν{g}e

ik·g


∗

=
[
H̃σ
µν{k}

]∗
. (28)

So the matrix-elements at opposite points in momentum
space form complex-conjugate pairs. It is straightfor-
ward to show that this implies that the energy levels at
opposite points in momentum space are equivalent (i.e.
εσi{k} = εσi{−k}) and the COs are complex-conjugate pairs

(i.e. cσµi{k} = [cσµi{−k}]
∗). Hence, the secular equations

need not be diagonalised at opposite points in momen-
tum space in the special case where the Hamiltonian is
purely real in position space (i.e. for SR calculations).
However, this is not true in the presence of SOC, where
the Hamiltonian matrix is necessarily complex in position
space, and therefore the secular equations need to be ex-
plicitly built and diagonalised at both k and −k, if the
system lacks time-reversal and space inversion symmetry.

2. The Effect of Fock Exchange

The need to explicitly diagonalize the secular equations
at both k and −k is generally true for any Hamiltonian
including SOC, provided that the system breaks both
time-reversal and space inversion symmetries. Therefore,
the electronic band structure of open-shell non-centro-
symmetric periodic systems will exhibit different features
at opposite k points in the presence of SOC.

However, we show below that those KS-DFT Hamilto-
nians which do not include a fraction of exact non-local
Fock exchange (i.e. plain formulations of the xc function-
als) are constrained in the manner in which they allow
time-reversal symmetry breaking. Instead, the presence
of a fraction of exact non-local Fock exchange in the func-
tional (such as in hybrid xc functionals) removes such

constraints and allows for a full breaking of the time-
reversal symmetry in momentum space. From the sym-
metry properties of the matrix elements discussed in Sec-
tion II A 1, we show (the demonstration is reported in the
ESI)65 that KS-DFT Hamiltonians based on plain (non
hybrid) xc functionals provide band structures which are
constrained by the following sum-rule:∑

i

εi{k} =
∑
i

εi{−k} , (29)

where the sums run over all electronic energy levels. On
the other hand, for GKS-DFT Hamiltonians including a
fraction of Fock exchange, the above constraint on the
breaking of time-reversal symmetry is lost:∑

i

εi{k} 6=
∑
i

εi{−k} . (30)

C. Time Reversal Symmetry Breaking in Position
Space

A well-defined fully relativistic formulation exists for
treating TRSB systems from the DFT, based on appro-
priate density variables.12,13,31,32,46,47 In particular, from
the SCDFT, it has been shown that in the 2c approach
the appropriate density variables from which functionals
have to be built are first the particle-number density n:

n(r) =

occ∑
i

∫
Ω′

r

dk Ψ†i (r; k)Ψi(r; k) , (31)

where Ω′r represents the subset of points in momentum
space inside Ωr for which εi{k} ≤ εF . The second density
variable from which 2c functionals are to be built for
TRSB systems is the magnetization m. Its Cartesian
components are denoted as mc, with c = x, y, z being a
Cartesian index. They are defined as follows in terms of
2c spinor COs:

mc(r) =

occ∑
i

∫
Ω′

r

dk Ψ†i (r; k)σ̂cΨi(r; k) . (32)

The third variable is the orbital-current density j:13,14

j(r) =
1

2i

occ∑
i

∫
Ω′

r

dk Ψ†i (r; k)
[
∇Ψi(r; k)

]
−
[
∇Ψi(r; k)

]†
Ψi(r; k) , (33)

where the ∇ indicates the gradient over the position vari-
able r.

Finally, the functional must also depend on the three
spin-current density vectors Jx, Jy, and Jz:

31,32

Jc(r) =
1

2i

occ∑
i

∫
Ω′

r

dk Ψ†i (r; k)σ̂c
[
∇Ψi(r; k)

]
−
[
∇Ψi(r; k)

]†
σ̂cΨi(r; k) , (34)
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To perform GKS-DFT calculations, we have to deal with
the problem that unfortunately there is a lack of any ex-
plicit relativistic functional within the 2c approach for
TRSB systems, as recalled in the introduction.12–17 We
stress that also within the most general 4c approach,
where the appropriate density variable is the so-called
four-current J , no explicit functionals have been devised
for TRSB systems.12,13,47

Therefore, in practice, DFT relativistic calculations on
TRSB systems must be performed by modifying existing
non-relativistic 1c functionals using appropriate collinear
formulations (in which the functional depends only on
n and mz) or non-collinear formulations (in which the
functional depends only on n and m).9,16,18–30 So, even
though non-collinear formulations introduce the depen-
dence of the functionals on n and m, a problem re-
mains for the inclusion of j and the Jc in the two-
electron potential. One work-around to this problem
would be generalizing scalar-relativistic functionals de-
signed for calculations in the presence of external fields to
perform 2c calculations.33–40 Although technically pos-
sible, the question remains open as to whether such a
procedure would result in a successful relativistic calcu-
lation. Furthermore, while these introduce the depen-
dence on the orbital-current density j, they do not in-
clude the Jc. Another approach would be to replace the
dependence on the kinetic-energy density τ of meta-GGA
functionals with a function of the orbital-current density

τ → f
(
j · j
)

.41 Here, however, we do not follow this pos-

sible direction because of the diverse challenges it would
pose, related to the simultaneous treatment of both j and
m, as already elaborated in the introduction. We there-
fore discuss the treatment of j and the Jc solely from the
exact non-local Fock exchange operator.

We have recently shown that the particle-number den-
sity n and magnetization m are built from, and therefore
depend on, most spin-blocks of the complex density ma-
trix, but not the αα and ββ diagonal imaginary ones.
At the same time, these two blocks are those which en-
ter the definition of the orbital-current density j.17 A
detailed demonstration on how the j can be shown to de-
pend on the sum of the αα and ββ (denoted as αα⊕ββ)
diagonal imaginary spin blocks of the density matrix is
reported in Appendix B. We stress that these blocks arise
from the presence of a SOC operator in the Hamiltonian.
From Appendix B it is shown that the n, m and j in-
troduce the dependence on all spin-blocks of the density
matrix, except for a remaining three blocks (namely, the
imaginary part of the sum of the off-diagonal spin-blocks
βα ⊕ αβ and the difference of the diagonal spin blocks
αα	 ββ, as well as the real part of the βα	 αβ block).
This brings us to Appendix C, where it is shown that
these remaining three spin-blocks of the density matrix
define the spin-current density vectors Jx, Jy and Jz. It
follows that while a hypothetical xc functional built from
n, m, j and the Jc would ensure the correct dependence
of the two-electron potential on all blocks of the density
matrix (i.e. on all pieces of the wave-function), an xc

functional built solely from n and m does not.

1. The Role of Fock Exchange

As a matter of fact, in practical relativistic DFT, the
Fock exchange is the only two-electron operator which
introduces a dependence on the otherwise missing four
spin-blocks of the density matrix (imaginary part of the
αα ⊕ ββ, αα 	 ββ and βα ⊕ αβ blocks, as well as real
part of the βα	αβ block) discussed above into the two-
electron potential. The practical consequence of all this,
as we have recently shown for the case of the orbital-
current density j,17 is that for relativistic calculations
including SOC, a non-vanishing fraction of Fock exchange
(as done with hybrid xc functionals) is necessary to allow
proper coupling of the magnetization with the orbital-
and spin-current densities. In Section IV, we provide
numerical examples to complement this formal analysis,
where we show that both the orbital-current density and
magnetization have unphysical distributions from non-
hybrid functional calculations. In these examples, the
inclusion of a sufficiently large fraction of exact non-local
Fock exchange remedies this problem.

Finally, we also discuss another formal advantage of
using hybrid functionals, that is the ability of the ex-
act Fock exchange operator to provide a local magnetic
torque (LMT).30,48,66 The LMT represents the ability of
the two-electron potential to locally rotate the magne-
tization during the SCF procedure, with respect to a
starting guess configuration. For plain (i.e. non-hybrid)
formulations of the DFT, the part of two-electron po-
tential which yields a non-vanishing contribution to the
LMT corresponds to the so-called xc magnetic field Bxc,
and in this case the LMT is sometimes called the xc
torque.49,50,67 In principle, non-collinear formulations of
the DFT could also be devised in such a way to locally
provide a non-vanishing LMT. In fact, this is the case for
the non-collinear formulation of Scalmani and Frisch.24

We have, however recently shown that such formulations
as they currently exist are not rotationally invariant.16

As a result, exact Fock exchange is necessary to provide
a non-vanishing LMT within the context of a rotationally
invariant theory.

III. COMPUTATIONAL DETAILS

The calculations are performed on a model 1D periodic
system with both space inversion and time-reversal sym-
metries broken. The model is a modified poly-acetylene
(C2H2) polymer, whose structure was obtained as fol-
lows. We replaced the two C atoms in the primitive
unit cell with Ge atoms to enhance SOC and we removed
one H atom from the cell, as this allows us to obtain an
open-shell electronic ground state configuration. The fi-
nal stoichiometry of the model system thus reads Ge2H,
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with three atoms in the primitive unit cell and a lattice
parameter of 2.464 Å.

All calculations are performed with our self-consistent
treatment of SOC in a two-component spinor basis,16,48

as implemented in a developmental version of the Crys-
tal17 code.59,68 Crystalline orbitals are expressed as a
linear combination of atom-centered atomic orbitals.60

For H, we use the all-electron basis set by Dovesi and
co-workers,69 while for Ge, we use the fully relativis-
tic (scalar + spin-orbit) effective-core pseudo-potential
ECP28MDF by Dolg and co-workers along with the
corresponding (5s4p)/[3s2p] valence basis-set.70 Conver-
gence is achieved when the difference in energy between
two successive cycles does not exceed 1×10−12 a.u. Cal-
culations are performed using the SVWN5 exchange-
correlation (xc) functional of the LDA and the PBE
xc functional of the GGA.71–73 For GGA calculations,
we use our signed-canonical formulation of non-collinear
DFT, which, at variance with other existing formulations,
guarantees rotational invariance of the total energy.16

For GGA calculations, we also accelerate the SCF with
the dynamical damping method (also known as optimal
damping algorithm or relaxed constraints algorithm) pro-
posed by Karlström and Cancès,74–76 which we have gen-
eralized to a 2c SCF.

The numerical integration required for calculating the
xc energy and matrix elements is performed using an un-
pruned grid containing 75 radial points and a Lebedev
accuracy level of 16, corresponding to 974 angular points
for each radial point, and the quadrature weights pro-
posed by Becke.77–80 Integration of the density matrix
and diagonalization of the Fock matrix is performed in
reciprocal space, with sampling on 30 points. A Fermi
smearing was applied with a smearing width of 1×10−3

a.u. Truncation of the Coulomb and exchange infinite
lattice series is controlled by five parameters, which are
here set to 8 8 8 8 20 (keyword TOLINTEG, see user’s
manual for more details).81 The initial guess magneti-
zation is obtained from a SR atomic Hartee-Fock calcu-
lation and rotated, using an approach which we discuss
elsewhere.48 The orientation of the vector w in Eq. (60)
of Ref. 48 (which roughly corresponds to the orientation
of the guess magnetization on each atom) is along the
xyz diagonal, unless otherwise specified.

IV. RESULTS AND DISCUSSION

In this section, we discuss the results of our fully rela-
tivistic DFT calculations on the Ge2H chain, which serves
as a simple model system where both space inversion and
time-reversal symmetries are broken in a periodic lattice,
in the presence of a SOC operator. We illustrate the prac-
tical consequences of the theoretical arguments already
elaborated in Section II, and, in particular, the effect of
including a fraction of non-local exact Fock exchange in
the Hamiltonian. Specifically, we discuss:

• The LMT (i.e. ability to locally rotate the mag-

netization) imparted to the two-electron potential
by the Fock exchange operator. The inability of
the two-electron potential to rotate the magneti-
zation during the self-consistent treatment of SOC
in the absence of Fock exchange results in different
guesses for the orientation of the initial magnetiza-
tion yielding different final solutions. On the other
hand, with hybrid xc functionals we are always able
to find a consistent solution in terms of energy and
spatial distribution of the magnetization, regardless
of the starting guess.

• The improved rotational invariance of the total en-
ergy due to the LMT of the Fock operator in non-
collinear GGA calculations.

• The effect of Fock exchange on the spatial distribu-
tion of the magnetization, orbital- and spin-current
densities. Only the presence of the Fock exchange
operator allows for the orbital- and spin-current
densities to properly evolve along the SCF and to
couple with the magnetization to yield physically
meaningful solutions.

• The full breaking of the time-reversal symmetry in
momentum space enabled by the presence of Fock
exchange. Without it, a sum-rule constrains the
electronic band structure at opposite points in re-
ciprocal space thus preventing to reach some TRSB
states.

A. The Local Magnetic Torque

The presence (or lack) of a LMT of the type discussed
in Section II C 1 determines the ability (or inability) of
the magnetization to evolve during the self-consistent
treatment of SOC, and in particular to rotate in space
(i.e. to change its orientation). As a matter of fact, a
practical way to discuss the effect of the LMT is that of
performing the same calculation by starting from differ-
ent initial guesses for the orientation of the magnetiza-
tion, and to analyze the corresponding final solutions. In
this respect, we have recently developed a new approach
for generalizing a non- or scalar-relativistic atomic guess
density matrix to impose a desired non-collinear magne-
tization as a starting point of the SCF procedure.48 This
approach allows to define an initial atomic magnetiza-
tion with a different orientation around each atom, and
proves crucial to sample rugged energy landscapes.

We have performed three calculations by starting from
three different orientations for the magnetization on each
atomic center: a guess along x, one along yz, and one
along xyz. Figure 1 shows the spatial distribution of the
magnetization in the xy plane of the infinite Ge2H chain
as obtained at the end of the SCF procedure. Results on
the left are from plain LDA while those on the right are
from hybrid LDA (with 50% of Fock exchange). Later,
in Section IV B, we will discuss the effect of different
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fractions of Fock exchange on the magnetization, orbital-
and spin-current density distributions. The small black
arrows in the figure have length and orientation which
reflect the magnitude and direction of the mx and my

components of the magnetization, while the color repre-
sents the modulus m of the magnetization vector. The
energy difference of each solution with respect to that ob-
tained with the initial guess along x is reported alongside
each panel.

The figure shows that for the pure LDA calculations
three different final solutions for the magnetization are
obtained with the three different initial guesses. In fact,
for each case, the final solution follows the orientation
of the guess magnetization. On the contrary, with the

hybrid LDA calculations, we are able to obtain the same
final solution for the magnetization with the three dif-
ferent guesses. This is because, with the presence of a
fraction of Fock exchange and the corresponding LMT,
the two-electron potential is able to locally rotate the
magnetization during the SCF procedure, such that the
final solution is mostly independent of the starting guess.
On the other hand, for the pure LDA calculation, the
lack of LMT implies that the magnetization is not able
to rotate during the SCF procedure in order to find the
lowest energy solution. Indeed, it can be seen that the
energy differences among the obtained solutions for the
pure LDA calculations are consistently larger than those
for the hybrid LDA calculations.

FIG. 1: Spatial distribution of the magnetization for LDA (left) and hybrid LDA (right) relativistic calculations on the Ge2H
infinite chain in the presence of SOC, as a function of the initial guess for the magnetization. The orientation of the guess
magnetization on each atomic center is written in the center of the figure. The small black arrows in the figure have length
and orientation which reflect the magnitude and direction of the mx and my components of the magnetization, while the color
represents the modulus m of the magnetization vector from blue (for small magnetization) to yellow (for large magnetization).
The red ball-and-stick drawing represents the positions of the atoms. Energy differences w.r.t. the top panel are reported in
eV.

1. The Rotational Invariance for GGA Calculations

The presence of a LMT imparted to the two-electron
potential by Fock exchange also improves the rotational

invariance of the total energy in non-collinear GGA cal-
culations. The rotational invariance (i.e. the ability to
get to the same solution for different orientations of the
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system in space) is not ensured by the collinear formula-
tion of the DFT. A non-collinear formulation is needed
to restore it. However, this was only true for LDA func-
tionals while all previously reported non-collinear formu-
lations for GGA functionals suffered from the lack of ro-
tational invariance. We have recently presented an alter-
native formulation for non-collinear GGA calculations,
called “signed-canonical”, which provides a rotationally-
invariant potential.16

As an example of this, we performed two calculations
with the PBE (including no fraction of Fock exchange)
and PBE0 (including a 25% fraction of Fock exchange)82

xc functionals of the GGA. Two equivalent geometries
have been considered, which are linked by a rotation by
90 degrees along the periodic axis: in the first one the
atoms of the Ge2H infinite chain lie on the xy plane, while
in the second on the xz plane. To ensure consistency, also
the orientation of the guess magnetization has been ro-
tated accordingly. In a perfectly rotationally-invariant
theory, both calculations should yield the same energy,
down to the convergence criterium of the SCF procedure.
For these calculations, we set the convergence criterium
to 10−7 a.u. For the PBE calculations, the energy differ-
ence between the two calculations is 1.3×10−5 a.u., which
is two orders of magnitude higher than the convergence
criterium. On the other hand, for the hybrid PBE0 calcu-
lations, the difference in energy between the two calcula-
tions is 5.0×10−10 a.u., so that the rotational invariance
has improved by five orders of magnitude (down to the
precision of the calculation) by including a fraction of
Fock exchange.

B. Fock Exchange and the Current Densities

As discussed in Section II C, non-collinear xc function-
als for relativistic DFT calculations should depend on
the particle number density n, the magnetization m, the
orbital-current density j and the spin-current densities
Jc. As a matter of fact, no existing functionals which can
be applied to 2c calculations depend on j and the Jc. We
stress again that the previous statement excludes those
j-dependent functionals for 1c finite external field calcu-
lations, whose successful generalization to the 2c case is
yet to be shown.33–41 The lack of such functionals leads
to a two-electron potential that is independent of specific
pieces of the wavefunction (in particular those mapped
onto the imaginary part of the αα ⊕ ββ, αα 	 ββ and
βα ⊕ αβ blocks, as well as the real part of the βα 	 αβ
block of the complex density matrix).17 This has the
practical consequence of allowing for a poor relaxation
of the orbital- and spin-current densities along the SCF
process, through a weak coupling with the magnetization.
Fock exchange has the ability to introduce this missing
dependence into the potential and therefore ensures a
better description of the orbital- and spin-current den-
sities, and, through a stronger coupling with m, of the
magnetization itself.

FIG. 2: Spatial distribution in the xy plane of the orbital-
current density for LDA (left) and hybrid LDA (right) rela-
tivistic calculations on the Ge2H infinite chain in the presence
of SOC, as a function of the initial guess for the magneti-
zation. The orientation of the guess magnetization on each
atomic center is written in the center of the figure. The small
black arrows in the figure have length and orientation which
reflect the magnitude and direction of the jx and jy compo-
nents of the orbital-current density, while the color represents
the modulus j of the orbital-current density vector from light-
blue (small values) to fucsia (large values). The red ball-and-
stick drawing represents the positions of the atoms.

We have shown in Section IV A how heavily the final
SCF solution depends on the initial guess for the mag-
netization in the absence of Fock exchange. This is even
more so when it comes to the current densities for the for-
mal reasons addressed in Section II C and briefly recalled
above. We perform three relativistic calculations, with
SOC, by starting the SCF procedure from three different
initial guesses, as done in Section IV A. Figure 2 shows
the spatial distribution of the orbital-current density in
the xy plane of the infinite Ge2H chain as obtained at the
end of the SCF procedure. Results on the left are from
plain LDA while those on the right are from hybrid LDA
(with 50% of Fock exchange). The graphical representa-
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tion follows the same conventions as for the magnetiza-
tion in Figure 1. Inspection of Figure 2 shows how, for
plain DFT calculations, the lack of the dependence of the
two-electron potential on those specific pieces of the two-
component spinor wavefunction discussed above results
in the inability to relax the orbital-current density dur-
ing the self-consistent evolution of the electronic ground
state. Indeed, three different starting points result in
three distinct final distributions for the orbital-current
density. On the contrary, when a fraction of Fock ex-
change is included in the potential, we consistently find
the same final solution regardless of the starting point be-
cause of the ability of the potential to relax the orbital-
and spin-current densities. We believe that this analysis
nicely shows how, in the context of practical relativis-
tic DFT, the use of hybrid functionals in a fully self-
consistent 2c framework is mandatory to get physically
meaningful solutions, independent of the initial guess.

So far, we have discussed how Fock exchange allows
for: i) the proper evolution of the magnetization along
the SCF process because of the LMT it imparts; ii) the
proper evolution of the orbital- and spin-current densi-
ties along the SCF process because of the dependence
it imparts to the potential on the corresponding pieces
of the wavefunction. These two aspects are not indepen-
dent. Their simultaneous effect allows for the magnetiza-
tion and orbital- and spin-current densities to couple and
evolve jointly and in a physically consistent way along the
SCF. We are going to show below how the final distribu-
tions of both magnetization and orbital-current density
are affected by the fraction of Fock exchange included in
the xc functional. In Figure 3, we report maps similar
to those of Figures 1 and 2 for both the magnetization
(top) and orbital-current density (bottom) obtained with
different fractions of Fock exchange. Both quantities de-
pend strongly on the fraction of Fock exchange.

FIG. 3: Spatial distribution, in the xy plane, of the magnetization (top) and orbital-current density (bottom) for LDA and
hybrid LDA calculations, with different fractions of Fock exchange, as well as for a Hartree-Fock (HF) calculation. The plotted
quantities follow the same conventions described for Figure 1. The figure shows that both the magnetization and orbital-current
density distributions depend strongly on the fraction of Fock exchange.

Let us analyze the distribution of the magnetization
first. The color map clearly shows that, as expected,
the region of maximum magnetization is that right be-
low the first Ge atom (i.e. the one where the H atom was
removed and an unpaired electron left). Some magneti-
zation is built also close to the H atom.These features are
common to all fractions of Fock exchange. The situation

is different when it comes to the orientation of the magne-
tization. With a low fraction (for a = 0% and a = 10%)
the magnetization has a positive y component, whereas
for high fractions of Fock exchange (a = 50%) the mag-
netization has a negative y component. For intermediate
fractions (a = 25% and a = 33%) the magnetization has
a small y component, so that the vectors point along the
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TABLE I: Values (in eV) of the quantity Q, defined in Eq.
(35), as a function of the fraction of Fock exchange, and as
obtained with the SVWN5 functional of the LDA and the
PBE functional of the GGA.

a [%] 0 10 25 33 50

LDA 10−10 10−8 10−1 10−1 10−1

GGA 10−11 10−4 10−1 10−1 10−1

periodic x direction.

With regards to the orbital-current density, Fock ex-
change is found to strongly affect both its orientation and
spatial distribution. For small fractions of Fock exchange
(for a = 0% and a = 10%) it displays a large y compo-
nent around the H atom. For large fractions of Fock
exchange (a = 33% and a = 50%) the orbital-current
density instead points in the negative x direction around
the H atom and also develops a large (in absolute value)
negative x component below the Ge-Ge bond. For inter-
mediate fractions (a = 25%) the orbital-current density
is instead small around the H atom and points in the
positive x direction below the Ge-Ge bond.

For the periodic Hartree-Fock (HF) calculation, the
magnetization has a positive y component, and the
orbital-current density is largest under the Ge-Ge bond,
where it points in the negative x direction. Unfor-
tunately, we cannot say which fraction of Fock ex-
change most accurately reproduces the true distribu-
tions, because such an assertion would require an accu-
rate, periodic, fully relativistic correlated wavefunction
calculation, for which no implementation is yet avail-
able. We therefore leave such comparisons for future
work. However, we have recently shown on a molecular
system, for which comparison with accurate correlated
methods is possible, how hybrid DFT calculations com-
pare favorably with results from a reference spin-orbit
configuration-interaction calculation, when an interme-
diate (a = 20% and a = 25%) fraction of Fock exchange
is used.17 This also closely coincides with values of a typ-
ically used in non- or scalar-relativistic calculations.82

C. Full Breaking of Time-Reversal Symmetry in
Momentum Space

In Section II B, we have shown how the presence of the
Fock exchange operator in the Hamiltonian allows for
the full breaking of time-reversal symmetry in momen-
tum space. In its absence, the electronic band structure
at opposite k points would be constrained by the sum-
rule in Eq. (29). To support the formal proof of the
sum-rule discussed in Section II B 2 and in the ESI, here
we perform numerical tests. Let us define the following

quantity:

Q =
1

Npairs

∑
k>0

∣∣∣∣∣∣
∑
i

εi{k} − εi{−k}

∣∣∣∣∣∣ , (35)

where Npairs is the number of pairs of opposite points (k
and −k) of sampling points in the first Brillouin zone,
and the sum runs over the points with positive coordi-
nates. From the sum-rule of Eq. (29), we expect that
Q should be vanishingly small for non-hybrid xc func-
tionals. Instead, for hybrid functionals, Q measures the
degree to which the sum-rule is broken. Table I does in-
deed show that Q is vanishingly small in the absence of
Fock exchange in the Hamiltonian, as the values reported
are on the order of 10−10 eV for the LDA calculation
and 10−11 eV for the PBE calculation. For small values
of a, Q steadily increases for both the LDA and GGA
calculations. Once a sufficiently high fraction a of Fock
exchange is included in the functional (in this case higher
than 10%), Q stabilizes to a value on the order of 10−1

eV, regardless of whether the LDA or GGA is used.

The consequence of the sum-rule is that a fraction of
Fock exchange in the Hamiltonian is required to fully
break time-reversal symmetry and access the full range
of possible TRSB states. We highlight the consequences
of all this by showing in Figure 4 the electronic band
structure of the Ge2H infinite chain in the vicinity of the
Fermi level as obtained from hybrid and non-hybrid LDA
calculations. For the hybrid calculation, we choose a frac-
tion a = 50%, as this results in a Hamiltonian which very
closely resembles that of the previously reported Becke
Half and Half (BHandH) functional.83 Also, the choice of
such a large value for a allows us to better highlight its ef-
fect. As expected, the SR calculations (i.e. in the absence
of SOC) produce band structures which are symmetric
about the Γ-point (dotted lines). For the hybrid calcula-
tion with SOC on the other hand, the valence band shows
a considerable asymmetric splitting of the energy levels
at opposite points in momentum space (k vs. −k). The
valence band is indeed the only band which shows appre-
ciable splitting at opposite points in momentum space,
indicating that this splitting can only be reproduced by
breaking of the sum-rule. On the contrary, for the non-
hybrid calculation with SOC, the valence band does not
show similar splitting, and virtually overlaps with the one
from the SR calculation in this case, because the sum-rule
is satisfied.

V. CONCLUSIONS

We have discussed formal and computational aspects
of two-component relativistic DFT calculations with the
simultaneous self-consistent treatment of spin-orbit cou-
pling (SOC) and non-local Fock exchange in periodic sys-
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FIG. 4: Electronic band structure of the Ge2H infinite chain
from hybrid LDA (top) and non-hybrid LDA (bottom) cal-
culations. The fraction of Fock exchange for the hybrid cal-
culation is a = 50%. The band structure from the fully rela-
tivistic calculation with the self-consistent treatment of SOC
is plotted with solid lines, while that from a scalar-relativistic
calculation (i.e. in the absence of SOC) is represented with
dotted lines. The Fermi energy is set to zero and marked by
a red horizontal line.

tems. In particular, we have presented the first imple-
mentation, in the public Crystal code, of such method-
ology. The numerous fundamental advantages of in-
cluding the non-local Fock exchange operator into the
Hamiltonian for relativistic DFT calculations, as prac-
tically done in hybrid exchange-correlation functionals,
have been introduced, which are particularly relevant to
the study of time-reversal symmetry broken electronic
configurations.

The Fock exchange operator imparts a local magnetic
torque (i.e. the ability of the two-electron potential to lo-
cally rotate the magnetization with respect to a starting
guess configuration). The inability of the two-electron
potential to rotate the magnetization during the self-
consistent treatment of SOC in the absence of Fock ex-
change results in different guesses for the orientation of
the initial magnetization yielding different final solutions.
On the other hand, with hybrid xc functionals, the same
solution in terms of energy and spatial distribution of
the magnetization can be consistently found, regardless
of the starting guess.

The local magnetic torque due to the Fock operator
improves the rotational invariance of the total energy in
non-collinear GGA calculations.

Only the presence of the Fock exchange operator allows
for the orbital- and spin-current densities (fundamental
density variables of relativistic DFT) to properly evolve
along the self-consistent treatment and to couple with the
magnetization to yield physically meaningful solutions.

When space inversion symmetry is broken, the full
breaking of the time-reversal symmetry in momentum
space enabled by the presence of Fock exchange allows to
explore certain electronic states that would otherwise be
forbidden by a sum-rule which constrains the electronic
band structure at opposite points in reciprocal space.

Appendix A: Working Expressions for the Density
Matrix in Position Space

Substituting Eq. (21) in (22) and using Euler’s for-
mula, we find the following working expressions for the
real and imaginary parts of the position space density
matrix:

<[Pσσ
′

µν{g}] =
1

Ωr

∫
Ωr

dk

occ∑
i

θ[εF − εi{k}]

{
cos(k · g)

×
(
<[cσµi{k}]<[cσ

′

νi{k}] + =[cσµi{k}]=[cσ
′

νi{k}]
)

− sin(k · g)

×
(
<[cσµi{k}]=[cσ

′

νi{k}]−=[cσµi{k}]<[cσ
′

νi{k}]
)}

,

and:

=[Pσσ
′

µν{g}] =
1

Ωr

∫
Ωr

dk
occ∑
i

θ[εF − εi{k}]

{
cos(k · g)

×
(
<[cσµi{k}]=[cσ

′

νi{k}]−=[cσµi{k}]<[cσ
′

νi{k}]
)

+ sin(k · g)

×
(
<[cσµi{k}]<[cσ

′

νi{k}] + =[cσµi{k}]=[cσ
′

νi{k}]
)}

.

Appendix B: Dependence of the Orbital-Current
Density on Blocks of the Density Matrix

We show here how the orbital-current density j (r) can
be developped in terms of the single particle density ma-
trix elements Pσσ

′

µν . To simplify the notation, the devel-
opments are provided for the non-periodic case, so that
the subscripts {g} and {k} are dropped. The fact that
we use the non-periodic limit, however does not change
the conclusions on the functional dependence of j (r) on
the density matrix. We also here drop the underlined
notation for Cartesian vectors.
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We therefore write the density matrix elements Pσσ
′

µν

in terms of the occupied orbital coefficients as follows:

Pσσ
′

µν =
∑
i

[
cσµi

]∗
cσ

′

νi . (B1)

The density matrix is complex-Hermitian:

Pσσ
′

µν =
[
Pσ

′σ
νµ

]∗
. (B2)

In the non-periodic limit, we write the 2c spinors as in
Eq. (2), but without the index k:

Ψi (r) =
∑
µ

[
cαµiα + cβµiβ

]
φµ(r) . (B3)

The orbital-current density is written in terms of the oc-
cupied spinors Ψi (r) as follows:

j (r) =
1

2i

occ∑
i

[
Ψi (r)

]†∇Ψi (r)−
[
∇Ψi (r)

]†
Ψi (r) .

(B4)
Substituting Eq. (3), as well as Eq. (B3) in Eq. (B4):

j (r) =
1

2i

occ∑
i

∑
µν

([
cαµi

]∗
cανi +

[
cβµi

]∗
cβνi

)
×
(
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

)
. (B5)

Substituting Eq. (B1) in Eq. (B5), we obtain:

j (r) =
1

2i

∑
µν

(
Pααµν + P ββµν

)
φµ(r)

[
∇φν(r)

]
− 1

2i

∑
µν

(
Pααµν + P ββµν

) [
∇φµ(r)

]
φν(r) . (B6)

We can simplify each sum in Eq. (B6) using the Hermitic-
ity of the density matrix from Eq. (B2), by writting, for
example, for the first sum in Eq. (B6):∑
µν

(
Pααµν + P ββµν

)
φµ(r)

[
∇φν(r)

]
=

1

2

∑
µν

(
Pααµν + P ββµν

)
×φµ(r)

[
∇φν(r)

]
+

1

2

∑
µν

(
Pαανµ + P ββνµ

) [
∇φµ(r)

]
φν(r) .(B7)

Substituting Eq. (B2) in Eq. (B7):∑
µν

(
Pααµν + P ββµν

)
φµ(r)

[
∇φν(r)

]
=

1

2

∑
µν

(
Pααµν + P ββµν

)
φµ(r)

[
∇φν(r)

]
+

1

2

∑
µν

([
Pααµν

]∗
+
[
P ββµν

]∗)[
∇φµ(r)

]
φν(r) . (B8)

Proceeding similarly for the second sum in Eq. (B6), we
obtain: ∑

µν

(
Pααµν + P ββµν

) [
∇φµ(r)

]
φν(r) =

1

2

∑
µν

(
Pααµν + P ββµν

) [
∇φµ(r)

]
φν(r)

+
1

2

∑
µν

([
Pααµν

]∗
+
[
P ββµν

]∗)
φµ(r)

[
∇φν(r)

]
. (B9)

Substituting Eqs. (B8) and (B9) in Eq. (B6), we find:

j (r) =
1

4i

∑
µν

(
Pααµν + P ββµν

)
φµ(r)

[
∇φν(r)

]
+

1

4i

∑
µν

([
Pααµν

]∗
+
[
P ββµν

]∗)[
∇φµ(r)

]
φν(r)

− 1

4i

∑
µν

(
Pααµν + P ββµν

) [
∇φµ(r)

]
φν(r)

− 1

4i

∑
µν

([
Pααµν

]∗
+
[
P ββµν

]∗)
φµ(r)

[
∇φν(r)

]
.(B10)

Combining the first and fourth sums, as well as the sec-
ond and third sums in Eq. (B10), we finally find:

j (r) =
1

2

∑
µν

(
=
[
Pααµν

]
+ =

[
P ββµν

])
×
{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
.(B11)

To write succinct expressions for the orbital-current den-
sity, as well as the other density variables in terms of
the density matrix, it is useful to introduce the following
compact notation:

Pαα⊕ββµν = Pααµν + P ββµν (B12a)

Pαα	ββµν = Pααµν − P ββµν (B12b)

P βα⊕αβµν = P βαµν + Pαβµν (B12c)

P βα	αβµν = P βαµν − Pαβµν . (B12d)

Using the notation in Eq. (B12a) we can write also
the particle-number density and magnetization Cartesian
components in terms of the density matrix as follows:16,48

n (r) =
∑
µν

<
[
Pαα⊕ββµν

]
φµ(r)φν(r) (B13)

mx (r) =
∑
µν

<
[
P βα⊕αβµν

]
φµ(r)φν(r) (B14)

my (r) = −
∑
µν

=
[
P βα	αβµν

]
φµ(r)φν(r) (B15)

mz (r) =
∑
µν

<
[
Pαα	ββµν

]
φµ(r)φν(r) , (B16)



15

and for the orbital-current density:

j (r) =
1

2

∑
µν

=
[
Pαα⊕ββµν

]{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
. (B17)

Comparing Eqs. (B13)-(B16) with Eq. (B17) we see that
the n, m and j make use of all spin-blocks of the density
matrix, except for the imaginary part of the βα ⊕ αβ
and αα	ββ ones, as well as the real part of the βα	αβ
block. As we will see in Appendix C, these missing spin-
blocks of the density matrix will be used to define the
spin-current densities Jx, Jy and Jz.

Appendix C: Dependence of the Spin-Current
Density on Blocks of the Density Matrix

We show here how the spin-current density Jc can be
expressed in terms of the remaining spin-blocks of the
density matrix. As in Appendix B, we adopt the non-
periodic limit and drop the underlined notation for Carte-
sian vectors in order to simplify the notation.

For the spin-current density, the expression in terms of
2c spinors makes use of the 2×2 complex Pauli matrices:

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0

0 −1

)
,

(C1)
and reads as follows, in the non-periodic limit:

Jc (r) =
1

2i

occ∑
i

[
Ψi (r)

]†
σ̂c∇Ψi (r)−

[
∇Ψi (r)

]†
σ̂cΨi (r) ,

(C2)
where c = x, y, z is a Cartesian index labelling the Pauli
matrices. Substituting Eqs. (B3) and (C1) in Eq. (C2)
and proceeding as in Eqs. (B5) and (B6), we find the
following expressions for all three components:

Jx (r) =
1

2i

∑
µν

(
Pαβµν + P βαµν

)
×
{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
,(C3a)

Jy (r) =
1

2

∑
µν

(
P βαµν − Pαβµν

)
×
{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
,(C3b)

Jz (r) =
1

2i

∑
µν

(
Pααµν − P ββµν

)
×
{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
.(C3c)

Then, proceeding as in Eqs. (B7)-(B10), we find the
following expressions:

Jx (r) =
1

4i

∑
µν

(
Pαβµν −

[
Pαβµν

]∗
+ P βαµν −

[
P βαµν

]∗)
×
{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
,(C4a)

Jy (r) =
1

4

∑
µν

(
P βαµν +

[
P βαµν

]∗
− Pαβµν −

[
Pαβµν

]∗)
×
{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
,(C4b)

Jz (r) =
1

4i

∑
µν

(
Pααµν −

[
Pααµν

]∗
− P ββµν +

[
P ββµν

]∗)
×
{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
. (C4c)

Finally, using again the Hermiticity of the density matrix
by substituting Eq. (B2) in Eq. (C5), we obtain:

Jx (r) =
1

2

∑
µν

=
[
P βα⊕αβµν

]{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
, (C5a)

Jy (r) =
1

2

∑
µν

<
[
P βα	αβµν

]{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
, (C5b)

Jz (r) =
1

2

∑
µν

=
[
Pαα	ββµν

]{
φµ(r)

[
∇φν(r)

]
−
[
∇φµ(r)

]
φν(r)

}
. (C5c)
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