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LAGRANGIAN DISTRIBUTIONS AND FOURIER
INTEGRAL OPERATORS WITH QUADRATIC PHASE

FUNCTIONS AND SHUBIN AMPLITUDES

MARCO CAPPIELLO, RENÉ SCHULZ, AND PATRIK WAHLBERG

Abstract. We study Fourier integral operators with Shubin am-
plitudes and quadratic phase functions associated to twisted graph
Lagrangians with respect to symplectic matrices. We factorize such
an operator as a pseudodifferential operator and a metaplectic op-
erator. Extending the conormal distributions adapted to the Shu-
bin calculus, we define an adapted notion of Lagrangian tempered
distibution. We show that the kernels of Fourier integral operators
are identical to Lagrangian distributions with respect to twisted
graph Lagrangians.

1. Introduction

Lagrangian distributions were introduced by Hörmander [17, Vol. IV]
as a framework for a global theory of Fourier integral operators (FIOs).
Namely, FIOs are defined as operators whose Schwartz kernel is a La-
grangian distribution associated to a canonical relation. Many of the
properties of FIOs can be deduced from the study of their kernels. A
special case of Lagrangian distributions are the conormal distributions,
cf. [17, Vol. III], which include the kernels of pseudodifferential oper-
ators. Lagrangian and conormal distributions are defined in terms of
local Besov norm estimates which are required to be preserved under
the action of certain pseudodifferential operators. These estimates re-
flect properties of the amplitudes of the operators, which are in the
classical setting the Hörmander symbols.

In this paper we consider another fundamental class of operators
in the theory of partial differential equations, the so called Shubin
class [24]. A Shubin symbol a ∈ Γmρ (R2d), with m ∈ R and 0 6 ρ 6 1,
satisfies the estimates∣∣∣∂αx∂βξ a(x, ξ)

∣∣∣ . (1 + |x|+ |ξ|)m−ρ|α+β|, (x, ξ) ∈ T ∗Rd, α, β ∈ Nd.

Shubin symbols for pseudodifferential operators are interesting not
least since they encompass the symbol a(x, ξ) = |x|2 + |ξ|2 of the
harmonic oscillator. The Shubin symbols behave isotropically on the
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phase space T ∗Rd, which distinguishes them from the Hörmander sym-
bols. The Shubin class has been intensively studied by many authors,
e.g. [1–5,15,16,18,20–24].

Concerning FIOs with Shubin amplitudes, the main contributions
include Asada and Fujiwara [1] and Helffer and Robert [15, 16], who
developed the calculus and the spectral theory, and gave applications
to PDEs. They used real phase functions that are generalizations of
quadratic forms, with a prescribed condition of non-degeneracy. More
recently Cordero et al. [8–10] and Tataru [25] have contributed to the
field of FIOs with quadratic type phase functions, in the former case
using symbols from modulation spaces rather than Shubin type ampli-
tudes.

A theory of conormal and Lagrangian distributions for FIOs with
Shubin amplitudes and quadratic phase functions, parallel to Hörman-
der’s theory, and reflecting the peculiar properties of the kernels of
these operators, is still missing in the literature.

In [6] we started to fill this gap by defining the space of Γ-conormal
tempered distributions, adapted to Shubin pseudodifferential opera-
tors. The definition concerns estimates of certain differential operators
acting on a Fourier–Bros–Iagolnitzer (FBI) transform of the distribu-
tion. In the present paper we extend this analysis to Fourier integral op-
erators and Lagrangian distributions. Namely, the principal novelties
are the phase space analysis of the kernels of FIOs and the introduction
and study of Lagrangian distributions in the Shubin setting. A main
result is that the FIOs have kernels that are Γ-Lagrangian distributions
with respect to the twisted graph Lagrangian. The results proved in
the paper can be applied to initial value problems for Schrödinger-type
equations with Hamiltonian given by the sum of a real homogeneous
quadratic form and a pseudodifferential perturbation from the Shubin
class. For the sake of brevity here we decided to focus on the theoreti-
cal aspects of our analysis. We refer the reader to the recent paper [7]
for the above mentioned applications.

The key tools in our approach are an FBI type transform, used al-
ready in [6], and metaplectic operators. The idea to study estimates
in the phase space of an FBI transform is suggested by the isotropic
behavior of the amplitudes, and by analogous estimates proved for sim-
ilar operators, cf. [25]. This approach leads us to restrict to quadratic
phase functions whose associated Lagrangian is a twisted graph La-
grangian in T ∗R2d with respect to a symplectic matrix. Under this
restriction the calculus of the FIOs turns out to be contained in the
analysis in [1, 15]. However, in addition to the classical algebra prop-
erties, for our purposes we need to extend those calculi and include
the behavior with respect to composition, which is homomorphic with
respect to the symplectic matrices.
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The paper is organized as follows. In Section 2 we recall an FBI
type transform, and some basic facts on Shubin pseudodifferential op-
erators and metaplectic operators. Then we study oscillatory integrals
with Shubin amplitudes and quadratic real-valued phase functions in
Section 3. In Section 4 we define the FIOs that we study, and we
compare our assumptions to [1, 15]. We show that FIOs are closed
under composition, which leads to the central result that every FIO
can be factored as the composition of a metaplectic operator and a
Weyl pseudodifferential operator of Shubin type. Section 5 is devoted
to phase space analysis of kernels of FIOs in terms of estimates on the
FBI transform. We define Γ-Lagrangian distributions in the Shubin
framework in Section 6 and we study the microlocal properties of these
distributions, the action of FIOs on them, and phase space estimates
of the FBI transform. In Section 7 we prove that the Schwartz kernels
of the FIOs are identical to the Γ-Lagrangian distributions associated
with the twisted graph Lagrangian.

2. Preliminaries

Basic notation. An open ball in Rd is denoted Br(y) = {x ∈ Rd :
|x− y| < r} ⊆ Rd for y ∈ Rd and r > 0, and we write Br(0) = Br. The
gradient operator with respect to x ∈ Rd is denoted ∇x, and we write
∇xf(x) = f ′x(x). We use S (Rd) and S ′(Rd) to denote the Schwartz
space of rapidly decaying smooth functions, and its dual the tempered
distributions, respectively. We write (f, g) for the sesquilinear pairing,
conjugate linear in the second argument, between a distribution f and
a test function g, as well as the L2-standard scalar product if f, g ∈
L2(Rd).

The symbols Tx0u(x) = u(x − x0) and Mξu(x) = ei〈x,ξ〉u(x), where
〈·, ·〉 denotes the inner product on Rd, are used for translation by x0 ∈
Rd and modulation by ξ ∈ Rd, respectively, applied to functions or
distributions. For x ∈ Rd we use 〈x〉 =

√
1 + |x|2. Peetre’s inequality

is

(2.1) 〈x+ y〉s 6 Cs〈x〉s〈y〉|s| x, y ∈ Rd, Cs > 0, s ∈ R.

We write d̄x = (2π)−ddx for the dual Lebesgue measure. The notation
f(x) . g(x) means f(x) 6 Cg(x) for some C > 0 for all x in the domain
of f and of g. If f(x) . g(x) . f(x) then we write f(x) � g(x).

The Fourier transform for f ∈ S (Rd) is normalized as

Ff(ξ) = f̂(ξ) = (2π)−d/2
∫
Rd

f(x)e−i〈x,ξ〉 dx

which makes it unitary on L2(Rd). The partial Fourier transform with
respect to a vector variable indexed by j is denoted Fj.
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The orthogonal projection on a linear subspace Y ⊆ Rd is denoted
πY . We denote by Md1×d2(R) the space of d1×d2 matrices with real en-
tries, by GL(d,R) ⊆ Md×d(R) the group of invertible matrices, and by
O(d) ⊆ GL(d,R) the subgroup of orthogonal matrices. The determi-
nant of A ∈ Md×d(R) is |A|. If f is a function on Rd and A ∈ GL(d,R)
the pullback is denoted A∗f = f ◦ A.

An integral transform of FBI type. The following integral trans-
form has been used extensively in [6] and is fundamental also for this
article. For more information see [6].

Definition 2.1. Let u ∈ S ′(Rd) and let g ∈ S (Rd) \ {0}. The
transform u 7→ Tgu is

Tgu(x, ξ) = (2π)−d/2(u, TxMξg), x, ξ ∈ Rd.

If u ∈ S (Rd) then Tgu ∈ S (R2d) by [14, Theorem 11.2.5]. The
adjoint T ∗g is defined by (T ∗g U, f) = (U, Tgf) for U ∈ S ′(R2d) and

f ∈ S (Rd). When U is a polynomially bounded measurable function
we write

T ∗g U(y) = (2π)−d/2
∫
R2d

U(x, ξ)TxMξg(y) dx dξ

where the integral is defined weakly so that (T ∗g U, f) = (U, Tgf)L2 for

f ∈ S (Rd).

Proposition 2.2. [14, Theorem 11.2.3] Let u ∈ S ′(Rd) and let g ∈
S (Rd) \ 0. Then Tgu ∈ C∞(R2d) and there exists N ∈ N such that

|Tgu(x, ξ)| . 〈(x, ξ)〉N , (x, ξ) ∈ R2d.

We have u ∈ S (Rd) if and only if for any N > 0

|Tgu(x, ξ)| . 〈(x, ξ)〉−N , (x, ξ) ∈ R2d.

The transform Tg is closely related to the short-time Fourier trans-
form [14]

Vgu(x, ξ) = (2π)−d/2(u,MξTxg), x, ξ ∈ Rd,

namely Tgu(x, ξ) = ei〈x,ξ〉Vgu(x, ξ). If g, h ∈ S (Rd) then

T ∗h Tgu = (h, g)u, u ∈ S ′(Rd),

and thus ‖g‖−2
L2T ∗g Tgu = u for g ∈ S (Rd) \ 0, cf. [14].

Finally we recall the definition of the Gabor wave front set, cf. [18,22].

Definition 2.3. If u ∈ S ′(Rd) and g ∈ S (Rd) \ 0 then z0 ∈ T ∗Rd \
0 satisfies z0 /∈ WF(u) if there exists an open cone V ⊆ T ∗Rd \ 0
containing z0, such that for any N ∈ N there exists CV,g,N > 0 such
that |Tgu(z)| 6 CV,g,N〈z〉−N when z ∈ V .

The Gabor wave front set is hence a closed conic subset of T ∗Rd \ 0.
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Weyl pseudodifferential operators and metaplectic operators.
We use pseudodifferential operators in the Weyl calculus. Such an
operator is defined by a symbol a defined on R2d as

aw(x,D)f(x) =

∫
R2d

ei〈x−y,ξ〉a ((x+ y)/2, ξ) f(y) d̄ξ dy.

We will later use Shubin symbols, but for now it suffices to note that
the Weyl quantization extends by the Schwartz kernel theorem to a ∈
S ′(R2d), and then gives rise to a continuous linear operator aw(x,D) :
S (Rd) → S ′(Rd). The space of Weyl pseudodifferential operators
with symbols in a space U ⊆ S ′(R2d) is denoted OPw U .

The Weyl product a#b is the product on the symbol level corre-
sponding to composition of operators,

(a#b)w(x,D) = aw(x,D)bw(x,D)

when the composition is well defined. The (Schwartz) kernel of the
operator aw(x,D) is

(2.2) Ka(x, y) =

∫
Rd

ei〈x−y,ξ〉a ((x+ y)/2, ξ) d̄ξ

interpreted as a partial inverse Fourier transform, followed by a change
of variables, of a when a ∈ S ′(R2d).

For a ∈ S ′(R2d) and f, g ∈ S (Rd) we have

(2.3) (aw(x,D)f, g) = (2π)−d/2(a,W (g, f))

where
(2.4)

W (g, f)(x, ξ) = (2π)−d/2
∫
Rd

g(x+ y/2)f(x− y/2) e−i〈y,ξ〉 dy ∈ S (R2d)

is the Wigner distribution [11,14].
We view T ∗Rd as a symplectic vector space equipped with the canon-

ical symplectic form

(2.5) σ((x, ξ), (x′, ξ′)) = 〈x′, ξ〉 − 〈x, ξ′〉, (x, ξ), (x′, ξ′) ∈ T ∗Rd.

A Lagrangian (subspace) [17] is a linear subspace Λ ⊆ T ∗Rd of dimen-
sion d such that

σ(X, Y ) = 0, X, Y ∈ Λ.

The real symplectic group Sp(d,R) is the set of matrices in GL(2d,R)
that leaves σ invariant. The metaplectic group Mp(d) is a group of
unitary operators on L2(Rd), which is a (connected) double covering
of the symplectic group Sp(d,R). In fact the two-to-one projection
π : Mp(d)→ Sp(d,R) has kernel is ±I. Each operator µ ∈ Mp(d) is a
homeomorphism on S and on S ′. The metaplectic covariance of the
Weyl calculus reads

(2.6) µ−1aw(x,D)µ = (a ◦ χµ)w(x,D), a ∈ S ′(R2d),
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where µ ∈ Mp(d) and χµ = π(µ) (cf. [13, Theorem 215], [11]). Although
the notation is not very rigorous, for simplicity in the following we
will occasionally denote by µ(χ) any of the two operators µ ∈ Mp(d)
(differing by a sign) such that π(µ) = χ. We implicitly mean in this
case that the validity of the statements does not depend on the choice
of µ. Under the latter clarification the following formula holds true:

(2.7) µ(χ1)µ(χ2) = ±µ(χ1χ2), χ1, χ2 ∈ Sp(d,R).

Let ψ0 = π−d/4e−|x|
2/2, x ∈ Rd. A localization operator [20] with

symbol a ∈ S ′(R2d) is defined by

(Aau, f) = (aTψ0 , Tψ0f), u, f ∈ S (Rd).

We have (cf. [20, Section 1.7.2]) Aa = bw(x,D) where

b = π−de−|·|
2 ∗ a.

3. Oscillatory integrals with respect to quadratic phase
functions and Shubin amplitudes

In this section we study oscillatory integrals of the form

(3.1) Kϕ,a(x, y) =

∫
RN

eiϕ(x,y,θ)a(x, y, θ) dθ, x, y ∈ Rd.

They will later be used as kernels of FIOs.
We make the following assumptions on the phase function ϕ. It is a

real-valued quadratic form on R2d+N ,

(3.2) ϕ(x, y, θ) = 〈(x, y, θ),Φ(x, y, θ)〉, x, y ∈ Rd, θ ∈ RN ,

where Φ ∈ M(2d+N)×(2d+N)(R) is symmetric. We decompose Φ into
blocks as

(3.3) Φ =
1

2

(
F L
Lt Q

)
where F ∈ M2d×2d(R), L ∈ M2d×N(R) and Q ∈ MN×N(R), and where
F and Q are symmetric. Thus

ϕ(x, y, θ) =
1

2
〈(x, y), F (x, y)〉+〈Lθ, (x, y)〉+1

2
〈θ,Qθ〉, (x, y, θ) ∈ R2d+N .

We assume the following non-degeneracy condition:

(3.4) The submatrix

(
L
Q

)
∈ M(2d+N)×N(R) is injective.

As example is given by the pseudodifferential operator phase function
ϕ(x, y, ξ) = 〈x− y, ξ〉 where F = 0, Q = 0 and

L =

(
Id
−Id

)
∈ M2d×d(R).
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In (3.1) we assume N > 0. If N = 0 then the matrices L and Q do
not exist and we interpret the integral (3.1) as

(3.5) Kϕ,a(x, y) = eiϕ(x,y)a(x, y) x, y ∈ Rd.

Denote X = (x, y) ∈ R2d. The critical set defined by a phase func-
tion ϕ is the linear subspace

Cϕ = {(X, θ) ∈ R2d+N : ϕ′θ(X, θ) = 0} ⊆ R2d+N

and the associated Lagrangian subspace is

Λϕ = {(X,ϕ′X(X, θ)) ∈ T ∗R2d : ϕ′θ(X, θ) = 0} ⊆ T ∗R2d.

Owing to the properties of ϕ we have dimCϕ = dim Λϕ = 2d.
The amplitude a in (3.1) is assumed to be of Shubin type [24]. Let

Ω ⊆ R2d+N be open and let 0 6 ρ 6 1. The space of Shubin amplitudes
of order m ∈ R is denoted Γmρ (Ω), and a ∈ Γmρ (Ω) means that a ∈
C∞(Ω) and
(3.6)

|∂αX∂
β
θ a(X, θ)| . 〈(X, θ)〉m−ρ|α+β|, (α, β) ∈ N2d+N , (X, θ) ∈ Ω.

We denote Γm(Ω) = Γm1 (Ω) and Γ∞ρ (Ω) =
⋃
m∈R

Γmρ (Ω).

We will mostly assume a ∈ Γmρ (R2d+N). Occasionally we will discuss
a larger space of amplitudes, introduced by Helffer [15], that is adapted
to a given phase function. Consider for ε > 0 the open conic set

(3.7) Vϕ,ε = {(X, θ) ∈ R2d+N : |ϕ′θ(X, θ)| < ε|(X, θ)|} ⊆ R2d+N

which contains the critical set Cϕ. We denote

(3.8) Γmϕ,ρ,ε(R2d+N) = Γmρ (Vϕ,ε) ∩ Γ∞0 (R2d+N),

see [15, Section 2.2]. In this definition it is required that the ampli-
tudes behave like Γmρ only in a conic neighborhood of the critical set,
outside of which a cruder polynomial estimate of the derivatives is suf-
ficient. The space Γmϕ,ρ,ε(R2d+N) includes symbols of pseudodifferential
operators (cf. Remark 4.5).

Remark 3.1. The restriction to quadratic phase functions is crucial in
order to obtain estimates in the phase space for the FBI transform of
the kernels. However, the conditions (3.2), (3.3), (3.4) combined with
Shubin amplitudes are less restrictive than one might think. In fact we
can allow a phase function of the form ϕr = ϕ + r where ϕ satisfies
the assumptions above and r ∈ Γ0

ρ(R2d+N). Then eir ∈ Γ0
ρ(R2d+N), and

hence the factor eir can be absorbed into the amplitude. This means
that the phase function only has to be a non-degenerate quadratic form
modulo an element in Γ0

ρ(R2d+N).

We note that the conditions (3.2), (3.3), (3.4) on the phase function
are neither weaker nor stronger than the conditions in [1], and the
same observation holds for the conditions in [15]. In [1,15] the authors
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deal with phase functions that are more general than quadratic forms,
but their conditions of non-degeneracy are stronger than ours. On the
other hand, we shall later restrict to phase functions that are associated
to the twisted graph Lagrangian of a symplectic matrix. Under this
additional condition our phase functions become a subset of the ones
considered in [1, 15], cf. Remark 4.8.

If a ∈ Γmρ (R2d+N) with m < −N the integral (3.1) converges ab-
solutely and defines a polynomially bounded function. Due to the
properties of ϕ it is possible to give meaning to (3.1) for any m ∈ R.
To wit, by the regularization procedure described in [19, Section 5]
and [21, Section 3], one extends (3.1) to m ∈ R obtaining a kernel
Kϕ,a ∈ S ′(R2d).

More precisely, first let a ∈ Γmρ (R2d+N) with m < −N and let f ∈
S (R2d). For 1 6 j 6 N we have

(Kϕ,a, f) =

∫
R2d+N

eiϕ(X,θ)a(X, θ) f(X) dθ dX

=

∫
R2d+N

eiϕ(X,θ)Pj

(
a(X, θ) f(X)

)
dθ dX

where Pj is a first order differential operator of the form

Pjg = (1 + 〈uj,∇X,θ〉+ 〈bj, X〉)
(

g

1− iθj

)
, uj ∈ R2d+N , bj ∈ R2d,

acting on g ∈ C∞(R2d+N). Iterating this k times and then over 1 6
j 6 N produces

(3.9) (Kϕ,a, f) =

∫
R2d+N

eiϕ(X,θ)P
(
a(X, θ) f(X)

)
dθ dX

where

(3.10) P = P k
1 P

k
2 · · ·P k

N .

For m ∈ R and a ∈ Γmρ (R2d+N) the integral (3.9) converges and de-

fines a distribution in S ′(R2d) provided k > |m|+ 2, since the factors
in the denominator 1− iθj make the integral with respect to θ conver-
gent. Thus Kϕ,a ∈ S ′(R2d) is well defined for a ∈ Γmρ (R2d+N) where
m ∈ R is arbitrary, and the extension is unique. Equivalently we may
define Kϕ,a ∈ S ′(R2d) for a ∈ Γmρ (R2d+N) as

(Kϕ,a, f) = lim
ε→0+

∫
R2d+N

χε(θ) e
iϕ(X,θ)a(X, θ) f(X) dθ dX, f ∈ S (R2d),

where χε(θ) = χ(εθ), χ ∈ S (RN), ε > 0 and χ(θ) = 1 when |θ| 6 1.
The latter regularization can be written as

Kϕ,a(X) = lim
ε→0+

∫
RN

χε(θ) e
iϕ(X,θ)a(X, θ) dθ, X ∈ R2d.
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In the following we show that the oscillatory integral (3.1) with
a ∈ Γmρ (R2d+N) may be rewritten with a possibly new amplitude b ∈
Γmρ (R2d+n) for some n ∈ N such that 0 6 n 6 N and a possibly new
phase function which lacks the term Q, cf. (3.2) and (3.3).

Proposition 3.2. Suppose N > 1, a ∈ Γmρ (R2d+N) and let ϕ be a qua-
dratic phase function defined by a symmetric matrix Φ ∈ M(2d+N)×(2d+N)(R)
denoted as in (3.3) and satisfying (3.4). Denote the corresponding La-
grangian by Λϕ ⊆ T ∗R2d.

Then there exists n ∈ N such that 0 6 n 6 N , and (3.1) can be
written as the oscillatory integral

Kϕ0,b(X) =

∫
Rn

eiϕ0(X,θ)b(X, θ) dθ, X ∈ R2d,

where b ∈ Γmρ (R2d+n), and where the new phase function ϕ0 is defined
by a symmetric matrix Φ0 ∈ M(2d+n)×(2d+n)(R) denoted as in (3.3) with
Q = 0 and satisfying (3.4). Furthermore ϕ0 parametrizes the same
Lagrangian as ϕ, that is Λϕ0 = Λϕ.

Proof. By an orthogonal change of variables in the integral (3.1) we may
assume that Q = diag(q1, · · · , qN) is diagonal, modifying the amplitude
a ∈ Γmρ (R2d+N) without altering Λϕ.

In the following we suppose that N > 1, but the argument holds also
for N = 1, with natural modifications (vectors in RN−1, matrices in
M2d×(N−1)(R) and functions on RN−1 are interpreted as non-existing).

Denote L = [L0 `] where L0 ∈ M2d×(N−1)(R), ` ∈ M2d×1(R) and
Q0 = diag(q1, · · · , qN−1). Suppose qN = ∂2

θN
ϕ 6= 0. Denoting θ =

(θ′, θN) ∈ RN with θ′ ∈ RN−1 and θN ∈ R, completion of the square
gives

ϕ(X, θ) =
1

2
qN(θN + q−1

N 〈`,X〉)
2 + ϕ0(X, θ′)

where

ϕ0(X, θ′) =
1

2
〈X,F0X〉+ 〈L0θ

′, X〉+
1

2
〈θ′, Q0θ

′〉

and

F0 = F − q−1
N ``t.

The condition (3.4) is preserved for the matrices that define ϕ0.
Denote the Lagrangian corresponding to ϕ0 by Λϕ0 . Suppose (X, θ) ∈

R2d+N and (X,FX + Lθ) ∈ Λϕ, that is LtX + Qθ = 0. Then Lt0X +
Q0θ

′ = 0 and 〈`,X〉 + qNθN = 0 which gives F0X + L0θ
′ = FX + Lθ.

Thus Λϕ ⊆ Λϕ0 and hence Λϕ = Λϕ0 since both are subspaces of di-
mension 2d.

Set c = qN/2 and u = −q−1
N `. Let χ ∈ S (RN−1) satisfy χ(θ′) = 1

when |θ′| 6 1, and let ψ ∈ S (R) satisfy ψ(θN) = 1 when |θN | 6 1. We
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have for f ∈ S (R2d)
(3.11)

(Kϕ,a, f) = lim
ε→0+

∫
R2d+N

(χ⊗ ψ)ε(θ) e
iϕ(X,θ)a(X, θ) f(X) dθ dX

= lim
ε→0+

∫
R2d+N−1

χε(θ
′) eiϕ0(X,θ′)bε(X, θ

′) f(X) dθ′ dX

= lim
ε→0+

∫
R2d+N−1

eiϕ0(X,θ′) P0

(
χε(θ

′) bε(X, θ
′) f(X)

)
dθ′ dX

where

(3.12) bε(X, θ
′) :=

∫
R
ψε(θN) eic(θN−〈u,X〉)

2

a(X, θ) dθN

=

∫
R
ψε(θN + 〈u,X〉) eic θ2N a(X, θ′, θN + 〈u,X〉) dθN

and where P0 is an operator that corresponds to ϕ0 as P corresponds
to ϕ in (3.9) and (3.10) with k ∈ N sufficiently large. For fixed ε > 0
the function bε ∈ C∞(R2d+N−1) satisfies the estimates∣∣∣∂αX∂βθ′bε(X, θ′)∣∣∣ . 〈(X, θ′)〉m−ρ|β|, (α, β) ∈ N2d+N−1, (X, θ′) ∈ R2d+N−1,

which are slightly different from the Shubin estimates (3.6). However,
they suffice to make sense of the oscillatory integral (3.11).

Our plan is to show first

(3.13) b(X, θ′) = lim
ε→0+

bε(X, θ
′) ∈ Γmρ (R2d+N−1),

and then
(3.14)

lim
ε→0+

P0(χε(θ
′) bε(X, θ

′) f(X)) = P0(b(X, θ′) f(X)), (X, θ′) ∈ R2d+N−1,

and finally
(3.15)

|P0(χε(θ
′) bε(X, θ

′) f(X))| . 〈(X, θ′)〉−2d−N+1, (X, θ′) ∈ R2d+N−1,

uniformly over 0 < ε 6 1. The limit (3.14) inserted into (3.11), com-
bined with the estimate (3.15) and dominated convergence then give

(Kϕ,a, f) =

∫
R2d+N−1

eiϕ0(X,θ′) P0

(
b(X, θ′) f(X)

)
dθ′ dX

= lim
ε→0+

∫
R2d+N−1

χε(θ
′) eiϕ0(X,θ′) b(X, θ′) f(X) dθ′ dX.

By induction this proves the theorem.
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It remains to show (3.13)–(3.15). We start with (3.13). Let R > 0
and set

b1,ε(X, θ
′) =

∫
R
ψ(θN/R)ψε(θN + 〈u,X〉) eic θ2Na(X, θ′, θN + 〈u,X〉) dθN ,

b2,ε(X, θ
′) =

∫
R
(1− ψ(θN/R))ψε(θN + 〈u,X〉) eic θ2Na(X, θ′, θN + 〈u,X〉) dθN

so that bε = b1,ε + b2,ε. It is clear that
(3.16)

b1(X, θ′) := lim
ε→0+

b1,ε(X, θ
′) =

∫
R
ψ(θN/R)eic θ

2
N a(X, θ′, θN + 〈u,X〉) dθN

∈ Γmρ (R2d+N−1)

and we also have the uniform estimates over 0 < ε 6 1
(3.17)

|∂αX∂
β
θ′b1,ε(X, θ

′)| . 〈(X, θ′)〉|m|, (X, θ′) ∈ R2d+N−1, (α, β) ∈ N2d+N−1.

To estimate b2,ε we first regularize the integral. We have (−∂θN )jeic θ
2
N =

pj(θN)eic θ
2
N where pj is a polynomial of degree j ∈ N. Integration by

parts thus gives

b2,ε(X, θ
′) =∫

R
eic θ

2
N∂jθN

(
p−1
j (θN)(1− ψ(θN/R))ψε(θN + 〈u,X〉) a(X, θ′, θN + 〈u,X〉)

)
dθN .

If we first pick j sufficiently large and then R > 0 sufficiently large (to
avoid the zeroes of pj), the integral converges and we obtain
(3.18)
b2(X, θ′) := lim

ε→0+
b2,ε(X, θ

′)

=

∫
R
eic θ

2
N∂jθN

(
p−1
j (θN)(1− ψ(θN/R)) a(X, θ′, θN + 〈u,X〉)

)
dθN

∈ Γmρ (R2d+N−1)

as well as the uniform estimates over 0 < ε 6 1
(3.19)

|∂αX∂
β
θ′b2,ε(X, θ

′)| . 〈(X, θ′)〉|m|, (X, θ′) ∈ R2d+N−1, (α, β) ∈ N2d+N−1.

Combining (3.16) and (3.18) proves (3.13), and we obtain from (3.17),
(3.19) the uniform estimates over 0 < ε 6 1
(3.20)

|∂αX∂
β
θ′bε(X, θ

′)| . 〈(X, θ′)〉|m|, (X, θ′) ∈ R2d+N−1, (α, β) ∈ N2d+N−1.

Next we show (3.14). Let (X, θ′) ∈ R2d+N−1 be fixed. First we look
at the operator Pj defined by its action on f ∈ C∞(R2d+N−1) by

Pjf = (1 + 〈uj,∇X〉+ 〈vj, X〉+ 〈wj,∇θ′〉)
(

f

1− iθj

)
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for 1 6 j 6 N − 1, where uj, vj ∈ R2d and wj ∈ RN−1. We have
(3.21)

Pj

(
χε(θ

′) bε(X, θ
′) f(X)

)
= χε(θ

′)Pj

(
bε(X, θ

′) f(X)
)

+ 〈wj,∇θ′〉 (χε(θ′))
bε(X, θ

′) f(X)

1− iθj
.

Note that 〈wj,∇θ′〉 (χε(θ′)) = O(ε). Since P0 = P k
1 P

k
2 · · ·P k

N−1 for
some k ∈ N, it suffices to show, taking into account (3.20),

lim
ε→0+

P0(bε(X, θ
′) f(X)) = P0(b(X, θ′) f(X)), (X, θ′) ∈ R2d+N−1.

The validity of this identity can be verified by means of the decompo-
sition bε = b1,ε + b2,ε above. The details are left to the reader. Thus
(3.14) has been proved.

Finally we indicate how to show (3.15). Again we use the decomposi-
tion bε = b1,ε+b2,ε. Combining this with (3.21) and P0 = P k

1 P
k
2 · · ·P k

N−1

for k ∈ N sufficiently large, one can confirm the estimate (3.15). The
details are again left to the reader. �

As a consequence of the proposition we may assume

(3.22) Φ =
1

2

(
F L
Lt 0

)
where F ∈ M2d×2d(R) is symmetric and L ∈ M2d×N(R) is injective.
The corresponding Lagrangian Λ ⊆ T ∗R2d is

(3.23) Λ = {(X,FX + Lθ) : (X, θ) ∈ R2d+N , LtX = 0}.

Conversely it can be shown (cf. [21]) that any Lagrangian Λ ⊆ T ∗R2d

can be parametrized in this way, for a symmetric matrix F ∈ M2d×2d(R)
and an injective matrix L ∈ M2d×N(R). The matrix L is uniquely deter-
mined modulo invertible right factors. The matrix F can be assumed
to satisfy RanF ⊥ RanL [21], but F is not uniquely determined by Λ.
What is unique is FY = πY FπY where Y = KerLt, but F −FY can be
arbitrary.

If ϕ1 and ϕ2 both parametrize a given Lagrangian Λ ⊆ T ∗R2d as in
(3.23), and a ∈ Γmρ (R2d+N), then Kϕ1,a = Kϕ2,a is not guaranteed. In
fact, if ϕj is defined by matrices Fj ∈ M2d×2d(R), Lj ∈ M2d×N(R) and
Qj ∈ MN×N(R) for j = 1, 2, then by Proposition 3.2

(3.24) Kϕj ,a(X) =

∫
Rn

e
i
2
〈X,FjX〉+i〈Lθ,X〉aj(X, θ) dθ

where L ∈ M2d×n(R) is injective and n 6 N , since after reduction to
Qj = 0, j = 1, 2, we have KerLt1 = KerLt2. Here a1 ∈ Γmρ (R2d+n) is not

guaranteed to equal a2 ∈ Γmρ (R2d+n), and likewise F1 6= F2 in general,
whereas πY F1πY = πY F2πY .
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We are interested in phase functions that correspond to twisted graph
Lagrangians in T ∗R2d with respect to a symplectic matrix χ ∈ Sp(d,R).
The graph in T ∗Rd × T ∗Rd with respect to χ ∈ Sp(d,R) is
(3.25)
Λχ = {(x, ξ; y, η) ∈ T ∗Rd × T ∗Rd : (x, ξ) = χ(y, η)} ⊆ T ∗Rd × T ∗Rd,

and it is a Lagrangian if we equip T ∗Rd × T ∗Rd with the symplectic
form

σ1(x, y, ξ, η) = σ(x, ξ)− σ(y, η), (x, y), (ξ, η) ∈ T ∗Rd × T ∗Rd.

The symplectic vector space (T ∗Rd× T ∗Rd, σ1) is isomorphic to T ∗R2d

equipped with the canonical symplectic form (2.5). The isomorphism
is given by the twist operator

(x, ξ, y, η)′ = (x, ξ, y,−η), x, y, ξ, η ∈ Rd,

followed by transposition of the second and third variables. The twisted
graph Lagrangian with respect to χ ∈ Sp(d,R) is

(3.26) Λ′χ = {(x, y, ξ,−η) ∈ T ∗R2d : (x, ξ) = χ(y, η)} ⊆ T ∗R2d.

Remark 3.3. Note that the notations Λχ ⊆ T ∗Rd× T ∗Rd in (3.25) and
Λ′χ ⊆ T ∗R2d in (3.26) understand different ambient symplectic spaces.

Definition 3.4. If m ∈ R and χ ∈ Sp(d,R) we denote by Km
ρ (χ) ⊆

S ′(R2d) the set of kernels Kϕ,a defined as in (3.1) where a ∈ Γmρ (R2d+N)
for N > 0, and where the phase function ϕ parametrizes the twisted
graph Lagrangian Λ′χ ⊆ T ∗R2d. We write Km

1 (χ) = Km(χ).

For pseudodifferential operators the Lagrangian is the conormal bun-
dle of the diagonal, that is Λ = N(∆) = ∆×∆⊥ ⊆ T ∗R2d, with

(3.27) ∆ = {(x, x) : x ∈ Rd} ⊆ R2d, ∆⊥ = {(ξ,−ξ) : ξ ∈ Rd}.
This means N(∆) = Λ′I where I ∈ Sp(d,R) is the identity matrix.

4. Fourier integral operators with quadratic phase
functions

In this section we treat FIOs defined by kernels that are oscillatory
integrals as in Definition 3.4 and compare our conditions with [1] and
[15].

Definition 4.1. Let χ ∈ Sp(d,R), N > 0 and a ∈ Γmρ (R2d+N). The
operator with kernel Kϕ,a ∈ Km

ρ (χ) is denoted Kϕ,a and called FIO.
The set of operators with kernels in Km

ρ (χ) is denoted I m
ρ (χ), and

I m
1 (χ) = I m(χ).

Thus
(Kϕ,af, g) = (Kϕ,a, g ⊗ f), f, g ∈ S (Rd).

Since Kϕ,a ∈ S ′(R2d) the FIO Kϕ,a : S (Rd)→ S ′(Rd) is continuous.
The following result appears implicitly in [15]. We prefer to include

it in order to give a self-contained account.
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Lemma 4.2. Let N > 0 and let ϕ be a quadratic form defined by a
symmetric Φ ∈ M(2d+N)×(2d+N)(R) as in (3.3) such that (3.4) is satis-
fied. Define Vϕ,ε by (3.7). If a ∈ Γmρ (R2d+N) satisfies

supp(a) ∩ Vϕ,ε is compact in R2d+N

for some ε > 0 then Kϕ,a ∈ S (R2d).

Proof. The case N = 0 is trivial so we may assume N > 1. If supp(a)
is compact then Kϕ,a ∈ S (R2d). Using an appropriate cutoff function
we may therefore assume supp(a) ∩ (Vϕ,ε ∪ Br) = ∅ for some r > 0.
By Proposition 3.2 we may assume that ϕ′θ(x, y, θ) is a linear function
that does not depend on θ ∈ RN .

On the support of a we may write

eiϕ(x,y,θ) = −i|ϕ′θ|−2〈ϕ′θ,∇θe
iϕ(x,y,θ)〉.

First we introduce the operator

Tθg(θ) = i〈∇θ, ϕ
′
θ|ϕ′θ|−2g(θ)〉 = i|ϕ′θ|−2〈ϕ′θ,∇g〉

that acts on g ∈ C∞(RN) provided ϕ′θ 6= 0, and integrate by parts.
This yields for f ∈ S (R2d) and n ∈ N

(Kϕ,a, f) = lim
δ→0+

∫
R2d+N

χδ(θ) e
iϕ(x,y,θ)T nθ a(x, y, θ) f(x, y) dθ dx dy

where χ ∈ S (RN) and χ(θ) = 1 when |θ| 6 1.
The assumption implies that we have in the support of a

(4.1) |ϕ′θ(x, y, θ)| > ε|(x, y, θ)|.
From the observation that ϕ′θ is a linear function it follows that for
n ∈ N sufficiently large, we have

Kϕ,a(x, y) =

∫
RN

eiϕ(x,y,θ)T nθ a(x, y, θ) dθ.

The integral is absolutely convergent thanks to (4.1) if n ∈ N is suf-
ficiently large. The same facts imply that the integral belongs to
S (R2d). �

We say that a continuous linear operator K : S ′(Rd)→ S ′(Rd) is
regularizing if it is continuous

K : S ′(Rd)→ S (Rd)

which is equivalent to the property of its kernel K ∈ S (R2d). Hence
from Lemma 4.2 we obtain the following result.

Corollary 4.3. Under the assumptions of Lemma 4.2 the operator
Kϕ,a is regularizing.

The next result shows that any regularizing operator can be consid-
ered an FIO in ∩m∈RI m(χ) for χ ∈ Sp(d,R) arbitrary.
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Lemma 4.4. Let χ ∈ Sp(d,R), N > 0, and suppose ϕ is a quadratic
form, defined by a symmetric Φ ∈ M(2d+N)×(2d+N)(R) as in (3.3) such
that (3.4) is satisfied, that parametrizes the twisted Lagrangian Λ′χ ⊆
T ∗R2d. If K ∈ S (R2d) then there exists a ∈ S (R2d+N) such that
K = Kϕ,a.

Proof. Again we may assumeN > 1. Let g ∈ S (RN) satisfy
∫
g(θ) dθ =

1. Then
a(X, θ) = K(X)g(θ)e−iϕ(X,θ) ∈ S (R2d+N)

and

Kϕ,a(X) =

∫
RN

eiϕ(X,θ)a(X, θ) dθ =

∫
RN

K(X)g(θ) dθ = K(X).

�

Remark 4.5. The space of amplitudes Γmρ (R2d+N) may seem somewhat

restrictive (cf. [15, 24]). For instance the symbol a(x, θ) ∈ Γmρ (R2d) of
a Kohn–Nirenberg pseudodifferential operator a(x,D) is not an ampli-
tude of three variables in Γmρ (R3d) since the derivatives of a(x, θ) do not
decay with respect to y. However, by picking a conical cutoff function
ψ ∈ C∞(R3d) that is one around the cone Vϕ,ε (except on a compact
set) defined by (3.7) for ε > 0 sufficiently small, it follows from the
proof of [15, Proposition 2.2.4] that aψ ∈ Γmρ (R3d). The operator with
amplitude a(1−ψ) is regularizing by Corollary 4.3, and by Lemma 4.4
its amplitude can be absorbed into the amplitude aψ ∈ Γmρ (R3d). Thus
a(x,D) ∈ I m

ρ (I).

Helffer’s larger space of amplitudes Γmϕ,ρ,ε(R2d+N) contains symbols

from Γmρ (R2d) without modification. On the other hand, by [15, Lemma

2.2.2] every amplitude a ∈ Γmϕ,ρ,ε(R2d+N) can be decomposed as a =

a1 + a2 where a1 ∈ Γmρ (R2d+N) and a2 gives rise to a regularizing op-
erator, and also the calculus developed in [15] is constructed modulo
regularizing operators. Hence, either choice of amplitudes yields the
same calculus modulo regularizing operators. We prefer to work with
the phase-independent choice of Γmρ (R2d+N), eliminating the necessity
of an additional cut-off argument in certain proofs.

In the following we study properties of the FIOs Kϕ,a with kernel
Kϕ,a ∈ Km

ρ (χ) for χ ∈ Sp(d,R). In view of Remark 4.5 we may replace

the assumption a ∈ Γmρ (R2d+N) with a ∈ Γmϕ,ρ,ε(R2d+N) in all results
which hold modulo regularizers.

First we observe that for trivial amplitude a FIO is a metaplectic
operator times a nonzero constant, see [19, Section 5] for the proof.

Proposition 4.6. If χ ∈ Sp(d,R) and Kϕ,1 ∈ I 0(χ) then

Kϕ,1 = Cϕµ(χ)

where Cϕ ∈ C\0 depends on the phase function which parametrizes the
Lagrangian Λ′χ.
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Next we study the case of non-trivial amplitudes and a particular
feature of the matrix χ ∈ Sp(d,R).

We recall that a symplectic matrix has the block form

(4.2) χ =

(
A B
C D

)
∈ Sp(d,R)

where A,B,C,D ∈ Md×d(R) satisfy

AtC = CtA, BtD = DtB, ABt = BAt, CDt = DCt,(4.3)

AtD − CtB = I, ADt −BCt = I,(4.4)

cf. [11, Proposition 4.1].
A matrix χ ∈ Sp(d,R) is called free [12] when B ∈ GL(d,R). In this

case the matrix (
A B
I 0

)
∈ M2d×2d(R)

is invertible with inverse(
0 I
B−1 −B−1A

)
∈ GL(2d,R).

This gives

Λ′χ =
{

(Ay +Bη, y, Cy +Dη,−η) ∈ T ∗R2d : (y, η) ∈ R2d
}

=
{

(X,FX) ∈ T ∗R2d : X ∈ R2d
}

(4.5)

with
(4.6)

F =

(
C D
0 −I

)(
0 I
B−1 −B−1A

)
=

(
DB−1 −B−t
−B−1 B−1A

)
= F t

thanks to the identities (4.3) and (4.4).
The upshot of this is as follows. The matrix χ ∈ Sp(d,R) is free

exactly when the corresponding twisted graph Lagrangian has the form
Λ′χ =

{
(X,FX) ∈ T ∗R2d : X ∈ R2d

}
. By (4.5) we may choose the

canonical phase function ϕ(X) = 1
2
〈X,FX〉 to parametrize Λ′χ, which

is reduced in the sense that N = 0. The kernel (3.1) is then interpreted
as (3.5), that is

(4.7) Kϕ,a(X) = e
i
2
〈X,FX〉a(X), X ∈ R2d,

where a ∈ Γmρ (R2d). Any kernel in Km
ρ (χ) can be reduced by means

of Proposition 3.2 to one with kernel of the form (4.7). We note that
the matrix F ∈ M2d×2d(R) is uniquely defined by (4.6) in terms of the
blocks of χ.

Next we prove a result which allows us to compare our conditions on
the phase function with the ones assumed in [1, 15].
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Lemma 4.7. Let χ ∈ Sp(d,R) and suppose the twisted graph La-
grangian (3.26) is parametrized by the quadratic form defined by (3.2)
and (3.3) such that (3.4) holds. Denote

(4.8) F =

(
E G
Gt H

)
, L =

(
P
R

)
,

with E,G,H ∈ Md×d(R), E, H symmetric, and P,R ∈ Md×N(R).
Then

(4.9)

 Gt H R
0 I 0
P t Rt Q

 ,

 I 0 0
E G P
P t Rt Q

 ∈ GL(2d+N,R)

where the matrices are interpreted as having cancelled third block row
and third block column if N = 0.

Proof. First we assume N > 1. By permutation of rows and columns
in (4.9), and expansion with respect to the identity matrix it can be
seen that the matrices have equal determinant. It suffices therefore to
show that the left matrix in (4.9) is invertible. Suppose

(x, y, θ) ∈ Ker

 Gt H R
0 I 0
P t Rt Q

 ,

that is y = 0 and {
Gtx+Rθ = 0
P tx+Qθ = 0

.

Since ϕ′θ(x, 0, θ) = P tx+Qθ = 0 we have

(x, ϕ′x(x, 0, θ), 0,−ϕ′y(x, 0, θ)) ∈ Λχ,

that is (x, ϕ′x(x, 0, θ)) = χ(0,−ϕ′y(x, 0, θ)).
With the notation (4.2) we may thus write with the stipulated matrix

notation {
x = −B(Gtx+Rθ) = 0
Ex+ Pθ = −D(Gtx+Rθ) = 0

.

Thus x = 0, Pθ = 0, Rθ = 0 and Qθ = 0. By (3.4) θ = 0, which proves Gt H R
0 I 0
P t Rt Q

 ∈ GL(2d+N,R).

Finally we discuss the case when N = 0 which means that χ ∈
Sp(d,R) is free. We have to show(

Gt H
0 I

)
,

(
I 0
E G

)
∈ GL(2d,R).

This follows from Gt, G ∈ GL(d,R) which is a consequence of (4.6). �
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Remark 4.8. Lemma 4.7 implies that the non-degeneracy conditions on
the phase functions assumed in [15] are satisfied. Indeed if χ ∈ Sp(d,R)
is not free then any phase function ϕ parametrizing Λ′χ satisfies

(4.10)
|(x, y, θ)| . |(ϕ′y, y, ϕ′θ)|, (x, y, θ) ∈ R2d+N

|(x, y, θ)| . |(x, ϕ′x, ϕ′θ)|, (x, y, θ) ∈ R2d+N .

If χ ∈ Sp(d,R) is free then N = 0 may be assumed, and

(4.11)
|(x, y)| . |(ϕ′y, y)|, (x, y) ∈ R2d

|(x, y)| . |(x, ϕ′x)|, (x, y) ∈ R2d.

Also the stronger condition∣∣∣∣(Φ
′′
x,y Φ

′′

x,θ

Φ
′′

θ,y Φ
′′

θ,θ

)∣∣∣∣ > δ0 > 0

assumed in [1] reduces in our case to the invertibility of the matrix(
G P
Rt Q

)
which is granted by Lemma 4.7.

From Remark 4.8 and [15, Proposition 2.1.1] we obtain the following
consequence.

Corollary 4.9. If χ ∈ Sp(d,R) and K ∈ I m
ρ (χ) then K is continu-

ous on S (Rd) and extends uniquely to be continuous on S ′(Rd).

Therefore FIOs may be composed as continuous operators on S (Rd).
It turns out that the composition is again an FIO associated to the
composition of the involved symplectic matrices. We stress the fact
that the next composition result generalizes Hörmander’s composition
theorem [19, Proposition 5.9] to the case of non-trivial amplitudes at
least when the phase functions are real.

Proposition 4.10. Let χj ∈ Sp(d,R) and suppose Kj ∈ I
mj
ρ (χj), for

j = 1, 2. Then K1K2 ∈ I m1+m2
ρ (χ1χ2).

Proof. The proof is inspired by that of [19, Proposition 5.9] and that
of [15, Proposition 2.2.3].

Corollary 4.9 implies that the composition K1K2 : S (Rd)→ S (Rd)
is a well defined continuous operator. First we assume that N1, N2 > 1,
that is, none of χ1, χ2 ∈ Sp(d,R) is a free symplectic matrix.

Let ϕj be a phase function that parametrizes the twisted graph La-
grangian Λ′χj

for j = 1, 2, respectively. By Proposition 3.2 we may

assume that ϕj is a quadratic form defined as in (3.2) and (3.3) with
Fj ∈ M2d×2d(R), Lj ∈ M2d×Nj

(R) and Qj = 0, for j = 1, 2. Each
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Lagrangian Λ′χj
has the form (3.23). The kernel of K1K2 is

(4.12)

K(x, y) =

∫
Rd+N1+N2

ei(ϕ1(x,z,θ)+ϕ2(z,y,ξ))a1(x, z, θ) a2(z, y, ξ) dz dθ dξ,

x, y ∈ Rd, where we view (z, θ, ξ) ∈ Rd+N1+N2 as the covariable. First
we show that (4.12) is well defined as an oscillatory integral.

The amplitude is

b(x, y, z, θ, ξ) = a1(x, z, θ) a2(z, y, ξ)

which we at first consider an element in Γ
|m1|+|m2|
0 (R3d+N1+N2). The

phase function is

ϕ(x, y, z, θ, ξ) = ϕ1(x, z, θ) + ϕ2(z, y, ξ)

so the corresponding Lagrangian is

Λ = {(x, y, ϕ′1,x(x, z, θ), ϕ′2,y(z, y, ξ)) ∈ T ∗R2d :

ϕ′1,y(x, z, θ) + ϕ′2,x(z, y, ξ) = ϕ′1,θ(x, z, θ) = ϕ′2,ξ(z, y, ξ) = 0}.
Twisting the Lagrangian and suppressing variables give

Λ′ = {(x, ϕ′1,x, y,−ϕ′2,y) ∈ T ∗Rd×T ∗Rd : ϕ′1,y+ϕ′2,x = ϕ′1,θ = ϕ′2,ξ = 0}.

Since (z, ϕ′2,x, y,−ϕ′2,y) ∈ Λχ2 we have

χ2(y,−ϕ′2,y) = (z, ϕ′2,x) = (z,−ϕ′1,y)
which gives

χ1χ2(y,−ϕ′2,y) = (x, ϕ′1,x)

since (x, ϕ′1,x, z,−ϕ′1,y) ∈ Λχ1 . This means that Λ′ = Λχ1χ2 , and hence
ϕ parametrizes the twisted graph Lagrangian Λ = Λ′χ1χ2

.
Next we verify condition (3.4) for the matrix that defines ϕ, denoted

as in (3.2) and (3.3) with F ∈ M2d×2d(R), L ∈ M2d×(d+N1+N2)(R) and
Q ∈ M(d+N1+N2)×(d+N1+N2)(R). We adopt the block matrix notation
(4.8) for Fj and Lj, with index j = 1, 2.

We have
(4.13)

(
L
Q

)
=


G1 P1 0
Gt

2 0 R2

H1 + E2 R1 P2

Rt
1 0 0

P t
2 0 0

 ∈ M(3d+N1+N2)×(d+N1+N2)(R).

By Lemma 4.7(
G1 P1

Rt
1 0

)
∈ GL(d+N1,R),

(
Gt

2 R2

P t
2 0

)
∈ GL(d+N2,R).

This implies the injectivity of the matrix (4.13), and it follows that
(4.12) is a well defined oscillatory integral, provided N1, N2 > 1.



20 M. CAPPIELLO, R. SCHULZ, AND P. WAHLBERG

If N1 +N2 = 1 then one of χ1 or χ2 is a free symplectic matrix, that
is B ∈ GL(d,R) in the block decomposition (4.2). The argument above
goes through verbatim, except that some block matrices of the matrix
(4.13) are cancelled when one of the matrices Lj is non-existent. If χ2

is free then(
L
Q

)
=


G1 P1

Gt
2 0

H1 + E2 R1

Rt
1 0

 ∈ M(3d+N1)×(d+N1)(R)

which is injective by the arguments above, and similarly the corre-
sponding matrix is injective if χ1 is free. Thus (4.12) is a well defined
oscillatory integral if N1 +N2 = 1.

Finally we assume N1 = N2 = 0, that is both χ1 and χ2 are free
symplectic matrices. In this case the matrix (4.13) shrinks to(

L
Q

)
=

 G1

Gt
2

H1 + E2

 ∈ M3d×d(R)

which is injective since G1 = −B−t1 ∈ GL(d,R) due to (4.6), where
we use the notation (4.2) for χ1 with corresponding block matrices
A1, B1, C1, D1 ∈ Md×d(R). Thus (4.12) is a well defined oscillatory
integral also if N1 +N2 = 0.

It remains to prove K1K2 = Kϕ,a + R where R is regularizing,
and a ∈ Γm1+m2

ρ (R3d+N1+N2). In fact, by Lemma 4.4 this would en-
tail Kϕ,a + R = Kϕ,c ∈ I m1+m2

ρ (χ1χ2) for a modified amplitude
c ∈ Γm1+m2

ρ (χ1χ2).
Let ε > 0 be arbitrary. Calculating modulo a regularizing R we use

Lemma 4.2 to multiply the amplitude b ∈ Γ
|m1|+|m2|
0 (R3d+N1+N2) with a

smooth conical cut-off function ψ ∈ C∞(R3d+N1+N2) such that

a = bψ ∈ Γ
|m1|+|m2|
0 (R3d+N1+N2)

has support contained in

Vϕ,ε = {(x, y, z, θ, ξ) ∈ R3d+N1+N2 : |ϕ′z,θ,ξ(x, y, z, θ, ξ)| < ε|(x, y, z, θ, ξ)|}.
Following the proof of [15, Proposition 2.2.3], it can be seen that this

implies a ∈ Γm1+m2
ρ (R3d+N1+N2) when ε > 0 is sufficiently small. This

is shown by showing

〈(x, z, θ)〉 � 〈(z, y, ξ)〉 � 〈(x, y, z, θ, ξ)〉
when (x, y, z, θ, ξ) ∈ supp(a). �

The next result concerns the formal adjoint of an FIO.

Proposition 4.11. If χ ∈ Sp(d,R), N > 0, a ∈ Γmρ (R2d+N) and

Kϕ,a ∈ I m
ρ (χ) then K ∗

ϕ,a = Kψ,b ∈ I m
ρ (χ−1) where ψ(x, y, θ) =

−ϕ(y, x, θ) and b(x, y, θ) = a(y, x, θ).
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Proof. By definition the formal adjoint satisfies

(Kϕ,af, g) = (f,K ∗
ϕ,ag), f, g ∈ S (Rd).

The left hand side is the oscillatory integral∫
R2d+N

eiϕ(x,y,θ)a(x, y, θ) f(y) g(x) dθ dx dy

from which it follows that K ∗
ϕ,a has kernel

K(x, y) =

∫
RN

eiψ(x,y,θ)b(x, y, θ) dθ.

It remains to show that the phase function ψ(x, y, θ) = −ϕ(y, x, θ)
parametrizes Λ′χ−1 . The Lagrangian corresponding to the phase func-
tion ψ is

Λψ = {(x, y, ψ′x(x, y, θ), ψ′y(x, y, θ)) ∈ T ∗R2d : ψ′θ(x, y, θ) = 0}
= {(x, y,−ϕ′y(y, x, θ),−ϕ′x(y, x, θ)) ∈ T ∗R2d : ϕ′θ(y, x, θ) = 0}
= {(x, y, ξ, η) ∈ T ∗R2d : (y, x,−η,−ξ) ∈ Λ′χ}
= {(x, y, ξ, η) ∈ T ∗R2d : (x, ξ) = χ−1(y,−η)}
= Λ′χ−1 .

�

4.1. Factorization of FIOs. In this section we prove that the FIOs
admit a factorization into metaplectic and pseudodifferential operators,
see [9, Theorem 1.3] for a related result where modulation spaces are
used for amplitudes.

We need a preparatory result that will be useful also later. Here
z = (z1, z2) ∈ R2d where z1, z2 ∈ Rd.

Lemma 4.12. If u ∈ S ′(Rd), χ ∈ Sp(d,R) and g ∈ S (Rd) \ 0 then
for all (x, ξ) ∈ T ∗Rd

Tµ(χ)g(µ(χ)u)(x, ξ) = e
i
2(〈x,ξ〉−〈χ−1(x,ξ)1,χ−1(x,ξ)2〉)Tgu(χ−1(x, ξ)).

Proof. If for fixed x, ξ ∈ Rd we define

ax,ξ(y, η) = e−
i
2
〈x,ξ〉+i(〈ξ,y〉−〈x,η〉), y, η ∈ Rd,

then awx,ξ(x,D) = TxMξ. Decomposing χ ∈ Sp(d,R) into blocks as in
(4.2) the inverse is

(4.14) χ−1 =

(
Dt −Bt

−Ct At

)
∈ Sp(d,R),
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cf. [11]. This gives

ax,ξ(χ(y, η)) = e−
i
2
〈x,ξ〉+i(〈ξ,Ay+Bη〉−〈x,Cy+Dη〉)

= e−
i
2
〈x,ξ〉+i(〈y,Atξ−Ctx〉−〈η,Dtx−Btξ〉)

= e−
i
2(〈x,ξ〉−〈χ−1(x,ξ)1,χ−1(x,ξ)2〉)aχ−1(x,ξ)(y, η).

Using the symplectic invariance (2.6) we obtain finally

Tµ(χ)g(µ(χ)u)(x, ξ) = (2π)−d/2(u, µ(χ)−1TxMξµ(χ)g)

= (2π)−d/2(u, (ax,ξ ◦ χ)w(x,D)g)

= e
i
2(〈x,ξ〉−〈χ−1(x,ξ)1,χ−1(x,ξ)2〉)(2π)−d/2(u, awχ−1(x,ξ)(x,D)g)

= e
i
2(〈x,ξ〉−〈χ−1(x,ξ)1,χ−1(x,ξ)2〉)Tgu(χ−1(x, ξ)).

�

Concerning factorization of FIOs we first treat the case χ = J , where

(4.15) J =

(
0 Id
−Id 0

)
∈ Sp(d,R)

which appears frequently in symplectic linear algebra [11]. Notice that
J is free and

(4.16) π(F ) = J .

Lemma 4.13. If K ∈ I m
ρ (J ) then there exists b ∈ Γmρ (R2d) such that

K = bw(x,D)µ(J ) = µ(J )(b ◦ J )w(x,D).

Proof. Let K ∈ Km
ρ (J ). Since J is free, we may assume after a reduc-

tion of fibre variables, that for some a ∈ Γmρ (R2d)

K(x, y) = e−i〈x,y〉a(x, y), x, y ∈ Rd,

using (4.6) and (4.7). Likewise the phase function ϕ(x, y) = 〈x, y〉,
x, y ∈ Rd, parametrizes the Lagrangian Λ′−J . Thus K1(x, y) = ei〈x,y〉 ∈
K0(−J ). Denoting by K and K1 the operators with kernels K and
K1 respectively, the kernel of K K1 is therefore

K0(x, y) =

∫
Rd

ei〈x−y,z〉a(x,−z) dz.

After a change from left to Weyl quantization (cf. [24, Theorem 23.1]),
this is the kernel of a Weyl operator bw(x,D) with b ∈ Γmρ (R2d). Since

K −1
1 = (2π)−d/2F by Proposition 4.6 we obtain

K = (2π)−d/2bw(x,D)F = (2π)−d/2bw(x,D)µ(J )

which is the first claimed factorization. The second claimed factoriza-
tion follows from the first and (2.6). �
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Remark 4.14. Note that [24, Theorem 23.1] shows that the symbol
space Γmρ (R2d) is independent of quantization (Weyl, Kohn–Nirenberg,
or a parametrized set comprising the two) provided ρ > 0. That is, if
a(x,D) = bw(x,D) then a ∈ Γmρ (R2d) if and only if b ∈ Γmρ (R2d). In
the proof of Lemma 4.13 we use the same result also for ρ = 0. It can
be motivated as follows. (The argument also gives a short alternative
proof of the invariance for 0 < ρ 6 1.) Suppose a(x,D) = bw(x,D)
and a ∈ Γmρ (R2d). We must show b ∈ Γmρ (R2d). We have (cf. [17, The-

orem 18.5.10]) b = F−1MFa where M is the multiplication operator
f(x, ξ) 7→ e−i〈x,ξ〉/2f(x, ξ). Thus M = µ(χ1) where

χ1 =

(
I2d 0
F I2d

)
∈ Sp(2d,R)

and

F = −1

2

(
0 Id
Id 0

)
∈ M2d×2d(R).

From (4.16) it follows that b = ±µ(χ2)a with

χ2 = −J χ1J =

(
I2d −F
0 I2d

)
∈ Sp(2d,R).

Lemma 4.12 gives with g ∈ S (R2d) \ 0

Tµ(χ2)gb(z, ζ) = ±e−
i
2
〈Fζ,ζ〉Tga(z + Fζ, ζ), z, ζ ∈ R2d.

The claim b ∈ Γmρ (R2d) is now a consequence of [6, Proposition 2.2].

As a consequence of Proposition 4.10 and Lemma 4.13 we get a
representation theorem for an FIO as the composition of a Weyl pseu-
dodifferential operator and a metaplectic operator.

Theorem 4.15. If χ ∈ Sp(d,R) and K ∈ I m
ρ (χ) then there exist

b ∈ Γmρ (R2d) such that

K = bw(x,D)µ(χ) = µ(χ)(b ◦ χ)w(x,D).

Conversely, for any b ∈ Γmρ (R2d) we have bw(x,D)µ(χ) ∈ I m
ρ (χ).

Proof. Let Kϕ,1 ∈ I 0((−J χ)−1). By Proposition 4.10 and Lemma
4.13 we have, since χ = J (−J χ),

K Kϕ,1 = K2 = bw(x,D)µ(J )

where K2 ∈ I m
ρ (J ) and b ∈ Γmρ (R2d).

Proposition 4.6 gives K −1
ϕ,1 = Cµ(−J χ) where C ∈ C \ 0, and hence

K = Cbw(x,D)µ(J )µ(−J χ) = ±Cbw(x,D)µ(χ).

This proves the first claimed factorization. The second claimed factor-
ization is again an immediate consequence of (2.6).

For the converse implication we observe that Proposition 4.6 implies
µ(χ) = Kϕ,a ∈ I 0(χ) for an appropriate phase function ϕ and a
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constant amplitude a ≡ C ∈ C\0. We also have bw(x,D) ∈ I m
ρ (I) (cf.

Remark 4.5). Proposition 4.10 then gives bw(x,D)µ(χ) ∈ I m
ρ (χ). �

The factorization in Theorem 4.15 has several consequences.
It means that we could define the FIOs as the operators of the form

bw(x,D)µ(χ), cf. [9]. Composing two FIOs gives using (2.6)

bw1 (x,D)µ(χ1)bw2 (x,D)µ(χ2) = bw1 (x,D)(b2 ◦ χ−1
1 )w(x,D)µ(χ1)µ(χ2)

= ±(b1#(b2 ◦ χ−1
1 ))w(x,D)µ(χ1χ2).

The FIOs can hence be identified with the semidirect product of Weyl
quantized pseudodifferential operators with the metaplectic group.

Since metaplectic operators and pseudodifferential operators are both
continuous on S (Rd), Theorem 4.15 also gives an alternative proof of
continuity of operators in I m

ρ (χ) on S (Rd) and on S ′(Rd). We can

also deduce the continuity from the Shubin–Sobolev space Qs(Rd) to
Qs−m(Rd) for s ∈ R. These spaces were introduced by Shubin [24]
(cf. [14, 20]). The space Qs(Rd) is identical to the modulation space
M2

s (Rd), that is

Qs(Rd) = {u ∈ S ′(Rd) : 〈·〉sTgu ∈ L2(R2d)}

where g ∈ S (Rd) \ 0 is fixed and arbitrary, with norm

‖u‖Qs = ‖〈·〉sTgu‖L2(R2d) .

Since metaplectic operators are homeomorphisms on Qs(Rd), cf. [13,
Proposition 400], and since pseudodifferential operators of order m are
continuous from Qs(Rd) to Qs−m(Rd) [24, Theorem 25.2], we get the
following result.

Proposition 4.16. Suppose χ ∈ Sp(d,R), and K ∈ I m
ρ (χ). Then

K : Qs(Rd)→ Qs−m(Rd) is continuous for all s ∈ R.

Finally Theorem 4.15 and (2.6) imply the following result of Egorov
type.

Corollary 4.17. If χ ∈ Sp(d,R), K ∈ I m
ρ (χ) and b ∈ Γnρ(R2d) then

there exist c ∈ Γmρ (R2d) such that

K ∗bw(x,D)K = (c#(b ◦ χ)#c)w(x,D) ∈ OPw Γ2m+n
ρ .

5. Phase space characterization of FIOs

In this section we characterize the kernels of FIOs with estimates on
their FBI transform, generalizing our results for Shubin pseudodiffer-
ential operators [6].

First we show that Theorem 4.15 gives the following result as by-
product.
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Proposition 5.1. If χ ∈ Sp(d,R), Kϕ,a ∈ Km
ρ (χ) and g ∈ S (Rd) \ 0

then there exist b ∈ Γmρ (R2d) and h ∈ S (R2d) \ 0 such that

Tg⊗gKϕ,a(z, ζ) = e
i
2

(〈z2,ζ2〉+〈χ(z2,−ζ2)1,χ(z2,−ζ2)2〉)

× ThKb(z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2),

(z, ζ) ∈ T ∗R2d,

where Kb is the kernel of bw(x,D) (cf. (2.2)).

Proof. By Theorem 4.15 we have for some b ∈ Γmρ (R2d)

(5.1)

Tg⊗gKϕ,a(z, ζ) = (2π)−d(Kϕ,a, TzMζ(g ⊗ g))

= (2π)−d(Kϕ,a, Tz1Mζ1g ⊗ Tz2Mζ2g)

= (2π)−d(Kϕ,aTz2M−ζ2g, Tz1Mζ1g)

= (2π)−d(bw(x,D)µ(χ)Tz2M−ζ2g, Tz1Mζ1g)

= (2π)−d(Kb, Tz1Mζ1g ⊗ µ(χ)Tz2M−ζ2g).

Denoting gχ = µ(χ)g ∈ S (Rd) \ 0 we study

µ(χ)Tz2M−ζ2g = µ(χ)Tz2M−ζ2µ(χ−1)gχ.

We have by the proof of Lemma 4.12

µ(χ)Tz2M−ζ2µ(χ−1) = e
i
2

(〈z2,ζ2〉+〈χ(z2,−ζ2)1,χ(z2,−ζ2)2〉)Tχ(z2,−ζ2)1Mχ(z2,−ζ2)2 .

Inserted into (5.1) this gives finally

Tg⊗gKϕ,a(z, ζ)

= (2π)−de
i
2

(〈z2,ζ2〉+〈χ(z2,−ζ2)1,χ(z2,−ζ2)2〉)(Kb, Tz1Mζ1g ⊗ Tχ(z2,−ζ2)1Mχ(z2,−ζ2)2gχ)

= (2π)−de
i
2

(〈z2,ζ2〉+〈χ(z2,−ζ2)1,χ(z2,−ζ2)2〉)(Kb, T(z1,χ(z2,−ζ2)1)M(ζ1,−χ(z2,−ζ2)2)(g ⊗ gχ))

= e
i
2

(〈z2,ζ2〉+〈χ(z2,−ζ2)1,χ(z2,−ζ2)2〉)ThKb(z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2)

with h = g ⊗ gχ. �

As a consequence we obtain

(5.2)
Tg⊗gKϕ,a(z, ζ) = e

i
2

(〈z,ζ〉+σ(χ(z2,−ζ2),(z1,ζ1)))

× T ∆
h Kb(z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2)

where we use the notation of [6, Definition 3.2] for K ∈ S ′(R2d) and
h ∈ S (R2d) \ 0

T ∆
h K(z, ζ) = e−

i
2
〈ζ1−ζ2,z1−z2〉ThK(z, ζ), (z, ζ) ∈ T ∗R2d,

and the symplectic form (2.5).
Defining

T χg⊗gKϕ,a(z, ζ) = e−
i
2

(〈z,ζ〉+σ(χ(z2,−ζ2),(z1,ζ1)))Tg⊗gKϕ,a(z, ζ)
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we have thus

T χg⊗gKϕ,a(z, ζ) = T ∆
h Kb(z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2)

where h = g⊗gχ. When χ = I we recover T Ig⊗gKϕ,a(z, ζ) = T ∆
g⊗gKb(z, ζ).

Using the block matrix notation (4.2) we obtain for (y, η) ∈ T ∗Rd

〈(χ(y, η), y,−η),∇(z1,ζ1,z2,ζ2)〉T ∆
h Kb ((z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2))

= 〈χ(y, η),
(
(∇1 +∇2,∇3 −∇4)T ∆

h Kb

)
(z1, χ(z2,−ζ2)1, ζ1,−χ(z2,−ζ2)2)〉

where ∇j denotes the gradient with respect to the Rd variable indexed
by j, j = 1, 2, 3, 4.

Combined with [6, Proposition 3.3] this gives the following character-
ization of the kernels of FIOs (cf. [25]). Note that we recover [6, Propo-
sition 3.3] when χ = I.

Theorem 5.2. Let K ∈ S ′(R2d) and g ∈ S (Rd)\0. Then K ∈ Km
ρ (χ)

with χ ∈ Sp(d,R) if and only if the estimates

|L1 · · ·LkT χg⊗gK(z, ζ)| . 〈(z1, ζ1) + χ(z2,−ζ2)〉m−ρk〈(z1, ζ1)− χ(z2,−ζ2))〉−N ,
(z, ζ) ∈ T ∗R2d,

hold for all k,N ∈ N, where

Lj = 〈Aj,∇z,ζ〉
and Aj ∈ Λ′χ for j = 1, 2, . . . , k.

Since dist2((z, ζ),Λ′χ) � |(z1, ζ1) − χ(z2,−ζ2))|2 where dist denotes

Euclidean distance between a point and a subspace, and Λ′−χ ⊆ T ∗R2d

is transversal to Λ′χ ⊆ T ∗R2d (cf. [6, p. 11]) we can formulate the
estimates as

|L1 · · ·LkT χg⊗gK(z, ζ)| . (1 + dist((z, ζ),Λ′−χ))m−ρk (1 + dist((z, ζ),Λ′χ))−N ,

(z, ζ) ∈ T ∗R2d,

where k,N ∈ N.
Theorem 5.2 implies the following result which generalizes [6, Corol-

lary 4.18].

Proposition 5.3. If χ ∈ Sp(d,R) and Kϕ,a ∈ Km
ρ (χ) then

WF(Kϕ,a) ⊆ Λ′χ \ 0 ⊆ T ∗R2d \ 0.

Proof. Let 0 6= (z0, ζ0) /∈ Λ′χ. For some C > 0 we then have (z0, ζ0) ∈ V
where the open conic set V ⊆ T ∗R2d \ 0 is defined by

V = {(z, ζ) ∈ T ∗R2d\0 : |(z1, ζ1)+χ(z2,−ζ2)| < C|(z1, ζ1)−χ(z2,−ζ2)|}.
The conclusion is now a consequence of Theorem 5.2 with k = 0, and

|(z, ζ)|2 � |(z1, ζ1) + χ(z2,−ζ2)|2 + |(z1, ζ1)− χ(z2,−ζ2)|2.
�
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Combining Proposition 5.3 with [18, Proposition 2.11] we obtain the
following result on propagation of Gabor singularities. An alternative
proof can be given by combining Theorem 4.15 with [22, Proposition 2.9
and Eq. (2.18)].

Corollary 5.4. If χ ∈ Sp(d,R) and K ∈ I m
ρ (χ) then

WF(K u) ⊆ χWF(u), u ∈ S ′(Rd).

Remark 5.5. More precisely the statement holds for the Sobolev–Gabor
wave front set for any s ∈ R (cf. [23]), as

WFQs−m(K u) ⊆ χWFQs(u), u ∈ S ′(Rd).

6. Γ-Lagrangian distributions

Here we introduce Lagrangian distributions adapted to the Shubin
calculus. For simplicity we work in Sections 6 and 7 with ρ = 1 but all
results are true with natural modifications if 0 6 ρ 6 1. Before giving
a precise definition we need some preliminary steps.

Let Λ ⊆ T ∗Rd be a Lagrangian. Referring to Section 3 we can write

(6.1) Λ = {(X,FX + Z) ∈ T ∗Rd, X ∈ Y, Z ∈ Y ⊥}

where Y ⊆ Rd is a linear subspace and F ∈ Md×d(R) is a symmetric
matrix that leaves Y invariant [21]. It then automatically leaves Y ⊥

invariant so can be written

F = FY + FY ⊥

where FY = πY FπY and FY ⊥ = πY ⊥FπY ⊥ .
The subspace Y ⊆ Rd is uniquely determined by Λ, but the matrix

F is not. In fact FY is uniquely determined, but FY ⊥ can be any matrix
such that Y ⊆ KerFY ⊥ and FY ⊥ leaves Y ⊥ invariant.

For a symmetric F ∈ Md×d(R) we define

(6.2) χF =

(
I 0
F I

)
∈ Sp(d,R).

The corresponding metaplectic operator is µ(χF )f(x) = e
i
2
〈Fx,x〉f(x).

Note that

(6.3) χF : Y × Y ⊥ → Λ

is an isomorphism.
We recall the notion of Γ-conormal distribution [6, Definition 5.1].

Definition 6.1. Suppose Y ⊆ Rd is an n-dimensional linear subspace,
0 6 n 6 d, let N(Y ) = Y × Y ⊥, and let V ⊆ T ∗Rd be a d-dimensional
linear subspace such that N(Y ) ⊕ V = T ∗Rd. Then u ∈ S ′(Rd) is
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Γ-conormal to Y of degree m ∈ R, denoted u ∈ ImΓ (Rd, Y ), if for any
g ∈ S (Rd) \ 0 and for any k,N ∈ N we have
(6.4)∣∣L1 · · ·LkT Yg u(x, ξ)

∣∣ . (1 + dist((x, ξ), V ))m−k (1 + dist((x, ξ), N(Y )))−N ,

(x, ξ) ∈ T ∗Rd,

where

(6.5) T Yg u(x, ξ) = e−i〈πY⊥x,ξ〉Tgu(x, ξ), (x, ξ) ∈ T ∗Rd,

and Lj = 〈bj,∇x,ξ〉 are first order differential operators with bj ∈ N(Y ),
j = 1, . . . , k.

The space ImΓ (Rd, Y ) is equipped with a topology defined by semi-
norms of the best constants in (6.4), cf. [6].

Proposition 6.2. If Y ⊆ Rd is a linear subspace, F ∈ Md×d(R) is
symmetric, Y ⊆ KerF and χF ∈ Sp(d,R) is defined by (6.2), then

µ(χF ) : ImΓ (Rd, Y )→ ImΓ (Rd, Y )

is a homeomorphism.

Proof. Let u ∈ ImΓ (Rd, Y ) and let g ∈ S (Rd) \ 0. By Lemma 4.12

Tµ(χF )g(µ(χF )u)(x, ξ) = e
i
2
〈Fx,x〉Tgu(x, ξ − Fx).

From (6.5) we obtain

T Yµ(χF )g(µ(χF )u)(x, ξ) = e
i
2
〈Fx,x〉−i〈π

Y⊥x,ξ〉Tgu(x, ξ − Fx)

= e−
i
2
〈Fx,x〉−i〈π

Y⊥x,ξ−Fx〉Tgu(x, ξ − Fx)

= e−
i
2
〈Fx,x〉T Yg u(x, ξ − Fx).

A differential operator of the form 〈a,∇x〉 where a ∈ Y , applied to

e−
i
2
〈Fx,x〉 equals zero, due to the assumption Y ⊆ KerF . Therefore we

get from Definition 6.1, for any k,N ∈ N
(6.6)∣∣L1 · · ·LkT Yµ(χF )g(µ(χF )u)(x, ξ)

∣∣
.
(
1 + dist((x, ξ − Fx), N(Y ⊥))

)m−k
(1 + dist((x, ξ − Fx), N(Y )))−N ,

(x, ξ) ∈ T ∗Rd,

where Lj = 〈bj,∇x,ξ〉 and bj ∈ N(Y ), j = 1, . . . , k.
We have

dist2(ξ − Fx, Y ⊥) = |πY (ξ − Fx)|2 = |πY ξ|2 = dist2(ξ, Y ⊥).

By means of (2.1) we estimate

1 + dist2((x, ξ − Fx), N(Y ⊥)) = 〈(πY x, πY ⊥(ξ − Fx))〉2

. 〈(πY x, πY ⊥ξ)〉2〈πY ⊥x〉2

. (1 + dist2((x, ξ), N(Y ⊥))) (1 + dist2((x, ξ), N(Y )))
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and similarly

1 + dist2((x, ξ), N(Y ⊥))

. (1 + dist2((x, ξ − Fx), N(Y ⊥))) (1 + dist2((x, ξ), N(Y ))).

Thus for any s ∈ R
(1 + dist((x, ξ − Fx), N(Y ⊥)))s

. (1 + dist((x, ξ), N(Y ⊥)))s (1 + dist((x, ξ), N(Y )))|s|,

and it follows upon insertion into (6.6) that we have∣∣L1 · · ·LkT Yµ(χF )g(µ(χF )u)(x, ξ)
∣∣

.
(
1 + dist((x, ξ), N(Y ⊥))

)m−k
(1 + dist((x, ξ), N(Y )))−N ,

(x, ξ) ∈ T ∗Rd,

for any k,N ∈ N.
By virtue of Definition 6.1 we have proven that µ(χF ) maps ImΓ (Rd, Y )

into itself, and the continuity is a consequence of the argument. The
inverse of µ(χF ) is also continuous since χ−1

F = χ−F . �

Now we can define Γ-Lagrangian distributions.

Definition 6.3. Suppose Λ ⊆ T ∗Rd is a Lagrangian defined by a linear
subspace Y ⊆ Rd and a symmetric matrix F ∈ Md×d(R) such that
F : Y → Y , as in (6.1). Then u ∈ S ′(Rd) is called a Γ-Lagrangian
distribution with respect to Λ of order m ∈ R, denoted u ∈ ImΓ (Rd,Λ)
if u = µ(χF )v for some v ∈ ImΓ (Rd, Y ).

Remark 6.4. Note that S (Rd) ⊆ ImΓ (Rd,Λ) for any Lagrangian Λ ⊆
T ∗Rd, cf. [6, Corollary 5.10]. Hence we may calculate modulo Schwartz
functions when determining whether a distribution is Γ-Lagrangian.

As discussed above the matrix F is not unique in that FY ⊥ may be
arbitrary within its stipulated restrictions. But since χF = χFY +F

Y⊥
=

χFY
χF

Y⊥
implies

µ(χF ) = ±µ(χFY
)µ(χF

Y⊥
),

Definition 6.3 does not depend on FY ⊥ , due to Proposition 6.2.
The space ImΓ (Rd,Λ) is endowed with the topology on v ∈ ImΓ (Rd, Y )

referring to the factorization u = µ(χF )v of u ∈ ImΓ (Rd,Λ). Again
Proposition 6.2 serves to rid the topology on ImΓ (Rd,Λ) of dependence
on the matrix F .

Remark 6.5. The space ImΓ (Rd,Λ) reduces to ImΓ (Rd, Y ) when Λ is of
the form Λ = Y × Y ⊥ ⊆ T ∗Rd for a linear subspace Y ⊆ Rd.

Example 6.6. Suppose 1 6 n 6 d−1, k = d−n, Y = Rn×{0} ⊆ Rd,
and

F =

(
A 0
0 0

)
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where A ∈ Mn×n(R) is symmetric. Then

Λ = {(x1, 0, Ax1, x2) ∈ T ∗Rd : x1 ∈ Rn, x2 ∈ Rk}.

By [6, Lemma 5.4] a distribution u ∈ ImΓ (Rd,Λ) is of the form

u(x1, x2) =

∫
Rk

ei(
1
2
〈x1,Ax1〉+〈x2,θ〉)a(x1, θ) dθ

for a ∈ Γm(Rd).

As observed before Proposition 4.16, µ(χ) is a homeomorphism on
Qs(Rd) for any χ ∈ Sp(d,R) and any s ∈ R. From the estimates (6.4)
we obtain therefore for any ε > 0

ImΓ (Rd,Λ) ⊆ Q−(m+ d
2

+ε)(Rd).

Microlocally, Γ-Lagrangian distributions are however usually more reg-

ular than generic elements of Q−(m+ d
2

+ε)(Rd).
Combining [6, Proposition 5.17], [22, Eq. (2.18)] and (6.3) gives

Proposition 6.7. If u ∈ ImΓ (Rd,Λ) then WF(u) ⊆ Λ.

Lemma 6.8. Let 0 6 n 6 d, and suppose U = [M1 M2] ∈ O(d) with
M1 ∈ Md×n(R) and M2 ∈ Md×(d−n)(R) and Y = KerM t

2 ⊆ Rd. Define

(6.7) χU =

(
U 0
0 U

)
∈ Sp(d,R)

and

(6.8) J −1
2 =


In 0 0 0
0 0 0 −Id−n
0 0 In 0
0 Id−n 0 0

 ∈ Sp(d,R).

Then

χUJ −1
2 : Rd × {0} → Y × Y ⊥

is an isomorphism.

Proof. We have n = dimY . The assumptions give

χUJ −1
2 =

(
M1 0 0 −M2

0 M2 M1 0

)
∈ Sp(d,R).

Denoting x = (x1, x2) ∈ Rd with x1 ∈ Rn and x2 ∈ Rd−n we have

χUJ −1
2 (x, 0) = (M1x1,M2x2), x ∈ Rd,

which proves the claim since Y = RanM1 and Y ⊥ = RanM2. �

Lemma 6.9. If χ ∈ Sp(d,R) preserves Rd×{0} then µ(χ) is a home-
omorphism on Γm(Rd).
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Proof. Using the block matrix notation (4.2), the properties (4.3), (4.4)
and (4.14), the assumption entails

χ =

(
A B
0 A−t

)
= −J

(
I 0

−BAt I

)
J
(
A 0
0 A−t

)
.

Note that BAt is symmetric and

Tf(x) := µ

(
A 0
0 A−t

)
f(x) = |A|−1/2f(A−1x) = |A|−1/2(A−1)∗f(x)

for f ∈ S (Rd). Combined with (4.16) and the notation (6.2) this gives

µ(χ) = ±F−1µ(χ−BAt)FT.

Clearly T is a homeomorphism on Γm(Rd). By [6, Corollary 5.5 and
Proposition 5.12] F : Γm(Rd) → ImΓ (Rd, {0}) is a homeomorphism.
The claim is hence a consequence of the fact that µ(χ−BAt) is a home-
omorphism on ImΓ (Rd, {0}), which is granted by Proposition 6.2. �

Next we observe that pseudodifferential operators act well on Γ-
Lagrangian distributions. This generalizes [6, Proposition 5.19].

Lemma 6.10. Let a ∈ Γm
′
(R2d) and suppose Λ ⊆ T ∗Rd is a La-

grangian. Then

aw(x,D) : ImΓ (Rd,Λ)→ Im+m′

Γ (Rd,Λ)

is continuous.

Proof. In [6, Proposition 5.19] the continuity

(6.9) aw(x,D) : ImΓ (Rd, Y )→ Im+m′

Γ (Rd, Y )

is proved. Suppose u ∈ ImΓ (Rd,Λ), that is u = µ(χF )v where v ∈
ImΓ (Rd, Y ) and where F ∈ Md×d(R) and Y ⊆ Rd are associated to Λ as
in (6.1). We obtain using (2.6)

aw(x,D)u = µ(χF )µ(χF )−1aw(x,D)µ(χF )v

= µ(χF )(a ◦ χF )w(x,D)v

which proves the result since (a◦χF )w(x,D)v ∈ Im+m′

Γ (Rd, Y ) by (6.9).
The continuity claim is a consequence of the continuity (6.9) and the
definition of the topology on ImΓ (Rd,Λ). �

With the help of Lemma 6.10 we can prove a continuity result for
FIOs acting on Γ-Lagrangian distributions. Note that χΛ ⊆ T ∗Rd is
Lagrangian provided Λ ⊆ T ∗Rd is Lagrangian and χ ∈ Sp(d,R).

Theorem 6.11. Suppose χ ∈ Sp(d,R), K ∈ I m′(χ) and let Λ ⊆
T ∗Rd be a Lagrangian. Then

K : ImΓ (Rd,Λ)→ Im+m′

Γ (Rd, χΛ)

is continuous.
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Proof. By Theorem 4.15, K = bw(x,D)µ(χ) for b ∈ Γm
′
(R2d). Ap-

pealing to Lemma 6.10 it therefore suffices to show that

µ(χ) : ImΓ (Rd,Λ)→ ImΓ (Rd, χΛ)

is continuous.
Suppose Λ ⊆ T ∗Rd is parametrized by Y ⊆ Rd and F ∈ Md×d(R) as

in (6.1), and likewise that the Lagrangian χΛ ⊆ T ∗Rd is parametrized
by Y ′ ⊆ Rd and F ′ ∈ Md×d(R). Let u ∈ ImΓ (Rd,Λ) so that u = µ(χF )v
with v ∈ ImΓ (Rd, Y ).

We need to show

µ(χ)u = µ(χ)µ(χF )v = µ(χF ′)v
′(6.10)

for some v′ ∈ ImΓ (Rd, Y ′).
Set n = dimY . By [6, Proposition 5.9] we have v ∈ ImΓ (Rd, Y )

if and only if there exists a ∈ Γm(Rd) and U = [M1 M2] ∈ O(d),
with M1 ∈ Md×n(R), M2 ∈ Md×(d−n)(R) and Y = KerM t

2, such that
v = U t∗F−1

2 a. Since U t∗ = µ(χU) and F−1
2 = µ(J −1

2 ) using the
notation (6.7) and (6.8), we may write v = ±µ(χUJ −1

2 )a.
Thus (6.10) may be written

±µ(χχF χ
UJ −1

2 )a = µ(χF ′)v
′.

Again by [6, Proposition 5.9], the claim v′ ∈ ImΓ (Rd, Y ′) can be proved
by showing v′ = µ(χVJ −1

2 )b where b ∈ Γm(Rd), V = [N1 N2] ∈ O(d),
with N1 ∈ Md×k(R) and N2 ∈ Md×(d−k)(R) such that Y ′ = KerN t

2 and
k = dimY ′.

With these terms we must show

b = µ(J2 χ
V t

χ−1
F ′ χχF χ

U J −1
2 )a ∈ Γm(Rd)

and also the continuity of a 7→ b on Γm(Rd) (cf. [6]).
Set

χ0 = J2 χ
V t

χ−1
F ′ χχF χ

U J −1
2 ∈ Sp(d,R)

so that b = µ(χ0)a.
From Lemma 6.8, and by definition of Λ and χΛ, and (6.3), we ob-

tain the following sequence of isomorphisms concerning the symplectic
matrices at hand.

Rd × {0}
χUJ−1

2−→ Y × Y ⊥ χF−→ Λ
χ−→ χΛ

χ−1
F ′−→ Y ′ × Y ′⊥ J2χ

V t

−→ Rd × {0}.
Hence χ0 restricts to an isomorphism on Rd × {0}. The claim is thus
a consequence of Lemma 6.9. �

Lemma 6.8, (6.3) and the proof of Theorem 6.11 give the following
characterization of Γ-Lagrangian distributions.

Corollary 6.12. A distribution u ∈ S ′(Rd) satisfies u ∈ ImΓ (Rd,Λ)
if and only if there exist χ ∈ Sp(d,R) that maps χ : Rd × {0} → Λ
isomorphically, and a ∈ Γm(Rd) such that u = µ(χ)a.
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Remark 6.13. Given a Lagrangian Λ ⊆ T ∗Rd, the existence of χ ∈
Sp(d,R) with the stipulated property is a consequence of Lemma 6.8
and (6.3). By Lemma 6.9, the equivalent statement in Corollary 6.12
can be reformulated as follows. For all χ ∈ Sp(d,R) that maps χ : Rd×
{0} → Λ isomorphically there exists a ∈ Γm(Rd) such that u = µ(χ)a.

Finally we prove a time-frequency characterization of Γ-Lagrangian
distributions similar to that of conormal distributions, see Definition
6.1. Without loss of generality we may assume Y ⊥ ⊆ KerF .

Proposition 6.14. Let Λ ⊆ T ∗Rd be a Lagrangian and let V ⊆ T ∗Rd

be a subspace transversal to Λ. Suppose Λ is parametrized by Y ⊆ Rd

and F ∈ Md×d(R) as in (6.1). A distribution u ∈ S ′(Rd) satisfies
u ∈ ImΓ (Rd,Λ) if and only if for any g ∈ S (Rd)\0 and for any k,N ∈ N
we have
(6.11)∣∣L1 · · ·LkT Λ

g u(x, ξ)
∣∣ . (1 + dist((x, ξ), V ))m−k (1 + dist((x, ξ),Λ))−N ,

(x, ξ) ∈ T ∗Rd,

where

(6.12) T Λ
g u(x, ξ) = e−i(〈πY⊥x,ξ〉+

1
2
〈x,Fx〉)Tgu(x, ξ), (x, ξ) ∈ T ∗Rd,

and Lj = 〈bj,∇x,ξ〉 are first order differential operators with bj ∈ Λ,
j = 1, . . . , k.

Proof. Note that (6.11) and (6.12) reduce to (6.4) and (6.5), respec-
tively, when Λ = Y × Y ⊥.

We have u ∈ ImΓ (Rd,Λ) if and only if u = µ(χF )v where v ∈
ImΓ (Rd, Y ). By Proposition 6.2 we may assume Y ⊥ ⊆ KerF . Let
g ∈ S (Rd) \ 0 and set h = µ(χF )−1g ∈ S (Rd) \ 0. Lemma 4.12 and
(6.5) give

T Λ
g u(x, ξ) = e−i〈πY⊥x,ξ〉Thv(x,−Fx+ ξ)

= T Yh v(x,−Fx+ ξ).

A differential operator L = 〈Z,∇x,ξ〉 with Z ∈ Λ = χF (Y × Y ⊥) is
of the form

〈a,∇x + F∇ξ〉+ 〈b,∇ξ〉
where a ∈ Y and b ∈ Y ⊥. This operator acts as

(〈a,∇x + F∇ξ〉+ 〈b,∇ξ〉) (T Λ
g u(x, ξ))

=
(
(〈a,∇1 − F∇2 + F∇2〉+ 〈b,∇2〉) T Yh v

)
(x,−Fx+ ξ)

=
(
〈(a, b),∇1,2〉T Yh v

)
(x,−Fx+ ξ).

The claim is now a consequence of Definition 6.1. To wit,

dist((x,−Fx+ ξ), N(Y )) = dist(χ−F (x, ξ), Y × Y ⊥) � dist((x, ξ),Λ),

dist((x,−Fx+ ξ), N(Y ⊥)) � dist((x, ξ), χF (Y ⊥ × Y )),
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and χF (Y ⊥ × Y ) ⊆ T ∗Rd is transversal to Λ. �

7. Kernels of FIOs and Γ-Lagrangian distributions

In this section we prove that the kernels of FIOs associated to χ ∈
Sp(d,R) are the Γ-Lagrangian distributions associated with the twisted
graph Lagrangian Λ′χ.

Lemma 7.1. If χ ∈ Sp(d,R) then there exists θ ∈ R such that

µ(χ)⊗ id = eiθµ(χ2)

where χ2 ∈ Sp(2d,R) is defined by

χ2(x, ξ) = (χ(x1, ξ1)1, x2, χ(x1, ξ1)2, ξ2) ,

x = (x1, x2) ∈ R2d, ξ = (ξ1, ξ2) ∈ R2d.

Proof. Let f, g, h, q ∈ S (Rd). From (2.3), (2.4) and (2.6) we obtain

W (µ(χ)h⊗ q, µ(χ)f ⊗ g)(x, ξ) = W (µ(χ)h, µ(χ)f)(x1, ξ1)W (q, g)(x2, ξ2)

= W (h, f)(χ−1(x1, ξ1))W (q, g)(x2, ξ2).

Again using (2.3) this gives for a ∈ S (R4d)(
(µ(χ)−1 ⊗ id)aw(x,D)(µ(χ)⊗ id)(f ⊗ g), h⊗ q

)
= (aw(x,D)(µ(χ)f ⊗ g), µ(χ)h⊗ q)
= (2π)−d(a,W (µ(χ)h⊗ q, µ(χ)f ⊗ g))

= (2π)−d(b,W (h⊗ q, f ⊗ g))

= (bw(x,D)(f ⊗ g), h⊗ q)
where

b(x, ξ) = a (χ(x1, ξ1)1, x2, χ(x1, ξ1)2, ξ2)

= a(χ2(x, ξ)).

Appealing to [26, Theorem 51.6] we have thus shown

(7.1) (µ(χ)−1 ⊗ id) aw(x,D) (µ(χ)⊗ id) = (a ◦ χ2)w(x,D).

The following calculation for (x, ξ), (y, η) ∈ T ∗R2d shows that χ2 ∈
Sp(2d,R).

σ (χ2(x, ξ), χ2(y, η))

= σ ((χ(x1, ξ1)1, x2, χ(x1, ξ1)2, ξ2), (χ(y1, η1)1, y2, χ(y1, η1)2, η2))

= 〈χ(x1, ξ1)2, χ(y1, η1)1〉+ 〈ξ2, y2〉 − 〈χ(x1, ξ1)1, χ(y1, η1)2〉 − 〈x2, η2〉
= σ(χ(x1, ξ1), χ(y1, η1)) + σ(x2, ξ2, y2, η2)

= σ(x1, ξ1, y1, η1) + σ(x2, ξ2, y2, η2)

= 〈y1, ξ1〉 − 〈x1, η1〉+ 〈y2, ξ2〉 − 〈x2, η2〉
= σ((x, ξ), (y, η)).



LAGRANGIAN DISTRIBUTIONS AND SHUBIN FIOS 35

Combining (7.1) with (2.3) and (2.6) we get

W ((µ(χ)⊗ id)g, (µ(χ)⊗ id)f) = W (µ(χ2)g, µ(χ2)f)

for all f, g ∈ S (R2d) which implies µ(χ) ⊗ id = eiθµ(χ2) for some
θ ∈ R. �

Theorem 7.2. If χ ∈ Sp(d,R) then

Km(χ) = ImΓ (R2d,Λ′χ).

Proof. First we prove Km(χ) ⊆ ImΓ (R2d,Λ′χ).
Let Kϕ,a ∈ Km(χ). By Theorem 4.15 we have Kϕ,a = µ(χ)bw(x,D)

for some b ∈ Γm(R2d). Define

χ∆ =


Id 0 0 0
Id 0 0 Id
0 Id Id 0
0 −Id 0 0

 ∈ M4d×4d(R).

Then χ∆ ∈ Sp(2d,R) and

χ∆ : R2d × {0} → ∆×∆⊥

isomorphically, cf. (3.27). The kernel of bw(x,D) is denoted Kb (cf.
(2.2)), and Kb ∈ ImΓ (R2d,∆) (see [6, Example 5.2]). By Corollary 6.12
and Remark 6.13 we have Kb = µ(χ∆)b1 for some b1 ∈ Γm(R2d).

This gives for f, g ∈ S (Rd)

(Kϕ,a, g ⊗ f) = (Kϕ,af, g)

= (µ(χ)bw(x,D)f, g)

= (bw(x,D)f, µ(χ)−1g)

= (Kb, µ(χ)−1g ⊗ f)

= (µ(χ∆)b1, µ(χ)−1g ⊗ f)

= ((µ(χ)⊗ id)µ(χ∆)b1, g ⊗ f)

and it follows

(7.2) Kϕ,a = (µ(χ)⊗ id)µ(χ∆)b1.

By Lemma 7.1 we have

(7.3) µ(χ)⊗ id = eiθµ(χ2)

where θ ∈ R and χ2 ∈ Sp(2d,R) is defined by

χ2(x, ξ) = (χ(x1, ξ1)1, x2, χ(x1, ξ1)2, ξ2) ,

x = (x1, x2) ∈ R2d, ξ = (ξ1, ξ2) ∈ R2d.

Insertion of (7.3) into (7.2) yields

(7.4) Kϕ,a = ±eiθµ(χ2χ∆)b1.
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For (x, ξ) ∈ R2d we obtain

χ2χ∆(x, ξ, 0, 0) = χ2(x, x, ξ,−ξ)
= (χ(x, ξ)1, x, χ(x, ξ)2,−ξ)

and it follows that

χ2χ∆ : R2d × {0} → Λ′χ

isomorphically. Again appealing to Corollary 6.12 we may conclude
from (7.4) that Kϕ,a ∈ ImΓ (R2d,Λ′χ). This proves Km(χ) ⊆ ImΓ (R2d,Λ′χ).

It remains to show the opposite inclusion ImΓ (R2d,Λ′χ) ⊆ Km(χ).

Let K ∈ ImΓ (R2d,Λ′χ), and denote by K the operator with kernel K.
By Corollary 6.12 and Remark 6.13 we have K = µ(χ2χ∆)b for some
b ∈ Γm(R2d), and K1 = µ(χ∆)b ∈ ImΓ (R2d,∆). If we denote by K1

the operator with kernel K1 then [6, Example 5.2] shows that K1 =
aw(x,D) with a ∈ Γm(R2d).

Using Lemma 7.1 we obtain for f, g ∈ S (Rd)

(K f, g) = (µ(χ2χ∆)b, g ⊗ f)

= ±e−iθ((µ(χ)⊗ id)K1, g ⊗ f)

= ±e−iθ(K1, µ(χ)−1g ⊗ f)

= ±e−iθ(aw(x,D)f, µ(χ)−1g)

= ±e−iθ(µ(χ)aw(x,D)f, g)

and it follows that K = µ(χ)aw(x,D) with a ∈ Γm(R2d). By Theorem
4.15 this means that K ∈ Km(χ) which proves ImΓ (R2d,Λ′χ) ⊆ Km(χ).
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