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ABSTRACT  This study evaluated the effectiveness of Sentinel-2 (S2) as a tool for early detection and estimation of forest harvesting 
in the Piemonte Region, which can be used by the regional forest administration. The priority was the detection, at the regional scale, 
of annual forest cover changes with the following goals: i) mapping of irregular (in respect of the regional Forestry Regulation) forest 
cuts; ii) quantification of the intensity of the silvicultural interventions. Results are expected to support forest police controls.
The proposed procedure is based on a supervised classification approach based on Random Forest algorithm. Accuracy of harve-
sted areas detection proved to be high (overall accuracy 98%). Characterization of the occurred forest cuts was obtained computing 
the local coefficient of variation of the normalized difference vegetation index (NDVI) after harvesting, that showed to be a good 
predictor of forest harvesting intensity. 
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Introduction

Remote sensing is known to be a powerful tool 
to detect forest changes and supporting their inter-
pretation. Forest harvesting has long been moni-
tored by satellite remote sensing, with accuracies 
suitable for operational mapping in many different 
types of forest and with a great variety of sensors 
(Franklin 2001). Many studies concerned the detec-
tion of forest cuts (Banner and Ahern 1995, Drieman 
1994, Fransson et al. 1999) and associated changes 
of forest cover, which are often validated by aerial 
imagery. According to Hall et al. (1989), remotely-
sensed images offered a 12:1 cost saving in data 
acquisition in respect of aerial imagery. In fact, in-
formation from satellite remote sensing is greatly 
cheaper than other methods (Holmgren and Thures-
son 1998).  Identification of the deforestation agents 
is important for programming public policies aiming 
at  environment preservation (dos Santos Silva et al. 
2008). From this point of view remotely-sensed data 
can effectively support forest controls by land ad-
ministrations and forest police authority. Remotely-
sensed data peculiarities in forest monitoring can be 
summarized as: i) it guarantees a synoptic territorial 
vision at the regional scale; ii) pre-processed (both 
geometrically and spectrally) data can be accessed 
for free from the public archives (e.g. Copernicus 
Sentinel-2 mission); iii) available dataset can sup-
ply image time series that are internally coherent 
in terms of temporal, spatial and processing featu-
res. This work was aimed at testing the potential of 
Sentinel-2 (S2) in the ordinary workflow of the Pie-
monte Region Forest administration, with special 

concerns about early detection and control of forest 
harvesting activities. Priority was the detection, at 
the regional scale, of annual forest cover changes 
with the following goals: i) mapping of irregular (in 
respect of the regional Forestry Regulation) forest 
cuts; ii) quantification of the intensity of the inter-
ventions. Results are expected to support forest po-
lice controls. 

Materials and methods

Study area
The study area is located in Val Tanaro (CN) and 

sizes about 95 km2 (Fig. 1) covering an altitudinal 
range between 700 m and 2,000 m mostly located 
in mountain zone. Five administrative units are in-
cluded in the area: Garessio, Pamparato, Priola, Ro-
burent, Viola, representing the 4.7% of total regional 
forest surface. The zone has been selected as para-
digmatically area because it’s present about 7% of 
regional harvesting biomass (IPLA 2000).  The study 
area is characterized by the dominance of beech and 
larch stands, which are usually managed respecti-
vely as coppice with standards and little clear cuts 
(about 2,000 m2) (Camerano et al. 2017).

Available Data 
For this work, two S2 images in the T32TMQ tile 

were used, showing the area at its maximum vege-
tative activity, i.e during summer (August), for the 
2016 and 2017 years.  Change detection is intended 
to map the harvested areas related to the 2016-2017 
silvicultural season. Forest cutting requests received 
by forest authority are needed to make a forest har-
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vesting legally in Piemonte region according to the 
actual regional forest regulation (DPGR 20.09.2011 
n. 8/R). The same regulation defines the harvesting 
periods that are made, at these zones, between au-
tumn and winter. For this reason, we considered two 
representative images acquired respectively before 
and after this silvicultural season intending to map 
only all cuts made in this period. Copernicus S2 data 
processed at level 2A were obtained already calibra-
ted in at-the-ground reflectance by CNES for THEIA 
Land data center. Technical features of the available 
images are reported in Table 1.

Forested areas were preventively mapped accor-
ding to the available Piemonte Forestry Map (Came-
rano et al. 2017) and the correspondent mask gene-
rated. The Forest map of the Piemonte Region was 
completed in 2016 by IPLA under assignment of the 
Forest regional sector, it was acquired as vector for-
mat with 1:10,000 nominal map scale (WGS84 UTM 
32N reference frame). In this preliminary phase,  20 

reference areas (ROI, Regions of Interest) represen-
ting authorized (by forest regional administration) 
cuts were recognized and mapped by photointer-
pretation of high resolutiontrue color satellite or-
thoimages (updated to 2018) available from Google 
Earth (Fig. 2). 

As validation data, the Global Forest Change 
(GFC) 2000-2017 dataset-v1.5 (Hansen et al. 2013) 
was obtained from the Hansen/UMD/Google/USGS/
NASA system in raster format. GFC is divided into 
10 x 10 degree tiles, consisting of seven files per tile. 
All files are supplied with a spatial resolution of 1 
arc-second per pixel (approximately 30 meters per 
pixel at the equator) and a radiometric resolution 
of 8 bits. Year of gross forest cover loss event grid 
(loss year, hereinafter called GFC-YL) is defined as 
a disaggregation of total forest loss to annual time 
scales. In this dataset, zero values mean “no forest 
loss”, values in the range 1–17 (2000-2017) indica-
te the year when a forest loss detection occurred. 
Forest loss detection was defined as both stand-
replacement disturbance, or changes from a forest 
to non-forest state occurred only in the 2017; the 
other values (2001-2016) in the reference map were 
excluded. The GCF-YL raster layers were preventi-
vely projected into the WGS84 UTM 32N reference 
system, setting a Ground Sampling Distance (GSD) 
of 10 m with a nearest neighbor resampling method. 
Image processing, results and intermediate steps 
were managed by free GIS software (QGIS 2.18.4 
and SAGA GIS 6.3.0).

Detection of harvested areas
Many algorithms to detect forest cover chan-

ges are present in literature. Most diffuse ones in-
clude support vector machines (SVMs), decision 
trees (DTs) or the maximum likelihood classifier 
(MLC) (Otukei and Blaschke 2010). Another power-
ful approach is based on the multi-temporal image 
analysis (De Petris et al. 2019) that shows high ove-

Figure 1 - 	The study area is located in Val Tanaro (CN), South 		
		 Piemonte, Italy (Reference frame: WGS84 UTM 32N).

Figure 2 - 	Forest harvested area used as ROI (Reference frame: 	
		 WGS84 UTM 32N).

Band ID
Central 

wavelength
(nm)

Bandwidth 
(nm)

Nominal Geometric  
resolution by Theia  

CNES provider
B2 490 98 10 m

B3 560 45 10 m 

B4 665 38 10 m

B5 705 19 10 m (20 m native resolution)

B6 740 18 10 m (20 m native resolution)

B7 775 28 10 m (20 m native resolution)

B8 840 145 10 m

B8A 865 33 10 m (20 m native resolution)

B11 1610 143 10 m (20 m native resolution)

B12 2200 242 10 m (20 m native resolution)

Table 1 - 	Technical features of the available S2 images. Each 
image is a stack of 10 bands with 10 m geometrical resolution. 
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rall accuracy especially in contexts with high vegeta-
tion cover (e.g. equatorial forests). From this point 
of view, the most used algorithm in forest disturban-
ces analysis is called LandTrendr (Landsat-based 
detection of Trends in Disturbance and Recovery) 
(Cohen et al. 2018, Kennedy et al. 2018 and 2010) 
a new approach to extract spectral trajectories of 
land surface change from yearly Landsat time-series 
stacks (LTS), which is mainly based on Landsat data 
retrieved by the U.S. Geological Survey (USGS) ar-
chive. This method was developed assuming  that 
many forest changes have a distinctive temporal 
progressions before and after the change event, and 
that these lead to characteristic temporal signatures 
in spectral space (Kennedy et al. 2007). Land Trend is 
less suitable for Italian forests as it is not calibrated 
for coppices forests (Fabbio, 2016) due to the fast re-
growing that early close gaps (i.e. harvested areas) in 
vegetation cover, attesting no detectable variation in 
the time series. The authors decided to detect forest 
changes using a multi-temporal approach analyzing 
the spectral change between two silvicultural years 
(i.e. 2016 and 2017). 

Since harvestings are supposed to occur where 
the forest biomass is high, we initially mapped such 
vegetated areas using the 2016 NDVI map (pre-event) 
obtained by raster calculation from the calibrated 
bands of the original S2 available image. This step 
was intended to refine the previous area selection 
carried out using the Piemonte Forestry Map. It was 
achieved by NDVI map thresholding @ 0.5, we appo-
sitely used this value to ensures that vegetated pixels 
were sufficiently pure. In fact in literature NDVI va-
lues under 0.5 are generally related to partially vege-
tated pixels (Borgogno-Mondino et al. 2016, Momeni 
and Saradjian 2007). To detect forest cover changes 
occurred between August 2016 and August 2017 (sil-
vicultural season 2016-2017), the 2016 and 2017 ave-
rage spectral signatures of each ROI was computed 
by Zonal Statistics tool in SAGA GIS. This operation 
produced 20 average spectra per year representing 
denser vegetation in 2016 and sparser vegetation in 
2017. An average spectrum for both 2016 and 2017 
was finally computed from the previously obtained 
20 ones, representing reference spectra of respecti-
vely vegetated and harvested areas. They were con-
sequently compared by difference (after - before), 
band by band, obtaining a difference curve (RD, refe-
rence difference - Fig. 3) that was used as reference 
to test similar behavior all over the image.  RD trend 
showed moderate positive values in the visible (VIS), 
negative in the near infrared (NIR), and strongly po-
sitive in the shortwave infrared (SWIR) regions. 

RD was computed at image level by grid diffe-
rence of the 2016 and 2017 multispectral stacks, 
obtaining a new stack, D(x,y,i), containing as many 
bands (i =1,10) as the original multispectral images, 

representing the local spectral difference of each pi-
xel. To detect the harvested areas, a Random Forest 
(RF) supervised classification was performed using 
the previously described ROIs as training areas and 
the mask generated according to the NDVI map  
thresholding (only potentially forested areas in 2016 
were considered). The target of the classification is 
binary: harvested (1) and non-harvested classes (0) 
(Fig. 4). According to Lessio et al. (2017) S2 geore-
ferencing accuracy is generally greater than 7 m, i.e. 
about one S2 pixel; this positional error can induce 
a false-positive change between two acquisitions 
due to pixel displacement. Consequently, all areas 
smaller than one S2 pixel (100 m2) were not conside-
red.  Refined result was then vectorized for a further 
check. For each polygon of the obtained vector map, 
the average D(x,y,i) spectrum ( μD

P   
) was computed 

by zonal statistics and compared with the referen-
ce one (RD, Fig. 3) testing the following condition:  
μD

P > 0 in VIS  & μD
P  <0 in NIR & μD

P  > 0 in SWIR. If 
this condition was not satisfied the correspondent 
polygon was turned to not-harvested. After this step, 
the Pearson correlation coefficient (r) was computed 
comparing μD

P   and RD to somehow map reliability of 
detection. This information is expected to be opera-
tionally exploited to define a priority of controls.

Estimating Local Intensity of Forest Cuts
Many studies  have examined the effect of sil-

vicultural activities, or partial harvesting, on the 
spectral response of forest (Gerard and North 1997). 
Typically, the reduction in overstory cover resulting 
from these activities is much less than which oc-
curs during a clearcutting (Franklin 2001). One goal 
of this work was trying to support forest authority 
in that part of its controls aimed at testing consis-
tency of forest cuts operations with those defined 
by Forestry Regulation. The intensity of forest cuts 
depends on forest type and silvicultural practices, 
and can be assumed as a first indicator to address 
controls at the regional scale. In this work, authors 
operated such investigation at patch level after clas-
sification of potentially harvested areas, as reported 

Figure 3 - 	RD trend showing the typical behavior of harvested 
areas. It was used as reference to map pixels having similar  
behavior in the area, i.e. to map candidate harvested areas. 
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in similar works (Franklin et al. 2002, Graham and 
Blake 2001). AIn fact, forestry authority is used to 
control the single harvesting operation looking at the 
characteristics of the entire cadastral parcel where, 
not contiguous cut areas could fall in. According to 

this assumption new zonal statistics (σ
NDVI

 and  μ
NDVI

) 
were computed for each filtered polygon from the 
2017 NDVI map. The correspondent coefficient of 

variation (CV
NDVI

=σ
NDVI

/µ
NDVI

) was finally computed as 
index of polygon internal NDVI variability, assumed 
as predictor of cut intensity. We defined 3 classes of 
values for CV

NDVI
 corresponding to low, medium and 

high intensity. Low intensity upper class value was 
defined as the 33rd percentile of the whole CV

NDVI
 dis-

tribution (computed from all the potentially harvest-
ed polygons); medium intensity upper class value 
was defined as the 66th percentile; higher values of 
CV

NDVI
define high intensity cuts. Low intensity har-

vesting can be related to the shelterwood  silvicultur-
al system; medium intensity harvesting can be due to 
patch cuts or group trees selection cut; high intensity 
harvesting is usually due to clearcutting, coppicing 
or land use change from forest to other cultivations. 

Results and discussion

Detection of harvested areas
Forest harvested area mapping was achieved 

using a supervised classification of D(x,y,i) by Ran-
dom Forest algorithm method, as illustrated in Fi-
gure 4. RF was run in SAGA GIS with the following 
parameters: tree count = 10; samples per tree = 1; 
Sample with Replacement flagged;  Minimum Node 
Split Size = 1; Features per Node = square root; Stra-
tification = none. 

Classification accuracy assessment was achieved 
with reference to GFC-YL. GFC-YL represents the fo-

rest loss occurred in the 2017, that authors assumed 
to be potentially, and totally, due to forest harvesting 
in the same period. In fact, according to forest ad-
ministration declarations, in this study area forest 
harvestings are the first reason of forest loss without 
the presence of other abiotic or biotic disturbances 
(e.g. wildfire, wind damage, forest diseases). Concer-
ning new harvested area detection, the proposed me-
thod, based on supervised classification of D(x,y,i), 
proved to be effective. Table 1 reported the classifi-
cation performance (Espíndola and Ebecken 2005) 
showing a Geometric Mean (G-Mean) value, defined 
as measure of the balance between classification 
performances on both the majority and minority 
classes, about 0.69. User’s and producer’s accuracy 
of detected harvested areas are respectively 0.72 and 
0.67, proving to be consistent with values from some 
other works on similar topics (Cohen et al. 1998, Ro-
gan et al. 2002).  According to classification, in the 
study area, we found that 47 ha of forest were harve-
sted between 2016 and 2017.

Harvested area characterization
Authors assumed CV

NDVI 
as predictor of forest 

harvesting intensity with this interpretation key: 
high value of CV

NDVI 
correspond to heterogeneous 

land cover, likely due to an intensive forest cut ex-
posing bare soil (low NDVI) alternated to some 
trees (high NDVI); low CV

NDVI
 values correspond to 

homogeneous land cover possibly related to lower 
forest harvesting. To support this assumption, we te-
sted the relationship between µ

NDVI
 and CV

NDVI
 in 2017 

(post event) for the mapped harvested areas. Figu-
re 5 shows a strong negative correlation (R2= 0.94) 
suggesting that CV

NDVI
high values (intensive forest 

harvesting) correspond to µ
NDVI 

lower values (i.e. low 
vegetation fraction).

Figure 4 - 	Classification map of forest area harvested using RF 
method (Reference frame WGS84 UTM 32N).

Classified 
positive

Classified 
negative

Producer’s 
Accuracy

Actual Positive 4785 2362 0.670

Actual Negative 1864 939695 0.998

User’s Accuracy 0.720 0.997

Table 2 - 	Confusion Matrix of harvested area detection  
	 (n° of S2 pixels). 

Figure 5 - 	The relationship between µNDVI and CVNDVI in 2017 (post 
event) for the mapped harvested areas.
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Oppositely, CV
NDVI 

low values correspond to µ
NDVI 

higher value, reasonably related to a high vegetation 
fraction. The strong relationship between NDVI and 
vegetation cover is, in fact, well known in literature 
(Gamon et al. 1995). 

It is authors’ opinion that the adoption of CV
NDVI 

in place of µ
NDVI 

moves results to a more absolute so-
lution, possibly independent from place, vegetation 
and time of acquisition. Accordingly, starting from 
the previously generated map of harvested areas, a 
new one was generated showing 3 classes of intensi-
ty of cut (Fig. 6 left).

The histogram of Figure 6 (right) shows that 
CV

NDVI
 distribution is skewed towards to medium and 

high intensity values (CV
NDVI

> 0.43), proving to be 
consistent with data supplied by the regional forest 
authority about cut requests (Tab. 2). It is worth to 
remind “cut requests” are the procedural tools need 
to get cut authorization. Table 2 reports correspon-
dent statistics that demonstrate that 81% of requests 
are related with medium and high harvesting intensi-
ty practices.

A further validation came from a preliminary pho-
tointerpretation of Google Earth high resolution true 
color  imagery (updated to 2018), carried out over 
two well-recognizable sites representing respectively 

medium and high intensity of cut (Fig. 7). Concer-
ning medium intensity, looking at Figure 7, it can be 
noted that: i) medium intensity of harvesting could 
be reasonably related to shelterwood cutting (Fig. 7); 
corresponding CV

NDVI 
values from S2 assessment, in 

this case, are around 0.60; ii) high intensity of harve-
sting could be reasonably related to coppicing with 
standards cut (Fig. 7); corresponding CV

NDVI
 values 

from S2 assessment, in this case, are around 0.84. 

      Conclusions

S2 multispectral imagery proved to be effective to 
detect and characterize forest harvesting in the con-
sidered period. Detection of new harvested area ba-
sed on supervised classification of spectral signature 
difference revealed to be accurate enough (G-mean 
= 0.69) confirming that multitemporal spectral diffe-
rences are much more discriminant than single acqui-

Figure 6 - 	 (Left) Map of forest cut intensity in the detected harve-
sted areas. (Right) Absolute frequency histogram of CVNDVI for all  
detected patches. 

N°  
requests

Manage-
ment type

Methods of 
harvesting

Principal  
species

Averange  
harvested 
area (ha)

1 High forest 
stands

Regenera-
tion cutting

Ash 2.00

1 Coppice 
stand

Intermediate 
cutting or 

shelterwood 
cutting

Beech 3.00

4 Coppice 
stand

Coppicing Beech 5.89

3 Coppice 
stand

Intermediate 
cutting or 

shelterwood 
cutting

Beech 4.57

1 High forest 
stands

Intermediate 
cutting or 

shelterwood 
cutting

Beech 0.40

3 High forest 
stands

Regenera-
tion cutting

Beech 2.98

1 Mixed ma-
nagement

Intermediate 
cutting or 

shelterwood 
cutting

Beech 0.40

1 Mixed ma-
nagement

Regenera-
tion cutting

Beech 23.38

1 Coppice 
stand

Coppicing Birch 0.21

1 Chestnut 
stand

Intermediate 
cutting or 

shelterwood 
cutting

Chestnut 0.10

1 Chestnut 
stand

Regenera-
tion cutting

Chestnut 0.50

1 Coppice 
stand

Coppicing Hornbeam 1.05

9 High forest 
stands

Regenera-
tion cutting

Larch 2.37

1 Coppice 
stand

Coppicing Manna ash 0.17

5 High forest 
stands

Regenera-
tion cutting

Norway spruce 0.44

3 High forest 
stands

Regenera-
tion cutting

Silver-fir 1.93

Table 3 - 	Cut Requests received by regional forest authority for 
silvicultural season 2016-2017 concerning the study area.

Figure 7 - 	Forest harvesting intensity map. Two paradigmatic 
patches: (red polygon) medium intensity of harvesting could be 
reasonably related to shelterwood cutting; corresponding CVNDVI 
values from S2 assessment, in this case, are around 0.60; (yellow 
polygon) high intensity of harvesting could be reasonably related to 
coppicing with standards cut, corresponding CVNDVI values from S2 
assessment, in this case, are around 0.84.
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sitions when assessing vegetation. It was also proved 
that an approximated estimation of harvesting inten-
sity can be obtained, making possible to test consi-
stency of declared cuts with forestry regulation. The 
proposed methodology could effectively support 
forest police, that, at the moment, can control only 
the 5% of the received harvesting requests. Neverthe-
less, many limitations, at the moment, still persist: a) 
detected changes in vegetation cover could be also 
related to abiotic or biotic disturbance like wildfire, 
plant diseases, human clear cut. Auxiliary data from 
other maps or institutional sources could certainly 
help to make result more reliable from this point of 
view; b) intensity estimates based on CV

NDVI
, could 

be calibrated according to ground data specifically 
referred to the explored area.

Since cutting requests could be, according to Re-
gulation, categorized into 7 functional types, depen-
ding on the main and secondary species and type of 
cut, future developments could concern the investi-
gation about methodology performances in respect 
of the functional type. The following functional types 
should be considered: 

(i) cutting in pure broadleaf stands;

(ii) maturity cutting in pure broadleaf stands;

(iii) partial harvesting in pure broadleaf stands;

(iv) maturity cutting in pure conifer;

(v) partial harvesting in pure conifer;

(vi) maturity cutting in mixed woods;

(vii) partial harvesting in mixed woods.

Finally, the proposed methodology is intended to 
standardize forest harvesting monitoring aiming at 
improving control effectiveness, moving from a con-
trol based on few sample areas to a complete control 
over the regional wooded area. This would permit to 
assign priority of ground controls making more eco-
nomically sustainable the ordinary task of the regio-
nal Forestry Authority.
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