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LONG TIME DYNAMICS FOR THE LANDAU-FERMI-DIRAC EQUATION WITH
HARD POTENTIALS

RICARDO ALONSO, VÉRONIQUE BAGLAND, AND BERTRAND LODS

ABSTRACT. In this document we discuss the long time behaviour for the homogeneous Landau-
Fermi-Dirac equation in the hard potential case. Uniform in time estimates for statistical moments
and Sobolev regularity are presented and used to prove exponential relaxation of non degenerate
distributions to the Fermi-Dirac statistics. All these results are valid for rather general initial datum.
An important feature of the estimates is the independence with respect to the quantum parameter.
Consequently, in the classical limit the same estimates are recovered for the Landau equation.
Keywords. Landau equation, Fermi-Dirac statistics, scattering regularization, long-time asymp-
totic.

1. INTRODUCTION

1.1. The model. We study in this document the long time behaviour of a particle gas satisfying
the Pauli’s exclusion principle in the Landau’s grazing limit regime. More specifically, we study
the Landau-Fermi-Dirac (LFD) equation in the homogeneous setting for hard potential interactions
described as

∂tf(t, v) = QL(f)(t, v), (t, v) ∈ (0,∞)× R3 , f(0) = f0 , (1.1)

where the collision operator is given by a modification of the Landau operator which includes the
Pauli’s exclusion principle

QL(f)(v) = ∇v ·
∫
R3

Ψ(v − v∗) Π(v − v∗)
{
f∗(1− εf∗)∇f − f(1− εf)∇f∗

}
dv∗ .

We use the standard shorthand f = f(t, v) and f∗ = f(t, v∗). The matrix Π(z) denotes the
orthogonal projection on (Rz)⊥,

Πi,j(z) = δi,j −
zizj
|z|2

, 1 6 i, j 6 3 ,

and Ψ(z) = |z|2+γ is the kinetic potential. The choice Ψ(z) = |z|2+γ corresponds to inverse
power law potentials. This document only considers the case of hard potentials, that is 0 < γ 6 1.
We point out that the Pauli exclusion principle implies that a solution to (1.1) must satisfy the a
priori bound

0 6 f(t, v) 6 ε−1, (1.2)
where the quantum parameter

ε :=
(2π})3

m3β
> 0

depends on the reduced Planck constant } ≈ 1.054× 10−34m2kg s−1, the mass m and the statis-
tical weight β of the particles species, see [8, Chapter 17]. Recall that the statistical weight is the
number of independent quantum states in which the particle can have the same internal energy.
For example, for electrons β = 2 corresponding to the two possible electron spin values. In the
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case of electrons m ≈ 9.1 × 10−31 kg, and therefore, ε ≈ 1.93 × 10−10 � 1. The parameter ε
encapsules the quantum effects of the model with the case ε = 0 corresponding to the classical
Landau equation as studied in [15, 16].

1.2. Mathematical difficulty and our contribution in a nutshell. Suitable modifications of
classical kinetic equations, such as Boltzmann or Landau equations, that include quantum effects
have been proposed in the literature since the pioneering works [31, 32]1. In particular, the LFD
equation is a natural modification of the Landau equation modelling a gas in the grazing collision
regime. The LFD equation has been introduced in several contexts [8, 12, 21, 9, 28]. The com-
mon feature to these kinetic models is that the relevant steady state is given by the Fermi-Dirac
statistics

Mε(v) =
Mε(v)

1 + εMε(v)
, (1.3)

whereMε(v) is a suitable Maxwellian distribution which allows to recover, as ε→ 0, a Maxwellian
equilibrium. Of course,Mε satisfies (1.2).

There are several references studying the well posedness of the Cauchy problem [3] and propa-
gation of regularity of solutions [10, 11] to the LFD equation (1.1) as well as the precise form of
steady states [4]. In addition, there are related references [18, 26, 27] treating Fermi-Dirac gases
with the Boltzmann equation in the homogeneous setting.

A common feature of kinetic equation for particles satisfying Pauli’s exclusion principle is that
a suitable L∞− a priori estimate such as (1.2) holds true. Such bound has been fully exploited
to prove existence of solutions in the homogeneous and inhomogeneous setting [1, 3, 17, 18,
25, 24, 26, 27]. A negative issue related to this bound is that it brings a degeneracy in the set
{(t, v) : f(t, v) = ε−1} which, in turn, makes time uniform estimates for the statistical moments
and Sobolev regularity difficult to establish. That this degeneracy is quite real is more evident
from the fact that, besides the Fermi-Dirac statistics (1.3), the distribution

Fε(v) =


1

ε
if |v| 6

(
3%ε

|S2|

) 1
3

0 if |v| >
(

3%ε

|S2|

) 1
3

,

(1.4)

can be a stationary state with prescribed mass % =
∫
R3 Fε(v)dv, and where |S2| is the volume of

the unit sphere. Such a degenerate, referred to as saturated Fermi-Dirac, stationary state can occur
for very cold gases where an explicit condition on the gas temperature can be found, see Appendix
A for details. For initial distributions near such a degenerate state, the regularization process can
take a long time relative to those further away. Of course, this impacts the transitory time of the
particle relaxation.

In this work we overcome such difficulty by controlling simultaneously the statistical moments and
higher norms, see later for a more precise statement. This can be done due to the strong elliptic
nature of the equation. A crucial point here is that all the estimates we obtain are independent of ε,
which means that the L∞–a priori estimate (1.2) is ONLY used in our analysis through the bound
0 6 1− εf 6 1. This allows to recover all estimates, in the hard potential setting, for the Landau
equation in the classical limit ε→ 0.

1Refer to [33, Chapter 2E, Section 3] for a more detailed account on the matter.
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After uniform bounds have been found, the interesting question is the relaxation rate towards the
Fermi-Dirac density profile. We perform a complete and direct study of the spectral properties of
the linearized LFD operator rendering an explicit spectral gap for it. This approach requires some
smallness assumption on ε, but, it does not rely on a perturbative analysis with respect to linearized
Landau operator ε = 0. We will precisely explain the meaning of the smallness assumption in
point 2. after Theorem 1.4. A perturbative setting only appears at the level of the entropy - entropy
production estimate. In this respect, it would be quite interesting to obtain a type of Cercignani’s
conjecture result for the LFD collisional operator analog to that of Landau collisional operator.
The intrinsic difficulty of such result, even in a perturbative setting, is that the entropy production
operators of LFD and Landau are essentially different; one admits at least two stationary states,
the other only one. So it happens that the Landau entropy operator is not the classical limit, ε→ 0,
of the LFD entropy operator, see Section 6 for more details.

Finally, combining the estimates on moments, higher norms, entropy dissipation, and spectral
analysis, we present an exponential relaxation of general initial density towards the Fermi-Dirac
density. Of course, a central requirement is the non degeneracy of such initial state. We also point
out that a general strong convergence result without rate is presented, very much in the spirit of
[27] for Boltzmann equation (see also [7] for a quantum Fokker-Planck equation). This result is
free from any condition on ε. For such result, uniform in time estimates are again a key point.

1.3. Notations. For s ∈ R and p > 1, we define the space Lps(R3) through the norm

‖f‖Lps =

(∫
R3

∣∣f(v)
∣∣p 〈v〉s dv

)1/p

,

where 〈v〉 =
(
1 + |v|2

)1/2, that is, Lps(R3) =
{
f : R3 → R ; ‖f‖Lps <∞

}
. More generally, for

any weight function $ : R3 → R+, we define, for any p > 1

Lp($) =
{
f : R3 → R ; ‖f‖pLp($) :=

∫
R3

∣∣f ∣∣p$dv <∞
}
.

With this notation one can write for example Lps(R3) = Lp
(
〈·〉s
)
, for p > 1, s > 0. We also

define, for k ∈ N,

Hk
s (R3) =

{
f ∈ L2

s(R3) ; ∂βv f ∈ L2
s(R3) ∀ |β| 6 k

}
with the usual norm,

‖f‖Hk
s

=

( ∑
06|β|6k

∫
R3

∣∣∂βv f(v)
∣∣2 〈v〉s dv

) 1
2

,

where β = (i1, i2, i3) ∈ N3, |β| = i1 + i2 + i3 and ∂βv f = ∂i11 ∂
i2
2 ∂

i3
3 f . We shall also use the

homogeneous norm

‖f‖Ḣk
s

=

( ∑
|β|=k

∫
R3

∣∣∂βv f(v)
∣∣2 〈v〉s dv

) 1
2

.

It is customary to denote by D(R3) the set of real-valued infinitely differentiable and compactly
supported functions defined on R3 and its dual space by D ′(R3) which is the space of distributions
over R3 whereas S(R3) will denote the Schwartz class over R3.
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1.4. Main results. Before describing in detail the main results of the present contribution, we
state the key assumptions on the initial datum for equation (1.1).

Assumptions 1.1. The initial datum f(0) = f0 > 0 to (1.1) is such that

0 < ‖f0‖∞ =: ε−1
0 <∞ and S0 := Sε0(f0) > 0 (1.5)

where for any ε > 0 and 0 6 f 6 ε−1 we introduce the Fermi-Dirac entropy as

Sε(f) = −1

ε

∫
R3

[
εf log(εf) + (1− εf) log(1− εf)

]
dv . (1.6)

Remark 1.2. Notice that Sε(f) > 0 for any 0 6 f 6 ε−1. Recalling the definition of the classical
Boltzmann entropy H(f) :=

∫
R3 f log fdv, one has Sε(f) = − 1

ε

[
H(εf) +H(1− εf)

]
.

For initial datum f0 satisfying the condition (1.5) we always consider the LFD equation (1.1) with
quantum parameter 0 < ε 6 ε0 which guarantees estimate (1.2) and the nonnegativity of the
Fermi-Dirac entropy. A priori estimates hold for the mass, momentum, and energy of solutions as
a consequence of the conservation laws

∀ t > 0,

∫
R3

f(t, v) dv =

∫
R3

f0(v) dv =: M(f0), (1.7)∫
R3

f(t, v) v dv =

∫
R3

f0(v) v dv , (1.8)∫
R3

f(t, v) |v|2 dv =

∫
R3

f0(v) |v|2 dv =: E(f0) . (1.9)

As mentioned, the Cauchy theory for (1.1) has been developed in [3], see Theorem 2.7 for a precise
statement. The question of the smoothness of the solution was then tackled in [10, 11], where, as
it occurs for the classical Landau equation, the parabolic nature of (1.1) was exploited. Recall
that for the Landau equation, smoothness is immediately produced even if it does not initially
exists and, for subsequent time, it is propagated uniformly in time. For the Landau equation,
the propagation/appearance of smoothness is strongly related to the propagation/appearance of
moments, see [15].

For the LFD equation, the analysis of [3, 10, 11] proved the propagation of the moments and the
associated smoothness but only on a finite interval of time and their appearance was left open.
An additional difficulty, with respect to the Landau equation, is the strongest nonlinearity of the
equation, which is evident in the degeneration of the equation in the set {1− εf = 0}.
The first main result fills this blank by showing the instantaneous appearance and, then, prop-
agation of both L1-moments and L2-moments, uniformly in time. In turn, this results in the
appearance and propagation of smoothness.

Theorem 1.3. Consider 0 6 f0 ∈ L1
sγ (R3), with sγ = max{2+ 3γ

2 , 4−γ} satisfying (1.5). Then,
for any ε ∈ (0, ε0] there exists a weak solution f to (1.1) such that:

(i) (Generation) For any t0 > 0, k ∈ N, and s > 0, there exists a constant Ct0 > 0 such that

sup
t>t0
‖f(t)‖Hk

s
6 Ct0 .

The constant Ct0 depends, in addition to t0, on M(f0), E(f0), S0, k, s, γ. In particular,

f ∈ C∞
(
[t0,+∞);S(R3)

)
, ∀ t0 > 0 .
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(ii) (Propagation) Furthermore, if ‖f0‖Hk
s
< ∞ and f0 ∈ L1

s′(R
3) for sufficiently large s′ > 0,

the choice t0 = 0 is valid with constant depending on such initial regularity.

This result improves the regularity estimates obtained in [11, Theorem 1.2 and Proposition 2.1] in
two directions. First, the assumptions on the initial datum are relaxed, and second, the estimates
are uniform with respect to time and the quantum parameter. See the analog result for the Landau
equation in [15, Theorem 5].

Due to the cubic nonlinearity of the Landau-Fermi-Dirac operator, it appears difficult to directly
attack the problem of appearance of L1 and L2 moments in the same way as in [15]. Indeed,
introducing the L1 and L2 moments

ms(t) :=

∫
R3

f(t, v)〈v〉sdv, Ms(t) =

∫
R3

f(t, v)2〈v〉sdv, s > 0 ,

and following the computations of [15] we conclude that the evolution of ms(t) satisfies the
estimate

d

dt
ms(t) +Ks

∫
R3

〈v∗〉s+γ f∗(1− εf∗)dv∗ 6 Cs,1ms(t) , s > 2 , (1.10)

for suitable positive constants Cs,1, Ks > 0. A similar inequality holds for the evolution ofMs(t)
involving now a mixed term of the form ms+γ(t)Ms(t) (see Proposition 3.3 for more details). In
particular, one notices that the moments ms+γ(t) and Ms+γ(t) are intrinsically linked through
the second term in inequality (1.10). We can remark at this point that if one was able to obtain a
pointwise lower bound of the form

inf
v∈R3

(1− εf(t, v)) > κ0 > 0 , ∀ t > 0 , (1.11)

then estimate (1.10) would reduce to a set of equations involving only L1-moments that could be
tackled as in [15, Theorem 3]. Proving the pointwise lower bound (1.11) is not trivial and will be
addressed later for sufficiently small quantum parameter.

Returning to the evolution of ms(t) and Ms(t), the novelty of our approach lies in the fact that,
to overcome the aforementioned problem, we treat simultaneously the appearance of L1 and L2

moments by studying the evolution of the functional

Es(t) = ms(t) +Ms(t) ,

that will lead to uniform estimates for arbitrary quantum parameter in a non degenerate regime.
This is reminiscent of recent numerical investigations for spectral methods for the Boltzmann
equation [2, Section 4] and refer to Section 3.1 for a complete proof. The fact that L1−L2 bounds
translate in smoothness estimates is a standard procedure developed for the Landau equation.

We emphasise the fact that special effort is made to not use the L∞-bound (1.2) so that the con-
stants involved in Theorem 1.3 are all independent of the quantum parameter ε. This is the key
factor for the study of the long time behaviour since it allows to derive the pointwise lower bound
(1.11) and argue that solutions to (1.1) lie away from the saturated degenerate steady state (1.4),
see Corollary 3.7. Having ruled out the steady state (1.4), we can investigate the question of the
long time behaviour for solutions to (1.1) and prove that the Fermi-Dirac statistic attracts the so-
lutions to (1.1) obtained in Theorem 1.3. We can prove this result for general quantum parameter
ε > 0 in a non quantitative way by using suitable compactness argument, see Theorem 4.2. The
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advantage of such convergence result is that applies to any solution to (1.1) and quantum parame-
ter in the non degenerate region. The drawback, of course, is that it does not provide any rate of
convergence and no indication of the relaxation time.
In order to quantify the relaxation time, we make a quantitative study of the linearization of
(1.1) around equilibrium and we prove the following theorem where Lε is the linearized oper-
ator around the unique steady stateMε, see Sections 2.2 and 5 for precise definitions.

Theorem 1.4. There exists an explicit ε† > 0 such that, for any ε ∈ (0, ε†) there exists k†ε >
0 such that for any k > k†ε the linearized operator Lε around the Fermi-Dirac statistics Mε

generates a C0-semigroup (Sε(t))t>0 in L2
k. Furthermore, for any g ∈ L2

k,∥∥Sε(t)g − Pεg
∥∥
L2
k
6 C0 exp(−λε t)

∥∥g − Pεg
∥∥
L2
k
, ∀ t > 0 ,

for some explicit constant C0 > 0 (independent of ε) where λε > 0 is the spectral gap of Lε which
can be estimated explicitly. The operator Pε is the spectral projection on Ker

(
Lε

)
.

The fact that the linearization of the LFD equation (1.1) admits a positive spectral and decay in
the natural Hilbert space L2(m) where m =Mε(1− εMε) is a well-known fact, established in
[22] by a compactness argument. Notice that the space L2(m) is the space in which the linearized
operator is symmetric. We extend such a result of [22] in two directions:

1. We provide a quantitative estimate of the spectral gap for the linearized operator Lε in
L2(m). This is done in two steps, first we consider the case of Maxwell interactions γ = 0 and
then use a comparison argument between the Dirichlet forms corresponding to γ = 0 and γ > 0.
Such an approach is standard in the study of Dirichlet forms for kinetic equations as well as for
the study of entropy/entropy production estimate. However, for the study of Maxwell interactions
we provide a new approach based upon the method introduced in [16, 14] for the study of the
entropy-entropy production inequality for the Landau equation. Indeed, estimates for the spectral
gap for Landau-type equation are usually obtained as the grazing limit of associated estimates for
Boltzmann operator, see [5]. Such method seems non trivial and expensive in our context since,
to the best of our knowledge, no explicit spectral gap estimates are available for the corresponding
Boltzmann equation for Fermi-Dirac particles.

2. We extend the spectral gap obtained in the symmetric space L2(m) to the space L2
k where

solutions to (1.1) belong in light of Theorem 1.3. The technique used is the space enlargement
argument introduced in [20] and used for the Landau equation in [6]. The adaptation of the results
given in [6] to the LFD equation is straightforward and postponed to the Appendix B. This step
requires also an additional smallness constraint on ε.

We remark that the restriction to the range of the quantum parameter ε ∈ (0, ε†) is of technical
nature and it is introduced to make sure that the spectral gap λε has a positive estimation

λε > λγ(ε) > 0 , ∀ ε ∈ (0, ε†]

for some explicit λγ(ε) (see Theorem 5.6). An additional smallness constraint on ε is also required
on the enlargement argument (see Proposition B.5). It is important to notice that the restriction
ε ∈ (0, ε†) is not related to any kind of limiting procedure exploiting the existence of a spectral
gap for ε = 0. In other words, there is no perturbation argument involved around the classical
case. In fact, we are able to estimate these values as

ε† ∼ E3/2ρ−1 , and λε & 7.034× 10−6

(
3γE

20e

) γ
2

% , (1.12)



LONG TIME DYNAMICS FOR THE LANDAU-FERMI-DIRAC EQUATION 7

so that the estimates hold in the classical limit ε→ 0. It was shown in [26, Proposition 3], that the
condition

εdeg :=
4π

3ρ

(
5E
)3/2

> ε,

is a sharp condition for convergence to a Fermi-Dirac distribution. Observe that estimate (1.12) for
ε† implies that the ratio ε†/εdeg ∈ (0, 1] is independent of the initial data, thus, it has a universal
character. The estimation of the spectral gap λε is related to a Poincaré’s constant [22, Corollary
3.4] and likely far from optimal.

Based on Theorems 1.3 and 1.4, we are able to prove the following relaxation theorem.

Theorem 1.5. Consider 0 6 f0 ∈ L1
sγ (R3)∩L2

k(R3), with sγ = max{3γ
2 +2, 4−γ} and k > k†ε,

satisfying (1.5). Let ε ∈ (0, ε0] and f be a weak solution to (1.1) given in Theorem 1.3. Then,
there exists ε‡ ∈ (0, ε†) such that for any ε ∈ (0, ε‡)

‖f(t)−Mε‖L1
2
6 C exp(−λεt), ∀ t > 0 , (1.13)

where λε > 0 is the explicit spectral gap of Lε given by Theorem 1.4. The constant C > 0
depends also on M(f0), E(f0), S0, γ but not on ε.

Remark 1.6. It is remarkable that the rate of convergence to equilibrium for the nonlinear equa-
tion (1.1) exactly matches the rate prescribed by the spectral gap of the linearized operator Lε.
This is a known fact for the classical Landau equation with hard-potential interactions, see [6],
and it is the reason that the constant C > 0 is independent of ε > 0. Typically for this kind of
problems, if the rate of convergence is given by Cε exp(−λ?t) with λ? < λε, the constant Cε de-
pends on ε through the distance between λ? and the spectral gap λε (being typically of the order
of some negative power of |λ? − λε|). In Theorem 1.5, the constant is independent of ε since it is
possible to reach the spectral gap λε relaxation.

This theorem is proved using well-known combination of the close to equilibrium result Theorem
1.4 and the entropy-entropy production estimates. The proof of such entropy-entropy production
estimates are technical because of the nature of Fermi-Dirac entropy Sε. It is in the entropy-
entropy production estimates where a perturbation argument is used, exploiting the entropy-entropy
production estimates available for the Landau equation and showing that, for ε sufficiently small,
the entropy production associated to both problems are close. Indeed, even if the Fermi-Dirac
entropy Sε(f) is not continuous with respect to ε ' 0, that is,

lim
ε→0+

Sε(f) 6= H(f),

the relative Fermi-Dirac entropy aroundMε is continuous

lim
ε→0+

Sε(f)− Sε(Mε) = H(f)−H(M0) ,

where M0 is the Maxwellian distribution with same mass, momentum, and energy than f and
Mε. Making this continuity quantitative and combining it with the study near to equilibrium lead
to Theorem 1.5. In our analysis, it is possible to pick ε = 0 and recover the results obtained for
the classical Landau equation, see [15, 16, 6] after natural modifications.
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1.5. Organization of the paper. The paper is organised as follows. In Section 2, we recall
some known results about (1.1) such as well posedness and existence of stationary solution. An
equivalent formulation of (1.1) as a nonlocal nonlinear parabolic equation, see (2.2), is presented
and a proof of the uniform ellipticity of the diffusion matrix associated to such formulation is
given. This is in the line with [15, 3], but a careful analysis is required to prove that the ellipticity of
the matrix is uniform with respect to the quantum parameter ε. Section 3 is devoted to the proof of
Theorem 1.3 and Corollary 3.7. We prove the appearance and propagation of L1 and L2-moments
and, then, deduce the smoothness estimates. In Section 4, the non quantitative convergence result
for solution to equation (1.1) is provided. The spectral analysis of the linearized operator Lε and
the associated semigroup is performed in Section 5. Section 6 combines the linearized analysis
with new entropy-entropy production estimates resulting in a proof of Theorem 1.5. The paper
ends with two appendices: Appendix A is devoted to quantitative bounds on the Fermi-Dirac
statistics, and Appendix B presents the technicalities related to extension of the results given in [6]
about enlargement of the space for the linearized study.

Acknowledgments. B. L gratefully acknowledges the financial support from the Italian Ministry
of Education, University and Research (MIUR), “Dipartimenti di Eccellenza” grant 2018-2022.

2. CAUCHY THEORY

2.1. Uniform ellipticity of the diffusion matrix. It is convenient to write (1.1) as a nonlinear
parabolic equation. More precisely, for (i, j) ∈ [[1, 3]]2, define

a(z) = (ai,j(z))i,j with ai,j(z) = |z|γ+2
(
δi,j − zizj

|z|2

)
,

bi(z) =
∑

k ∂kai,k(z) = −2 zi |z|γ ,
c(z) =

∑
k,l ∂

2
klak,l(z) = −2 (γ + 3) |z|γ .

For any f ∈ L1
2+γ(R3), we define then the matrix-valued mappings σ[f ] and Σ[f ] given by

σ[f ] =
(
σij [f ]

)
ij

:=
(
aij ∗ f

)
ij
, Σ[f ] = σ[f(1− ε f)].

In the same way, we set b[f ] : v ∈ R3 7→ b[f ](v) ∈ R3 given by

bi[f ](v) =
(
bi ∗ f

)
(v), ∀ v ∈ R3, i = 1, 2, 3.

We also introduce
B[f ] = b[f(1− ε f)], and c[f ] = c ∗ f.

Notice that {
|c[f ](v)| 6 8〈v〉γ‖f‖L1

γ
6 8〈v〉γ‖f‖L1

2

|b[f ](v)| 6 2〈v〉γ+1‖f‖L1
γ+1

6 2〈v〉γ+1‖f‖L1
2
, v ∈ R3

(2.1)

since 0 < γ 6 1. With these notations, the LFD equation can then be written alternatively under
the form {

∂tf = ∇ ·
(
Σ[f ]∇f − b[f ] f(1− εf)

)
,

f(t = 0) = f0 .
(2.2)

A key ingredient in the well posedness of the LFD equation (2.2), as shown in [3], is the ellipticity
of the matrix function Σ[f ]. Recall that the analysis of [3] is performed for ε = 1, so, we need
to adapt the proof of [3] to the case ε > 0. Furthermore, we aim to prove that such ellipticity is
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uniform in terms of the parameter ε. We will need some preliminary results which are a priori
estimates for the entropy Sε.

Definition 2.1. Fix ε > 0, f0 ∈ L1
2(R3) satisfying 0 6 f0 6 ε−1. We say that f ∈ Yε(f0) if

f ∈ L1
2(R3) satisfies 0 6 f 6 ε−1 and

M(f) = M(f0), E(f) = E(f0), and Sε(f) > Sε(f0).

Lemma 2.2. Fix ε > 0, f0 ∈ L1
2(R3) satisfying 0 6 f0 6 ε−1, and let f ∈ Yε(f0). Then, it holds

that

0 6 Sε(f) 6 80
(
| log ε|+ logR

) ∫
|v|6R

f(1− εf) dv +
C(f0)

R
+ | log ε|E(f0)

R2
, ∀R > 1 .

(2.3)
The constant C(f0) depends only on the energy E(f0).

Proof. For any R > 1, we have

0 6 Sε(f) 6
∫
|v|6R

f | log εf |dv +
1

ε

∫
|v|6R

(1− εf)| log(1− εf)|dv

+

∫
|v|>R

f | log εf |dv +
1

ε

∫
|v|>R

(1− εf)| log(1− εf)|dv . (2.4)

First, we can estimate the last integral, see [3, Eqs. (3.6)], to obtain

1

ε

∫
|v|>R

(1− εf)| log(1− εf)|dv 6 3E(f0)

R2
. (2.5)

Second, because 0 6 εf 6 1,∫
|v|>R

f | log εf |dv = −
∫
|v|>R

f log εfdv = − log ε

∫
|v|>R

f dv

−
∫
{|v|>R}∩{f61}

f log f dv −
∫
{|v|>R}∩{f>1}

f log f dv .

Consequently, dismissing the last integral which is nonpositive, we estimate the second integral as
in [3, Eqs. (3.5)], to get∫

|v|>R
f | log εf |dv 6 | log ε| E(f0)

R2
+

∫
{|v|>R}∩{f61}

f | log f | dv

6 | log ε| E(f0)

R2
+ C0

E(f0)4/5

R
, C0 > 0. (2.6)

Then, to estimate the first integral we use the following slight improvement of [3, Eqs. (3.2) and
(3.3)] which is valid for any δ ∈ (0, 1/2]

| log r| 6 2| log δ| (1− r) ∀ r ∈ (δ, 1) ,

| log(1− r)| 6 2| log δ| r ∀ r ∈ (0, 1− δ) .
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Then, one proceeds as in [3, Lemma 3.1] to find that for any θ ∈ (0, 1)∫
|v|6R

f | log εf |dv 6 2| log δ|
∫
|v|6R

f(1− εf)dv +
δθ

ε

∫
|v|6R

(εf)1−θ| log εf |dv

6 2| log δ|
∫
|v|6R

f(1− εf)dv + C(θ)
δθ

ε
R3 ,

for some positive constantC(θ) > 0. For the last inequality we used that the mapping r ∈ [0, 1] 7→
r1−θ| log r| is bounded. In the same way

1

ε

∫
|v|6R

(1− εf)| log(1− εf)|dv 6 2| log δ|
∫
|v|6R

f(1− εf)dv + C(θ)
δθ

ε
R3

valid for any δ ∈ (0, 1/2], θ ∈ (0, 1), and R > 1. The value of θ is irrelevant and we fix it as
θ = 1

5 for instance. Then, choosing δ > 0 such that δ
θ

ε R
3 = 1

R , that is δ = ε5R−20, we obtain the
existence of a positive constant C1 > 0 such that∫

|v|6R
f | log εf |dv +

1

ε

∫
|v|6R

(1− εf)| log(1− εf)|dv

6 4| log δ|
∫
|v|6R

f(1− εf)dv +
C1

R
.

(2.7)

Plugging (2.5), (2.6) and (2.7) in (2.4), we obtain (2.3) with C(f0) := C1 + C0E(f0)4/5 +
3E(f0). �

Lemma 2.3. Let 0 6 f0 ∈ L1
2(R3) be fixed and bounded satisfying (1.5). Then, for any ε ∈

(0, ε0], f ∈ Yε(f0), it holds that

inf
0<ε6ε0

∫
|v|6R(f0)

f(1− εf) dv > η(f0) > 0 , (2.8)

for some R(f0) > 0 and η(f0) depending only on %(f0), E(f0) and H(f0) but not on ε.

Proof. Since f ∈ Yε(f0), we have

−
∫
R3

f0 log f0 dv + | log ε|M(f0) 6 Sε(f0) 6 Sε(f).

We know, thanks to Lemma 2.2, that

Sε(f) 6 80(| log ε|+ logR)

∫
|v|6R

f(1− εf)dv +
C(f0)

R
+ | log ε| E(f0)

R2
, R > 1 . (2.9)

We conclude that

−
∫
R3

f0 log f0 dv 6 80(| log ε|+ logR)

∫
|v|6R

f(1− εf)dv

+
C(f0)

R
− | log ε|

(
M(f0)− E(f0)

R2

)
.
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Choosing R := R1(f0) := max
{

1,
√

2E(f0)/M(f0)
}

, we are led to

−
∫
R3

f0 log f0 dv− C(f0)

R1(f0)
+ | log ε| M(f0)

2

6 80
(
| log ε|+ logR1(f0)

) ∫
|v|6R1(f0)

f(1− εf)dv .

Thus, for any 0 < ε < ε(f0) where

log

(
1

ε(f0)

)
:= 2

∣∣H(f0)
∣∣+ 2C(f0)/R1(f0)

M(f0)
,

we have ∫
|v|6R1(f0)

f(1− εf)dv > η1(f0)

with

η1(f0) := inf
0<ε6ε(f0)

−H(f0)− C(f0)/R1(f0) + | log ε|M(f0)/2

80(| log ε|+ logR1(f0))
> 0.

Now, for ε < ε0 it follows that Sε(f0) > 0 since 0 < f0 < ε−1. Since Sε0(f0) > 0 due to the
continuity of the map ε ∈ (ε(f0), ε0) 7→ Sε(f0) one is led to

η2(f0) := inf
ε(f0)6ε6ε0

Sε(f0) > 0 .

Recalling estimate (2.9) and using the fact that

| log ε| 6 | log ε(f0)|+ | log ε0| =: δ0 for ε(f0) 6 ε 6 ε0 ,

it holds that

η2(f0) 6 80
(
δ0 + logR

) ∫
|v|6R

f(1− εf)dv +
C(f0)

R
+ δ0

E(f0)

R2
.

Thus, choosing R := R2(f0) = 4
η2(f0) max

{
C(f0),

√
δ0 η2(f0)E(f0)

}
, it follows that

0 < η3(f0) : =
η2(f0)

160(δ0 + logR2(f0))

6
∫
|v|6R2(f0)

f(1− εf)dv , for ε(f0) 6 ε 6 ε0.

(2.10)

In this way, choosing R(f0) := max
{
R1(f0), R2(f0)

}
and η(f0) := min

{
η1(f0), η3(f0)

}
,

estimate (2.8) follows. �

Lemma 2.4. Let 0 6 f0 ∈ L1
2(R3) be fixed and bounded satisfying (1.5). Then, for any δ > 0

there exists η(δ) > 0 depending only on M(f0), E(f0) and H(f0) such that, for any ε ∈ (0, ε0],
f ∈ Yε(f0), and measurable A ⊂ R3,

|A| 6 η(δ) =⇒
∫
A
f(1− εf) dv 6 δ. (2.11)
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Proof. For f ∈ Yε(f0), expanding the inequality Sε(f0) 6 Sε(f) and using the conservation of
mass, we obtain that

−
∫
R3

f0 log f0 dv +
1

ε

∫
R3

(1− εf0)| log(1− εf0)| dv

6 −
∫
R3

f log f dv +
1

ε

∫
R3

(1− εf)| log(1− εf)|dv.

For r ∈ (0, 1) one has 0 6 (1− r)| log(1− r)| 6 r. As a consequence of these two observations
and the conservation of mass it follows that∫

R3

f log f dv 6
∫
R3

f0 log f0 dv +M(f0) .

The result then follows from [15, Lemma 6], using the bound 0 6 1− εf 6 1. �

Since entropy increases along the flow of the LFD equation (2.2), previous lemmata will apply to
the solution f = f(t, v) associated to the initial datum f0.

In addition, the uniform ellipticity of the matrix function Σ[f ] is obtained by adapting the proof
of [15, Proposition 4] with the help of previous lemmas.

Proposition 2.5. Let 0 6 f0 ∈ L1
2(R3) be fixed and satisfying (1.5). Then, there exists a positive

constant K0 > 0 depending on M(f0), E(f0), and S0, such that

∀ v, ξ ∈ R3,
∑
i,j

Σi,j [f ](v) ξi ξj > K0〈v〉γ |ξ|2

holds for any ε > 0 and f ∈ Yε(f0). Recall that Σi,j [f ] = ai,j ∗
(
f(1− εf)

)
.

2.2. Well-posedness and Fermi-Dirac statistics. Let us recall the well-posedness result estab-
lished in [3] reformulated to take into account the quantum parameter. We begin with the notion
of weak solution we are considering in this paper:

Definition 2.6. Consider a non trivial initial datum f0 ∈ L1
2(R3) with 0 6 εf0 6 1. A weak

solution to the LFD equation (2.2) is a function f : R+ × R3 → R satisfying the following
conditions:

(i) f ∈ L∞(R+;L1
2(R3))

⋂
C(R+; D ′(R3)), f(1− εf) ∈ L1

loc(R+;L1
2+γ(R3)).

(ii) 0 6 εf 6 1 and f(0) = f0.

(iii)
∫
R3

f(t, v)|v|2dv 6
∫
R3

f0(v)|v|2dv for any t > 0.

(iv) For any ϕ ∈ D(R3) and any s, t > 0,∫
R3

f(t, v)ϕ(v)dv −
∫
R3

f(s, v)ϕ(v)dv

=

∫ t

s
dτ

∫
R3

∑
i,j

Σi,j [f(τ)]f(τ, v)∂2
vi,vjϕ(v) + f(τ, v)B[f(τ)](v) · ∇ϕ(v)+

+ f(τ, v)(1− εf(τ, v))b[f(τ)](v) · ∇ϕ(v)dv.

With this definition, one has the following result.
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Theorem 2.7. Consider an initial datum f0 satisfying (1.5) and ε ∈ (0, ε0]. Assume further that
f0 ∈ L1

s0(R3) for some s0 > 2. Then, there exists a weak solution f to (1.1) satisfying (1.7), (1.8),
(1.9) and

f(1− εf) ∈ L1
loc

(
R+;L1

s0+γ

(
R3
))

; f ∈ L∞loc

(
R+;L1

s0

(
R3
))
∩ L2

loc

(
R+;H1

s0

(
R3
))
.

If we also assume that s0 > 2 + γ, then the entropy t > 0 7−→ Sε(f)(t) is a non-decreasing
function and

Sε(f0) 6 Sε(f)(t) 6 E(f0) + π3/2 − % log ε, ∀ t ∈ R+.

Moreover, for s0 > 4γ + 11, such a solution is unique.

It will be noticed later that the upper bound in Sε(f)(t) is far from optimal in terms of ε. Due to
the conservation laws (1.7), (1.8), (1.9), we will assume in the sequel that f0 satisfies Assumptions
1.1 and ∫

R3

f0(v)

 1
v
|v|2

 dv =

 %
0

3%E

 (2.12)

where %,E > 0 are given. We mentioned previously that a central observation was given in [26,
Propositions 3] where it was shown that the condition

ε <
4π

3ρ
(5E)

3
2 (2.13)

is necessary and sufficient to associate a unique Fermi-Dirac statistics

Mε(v) =
a exp(−b|v|2)

1 + ε a exp(−b|v|2)

with a = aε > 0 and b = bε > 0, such that∫
R3

Mε(v)

 1
v
|v|2

 dv =

 %
0

3%E

 . (2.14)

Provided that the initial datum satisfies Assumptions 1.1, [4, Theorem 3] shows that Mε is the
unique steady state to (1.1) satisfying (2.14). Moreover, under Assumptions 1.1 and (2.12), it
follows from [26, Propositions 4] that (2.13) holds, therefore, the solution f(t, v) must converge
to a Fermi-Dirac statistic in this regime. In order to make an explicit estimation for exponentially
fast convergence a stronger assumption on ε is needed in the form of ε < cE3/2ρ−1 with constant
c < 4π

3 5
3
2 ≈ 46.832.

3. MOMENTS AND REGULARITY

The final goal of this section is to prove Theorem 1.3. This will be done by improving the
approach of [15, Theorem 5] and [11] for which regularity estimates are deduced from estimates
on L1 and L2 norms. The novelty here consists in treating the propagation of these norms as a
whole. This produces a closed energy estimate.
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3.1. L1 and L2 norms. The main result of this section shows the instantaneous appearance of
both L1 and L2 norms as well as uniform estimates for such norms with respect to both time and
the quantum parameter ε > 0.

Theorem 3.1. Consider 0 6 f0 ∈ L1
sγ (R3), with sγ = max

{3γ
2 + 2, 4− γ

}
, satisfying (1.5). Let

f = f(t, v) be a weak solution to the LFD equation given by Theorem 2.7.

(i) Then, for any s > 0∫ T

t0

∫
R3

|∇f(t, v)|2〈v〉s+γ dv dt < +∞ , ∀T > t0 > 0 .

(ii) There exists some positive constant Ct0 depending on M(f0), E(f0), S0, s and t0, but not on
ε, such that ∫

R3

(
f(t, v) + f2(t, v)

)
〈v〉s dv 6 Ct0 , ∀ s > 0 , t > t0 > 0 . (3.1)

Moreover, if ∫
R3

(
f(0, v) + f2(0, v)

)
〈v〉s dv <∞ ,

then t0 = 0 is a valid choice in the estimate (3.1) with constant depending on such initial quantity.

Remark 3.2. Theorem 3.1 is the analog to [15, Theorem 3] for the Landau equation and consti-
tutes a noteworthy improvement of [3, Lemma 3.2].

We recall that, given f(t, v) solution to (2.2), we write

ms(t) =

∫
R3

f(t, v)〈v〉sdv, Ms(t) =

∫
R3

f2(t, v)〈v〉sdv, s ∈ R.

We introduce also
Ds(t) =

∥∥∥∇(f(t, ·)〈v〉
s
2

)∥∥∥2

2
, t > 0.

Proposition 3.3. Consider 0 6 f0 ∈ L1
s0(R3), for some s0 > 2, satisfying (1.5). Let f = f(t, v)

be a weak solution to (2.2) that preserves mass and energy. Then, for some constants Cs,1 and Ks

depending only on M(f0), E(f0), s, it holds
d

dt
ms(t) +Ksms+γ(t) 6 KsMs+γ(t) + Cs,1ms(t) , s > 2 . (3.2)

Also, for some constants Cs,2, Cs,3 > 0 depending only on γ, s, M(f0), E(f0) and S0, it follows
that

1

2

d

dt
Ms(t) +K0Ds+γ(t) 6 Cs,2Ms+γ(t) + Cs,3m2+γ(t)Ms+γ−2(t), (3.3)

where K0 is given by Proposition 2.5. We remark that all constants are independent of ε > 0.

Proof. Let Φ be a smooth convex function on R+. Let us proceed in the spirit of [3, Lemma 3.2]
by multiplying (2.2) by Φ

(
|v|2
)

and integrating over R3 to obtain that

d

dt

∫
R3

f(t, v) Φ
(
|v|2
)

dv = 4

∫∫
R3×R3

ff∗(1− εf∗) |v − v∗|γ ΛΦ(v, v∗) dv dv∗ ,

where

ΛΦ(v, v∗) 6
(
|v∗|2 − (v · v∗)

)(
Φ′
(
|v|2
)
− Φ′

(
|v∗|2

))
+ |v|2|v∗|2Φ′′

(
|v|2
)
.
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Let Φ(r) = (1 + r)s/2, with s > 2. Since (v · v∗) 6 〈v〉〈v∗〉, we deduce (with the notation
Λs = ΛΦ) that

Λs(v, v∗) 6
s

2

[
s

2
〈v〉s−2 〈v∗〉2 − 〈v∗〉s + 〈v∗〉s−2 + 〈v〉〈v∗〉s−1 + 〈v∗〉〈v〉s−1

]
. (3.4)

Since s− 1 > 1, we use Young’s inequality to obtain

xs−2 y2 = xs−2 y(s−2)/(s−1) ys/(s−1) 6
s− 2

s− 1
xs−1 y +

1

s− 1
ys.

Substituting this inequality for x = 〈v〉, y = 〈v∗〉 into (3.4) yields

Λs(v, v∗) 6
s

2

(
s+ 2

2
〈v〉s−1 〈v∗〉+ 〈v〉〈v∗〉s−1 + 〈v∗〉s−2 − s− 2

2(s− 1)
〈v∗〉s

)
.

Since |v− v∗|γ 6 〈v〉γ〈v∗〉γ and |v− v∗|γ > 2−γ/2〈v∗〉γ −〈v〉γ , for 0 < γ 6 1, we finally obtain

d

dt

∫
R3

f(t, v) 〈v〉s dv + 2−γ/2
s(s− 2)

s− 1
M(f0)

∫
R3

〈v∗〉s+γ f∗(1− εf∗) dv∗

6
s(s− 2)

s− 1

∫∫
R3×R3

ff∗(1− εf∗)〈v〉γ〈v∗〉s dv dv∗

+ s

∫∫
R3×R3

ff∗

[
(s+ 2) 〈v〉s−1+γ〈v∗〉1+γ + 2〈v〉1+γ〈v∗〉s−1+γ + 2〈v〉γ〈v∗〉s−2+γ

]
dv dv∗.

Since 0 6 f 6 ε−1 and 0 < γ 6 1, there exists a constant Cs,1 > 0 depending only on s, M(f0)
and E(f0) such that

d

dt

∫
R3

f 〈v〉s dv +Ks

∫
R3

〈v∗〉s+γ f∗(1− εf∗)dv∗ 6 Cs,1
∫
R3

f〈v〉sdv,

where Ks := 2−γ/2 s(s−2)
s−1 M(f0). This proves (3.2).

Let us now show (3.3). Multiplying (2.2) by f〈v〉s and integrating over R3 lead to

1

2

d

dt

∫
R3

f2(t, v)〈v〉sdv = −
∫
R3

〈v〉s(Σ[f ]∇f) · ∇fdv − s

∫
R3

f〈v〉s−2(Σ[f ]∇f) · vdv

+

∫
R3

〈v〉sf(1− εf)b[f ] · ∇fdv + s

∫
R3

(b[f ] · v) f2(1− εf)〈v〉s−2dv.

Using the uniform ellipticity of the diffusion matrix Σ[f ], recall Proposition 2.5, we deduce that∫
R3

〈v〉s(Σ[f ]∇f) · ∇fdv > K0

∫
R3

〈v〉s+γ |∇f |2 dv .

Also, using (2.1) and the fact that 0 6 1− εf 6 1, we get∫
R3

(b[f ] · v) f2(1− εf)〈v〉s−2dv 6 2m2(t)Ms+γ(t),

and∫
R3

〈v〉sf(1− εf)b[f ] · ∇fdv = −
∫
R3

(
1

2
f2 − ε

3
f3

)
∇ ·
(
b[f ]〈v〉s

)
dv 6 Cm2(t)Ms+γ(t),
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for some constant C > 0 depending on γ and s. For the last inequality we used the fact that
εf3 6 f2. Finally, we write

−2

∫
R3

f〈v〉s−2(Σ[f ]∇f) · vdv =

∫
R3

f2∇ ·
[
〈v〉s−2Σ[f ] v

]
dv .

For the last integral we expand

∇ ·
[
〈v〉s−2Σ[f ] v

]
= 〈v〉s−4

∫
R3

f∗(1− εf∗)|v − v∗|γ
[
|v∗|2(2 + s|v|2)− (s− 2)(v · v∗)2 − 2(v · v∗)〈v〉2

]
dv∗,

which leads to∫
R3

f2∇ ·
[
〈v〉s−2Σ[f ] v

]
dv 6 s

∫
R3

f∗〈v∗〉2+γdv∗

∫
R3

f2〈v〉s−2+γdv

+ 2‖f‖L1
2

∫
R3

f2〈v〉s−1+γdv.

Gathering the estimates together, one can find constants Cs, C̃s > 0 such that
1

2

d

dt
Ms(t) +K0

∫
R3

〈v〉s+γ |∇f |2 dv 6 CsMs+γ(t) + C̃sm2+γ(t)Ms+γ−2(t) .

Notice that there exists cs,γ > 0 such that∫
R3

〈v〉s+γ |∇f |2 dv > Ds+γ(t)− cs,γMs+γ(t) .

This proves the desired result. �

It is important to control the “mixed term”m2+γ(t)Ms+γ−2(t) in the estimate (3.3) of Proposition
3.3. This is done in the following lemma. We continue with the assumptions and notations of
Theorem 3.1.

Lemma 3.4. Fix s ∈
(3γ

2 + 2, 9 − γ
]
, δ > 0. There exists a constant Cs(δ) > 0 depending only

on M(f0), E(f0), S0, s, γ such that

m2+γ(t)Ms+γ−2(t) 6 Cs(δ) + δms+γ(t) + δDs+γ(t), ∀ t > 0. (3.5)

Proof. Using Littlewood’s interpolation inequality, see for instance [19, Theorem 5.5.1 (ii)]

‖g‖L2(µ) 6 ‖g‖1−θL1(µ)
‖g‖θL6(µ),

1
2 = (1− θ) + θ

6

(
that is θ = 3

5

)
with the measure dµ(v) = 〈v〉−3dv and with g = f〈·〉

s+γ+1
2 , we have that∥∥f〈·〉 s+γ−2

2

∥∥
L2 6 ‖f〈·〉

s+γ
2
− 5

2 ‖1−θ
L1 ‖f〈·〉

s+γ
2 ‖θL6 .

Estimating the last L6-norm with Sobolev’s inequality [23, Theorem 12.4], we obtain that∥∥f〈·〉 s+γ−2
2

∥∥
L2 6 C

∥∥f〈·〉 s+γ2 − 5
2

∥∥ 2
5

L1

∥∥∇(f〈·〉
s+γ
2 )
∥∥ 3

5

L2 ,

for some C > 0. We deduce from this that, as soon as s 6 9− γ
(
that is s+γ

2 −
5
2 6 2

)
,

Ms+γ−2(t) 6 Cm2(t)
4
5Ds+γ(t)

3
5 .

Moreover,
m2+γ(t) 6m2(t)

s−2
s+γ−2 ms+γ(t)

γ
s+γ−2 ,
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which leads us to deduce, from the conservation of mass and energy, that there is a positive con-
stant C0 depending only onm2(0) = M(f0) + E(f0) such that

m2+γ(t)Ms+γ−2(t) 6 C0ms+γ(t)
γ

s+γ−2 Ds+γ(t)
3
5 , ∀ t > 0 .

Using then Young’s inequality, there exists C1 > 0 such that

m2+γ(t)Ms+γ−2(t) 6 C1δ
−3/2ms+γ(t)θ + δDs+γ(t) ∀ δ > 0

with θ = θ(s, γ) := 5
2

γ
s+γ−2 . Notice now that θ < 1 for s > 3γ

2 + 2 and, from Young’s inequality
again,

ms+γ(t)θ 6 η−
θ

1−θ + ηms+γ(t) ∀ η > 0 .

Combining these last two inequalities with η = 1
C1
δ

5
2 gives the result. �

Lemma 3.5. Fix s > 4− γ, δ > 0. There exists a constant Cs(δ) > 0 depending only on M(f0),
E(f0), S0, δ, γ, s, such that

Ms+γ(t) 6 Cs(δ) + δms+γ(t) + δDs+γ(t) ∀ t > 0. (3.6)

Proof. Using Littlewood’s interpolation inequality and Sobolev inequality, we obtain that

Ms+γ(t) 6 Cm s+γ
2

(t)
4
5 Ds+γ(t)

3
5 . (3.7)

Thus, using Young’s inequality,

Ms+γ(t) 6 δ−3/2m s+γ
2

(t)2 + δDs+γ(t) , δ > 0 . (3.8)

Assuming that s+ γ > 4, it follows that

m s+γ
2

(t)2 6m2(t)
s+γ
s+γ−2 ms+γ(t)

s+γ−4
s+γ−2 , t > 0 . (3.9)

Using conservation of mass and energy, there exists Cs > 0 depending only on s, γ and m2(0)
such that

m s+γ
2

(t)2 6 Cs,γ(f0)ms+γ(t)
s+γ−4
s+γ−2 ,

and then, Young’s inequality implies that, for η > 0, there is Cs,γ(η) such that

m s+γ
2

(t)2 6 Cs,γ(η) + ηms+γ(t) , ∀t > 0 .

This, together with (3.8), gives the conclusion choosing η > 0 such that δ−3/2η = δ. �

Proof of Theorem 3.1. Recall that sγ = max
{3γ

2 + 2, 4− γ
}

and define

Es(t) = ms(t) +Ms(t), t > 0, s ∈ (sγ , 9− γ] .

Adding (3.2) to (3.3), there exist positive constants c0, c1 depending on M(f0), E(f0), S0, γ, s,
such that
d

dt
Es(t) + c0

[
ms+γ(t) +Ds+γ(t)

]
6 c1

[
Ms+γ(t) +ms(t) +m2+γ(t)Ms+γ−2(t)

]
, t > 0 ,

and, using the result of Lemmas 3.4 and 3.5 it holds that
d

dt
Es(t) + c0

[
ms+γ(t) +Ds+γ(t)

]
6 c1

[
Cs(δ) + δms+γ(t) + δDs+γ(t) +ms(t)

]
, δ > 0 ,

for some positive constant Cs(δ) > 0 depending on M(f0), E(f0), S0, s, γ, δ. Since

ms(t) 6 C(s, δ) + δms+γ(t), ∀ δ > 0 (3.10)
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for some positive constantC(s, δ) depending on s, δ, andM(f0), we can choose δ > 0 sufficiently
small to obtain, for any s ∈ (sγ , 9− γ), that

d

dt
Es(t) +

c0

2

[
ms+γ(t) +Ds+γ(t)

]
6 C̃, ∀ t > 0, (3.11)

for some positive constant C̃ > 0 depending on M(f0), E(f0), S0, γ, s.

Let us now control Es(t) in terms of ms+γ(t) and Ds+γ(t). Using (3.7), (3.9), and the conserva-
tion of mass and energy

Ms+γ(t) 6 Cs,γms+γ(t)
2
5
ν Ds+γ(t)

3
5 , ν = s+γ−4

s+γ−2 , t > 0 ,

with Cs,γ a positive constant depending only on s, γ andm2(0). This results in the estimate

1

2
ms+γ(t) +Ds+γ(t) >

1

2
ms+γ(t) + cs,γMs+γ(t)

5
3 ms+γ(t)−

2
3
ν

> min
z>0

(z
2

+ cs,γMs+γ(t)
5
3 z−

2
3
ν
)

with cs,γ = C
− 5

3
s,γ . Computing such minimum, we obtain that for a constant cs,γ > 0 depending

only on s, γ andm2(0) it holds that

1

2
ms+γ(t) +Ds+γ(t) > cs,γMs+γ(t)ν0 > cs,γMs(t)

ν0 , ν0 = 5
3+2ν > 1 . (3.12)

Furthermore,

ms+γ(t) >m2(t)−
γ
s−2 ms(t)

s+γ−2
s−2 ,

thus, we deduce from (3.12) that for two positive constant c1, c2 > 0 depending only on s, γ and
m2(0) we have

ms+γ(t) +Ds+γ(t) > c1 Es(t)β − c2, ∀ t > 0 ,

where β = min
(
s+γ−2
s−2 , ν0

)
> 1. Plugging this into (3.11) yields

d

dt
Es(t) + c Es(t)β 6 C ′, ∀ t > 0 , (3.13)

for positive constants c and C ′ depending only on s, γ and m2(0). Estimate (3.13) proves that,
for any s ∈ (sγ , 9− γ] there exists Cs > 0 depending only on M(f0), E(f0), S0, s, γ, such that

Es(t) 6 Cs
(

1 + t
− 1
β−1

)
∀ t > 0 .

In particular, for any t0 > 0,

sup
t>t0
Es(t) = C(s, t0) <∞, ∀ s ∈ (sγ , 9− γ] (3.14)

depends only on t0 > 0, M(f0), E(f0), S0, s, γ. Observe that estimate (3.13) also implies that if
Es(0) is finite, then supt>0 Es(t) is finite as well proving the propagation of Es(t).

Of course, (3.14) remains true for s 6 9 − γ. This means that, for any t > t0, one can replace
(3.3) with

1

2

d

dt
Ms(t) +K0Ds+γ(t) 6 Cs(t0)Ms+γ(t), t > t0
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where Cs(t0) is a finite constant depending on t0, s, S0 and m2(0) 2. This shows that (3.1) holds
for any s > sγ since we used the constraint s 6 9− γ only to estimatem2+γ(t). More precisely,
we obtain that

d

dt
Es(t) + c0

[
ms+γ(t) +Ds+γ(t)

]
6 c1

[
ms(t) +Ms+γ(t)

]
, ∀t > t0

with c0 and c1 depending on M(f0), E(f0), S0, s. Using then (3.6) and (3.10) for δ > 0 small
enough, we obtain

d

dt
Es(t) +

c0

2

[
ms+γ(t) +Ds+γ(t)

]
6 C(t0) ∀s > sγ , t > t0

for some positive constant C(t0) depending only on t0, M(f0), E(f0), S0, s. We can repeat the
argument here above, using (3.12), to obtain now

d

dt
Es(t) + c Es(t)β 6 C ′, ∀ t > t0 , (3.15)

where c and C ′ depends also on t0. This concludes the proof of generation of the norms. Prop-
agation follows the same idea assuming Es(0) finite, with s > sγ . One proceeds from (3.13) to
arrive to (3.15) copycatting the procedure. Furthermore, integrating in t ∈ (t0, T ), with T > t0,
estimate (3.11) shows that f ∈ L2

loc((t0,+∞);H1
s+γ(R3)) due to generation of the L1 and L2

norms which proves (i). �

3.2. Regularity estimates. We now prove Theorem 1.3 with the help of the following proposi-
tion.

Proposition 3.6. Consider 0 6 f0 ∈ L1
sγ (R3), where sγ = max{2 + 3γ

2 , 4− γ}, satisfying (1.5).
Let f = f(t, v) be a weak solution to (2.2) given by Theorem 2.7. Then,∫

R3

|∇f(t, v)|2〈v〉s dv 6 Ct0 , s > 0 , ∀ t0 > 0 , (3.16)

for a constant Ct0 > 0 depending on M(f0), E(f0), S0, s, and t0. Moreover, if∫
R3

|∇f(0, v)|2〈v〉s dv < +∞ ,

then, the choice t0 = 0 is valid in (3.16) with constant depending on such initial regularity.

Proof. Let i ∈ {1, 2, 3}. Differentiating (2.2) with respect to the vi variable and setting gi = ∂if ,
we get that

∂tgi = ∇ ·
(
Σ[f ]∇gi + ∂iΣ[f ]∇f − ∂ib[f ]f(1− εf)− b[f ](1− 2εf)gi

)
.

Multiply the equation by gi〈v〉s and integrate over R3. It follows that

1

2

d

dt

∫
R3

g2
i 〈v〉s dv = −I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 .

2namely, Cs(t0) = Cs,2 + Cs,3 supt>t0 m2+γ(t)



20 RICARDO ALONSO, VÉRONIQUE BAGLAND, AND BERTRAND LODS

The terms Ij , j = 1, . . . , 8 are estimated thanks to Proposition 2.5 and Theorem 3.1. More
precisely, we have for δ > 0,

I1 :=

∫
R3

〈v〉sΣ[f ]∇gi∇gi dv > K0

∫
R3

|∇gi|2 〈v〉s+γ dv,

I2 := −s
∫
R3

gi〈v〉s−2 (Σ[f ]∇gi · v) dv =
s

2

∫
R3

g2
i ∇ ·

(
〈v〉s−2Σ[f ] v

)
dv 6 C ‖gi‖2L2

s+γ
,

while

I3 := −
∫
R3

(∂iΣ[f ]∇f) · ∇gi 〈v〉s dv

6 C ‖∇f‖L2
s+2+γ

‖∇gi‖L2
s+γ
6 δ ‖∇gi‖2L2

s+γ
+ Cδ ‖∇f‖2L2

s+2+γ
,

and

I4 := −s
∫
R3

(∂iΣ[f ]∇f · v) gi〈v〉s−2 dv 6 C ‖∇f‖L2
s+γ
‖gi‖L2

s+γ
,

I5 :=

∫
R3

f(1− εf) 〈v〉s (∂ib[f ] · ∇gi) dv 6 C ‖∇gi‖L2
s+γ
‖f‖L2

s+γ
6 δ ‖∇gi‖2L2

s+γ
+ Cδ(t0) .

Also,

I6 := s

∫
R3

gi f(1− εf) 〈v〉s−2 (∂ib[f ] · v) dv 6 C ‖gi‖L2
s
‖f‖L2

s−2+2γ
6 Ct0 ‖gi‖L2

s
,

I7 :=

∫
R3

(1− 2εf) gi 〈v〉s (b[f ] · ∇gi) dv

6 C ‖∇gi‖L2
s+γ
‖gi‖L2

s+2+γ
6 δ ‖∇gi‖2L2

s+γ
+ Cδ ‖gi‖2L2

s+2+γ
,

I8 := s

∫
R3

(1− 2εf) g2
i 〈v〉s−2 (b[f ] · v) dv 6 C ‖gi‖2L2

s+γ
.

Here, and in the rest of the proof, C denotes a positive constant depending only on M(f0), E(f0),
S0, s, but not ε, which may change from line to line. Gathering the above estimates, summing
over i ∈ {1, 2, 3} and recalling that gi = ∂if , we obtain

1

2

d

dt
‖∇f‖2L2

s
+ (K − 3δ)‖f‖2

Ḣ2
s+γ
6 C

(
1 + ‖∇f‖2L2

s+2+γ

)
.

Since, an integration by parts leads to

‖∇f‖2L2
s+2+γ

= −
∫
R3

f ∆f 〈v〉s+2+γ dv − (s+ 2 + γ)

∫
R3

f 〈v〉s+γ∇f · v dv,

we deduce from Young’s inequality that

‖∇f‖2L2
s+2+γ

6
δ

2
‖f‖2

Ḣ2
s+γ

+ Cδ‖f‖2L2
s+4+γ

+
1

2
‖∇f‖2L2

s+2+γ
+ C ‖f‖2L2

s+γ
.

Thus, estimate (3.1) imply that

‖∇f‖2L2
s+2+γ

6 δ‖f‖2
Ḣ2
s+γ

+ C .

Therefore, it follows that
1

2

d

dt
‖∇f‖2L2

s
+ (K − 4δ)‖f‖2

Ḣ2
s+γ
6 C .
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Using the interpolation inequality and estimate (3.1)

‖∇f‖2L2
s+γ

= ‖f‖2
Ḣ1
s+γ
6 ‖f‖L2

s+γ
‖f‖Ḣ2

s+γ
6 C‖f‖Ḣ2

s+γ
, ∀t > t0 > 0.

Therefore, choosing 4δ = K/2, it follows from the previous two estimates that
1

2

d

dt
‖f‖2

Ḣ1
s

+
K

2
‖f‖4

Ḣ1
s
6 C , s > 0 , t > t0 .

From this estimate all statements of the proposition follow. �

Proof of Theorem 1.3. The proof of Theorem 1.3 is a generalisation of the steps given in the proof
of Proposition 3.6. Consider g = ∂βv f for some β ∈ N3 with |β| = k. Differentiating the LFD
equation (2.2) β times, we get the equation satisfied by g. We multiply such equation by g〈v〉s and
integrate over R3. Estimating the terms as in the proof of [11, Proposition 2.1] one obtains that for
any δ > 0

1

2

d

dt
‖f‖2

Ḣk
s

+ (K0 − δ)‖f‖2Ḣk+1
s+γ

6 Cδ
(
1 + ‖f‖2

Ḣk
s+2+γ

)
, (3.17)

for a constant Cδ > 0 and K0 > 0 given by Proposition 2.5. Using the interpolation inequality

‖f‖2
Ḣk
s′
6 ‖f‖Ḣk−1

2s′
‖f‖Ḣk+1 + ‖f‖Ḣk−1

2s′
‖f‖L2 , s′ > 0 ,

to control the right hand term of (3.17), it follows that
1

2

d

dt
‖f‖2

Ḣk
s

+
K0

2
‖f‖2

Ḣk+1
s+γ

6 C
(
1 + ‖f‖2

Ḣk−1
2s+4+2γ

)
, s > 0 , t > t0 > 0 .

Here we used Theorem 3.1 to control the L2-norm. The interpolation inequality

‖f‖2
Ḣk
s′
6 ‖f‖Ḣk+1

s′
‖f‖L2

s′
6 C ‖f‖Ḣk+1

s′
,

leads to, choosing s′ = s+ γ,
1

2

d

dt
‖f‖2

Ḣk
s

+ K̃0‖f‖4Ḣk
s
6 C

(
1 + ‖f‖2

Ḣk−1
2s+4+2γ

)
, s > 0 , t > t0 > 0 .

Starting with k = 2 and Proposition 3.6, repeat this estimate to obtain the result. Note that in each
repetition twice the number of moments is needed. This explain the condition f0 ∈ L1

s′ with s′

sufficiently large (s′ ≈ 2ks ). �

We deduce from this the following important consequence.

Corollary 3.7. Consider 0 6 f0 ∈ L1
sγ (R3) satisfying (1.5). Then, for any solution f(t) = fε(t)

to (2.2) given by Theorem 2.7, it holds

sup
t>t0
‖f(t)‖∞ 6 Ct0 , ∀ t0 > 0.

The constant Ct0 only depends on M(f0), E(f0), S0, s, and t0.
Consequently, for any κ0 ∈ (0, 1) there exists ε? > 0 depending only on κ0, M(f0), E(f0), and
S0, such that

inf
v∈R3

(
1− ε f(t, v)

)
> κ0, ∀ ε ∈ (0, ε?), t > 1. (3.18)

Proof. The first statement is a direct consequence of Theorem 1.3 and the Sobolev embedding of
Hs(R3) into L∞(R3) for any s > 3

2 , see for instance [23, Theorem 12.46]. The lower bound
(3.18) is, thus, clear as one can choose ε > 0 so that f(t, v) 6 Ct0=1 6

1−κ0
ε . �
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Remark 3.8. Of course the choice t > 1 is arbitrary. The result is valid for any time sufficiently
large. This lower estimate rules out any degeneracy as the set {v ; f(t, v) = ε−1} is empty after
sufficiently large time. In particular, solutions to (2.2) remain uniformly away from the saturated
Fermi-Dirac statistics (1.4).

4. CONVERGENCE TO EQUILIBRIUM: NON QUANTITATIVE RESULT

From the emergence of smoothness and moments of the previous sections a non-quantitative
result of convergence to equilibrium can be inferred, see [7]. The proof will exploit several results
from [3, 4] and will resort on the property of the dissipation of entropy functional established in
Section 6.2. We begin with a preliminary lemma.

Lemma 4.1. Let f0 ∈ L1
s(R3) with s > 17 + 6γ satisfying Assumption 1.1, and let f be the weak

solution to (2.2) given by Theorem 2.7. Then,∫ ∞
0

(∫
R6

|v − v∗|
γ+2
2

∣∣∣Π(v − v∗)
(
f∗(1− εf∗)∇f − f(1− εf)∇f∗

)∣∣∣dvdv∗

)2

dt

6 2Sε(Mε)

(∫
R3

f0dv

)2

,

whereMε is the Fermi-Dirac statistics with same mass, momentum and energy as f0.

Proof. We work with the regularized problem introduced in [3, Section 4.1] to make all computa-
tions rigorous. Let T > 0. As in the proof of [3, Theorem 2.2], we denote by (fk0 )k>1 a sequence
of smooth functions that converges to f0 in L1

s(R3) and by fk the solution to the regularized prob-
lem with initial datum fk0 . For any k > 1, the function fk is smooth on [0, T ] × R3 and satisfies
0 < fk(t, v) < ε−1 for any (t, v) ∈ [0, T ]×R3. Moreover, by [3, Lemma 4.15], a subsequence of
(fk)k>1, not relabelled, converges to f in L2((0, T );L1(R3)) and a.e. on (0, T ) × R3. Actually,
one can also prove that ∇fk converges to ∇f in L2((0, T );L2

q−2(R3)) with q = s − 10 − 4γ.
Indeed, using the uniform (in k) ellipticity estimate given by [3, Corollary 4.10] and performing
the same computations as in the proof of [3, Theorem 5.2], we obtain that, for any t ∈ [0, T ],

‖fk(t)− f `(t)‖2L2
q

+ κ

∫ t

0
‖∇fk(τ)−∇f `(τ)‖2L2

q−2
dτ

6 ‖fk0 − f `0‖2L2
q

+

∫ t

0
D(τ)‖fk(τ)− f `(τ)‖2L2

q
dτ,

for some function D and where κ is given by [3, Corollary 4.10]. Observe that the assumption
f0 ∈ L1

s(R3) with s > 17 + 6γ ensures that D ∈ L2(0, T ) with some bound independent of k and
`. Hence, the Gronwall Lemma implies that, for any t ∈ [0, T ],

‖fk(t)− f `(t)‖2L2
q
6 ‖fk0 − f `0‖2L2

q
exp

(∫ t

0
D(τ)dτ

)
,

and thus,

κ

∫ T

0
‖∇fk(τ)−∇f `(τ)‖2L2

q−2
dτ 6 ‖fk0 − f `0‖2L2

q
exp

(∫ T

0
D(τ)dτ

)
.

This proves that (∇fk)k>1 is a Cauchy sequence in L2((0, T );L2
q−2(R3)) and thus converges to

some g ∈ L2((0, T );L2
q−2(R3)). Necessarily, we have g = ∇f . Note that mass and momentum
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are preserved for the regularized problem but not the energy. More precisely, for any t ∈ [0, T ] we
have, see [3, Lemma 4.8]∫

R3

fk(t, v)dv =

∫
R3

fk0 (v)dv,

∫
R3

fk(t, v)vdv =

∫
R3

fk0 (v)vdv

but ∫
R3

fk(t, v)|v|2dv =

∫
R3

fk0 (v)|v|2dv +
6t

k

∫
R3

fk0 (v)dv.

Let us introduce

ξ[fk](v, v∗) = Π(v − v∗)
(
fk∗ (1− εfk∗ )∇fk − fk(1− εfk)∇fk∗

)
∈ R3. (4.1)

The Cauchy-Schwarz inequality ensures that∫
R6

|v − v∗|
γ+2
2

∣∣∣ξ[fk](v, v∗)
∣∣∣ dvdv∗

6

(∫
R6

|v − v∗|γ+2

∣∣Π(v − v∗)
(
fk∗ (1− εfk∗ )∇fk − fk(1− εfk)∇fk∗

)∣∣2
fk fk∗ (1− εfk)(1− εfk∗ )

dvdv∗

)1/2

×
(∫

R3

fk fk∗ (1− εfk)(1− εfk∗ )dvdv∗

)1/2

.

One checks that, with the notations introduced in Section 6.2, the first integral on the right-hand
side coincides with 2Dε(fk). Using also the bound 0 6 1− εfk 6 1 it follows that(∫

R6

|v − v∗|
γ+2
2

∣∣∣ξ[fk](v, v∗)
∣∣∣ dvdv∗

)2

6 2Dε(f
k)

(∫
R3

fk0 (v)dv

)2

.

On the other hand, we deduce from the entropy identity for fk, see the proof of [3, Lemma 4.8],
that ∫ T

0
Dε(f

k)(t)dt 6 Sε(fk)(T ) 6 Sε(Mk,T
ε )

whereMk,T
ε is the Fermi-Dirac statistics with same mass, energy and momentum as fk(T ) and it

maximises the entropy among the class of functions with prescribed mass, momentum and energy.
Hence, we deduce that∫ T

0

(∫
R6

|v − v∗|
γ+2
2

∣∣∣ξ[fk](v, v∗)
∣∣∣ dvdv∗

)2

dt 6 2S(Mk,T
ε )

(∫
R3

fk0 (v)dv

)2

.

It only remains to let first k → +∞ and then T → +∞. �

Theorem 4.2. Consider 0 6 f0 ∈ L1
sγ (R3) satisfying (1.5) and let f = f(t, v) be a weak solution

to (2.2) given by Theorem 2.7. Then,

lim
t→∞
‖f(t)−Mε‖L1

2
= 0

whereMε is the Fermi-Dirac statistics with same mass, energy and momentum of f0.

Proof. Let ε ∈ (0, ε0] be given. Fix t0 > 0. From the propagation and appearance of smoothness
and moments established in Theorem 1.3, we get that

sup
t>t0

(
‖f(t)‖L1

s
+ ‖f(t)‖Hk

q

)
<∞, ∀ s > 0, q > 0, k ∈ N.
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In particular, by Sobolev embedding, the family

{f(t)}t>t0 is relatively compact in H1
p (R3) for any p > 0 .

Consider then a sequence {tn}n∈N of positive real numbers with limn tn = ∞. One can extract
from it a subsequence, still denoted {tn}n, and F∞ ∈ H1

p (R3) such that

lim
n→∞

‖f(tn)− F∞‖H1
p

= 0.

We introduce then
fn(t) = f(t+ tn), t ∈ [0, 1], n ∈ N

and denote by (F (t))t>0 the unique solution to (2.2) with initial datum F (0) = F∞ given by
Theorem 2.7.

Let us choose p > 4γ + 11 and apply an analog stability result to [3, Theorem 5.2] with q =
p− (2γ + 4). Since supt∈[0,1] ‖fn(t) + F (t)‖H1

p
<∞ according to Theorem 1.3, we get that

d

dt
‖fn(t)− F (t)‖2L2

q
+K0‖∇(fn(t)− F (t))‖2L2

q+γ
6 C0‖fn(t)− F (t)‖2L2

q
, ∀ t ∈ [0, 1]

for some positive constant C0 > 0. In particular,

sup
t∈[0,1]

‖fn(t)− F (t)‖L2
q
6 exp

(
C0
2 t
)
‖f(tn)− F∞‖L2

q
,

and therefore,

lim
n→∞

sup
t∈[0,1]

‖fn(t)− F (t)‖L2
q

= 0 and lim
n→∞

∫ 1

0
‖∇fn(t)−∇F (t)‖2L2

q+γ
dt = 0. (4.2)

Notice that, up to a subsequence, limn fn(t, v) = F (t, v) for a.e. in v ∈ R3. Thus, one still has

0 6 F (t, v) 6 ε−1 , a.e. in v ∈ R3.

Moreover, a simple use of Cauchy-Schwarz inequality implies that the convergence (4.2) transfers
to

lim
n→∞

sup
t∈[0,1]

‖fn(t)− F (t)‖L1
s

= 0 and lim
n→∞

∫ 1

0
‖∇fn(t)−∇F (t)‖L1

τ
dt = 0 (4.3)

as soon as

0 6 s <
q − 1

2
− 1 =

1

2
(p− 2γ − 7) and 0 6 τ <

q + γ − 1

2
− 1 =

1

2
(p− γ − 7).

In particular, since p > 4γ + 11, one notices that s = τ = 2 are both admissible. Since t0 > 0,
we deduce from Lemma 3.1 that f(t0) ∈ L1

q(R3) with q > 17 + 6γ. Applying Lemma 4.1 to
f(t0 + t) we get that the mapping

(t, v, v∗) ∈ [t0,∞)× R6 7→ |v − v∗|
γ+2
2

∣∣ξ[f(t)](v, v∗)
∣∣

lies in L2((t0,∞), L1(R6)) with∫ ∞
t0

(∫
R6

|v − v∗|
γ+2
2

∣∣ξ[f(t)](v, v∗)
∣∣dvdv∗

)2

dt 6 2M(f0)2Sε(Mε).
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In particular, since∫ 1

0

(∫
R6

|v − v∗|
γ+2
2

∣∣ξ[fn(t)](v, v∗)
∣∣dvdv∗

)2

dt

=

∫ tn+1

tn

(∫
R6

|v − v∗|
γ+2
2 |ξ[f(t)](v, v∗)| dvdv∗

)2

dt ∀n ∈ N ,

we get that

lim
n→∞

∫ 1

0

(∫
R6

|v − v∗|
γ+2
2

∣∣ξ[fn(t)](v, v∗)
∣∣dvdv∗

)2

dt = 0. (4.4)

By virtue of (4.2) and because q > 0 is large enough to transfer the L2
q convergence into a L1

γ+2
2convergence

lim
n→∞

∫ 1

0

(∫
R6

|v − v∗|
γ+2
2

∣∣ξ[fn(t)](v, v∗)
∣∣dvdv∗

)2

dt

=

∫ 1

0

(∫
R6

|v − v∗|
γ+2
2 |ξ[F (t)](v, v∗)|dvdv∗

)2

dt.

Thus, ∫ 1

0

(∫
R6

|v − v∗|
γ+2
2 |ξ[F (t)](v, v∗)|dvdv∗

)2

dt = 0

from which we readily deduce that

ξ[F (t)](v, v∗) = 0 a. e. t ∈ (0, 1), v, v∗ ∈ R6.

From the definition of ξ, see equation (4.1), and [4, Theorem 4] we notice that if∣∣{v ∈ R3 ; 0 < F (t, v) < ε−1
}∣∣ 6= 0 , (4.5)

then, the density F (t) is a Fermi-Dirac statistics

F (t, v) =
a(t) exp(−b(t)|v − v(t)|2)

1 + εa(t) exp(−b(t)|v − v(t)|2)
, v ∈ R3

for some suitable a(t), b(t) > 0. Now, (4.5) is clearly satisfied since, according to Lemma 2.3,
there exists η∗ > 0 and R∗ > 1 depending only on M(f0), E(f0), and S0, such that∫

BR∗

f(t, v)(1− εf(t, v))dv > η∗ ∀ t > t0.

According to (4.2), this readily translates in∫
BR∗

F (t, v)(1− εF (t, v))dv > η∗ ∀t ∈ [0, 1]

which proves (4.5). Therefore, F (t, v) is a (time-dependent) Fermi-Dirac statistics. Using the fact
that the convergence of fn(t) to F (t) occurs at least in L1

2(R3), we observe that∫
R3

F (t, v)

 1
v
|v|2

 dv =

∫
R3

f(t, v)

 1
v
|v|2

dv =

∫
R3

Mε(v)

 1
v
|v|2

 dv .

Therefore F (t, v) = Mε(v) for a.e. (t, v) ∈ [0, 1] × R3. In particular,Mε is the only possible
cluster point of {f(t)}t>t0 . The theorem is proved. �
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5. LINEARIZED THEORY AND ESTIMATES FOR THE SPECTRAL GAP

5.1. Existence of a spectral gap. Recall the non quantitative linearized theory performed in [22]
for ε = 1. Fix ε > 0 and letMε be the Fermi-Dirac statistics with same mass, momentum and
energy as f0. Define

m(v) = mε(v) =Mε(v)(1− εMε(v)), v ∈ R3.

Perform a linearization around such statistics by writting

f(t, v) =Mε(v) + m(v)h(t, v) (5.1)

and plugging into (2.2). We get that

∂th = Lε(h) + Γ2,ε(h) + Γ3,ε(h) (5.2)

where

Lεh(v) = m−1(v)∇ ·
∫
R3

|v − v∗|γ+2Π(v − v∗) [m∗∇(mh) + h∗m∗(1− 2εMε)∗∇Mε

−m (∇(mh))∗ − hm (1− 2εMε)(∇Mε)∗] dv∗ (5.3)

is a linear operator and

Γ2,εh(v) = m−1(v)∇ ·
∫
R3

|v − v∗|γ+2Π(v − v∗)
[
ε(mh)2(∇Mε)∗ − ε(mh)2

∗∇Mε

+ (mh)∗(1− 2εMε)∗∇(mh)− (mh)(1− 2εMε)(∇(mh))∗] dv∗

is a quadratic operator, and

Γ3,εh(v) = εm−1(v)∇ ·
∫
R3

|v − v∗|γ+2Π(v − v∗)
[
(mh)2(∇(mh))∗ − (mh)2

∗∇(mh)
]

dv∗

collects the cubic terms.

Noticing that∇m = (1− 2εMε)∇Mε, one may rewrite the linear part as

Lεh(v) = m−1(v)∇ ·
∫
R3

m∗m |v − v∗|γ+2Π(v − v∗) [∇h− (∇h)∗] dv∗

+ m−1(v)∇ ·
∫
R3

[h∗(1− 2εMε)∗ + h(1− 2εMε)]

|v − v∗|γ+2Π(v − v∗) [m∗∇Mε −m(∇Mε)∗] dv∗.

It is easily seen that m∗∇Mε − m(∇Mε)∗ is proportional to (v∗ − v)mm∗, thus, the second
integral vanishes and

Lεh(v) = m−1(v)∇ ·
∫
R3

m(v∗)m(v) |v − v∗|γ+2Π(v − v∗) [∇h(v)− (∇h)(v∗)] dv∗. (5.4)

Using the same kind of relations on the quadratic part, it follows that

Γ2,ε(h) = m−1(v)∇ ·
∫
R3

m(v∗)m(v) |v − v∗|γ+2Π(v − v∗)[
εh2 m

m∗
(∇Mε)∗ − εh2

∗
m∗
m
∇Mε

(
(1− 2εMε)∗h∗∇h− (1− 2εMε)h(∇h)∗

)]
dv∗ .
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Notice that, from (5.1), we expect h to satisfy∫
R3

h(v)m(v)

 1
v
|v|2

 dv =

 0
0
0

 . (5.5)

A natural space to study the operator Lε is the Hilbert space L2(m). In this space, the natural
domain of Lε is

D(Lε) =

{
h ∈ L2(m) ;

∫
R3

〈v〉γ+2 |∇h(v)|2m(v)dv <∞
}
.

We denote by 〈·, ·〉2 the inner product in L2(m). For any g, h ∈ D(Lε) one has

〈g,Lεh〉2 =

∫
R3

g(v)∇ ·
∫
R3

|v − v∗|γ+2Π(v − v∗) [∇h−∇h∗]mm∗dvdv∗

= −
∫
R6

mm∗|v − v∗|γ+2Π(v − v∗) (∇h−∇h∗)∇gdvdv∗

= −1

2

∫
R6

mm∗|v − v∗|γ+2Π(v − v∗) (∇h−∇h∗) (∇g −∇g∗) dvdv∗.

In particular, Lε is symmetric and the associated Dirichlet form reads

Dε,γ+2(h) = −〈h,Lεh〉2 =
1

2

∫
R6

mm∗|v − v∗|γ+2
∣∣Π(v − v∗) (∇h−∇h∗)

∣∣2dvdv∗ > 0.

The spectral analysis of Lε has been performed in [22]. We remark that the linearization used
there is slightly different, but the results are easily adapted to our linearization (5.1). The following
theorem holds.

Theorem 5.1. There exists λε > 0 such that

Dε,γ+2(h) > λε ‖h‖2L2(m), for any h ∈ L2(m) satisfying (5.5).

The parameter λε > 0 obtained in [22] is not explicit since Weyl’s Theorem is used in the argu-
ment.

Remark 5.2. The Dirichlet form Dε,γ+2 associated to the linearized Landau-Fermi-Dirac oper-
ator is very similar to the one associated to the classical linearized Landau operator in L2(M0)
given by

D0,γ+2(h) =
1

2

∫
R6

M0(v)M0(v∗)|v − v∗|γ+2 |Π(v − v∗) (∇h−∇h∗)|2 dvdv∗

whereM0 is the Maxwellian distribution with same mass, energy and momentum as f0. Recall
also that there exists an explicit λ0 > 0 such that

D0,γ+2(h) > λ0 ‖h‖2L2(M0) (5.6)

for any h ∈ L2(M0) orthogonal to Span(1, v, |v|2) in L2(M0).

In the rest of the section, we give an explicit estimate of the spectral gap of the linearized operator
Lε in Theorem 5.1. We begin with the following lemma which can be easily deduced from [22,
Theorem 3.2 & Corollary 3.4] where we recall that

m(v) =
M(v)

(1 + εM(v))2 with M(v) = aε exp(−bε|v|2), v ∈ R3 , (5.7)
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for aε, bε > 0 such thatMε = M
1+εM has the same mass, momentum and energy as f0.

Lemma 5.3. For any ε > 0 the following Poincaré inequality holds∫
R3

|∇h(v)|2 m(v)dv > CP(ε)

∫
R3

|h(v)|2m(v)dv (5.8)

for any h ∈ L2(m) with
∫
R3 hmdv = 0 and with CP(ε) = 2bε(1 + ε aε)

−4.

Proof. The proof is given in [22, Corollary 3.4]. Since

(1 + ε a)−2M 6 m 6M

then, using the notations of [22], C1/C2 = (1 + ε aε)
−2. Moreover, U0 = − logM is such that

Hess(U0) = 2 bε Id

where Hess(U0) is the Hessian matrix of U0. Therefore, according to [22, Corollary 3.4], we
obtain the result with CP(ε) = 2bε(C1/C2)2. �

5.2. Spectral gap estimate for Maxwell potential case. For Maxwell molecules γ = 0 we
denote by Dε,2(h) the Dirichlet form

Dε,2(h) =
1

2

∫
R6

mm∗|v − v∗|2 |Π(v − v∗) (∇h−∇h∗)|2 dvdv∗, h ∈ L2(m).

We can make explicit the spectral gap obtained in Theorem 5.1 with the following proposition.

Proposition 5.4. There exists an explicit ε† > 0 such that for any ε ∈ (0, ε†)

Dε,2(h) > λ0(ε) ‖h‖2L2(m)

for any function h ∈ L2(m) satisfying (5.5). Here λ0(ε) > 0 is explicit and depends only on ε, %
and E. An estimation for the range of the quantum parameter and a lower bound for the spectral
gap is ε† ≈ 0.6011E

3
2 %−1 and λ0(ε) & 4.686× 10−4%.

Proof. Our proof uses some arguments used in [16] for estimating the production of entropy as-
sociated to the classical Landau equation for Maxwell molecules, see also [14]. Fix h ∈ L2(m)
satisfying (5.5) and write

Rh(v, v∗) := Π(v − v∗) (∇h−∇h∗) = ∇h−∇h∗ − λh (v − v∗)

for some suitable real function λh = λh(v, v∗) so that

Dε,2(h) =
1

2

∫
R6

mm∗|v − v∗|2 |Rh(v, v∗)|2 dvdv∗.

For any fixed circular permutation (i, j, k) of (1, 2, 3), one has(
(v − v∗) ∧Rh(v, v∗)

)
k

= (v − v∗)j (∂ih− ∂ih∗)− (v − v∗)i (∂jh− ∂jh∗) .

We multiply this vectorial identity by ϕ`(v∗) and integrate over R3 to get

(vj∂ih− vi∂jh) (U0)` − ∂ih(Uj)` + ∂jh(Ui)` = R` + A` + B`vj + C`vi
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where we introduced the vectors R, U0, Up, with p ∈ {i, j}, A, B and C defined by

R` :=
∫
R3 ((v − v∗) ∧Rh(v, v∗))k ϕ

`
∗dv∗, (U0)` :=

∫
R3 ϕ

`
∗dv∗,

(Up)` =
∫
R3 v

p
∗ϕ

`
∗dv∗, B` =

∫
R3 ∂ihϕ

`dv,

C` = −
∫
R3 ∂jhϕ

`dv A` =
∫
R3 vi∂jhϕ

`dv −
∫
R3 vj∂ihϕ

`dv, ` = 1, 2, 3.

Thanks to Cramer’s rule, we can solve the above linear system of equations to find

∂jh =
det(U0,−Uj ,R + A + Bvj + Cvi)

det(U0,−Uj ,Ui)
.

Let us pick
ϕ1 =Mε, ϕ2 = −vjMε, ϕ3 = viMε .

We recall that ∫
R3

Mε(v)

 1
v
|v|2

 dv =

 %
0

3%E

 ,

and, by a symmetry argument∫
R3

Mε(v)v2
i dv = %E, i = 1, 2, 3.

Then one can check that

U0 =

 %
0
0

 , Uj =

 0
−%E

0

 , Ui =

 0
0
%E

 ,

which results in
det(U0,−Uj ,Ui) = %3E2.

The matrix (U0,−Uj ,R + A + Bvj + Cvi) is then upper triangular. Thus,

det(U0,−Uj ,R + A + Bvj + Cvi) = %2E (R3 + A3 + B3vj + C3vi)

and then,

∂jh−
1

%E
(A3 + B3vj + C3vi) =

1

%E
R3 .

Taking the square and multiplying byMε we get that∫
R3

Mε

(
∂jh−

1

%E
(A3 + B3vj + C3vi)

)2

dv =
1

%2E2

∫
R3

Mε(v)R2
3dv.

Now, one has that
∣∣ [(v − v∗) ∧Rh(v, v∗)]k

∣∣ 6 |v − v∗| |Rh(v, v∗)|. Also, writeMε =
√
M
√
m

where m and M were defined in (5.7). We have that

R2
3 =

(∫
R3

[(v − v∗) ∧Rh(v, v∗)]k v
i
∗Mε(v∗)dv∗

)2

6

(∫
R3

|v − v∗|2 |Rh(v, v∗)|2m(v∗)dv∗

) (∫
R3

v2
iM(v)dv

)
.
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Note that ∫
R3

v2
iM(v)dv = Ca,b =

aε
2bε

(
π

bε

) 3
2

is independent of i, and since there is cε = (1 + ε aε) such thatMε 6 cεm, it follows that∫
R3

Mε(v)R2
3dv 6 Ca,bcε

∫
R6

|v − v∗|2 |Rh(v, v∗)|2m(v∗)m(v)dvdv∗ = 2Ca,bcεDε,2(h) .

Consequently,
Dε,2(h) > ν Ii,j , ∀ i 6= j

where ν−1 =
2Ca,bcε
%2E2

and

Ii,j =

∫
R3

Mε

(
∂jh−

1

%E
(A3 + B3vj + C3vi)

)2

dv.

Summing up over all possible couples (i, j) with i 6= j we get

Dε,2(h) >
ν

6

∑
i

∑
j 6=i
Ii,j . (5.9)

Let us estimate now Ii,j . We expand the square

Ii,j =

∫
R3

Mε (∂jh)2 dv +
1

%2E2

∫
R3

Mε(v) (A3 + B3vj + C3vi)
2 dv

− 2

%E

∫
R3

Mε(v)∂jh(v) (A3 + B3vj + C3vi) dv

=

∫
R3

Mε (∂jh)2 dv +
1

%2E2

∫
R3

Mε(v) (A3 + B3vj + C3vi)
2 dv

+
2B3

%E

∫
R3

hMεdv +
2

%E

∫
R3

h(v) (A3 + B3vj + C3vi) ∂jMεdv.

Notice that
∂jMε(v) = −2 bε vj m(v) (5.10)

thus, using (5.5),∫
R3

h(v) (A3 + B3vj + C3vi) ∂jMεdv = −2bεB3ej − 2bεC3

∫
R3

h(v)m(v)vivjdv

where

ej :=

∫
R3

h(v)v2
jm(v)dv.

Now, using the fact thatMε is radially symmetric, it follows that∫
R3

Mε(v) (A3 + B3vj + C3vi)
2 dv = A2

3

∫
R3

Mε(v) + B2
3

∫
R3

v2
jMε(v)dv

+ C2
3

∫
R3

v2
iMε(v)dv = %A2

3 + %E
(
B2

3 + C2
3

)
.
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Collecting all the computations, we get

Ii,j =

∫
R3

Mε (∂jh)2 dv +
A2

3

%E2
+

1

%E

(
B2

3 + C2
3

)
+

2B3

%E

∫
R3

hMεdv

− 4bεB3

%E
ej −

4bεC3

%E

∫
R3

h(v)m(v)vivjdv. (5.11)

Let us compute A3,B3,C3. Using (5.10), we check that

A3 =

∫
R3

vjMε hdv, C3 = −2bε

∫
R3

h vi vj mdv,

and

B3 = −
∫
R3

hMεdv + 2bεei. (5.12)

With this at hand, identity (5.11) reads

Ii,j =

∫
R3

Mε (∂jh)2 dv +
A2

3

%E2
+

3C2
3

%E
+

1

%E

(
B2

3 + 2B3

∫
R3

hMεdv

)
− 4bεB3

%E
ej

>
∫
R3

Mε (∂jh)2 dv +
1

%E

(
B2

3 + 2B3

∫
R3

hMεdv

)
− 4bεB3

%E
ej .

Using (5.12), one deduces that

Ii,j >
∫
R3

Mε (∂jh)2 dv − 1

%E

(∫
R3

hMεdv

)2

− 4b2εe
2
i

%E
+

4bε
%E

ej

∫
R3

hMεdv −
8b2ε
%E

eiej .

Using (5.5) we see that
∑3

i=1 ei =
∫
R3 hm |v|2dv = 0, which implies that

∑
i

∑
j 6=i
ej = 0,

∑
i

∑
j 6=i
eiej = −

3∑
i=1

e2
i .

And, therefore ∑
i

∑
j 6=i
Ii,j > 2

∫
R3

Mε |∇h(v)|2 dv − 6

%E

(∫
R3

hMεdv

)2

. (5.13)

Recalling that
∫
R3 hm = 0, with m =Mε(1− εMε), we observe that actually the negative term

in (5.13) is of order ε2. Namely,∑
i

∑
j 6=i
Ii,j > 2

∫
R3

Mε |∇h(v)|2 dv − 6ε2

%E

(∫
R3

hM2
εdv

)2

.

SinceM2
ε =
√
m M3/2

1+εM , we get that(∫
R3

hM2
εdv

)2

6

(∫
R3

h2mdv

) (∫
R3

M3

(1 + εM)2
dv

)
6 a3

ε

(
π

3bε

)3/2(∫
R3

h2mdv

)
,

because ∫
R3

M3

(1 + εM)2
dv 6

∫
R3

M3dv = a3
ε

∫
R3

exp(−3bε|v|2)dv = a3
ε

(
π

3bε

)3/2

.
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Then, from (5.9) andMε > m, one finally arrives to

Dε,2(h) >
ν

3

∫
R3

m(v) |∇h(v)|2 dv − νε2

%E
a3
ε

(
π

3bε

)3/2 ∫
R3

h2(v)m(v)dv .

Using Poincaré inequality with constant CP(ε), see Lemma 5.3, it holds that

Dε,2(h) > ν

(
CP(ε)

3
− ε2

%E
a3
ε

(
π

3bε

)3/2
) ∫

R3

h2(v)m(v)dv

where we recall that CP(ε) = 2bε(1 + ε aε)
−4. Set

λ0(ε) := ν

(
CP(ε)

3
− ε2

%E
a3
ε

(
π

3bε

)3/2
)
, (5.14)

and notice that λ0(ε) > 0 if

%E >
3ε2

CP(ε)
a3
ε

(
π

3bε

)3/2

=
3ε2

2b
5/2
ε

(π
3

)3/2
a3
ε(1 + ε aε)

4.

According to the results of Appendix A, there exists an explicit ε† > 0 such that the previous
estimates holds for any ε ∈ (0, ε†). Refer to Lemma A.1 and remarks A.3 and A.4 for details. �

Remark 5.5. Notice that ε† is proportional to E
3
2 %−1 precisely as the sharp requirement (2.13)

on ε to obtain Fermi-Dirac statistics.

5.3. Spectral gap estimates for Hard potential case. When γ ∈ (0, 1], we compare the operator
to that of Maxwell potential. Indeed, the fact that there is a Maxwellian density M and κε > 0
such that

κεM 6 m 6M

readily implies that

κ2
εDM,γ+2(h) 6 Dε,γ+2(h) 6 DM,γ+2(h) , ∀h ∈ L2(M) ' L2(m)

where

DM,γ+2(h) =
1

2

∫
R6

M(v)M(v∗)|v − v∗|γ+2 |Π(v − v∗) (∇h−∇h∗)|2 dvdv∗.

One can deduce from [5, Theorem 1.2] that there is an explicit constant Cγ,ε = 1
8

(
γ

8ebε

) γ
2
> 0

such that

DM,γ+2(h) > Cγ,εDM,2(h) > Cγ,εDε,2(h) , ∀h ∈ L2(M) ' L2(m)

with no orthogonality conditions needed for this inequality. Therefore,

Dε,γ+2(h) > κ2
εCγ,εDε,2(h) ∀h ∈ L2(m) .

We can exploit, then, the orthogonality condition (5.5) and the result for Dε,2 given in Proposition
5.4 to obtain that

Dε,γ+2(h) > κ2
εCγ,ελ0(ε)

∫
R3

m(v)h2(v)dv for any h satisfying (5.5).

We can reformulate Theorem 5.1 as follows with a quantitative estimate of λε.
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Theorem 5.6. There exists ε† > 0 such that for any ε ∈ (0, ε†)

Dε,γ+2(h) := −〈h,Lεh〉2 > λε ‖h− Pε(h)‖2L2(m) , ∀h ∈ D(Lε)

where 〈·, ·〉2 denotes the inner product of L2(m) and Pε is the projection over the null space of Lε
given by Span

{
1, v1, v2, v3, |v|2

}
.

The constant λε > 0 is such that λε > λγ(ε) := κ2
εCγ,ελ0(ε) where λ0(ε) is given by Proposition

5.4.

Remark 5.7. It is possible to sharpen the spectral gap given in Theorem 5.6 arguing as in [29].
In fact, there exists a positive and explicitly computable constant η = η(γ, ε) > 0 such that

Dε,γ+2(h) > η
(
‖h− Pεh‖2H1

γ(m) + ‖h− Pεh‖2L2
γ+2(m)

)
.

5.4. Spectral gap estimates in L2-spaces with polynomial weights. Introduce the operator Lε

Lε(hm) := mLε(h), h ∈ D(Lε).

Our goal is to prove that the linearized semigroup associated to Lε, which relaxes exponentially
fast in L2(m), admits similar decay in the larger L2 space with polynomial weights. A suitable
approach for proving such extension uses enlargement techniques developed in [20] and has been
applied to the Landau equation in [6].
Observe that for any ε > 0 such that ε aε < 1 one has 1− 2εMε(v) > 0. Consequently,

ζε :=
2bε
3

∫
R3

|w|2m(w) (1− 2εMε(w)) dw > 0. (5.15)

Denote also for such ε,

k†ε := max

(
%(γ + 3)ζ−1

ε , 2γ + 7

)
,

which quantify the amount of moments needed for exponential relaxation.

Theorem 5.8. For any ε ∈ (0, ε†) such that ε aε < 1 the following holds: if k > k†ε then the
operator Lε : D(Lε) ⊂ L2

k → L2
k generates a C0-semigroup (Sε(t))t>0 in L2

k and∥∥Sε(t)(I− Pε)g
∥∥
L2
k
6 C0 exp(−λε t)

∥∥g − Pεg
∥∥
L2
k
, ∀t > 0 ,

for some explicit constant C0 > 0 which is independent of ε > 0.

Proof. We point out the important steps since similar arguments are given in [6]. The reader can
find the details in Appendix B. From (5.3), one has

Lε(g) = ∇ ·
∫
R3

a(v − v∗) [m∗∇g −m (∇g)∗] dv∗

+∇ ·
∫
R3

a(v − v∗)
[
g∗ (1− 2εMε)∗∇Mε − g (1− 2εMε)(∇Mε)∗

]
dv∗ .

The Landau bilinear operator is given by

Q(G,F ) = ∇ ·
∫
R3

a(v − v∗) [G∗∇F −G(∇F )∗] dv∗ (5.16)

for any suitable functions G, F . It is not difficult to check that

Lε(g) = Q(Mε, g) +Q(g,Mε)− 2εQ(gMε,Mε)− εQ(M2
ε, g)
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where we used that m =Mε− εM2
ε. For a smooth nonnegative function χ ∈ C∞c (R3) such that

0 6 χ 6 1, χ(v) = 1 for {|v| 6 1} and χ(v) = 0 for {|v| > 2}, we define

χR(v) = χ(R−1v), R > 1, v ∈ R3.

Then, for suitable constant Υ > 0 to be chosen later, we set

Aεg = Q(g,Mε) + ΥχRg − 2εQ(gMε,Mε)

and

Bεg = Lεg −Aεg =
3∑

i,j=1

σi,j [Mε] ∂
2
ijg − c[Mε] g − εQ(M2

ε, g)−ΥχRg .

Setting E = L2
k(R3) and E = L2(M−1

ε ) one has that E ⊂ E and the splitting Lε = Aε +
Bε meets all the properties of [6, Theorem 2.4] (see also [20, Theorem 2.13]). Indeed, from
Proposition B.5 one infers that, for any a ∈ R, it is possible to choose Υ, R sufficiently large
such that Bε − a is dissipative in E. This proves Assumption 2(i) of [6, Theorem 2.4] for any
a ∈ R. Moreover, Lemma B.7 implies Assumption 2(iii) of [6, Theorem 2.4] for n = 1 and any
a ∈ R. Moreover, Aε ∈ B(E) thanks to Lemma B.6, consequently we have Assumption 2(ii) of
the aforementioned theorem. Therefore,

‖Sε(t)− Pε‖B(E) 6 Cε exp(−λεt) for any t > 0

for some positive constant Cε > 0. Notice now that the constant C1(k, ε) in Lemma B.6 can be
chosen independent of ε since supεC1(k, ε) < ∞. As a consequence, the constant C(a, k, ε) in
Lemma B.7 can be chosen independently of ε. With this, the constant Cε > 0, deduced from [6,
Theorem 2.4, Eq. (2.12)], is independent of ε. �

Remark 5.9. Theorem 5.8 is valid in any Lpk spaces, with p > 1, since the results in Appendix B
can be extended to such spaces following [6].

6. QUANTITATIVE CONVERGENCE TO EQUILIBRIUM

We prove here Theorem 1.5. This proof will resort on a combination of previous spectral
analysis and suitable entropy production estimates.

6.1. Close to equilibrium estimates. Consider an initial datum 0 6 f0 ∈ L1
s0(R3), with s0 > 2,

satisfying (1.5)–(2.12). Let ε ∈ (0, ε0] and f = f(t, v) be a weak solution to (1.1) given by
Theorem 2.7, and letMε be the unique Fermi-Dirac statistics satisfying (2.12). We introduce the
fluctuation

g = f −Mε

which satisfies
∂tg = Lεg + Γ(g) , t > 0, g0 = f0 −Mε, (6.1)

where, with the notations of Section 5.1,

Γ(g) = mΓ2,ε(m
−1g) + mΓ3,ε(m

−1g).

One can check that

Γ(g) = Q(g(1− 2εMε), g)− εQ(g2,Mε + g) (6.2)

whereQ(G,F ) is the bilinear Landau operator defined in (5.16). We have the following estimates
for Γ.
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Lemma 6.1. For any k > 0, there exists C = C(k, γ) > 0 such that

‖Γ(g)‖L2
k
6 C

(
‖g‖L1

γ+2
+ ε‖g2‖L1

γ+2

)
‖g‖H2

k+2γ+4
+ Cε‖g2‖L1

γ+2

Proof. From [6, Proposition 3.1], there is Ck,γ > 0 such that

‖Q(G,F )‖L2
k
6 Ck,γ

(
‖G‖L1

γ+2
‖∇2F‖L2

k+2γ+4
+ ‖G‖L1

γ
‖F‖L2

k+2γ

)
,

from which we deduce first that

‖Q(g(1− 2εMε), g)‖L2
k
6 2Ck,γ‖g‖L1

γ+2

(
‖∇2g‖L2

k+2γ+4
+ ‖g‖L2

k+2γ

)
since ‖1− 2εMε‖∞ 6 2. Noticing that, see Lemma A.7,

sup
ε∈(0,1)

(
‖∇2Mε‖L2

k+2γ+4
+ ‖Mε‖L2

k+2γ

)
<∞,

one finds a positive constant C ′k,γ > 0 depending only on k, γ such that

‖Q(g2,Mε)‖L2
k
6 C ′k,γ‖g2‖L1

γ+2
.

And also,

‖Q(g2, g)‖L2
k
6 Ck,γ‖g2‖L1

γ+2

(
‖∇2g‖L2

k+2γ+4
+ ‖g‖L2

k+2γ

)
.

One concludes from (6.2). �

Proposition 6.2. Let f0 satisfy Assumption 1.1, ε ∈ (0, ε0] be such that ε aε < 1, and k > k†ε.
Let f be a solution to (1.1). Assume that there exists δ > 0 such that

‖f(t)−Mε‖L2
k
6 δ , ∀ t > t0 > 0,

and that
sup
t>t0
‖f(t)‖H4

k+4γ+8
6 Ct0 . (6.3)

Then, there is C > 0 depending on t0, Ct0 , δ, k, γ but not on ε such that

‖f(t)−Mε‖L2
k
6 C exp(−λεt)‖f(t0)−Mε‖L2

k
, ∀ t > t0.

Proof. Set g = f −Mε. Since g is a solution to (6.1), according to Duhamel formula for any
t0 > 0,

g(t) = Sε(t− t0)g(t0) +

∫ t

t0

Sε(t− s)Γ
(
g(s)

)
ds

as soon as g(t0) ∈ L2
k and Γ

(
g(s)

)
∈ L2

k for any s ∈ [t0, t). Notice that both f(t0) and Mε

satisfy (2.12) while Q preserves mass, momentum and energy. Therefore,

Pεg(t0) = 0 and PεΓ
(
g(s)

)
= 0 ∀ s > t0.

In particular, one deduces from Theorem 5.8 that for ε ∈ (0, ε†) with ε aε < 1 it holds

‖g(t)‖L2
k
6 C0 exp(−λε(t− t0))‖g(t0)‖L2

k
+ C0

∫ t

t0

exp(−λε(t− s))‖Γ
(
g(s)

)
‖L2

k
ds .
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According to Lemma 6.1, we get, for t > t0

‖g(t)‖L2
k
6 C0 exp(−λε(t− t0))‖g(t0)‖L2

k

+ Ck,γ

∫ t

t0

exp(−λε(t− s))
(
‖g(s)‖L1

γ+2
+ ε
∥∥g(s)2

∥∥
L1
γ+2

)
‖g(s)‖H2

k+2γ+4
ds

+ Ck,γ ε

∫ t

t0

exp(−λε(t− s))
∥∥g(s)2

∥∥
L1
γ+2

ds.

Now, since ε‖g(s)2‖L1
γ+2

= ε‖g(s)‖2
L2
γ+2
6 ‖g(s)‖2

L2
k+γ+2

, we observe that

ε‖g(s)2‖L1
γ+2
6 ‖g(s)‖

3
2

L2
k
‖g(s)‖

1
2

L2
k+4γ+8

6 ‖g(s)‖
3
2

L2
k
‖g(s)‖

1
2

H4
k+4γ+8

,

and, using that ‖g(s)‖L∞ 6 ‖f(s)‖L∞ + ‖Mε‖L∞ 6 2
ε , we also get that

ε‖g(s)2‖L1
γ+2
6 2‖g(s)‖L1

γ+2
.

This yields

‖g(t)‖L2
k
6 C0 exp(−λε(t− t0))‖g(t0)‖L2

k

+ 3Ck,γ

∫ t

t0

exp(−λε(t− s))‖g(s)‖L1
γ+2
‖g(s)‖H2

k+2γ+4
ds

+ Ck,γ

∫ t

t0

exp(−λε(t− s))‖g(s)‖
3
2

L2
k
‖g(s)‖

1
2

H4
k+4γ+8

ds.

Notice that as soon as k > 7 + 2γ one has

‖g(s)‖L1
γ+2
6 ‖g(s)‖L2

k

(∫
R3

〈v〉2γ+4−kdv

) 1
2

= C(k, γ)‖g(s)‖L2
k

Also, using the interpolation inequality, valid for any θ ∈ (0, 1), p = θ p1 + (1 − θ) p2, ` =
θ `1 + (1− θ)`2,

‖g‖Hp
`
6 Cp,`,θ‖g‖θHp1

`1

‖g‖1−θ
H
p2
`2

with p = 2, ` = k+2γ+4, p1 = 0, `1 = k and, say θ = 1
2 . Thus, p2 = 4 and `2 = 2(k+2γ+4).

We obtain that
‖g‖H2

k+2γ+4
6 Ck,γ‖g‖

1
2

L2
k
‖g‖

1
2

H4
k+4γ+8

.

And therefore, for any s ∈ (t0, t)

‖g(s)‖L1
γ+2
‖g(s)‖H2

k+2γ+4
6 C(k, γ)‖g(s)‖

3
2

L2
k
‖g(s)‖

1
2

H4
k+4γ+8

which result from Lemma A.7. Under the assumptions of the Proposition and noticing that (6.3)
yields a similar bound for g(t), we deduce that

‖g(t)‖L2
k
6 C0 exp(−λε(t− t0))‖g(t0)‖L2

k
+ C̃(k, γ, t0)

√
δ

∫ t

t0

exp(−λε(t− s))‖g(s)‖L2
k
ds

for some positive constant C̃(k, γ, t0) depending only on k, γ and t0 (through Ct0). We conclude
as in [30, Lemma 4.5], provided δ and, consequently, ‖g(t0)‖L2

k
are sufficiently small, that

‖g(t)‖L2
k
6 C(k, γ, δ, t0) exp(−λε(t− t0))‖g(t0)‖L2

k
.
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The proof is achieved. �

Remark 6.3. Using Lemma A.1 one proves the threshold value

ε1 =

(
3

5

) 5
2 (2π E)

3
2

%
,

for which ε aε < 1 for ε ∈ (0, ε1).

6.2. Entropy/Entropy production. Recall the definition (1.6) of the entropy Sε(f) for Fermi-
Dirac particles. Under Assumption 1.1 and for ε ∈ (0, ε0], observe that the function t 7−→
Sε(f)(t) is non-decreasing for any smooth solution f = f(t) to the LFD equation (1.1). Indeed,
for any smooth function g with 0 < g < ε−1 note that

Ξε[g](v, v∗) = Π(v − v∗)
(
g∗(1− εg∗)∇g − g(1− εg)∇g∗

)( ∇g
g(1− εg)

− ∇g∗
g∗(1− εg∗)

)
= gg∗(1− εg)(1− εg∗)

∣∣∣∣Π(v − v∗)
(

∇g
g(1− εg)

− ∇g∗
g∗(1− εg∗)

)∣∣∣∣2 > 0 .

(6.4)

Then, for a smooth solution to f = f(t) of (2.2), the evolution of the entropy is given by

d

dt
Sε(f(t)) = −

∫
R3

∂tf(t, v)
(

log(εf(t, v))− log(1− εf(t, v))
)
dv

=

∫
R6

Ψ(v − v∗)Π(v − v∗)
[
f∗(1− εf∗)∇f − f(1− εf)∇f∗

] [
∇f

f(1− εf)

]
dvdv∗

=
1

2

∫
R3×R3

Ψ(v − v∗)Ξε[f(t)](v, v∗)dvdv∗ > 0.

Thus, we define the entropy production functional Dε,Ψ as

Dε,Ψ(g) :=
1

2

∫
R3×R3

Ψ(v − v∗)Ξε[g](v, v∗)dvdv∗ , Ψ(z) = |z|γ+2 , (6.5)

for any smooth function 0 < g < ε−1. Therefore,

d

dt
Sε(f(t)) = Dε,Ψ(f(t)), ∀t > 0 . (6.6)

When the choice of Ψ(z) = |z|γ+2 is clear from the context, we will simply write Dε instead
of Dε,Ψ. We begin with a comparison between the entropy production Dε for the Landau-Fermi-
Dirac operator and that of the Landau operator D0. This comparison is valid for functions f satis-
fying a suitable lower bound.

Lemma 6.4. Fix ε > 0 and let 0 6 f 6 ε−1 be a function such that

inf
v∈R3

(
1− ε f(v)

)
= κ0 > 0 . (6.7)

Then,

κ2
0D0(f) 6 2Dε(f) +

4ε2

κ0

∫
R6

f f∗ |v − v∗|γ+2 |∇f(v)|2 dvdv∗. (6.8)



38 RICARDO ALONSO, VÉRONIQUE BAGLAND, AND BERTRAND LODS

Proof. Recall the representation of Dε(f) as

Dε(f) =
1

2

∫
R3×R3

|v − v∗|γ+2 Ξε[f ](v, v∗)dvdv∗

with Ξε defined in (6.4),

Ξε[f ](v, v∗) = F F∗

∣∣∣∣Π(v − v∗)
(
∇f
F
− ∇f∗

F∗

)∣∣∣∣2
where we used the shorthand notation F = F (ε) = f(1 − ε f). Notice in particular that such
representation is valid for any ε > 0 and, in particular, for ε = 0, F (0) = f . For f satisfying
(6.7), it follows that

Ξ0[f ](v, v∗) = f f∗

∣∣∣∣Π(v − v∗)
(
∇f
f
− ∇f∗

f∗

)∣∣∣∣2
6 κ−2

0 F F∗

∣∣∣∣Π(v − v∗)
(
∇f
f
− ∇f∗

f∗

)∣∣∣∣2 .
(6.9)

Writing f = F
1−ε f , we obtain that(

∇f
f
− ∇f∗

f∗

)
=

(
(1− ε f)

∇f
F
− (1− ε f∗)

∇f∗
F∗

)
=

(
∇f
F
− ∇f∗

F∗

)
− ε

(
∇f

1− ε f
− ∇f∗

1− ε f∗

)
.

Thus, ∣∣∣∣Π(v − v∗)
(
∇f
f
− ∇f∗

f∗

)∣∣∣∣2 6 2

∣∣∣∣Π(v − v∗)
(
∇f
F
− ∇f∗

F∗

)∣∣∣∣2
+ 2ε2

∣∣∣∣Π(v − v∗)
(
∇f

1− ε f
− ∇f∗

1− ε f∗

)∣∣∣∣2
where the last term can be estimated as∣∣∣∣Π(v − v∗)

(
∇f

1− ε f
− ∇f∗

1− ε f∗

)∣∣∣∣2 6 2

∣∣∣∣ ∇f1− ε f

∣∣∣∣2 + 2

∣∣∣∣ ∇f∗1− ε f∗

∣∣∣∣2
6 2κ−1

0

(
|∇f |2

1− ε f
+
|∇f∗|2

1− ε f∗

)
.

Multiplying these last two inequalities by F F∗ and inserting this in (6.9), it follows that

κ2
0 Ξ0[f ](v, v∗) 6 2 Ξε[f ](v, v∗) +

4ε2

κ0
f f∗

(
|∇f |2 + |∇f∗|2

)
.

Multiplying now by 1
2 |v − v∗|

γ+2 and integrating over R6 yields the result. �

Proposition 6.5. Consider 0 6 f0 ∈ L1
s0(R3), with s0 > 2, satisfying (1.5) and a solution f(t, v)

to (1.1) with ε ∈ (0, ε0] given by Theorem 2.7. Then, for any κ0 ∈ (0, 1) there exists ε? ∈ (0, ε0]
such that

κ2
0 D0(f(t)) 6 2Dε(f(t)) + C1ε

2, ∀ ε ∈ (0, ε?) , t > 1, (6.10)
for some constant C1 > 0 independent of ε.
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Proof. According to Lemma 6.4 and Corollary 3.7, for any κ0 ∈ (0, 1) there is ε? > 0 such that
for any ε ∈ (0, ε?), the solution f = f(t) to (1.1) satisfies (6.7) for t > 1. Now, one has that∫

R6

f(t, v) f(t, v∗) |v − v∗|γ+2 |∇f(t, v)|2 dvdv∗

6 ‖f(t)‖∞
(∫

R3

f(t, v∗)〈v∗〉γ+2dv∗

)(∫
R3

〈v〉γ+2 |∇f(t, v)|2 dv

)
.

All terms are bounded, uniformly with respect to ε, as soon as t > 1 according to Theorem 1.3
and Corollary 3.7. �

Now we compare the relative entropies. Given nonnegative f, g ∈ L1
2(R3) with 0 6 f 6 ε−1 and

0 6 g 6 ε−1, set
Hε(f |g) = −Sε(f) + Sε(g)

and
H0(f |g) = H(f)−H(g) =

∫
R3

f log fdv −
∫
R3

g log g dv.

The Fermi-Dirac entropy Sε(f) does not converges, as ε→ 0, towards the classical entropyH(f).
It actually diverges like | log ε|, however, the relative entropies satisfy the following property.

Lemma 6.6. Let f, g ∈ L1(R3) with
∫
R3 g(v)dv =

∫
R3 f(v)dv and 0 6 f, g 6 ε−1. Then∣∣∣∣Hε(f |g)−H0(f |g)

∣∣∣∣ 6 ε max(‖f‖2L2 , ‖g‖2L2).

Proof. It is easy to check that

Hε(f |g) = H0(f |g) + log ε

(∫
R3

fdv −
∫
R3

gdv

)
+

1

ε

∫
R3

[
(1− ε f) log(1− ε f)− (1− ε g) log(1− ε g)

]
dv.

Thus, if the masses of f and g concide we obtain that

Hε(f |g)−H0(f |g) =
1

ε

∫
R3

[
(1− εf) log(1− εf)− (1− εg) log(1− εg)

]
dv.

Using inequality r − r2 6 −(1− r) log(1− r) 6 r, for any r ∈ (0, 1), we get that∫
R3

(g − f)dv − ε
∫
R3

g2dv 6 Hε(f |g)−H0(f |g) 6 ε
∫
R3

f2dv +

∫
R3

(g − f)dv .

The result follows as f and g share the same mass. �

Proposition 6.7. Consider 0 6 f0 ∈ L1
s0(R3), with s0 > 2, satisfying (1.5). Then, for any

ε ∈ (0, ε0] and solution f(t, v) to (1.1) given by Theorem 2.7 it holds that∣∣∣∣Hε(f(t)|Mε)−H0(f(t)|Mε)

∣∣∣∣ 6 Cε, ∀ t > 1, (6.11)

for a constant C > 0 independent of ε. The function Mε is the Fermi-Dirac distribution with
same mass, momentum, and energy as f0.

Proof. The proof is a direct consequence of Lemma 6.6, the uniform bound on supt>1 ‖f(t)‖L2

given in Theorem 1.3, and the bound sup0<ε<1 ‖Mε‖L2 given in Lemma A.7. �



40 RICARDO ALONSO, VÉRONIQUE BAGLAND, AND BERTRAND LODS

Remark 6.8. It is possible to replace in (6.11)Mε for the Maxwellian distributionM0 with same
mass, momentum, and energy as f0 as long as ε 6 (2πE)3/2%−1 where %, E > 0 were defined
through (2.12). The inequality ε 6 (2πE)3/2%−1 ensures that 0 6M0 6 ε−1.

Proposition 6.9. For a given nonnegative function f ∈ L1
2(Rd) ∩ L2(Rd) sufficiently smooth, let

Mf denote the Maxwellian function with the same mass %f , momentum uf , and energy Ef as f .
Then, there exist two constant λ1, λ2 depending on f only through its mass and energy such that

D0(f) > min
(
λ1H0(f |Mf ) ; λ2H0(f |Mf )1+ γ

2

)
.

Proof. See [16, Theorem 8]. To exhibit the role played by the parameter γ ∈ (0, 1) in the esti-
mates, we introduce, for any s > −2 the entropy production D0,s(f) for Landau operator corre-
sponding to Ψ(v − v∗) = |v − v∗|s+2, that is

D0,s(f) =
1

2

∫
R6

|v − v∗|s+2Ξ0[f ](v, v∗)dvdv∗

=
1

2

∫
R6

|v − v∗|s+2f f∗

∣∣∣∣Π(v − v∗)
(
∇f
f
− ∇f∗

f∗

)∣∣∣∣2 dvdv∗

For any γ > 0, the estimate

|v − v∗|γ+2 > δγ |v − v∗|2 − δγ+21|v−v∗|6δ , ∀ δ > 0, (v, v∗) ∈ R6

yields
D0,γ(f) > δγD0,0(f)− δγ+2D0,−2(f), ∀ δ > 0.

Let us first bound D0,−2(f) from above. We define Π = Π ∗ f and check that

D0,−2(f) =

∫
R3

〈
Π(v)

∇f
f
, ∇f

〉
dv − 2

∫
R6

|v − v∗|−2f(v)f(v∗)dvdv∗.

The last integral is nonpositive, while Π 6 ‖f‖L1Id in the sense of matrices so that

D0,−2(f) 6 ‖f‖L1

∫
R3

|∇f |2

f
dv = %f I(f)

where I(f) stands for the Fisher information. According to [16, Theorem 1],

D0,0(f) > λ(f)
(
I(f)− I(Mf )

)
for some λ(f) > 0 which depends explicitly on the mass, momentum, and energy of f as well as
on
∫
R3 f(v)vi vjdv, with i, j = 1, 2, 3. This leads to

D0,γ(f) > δγ λ(f)
(
I(f)− I(Mf )

)
− %fδγ+2 I(f)

> λ(f)
(
δγ −

δγ+2%f
λ(f)

)(
I(f)− I(Mf )

)
− Cfδγ+2

where Cf = %fI(Mf ) depends only on %f ,uf and Ef . Picking then δ > 0 so that

δ2 = λ(f) min

(
1

2%f
,

1

4Cf

(
I(f)− I(Mf )

))
we get that

D0,γ(f) >
λ(f)

4
(I(f)− I(Mf )) δγ . (6.12)
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Hence,

D0,γ(f) >
λ(f)

4

(
I(f)− I(Mf )

)
min

((λ(f)

2%f

) γ
2

;
(λ(f)

4Cf

) γ
2 (
I(f)− I(Mf )

) γ
2

)
.

Finally, using the Logarithmic Sobolev inequality

I(f)− I(Mf ) >
2

Ef
H0(f |Mf )

we get the result. �

Theorem 6.10. Consider 0 6 f0 ∈ L1
s0(R3), with s0 > 2, satisfying (1.5) and a solution f(t, v)

to (1.1) with ε ∈ (0, ε0] given by theorem 2.7. Then, there exist ε? ∈ (0, ε0], λ0 > 0, and C0 > 0
independent of ε such that

d

dt
Hε(f(t)|Mε) 6 −λ0 min

(
Hε(f(t)|Mε) ; Hε(f(t)|Mε)

1+ γ
2

)
+ C0ε

1+ γ
2 , ∀ t > 1.

(6.13)
for any ε ∈ (0, ε?). As a consequence, there is a positive constant C1 > 0 independent of ε such
that

Hε(f(t)|Mε) 6 C1

(
(1 + t)

− 2
γ + ε

1+ 2
γ

)
∀ t > 1, ε ∈ (0, ε?). (6.14)

Proof. The proof of (6.13) is a direct application of propositions 6.5, 6.7 and 6.9. Indeed, with the
notations of such propositions, for any κ0 ∈ (0, 1) there is ε? > 0 such that, as soon as ε ∈ (0, ε?),
we have for t > 1

d

dt
Hε(f(t)|Mε) = −Dε(f(t)) 6 −κ

2
0

2
D0(f(t)) +

C1

2
ε2

6 −κ
2
0

2
min

(
λ1H0(f(t)|M0) ; λ2H0(f(t)|M0)1+ γ

2

)
+
C1

2
ε2

whereM0 is the Maxwellian with same mass, momentum, and energy as the initial datum f0. In
addition,∣∣∣H0(f(t)|M0)−Hε(f(t)|Mε)

∣∣∣ 6 ∣∣∣H0(Mε|M0)
∣∣∣+
∣∣∣H0(f(t)|Mε)−Hε(f(t)|Mε)

∣∣∣.
Then, (6.13) follows from Proposition 6.7 and Lemma A.5. Estimate (6.14) follows after integra-
tion of (6.13). �

Corollary 6.11. Under the assumptions of Theorem 1.3, for any t0 > 1, ` > 0, there exists ε? > 0
such that

‖f(t)−Mε‖L2(〈·〉`) 6 C
(

(1 + t)
− 1

5γ + ε
γ+2
10γ

)
, ∀ ε ∈ (0, ε?), t > t0

for some constant C = C(t0, `) > 0.

Proof. Using a version of Csiszár-Kullback inequality for the Fermi-Dirac entropy, derived in [27,
Theorem 3], we have that

‖f(t)−Mε‖2L1 6 2%Hε(f(t)|Mε), ∀ t > 0 .

Thus, according to Theorem 6.10, for ε ∈ (0, ε?)

‖f(t)−Mε‖L1 6 C2

(
(1 + t)

− 1
γ + ε

1
2

+ 1
γ

)
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for some constant C2 > 0. Now, recalling Nash’s inequality

‖u‖L2 6 C‖u‖
2
5

L1 ‖∇u‖
3
5

L2

for some universal positive constant C > 0 and applying it to u = g 〈·〉
`
2 with ` > 0, one has

‖g‖L2
`
6 C‖g‖

2
5

L1
`
2

‖g‖
3
5

H1
`
6 C̄`‖g‖

1
5

L1
`
‖g‖

3
5

H1
`
‖g‖

1
5

L1

for some positive constant C̄` since ‖∇u‖L2 6 (1 + `)‖g‖H1
`

and ‖g‖L1
`
2

6 ‖g‖
1
2

L1
`
‖g‖

1
2

L1 . We

deduce from Theorem 1.3 that

‖f(t)−Mε‖L2
`
6 C(t0, `)

(
(1 + t)

− 1
γ + ε

1
2

+ 1
γ

) 1
5
, ∀ t > t0

which gives the conclusion. �

We are in position to prove Theorem 1.5.

Proof of Theorem 1.5. Let ε ∈ (0, ε0] be such that ε aε < 1, k > k†ε, and δ > 0 be the small
parameter appearing in Proposition 6.2. In Corollary 6.11, we can pick t0 > 0 sufficiently large
and construct ε‡ sufficiently small such that

‖f(t)−Mε‖L2
`
6 δ ∀ t > t0.

Applying Proposition 6.2, using Theorem 1.3 to ensure (6.3), we get that

‖f(t)−Mε‖L2
k
6 C0 exp(−λεt)‖f(t0)−Mε‖L2

k
, ∀ t > t0.

Apply in such estimate the uniform bound on ‖f(t)−Mε‖L2
k

on (0, t0] given in Theorem 1.3 and
the control of ‖f(t)−Mε‖L1

2
by ‖f(t)−Mε‖L2

k
to conclude. �

APPENDIX A. ABOUT FERMI-DIRAC STATISTICS

Assume that the initial condition f0 satisfies (1.5)-(2.12). For any ε 6 ε0, let Mε be the
Fermi-Dirac statistics

Mε(v) =
aε exp(−bε|v|2)

1 + ε aε exp(−bε|v|2)

with aε > 0 bε > 0 such that (2.14) holds. We collect here several results concerning the be-
haviour ofMε as ε→ 0.

Lemma A.1. For any ε 6 ε̄ =
(

2
5

) 5
2 (6π E)

3
2

% it follows that,

3bε
5
6

1

2E
6

4

3
bε ,

(
3

5

) 5
2

aε 6
%

(2π E)
3
2

6

(
4

3

) 3
2

aε . (A.1)

Proof. We first recall that, according to [26, Eq. (5.2)], there exists some (explicit) strictly increas-
ing mapping Φ : R+ → R+ such that

Φ

(
1

ε aε

)
= 3E

(
4π

ε%

) 2
3

(A.2)

with moreover
lim
t→0+

Φ(t) =
3

5
32/3, lim

t→∞
Φ(t) =∞.
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In particular, since (A.2) implies that limε→0+ Φ
(

1
ε aε

)
= +∞, we first observe that

lim
ε→0

ε aε = 0. (A.3)

For notational simplicity set

%ε = aε

(
π

bε

) 3
2

, Eε =
1

2bε
,

so that

M(v) = aε exp
(
−bε|v|2

)
=

%ε

(2π Eε)3/2
exp

(
− |v|

2

2Eε

)
is a Maxwellian with mass %ε and energy 3%εEε. Recalling thatMε(v) = M(v)

1+εM(v) 6M(v), we
get

% =

∫
R3

Mε(v)dv 6
∫
R3

M(v)dv = %ε

3%E =

∫
R3

Mε(v)|v|2dv 6
∫
R3

M(v)|v|2dv = 3%εEε =
3

2
π

3
2aεb

− 5
2

ε .

Set φ(x) = 1
1+εx with x > 0. Note that φ is convex. Then, by Jensen’s inequality,

% =

∫
R3

φ(M(v))M(v)dv > %εφ

(
%−1
ε

∫
R3

M(v)2dv

)
.

Since M(v)2 is the Maxwellian associated with coefficients a2
ε and 2bε we get∫

R3

M(v)2dv = a2
ε

(
π

2bε

) 3
2

= aε
%ε

2
3
2

which results in

% > %εφ
(
aε2
− 3

2

)
=

%ε

1 + 2−
3
2ε aε

.

Similarly,

3%E =

∫
R3

φ(M(v))M(v)|v|2dv > 3%εEεφ

(
1

3%εEε

∫
R3

M2(v)|v|2dv

)
with ∫

R3

M2(v)|v|2dv = 3a2
ε

(
π

2bε

) 3
2 1

4bε
= aε

3%εEε

2
5
2

.

Thus,

3%E > 3%εEεφ
(
aε2
− 5

2

)
=

3%εEε

1 + 2−
5
2ε aε

. (A.4)

This gives the following set of inequalities, in terms of aε, bε

π
3
2

aεb
− 3

2
ε

1 + 2−
3
2ε aε

6 % 6 π
3
2aεb

− 3
2

ε , π
3
2

aεb
− 5

2
ε

1 + 2−
5
2ε aε

6 2%E 6 π
3
2aεb

− 5
2

ε . (A.5)
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Little algebra yields

bε

1 + 2−
3
2ε aε

6
1

2E
6 bε(1 + 2−

5
2ε aε),

aε

(1 + 2−
3
2ε aε)

5
2

6
%

(2π E)
3
2

6 aε(1 + 2−
5
2ε aε)

3
2 .

(A.6)

The left hand side of the second inequality reads

ψ(ε aε) 6
ε%

(2π E)
3
2

, where ψ(x) =
x

(1 + 2−
3
2x)

5
2

, ∀x > 0.

Notice that ψ has a unique maximum point at x̄ = 2
5
2

3 with value ψ(x̄) =
(

2
5

) 5
2 3

3
2 . Let ε̄ > 0 be

choosen such that ε̄%

(2π E)
3
2

= ψ(x̄). Using the fact that the mapping ε > 0 7→ ε aε is continuous

and goes to zero as ε→ 0 according to (A.3), we deduce from a continuity argument that

ε < ε̄ =⇒ εaε < x̄ =
2

5
2

3
.

Using (A.6), this easily leads to (A.1). �

Remark A.2. Notice that, combining (A.3) with (A.6), one sees that lim supε→0 bε 6
1

2E and
lim supε→0 aε 6

%

(2π E)
3
2
. In particular, both (aε)ε and (bε)ε are bounded.

Remark A.3. Lemma A.1 allows to explicit the value ε† > 0 such that the spectral gap λ0(ε) > 0
for ε ∈ (0, ε†) in Proposition 5.4. Indeed, recall that λ0(ε) > 0 as soon as

%E >
3ε2

CP(ε)
a3
ε

(
π

3bε

) 3
2

=
3ε2

2b
5
2
ε

(π
3

) 3
2
a3
ε(1 + ε aε)

4.

Notice that, from (A.5), π
3
2aεb

− 5
2

ε 6 2%E(1 + 2−
5
2ε aε) 6 2%E

(
1 + 2−

5
2 x̄
)

for ε < ε̄. This
means that, to get the above estimate, for ε ∈ (0, ε̄), it suffices that

1 >
ε2a2

ε√
3

(
1 + 2−

5
2 x̄
)

(1 + x̄)4 = ε2a2
ε

4(3 + 4
√

2)4

3
11
2

or equivalently,

3
11
2

4(3 + 4
√

2)4
a−2
ε > ε2.

According to (A.1), this holds as soon as

ε <
5−

5
2 3

21
4

(3 + 4
√

2)2

(2π E)
3
2

2%
:= ε†.

Remark A.4. The same consideration also allows to estimate λ0(ε) in Proposition 5.4 yielding
for instance

λ0(ε) >
ν

E

(
34

4(3 + 4
√

2)4
− ε2 %2 5

15
2

(π E)3 3
21
2

)
, ∀ ε ∈ (0, ε†).
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Recalling that

ν =
%2E2

2Ca,b(1 + ε aε)
=

%2E2

2%εEε(1 + ε aε)

and since, for ε < ε̄, %E > %εEε

(
1 + 2−

5
2 x̄
)−1

= 3
4%εEε by (A.4), we get that ν > 3

8(1+x̄)%E

resulting in

λ0(ε) >
9%

8(3 + 4
√

2)

(
34

4(3 + 4
√

2)4
− ε2 5

15
2 %2

3
21
2 (π E)3

)
, ∀ ε ∈ (0, ε†).

In particular, limε→0 λ0(ε) > 36

32(3+4
√

2)5
% ≈ 4.686× 10−4%.

With the notations of the previous proof, we also have

|%ε − %| =
∣∣∣∣∫

R3

M(v)dv −
∫
R3

Mε(v)dv

∣∣∣∣ = ε

∫
R3

MMεdv

since Mε = M
1+εM . Consequently, using that for ε ∈ (0, ε̄), M(v) 6 aε 6

(
5
3

) 5
2 %

(2πE)
3
2

, we

obtain that

|%ε − %| 6 ε
(

5

3

) 5
2 %2

(2πE)
3
2

, that is |%ε − %| 6 C0 ε (A.7)

for some positive constant C0 depending only on E and %. In the same way,

|%εEε − %E| =
1

3

∣∣∣∣∫
R3

M(v)|v|2dv −
∫
R3

Mε(v)|v|2dv

∣∣∣∣ =
ε

3

∫
R3

MMε |v|2dv .

Thus, for ε ∈ (0, ε̄),

|%εEε − %E| 6 ε
(

5

3

) 5
2 %2

(2π)
3
2

√
E
.

Since
|Eε − E| =

1

%
|%Eε − %E| 6

Eε
%
|%− %ε|+

1

%
|%εEε − %E| ,

we deduce from (A.1), recalling that Eε = 1
2bε

, that

|Eε − E| 6
1

%

(
4E

3
|%− %ε|+ ε

(
5

3

) 5
2 %2

(2π)
3
2

√
E

)
.

This estimate and (A.7) results in

|Eε − E| 6 C2ε, ∀ε ∈ (0, ε̄), (A.8)

for some positive constant C2 depending only on % and E. We deduce from this the following
lemma.

Lemma A.5. Denote byM0(v) the Maxwellian

M0(v) =
%

(2π E)3/2
exp

(
−|v|

2

2E

)
, ∀v ∈ R3 .

There exists a positive constant C depending only on % and E such that

|H0(M0|Mε)| = |H(M0)−H(Mε)| 6 C ε ∀ ε ∈ (0, ε̄] .
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Proof. WritingMε(v) = M
1+εM with

M(v) =
%ε

(2π Eε)3/2
exp

(
− |v|

2

2Eε

)
,

we obtain that

H0(M0|Mε) = %

(
log %− log %ε − 3

2Ψ

(
E

Eε

))
+

∫
R3

Mε log(1 + εM)dv

with
Ψ(x) = log x+ 1− x 6 0, ∀x > 0.

Now, we have

0 6
∫
R3

Mε log(1 + εM)dv 6 ε
∫
R3

MεMdv 6 ε aε%

where aε is bounded, see Remark A.2. This shows that there exists C > 0 such that

|H0(M0|Mε)| 6 Cε+ %

(
|log %− log %ε|+ 3

2

∣∣∣∣Ψ( E

Eε

)∣∣∣∣) . (A.9)

Additionally,

|log %− log %ε| 6 max

{
1

%
,

1

%ε

}
|%− %ε|

and using the elementary inequality 0 6 x− 1− log x 6 (x−1)2

x for x > 0, we conclude that∣∣∣∣Ψ( E

Eε

)∣∣∣∣ 6 1

E Eε
(E − Eε)2 =

2bε
E

(E − Eε)2 .

Using the fact that %ε =
aεπ

3/2

b
3/2
ε

and bε are bounded according to (A.5) and Remark A.2, we

deduce the result from (A.6)–(A.9). �

Remark A.6. We deduce from Lemma A.5 and the Csiszar-Kullback inequality that

‖Mε −M0‖2L1 6 2 |H0(M0|Mε)| 6 2C ε, ∀ε ∈ (0, ε).

Lemma A.7. For any ` > 0 there is C` > 0 such that

sup
0<ε<1

(
‖∇2Mε‖L2

`
+ ‖Mε‖L2

`

)
6 C`.

More generally, for any k ∈ N, s > 0, sup
0<ε<1

‖Mε‖Hk
s
<∞.

Proof. For the computation of the L2
` norm, one simply notices that

‖Mε‖2L2
`
6
∫
R3

M2(v)〈v〉`dv =
%2
ε

(2π Eε)3

∫
R3

exp

(
−|v|

2

Eε

)
〈v〉`dv

which depends only on `, %ε and Eε. In particular, it is uniformly bounded with respect to ε ∈
(0, ε0]. In the same way, since

∇2Mε(v) =
1

E2
ε

M(v)

(1 + εM(v))3

((
1− εM(v)

)
v ⊗ v − Eε

(
1 + εM(v)

)
Id

)
the same reasoning shows that ‖∇2Mε‖L2

`
can be bounded with bound depending only on `, Eε,

and %ε. The proof for general Sobolev weighted estimates follows by induction. �
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APPENDIX B. FACTORIZATION AND ENLARGEMENT

Recall the notations introduced in the proof of Theorem 5.8, namely, we set

Aεg = Q(g,Mε) + ΥχRg − 2εQ(gMε,Mε)

=
3∑

i,j=1

(aij ∗ g) ∂2
ijMε − (c ∗ g)Mε + ΥχRg − 2εQ(gMε,Mε)

and

Bεg = Lεg −Aεg =
3∑

i,j=1

(aij ∗Mε) ∂
2
ijg − (c ∗Mε) g − εQ(M2

ε, g)−ΥχRg

where Q denotes the bilinear Landau collision operator, χR = χ(R−1·) with R > 1 and χ a
suitable smooth cut-off function, and Υ > 0.

B.1. Dissipativity properties. We begin with the study of the disipativity properties of Bε. The
proof of the following lemma is a direct consequence of [6, Lemma 2.5], recall that the mass of
Mε is %.

Lemma B.1. For any v ∈ R3, set

Jp(v) =
1

%

∫
R3

|v − w|pMε(w)dw , and µp(ε) =
1

%

∫
R3

|v|pMε(v)dv, 0 6 p 6 3.

Then, for any v ∈ R3 it holds:
(1) J0(v) = 1 and J2(v) = |v|2 + µ2(ε),
(2) Jp(v) 6 |v|p + µp(ε) for any 0 < p 6 1,
(3) Jp(v) 6 |v|p + µ2(ε)

p
2 for any 1 6 p < 2,

(4) Jp(v) 6 |v|p + (6µ2(ε))
p
4 |v|

p
2 + µ4(ε)

p
4 for 2 < p 6 3.

Also, the following lemma holds. It is proven in [22, Proposition 4.10], for ε = 1, and [6, Lemma
2.7]. Recall that m =Mε(1− εMε).

Lemma B.2. For any f > 0 radially symmetric with f ∈ L1
γ+2(R3), the matrix

σ[f ](v) =
(
σij [f ](v)

)
ij

=
(
aij ∗ f(v)

)
ij

has a simple eigenvalue λ1[f ](v) > 0 associated to the eigenvector v and a double eigenvalue
λ2[f ](v) > 0 associated to the eigenspace v⊥. They are given by

λ1[f ](v) =

∫
R3

(
1−

〈
v

|v|
,
w

|w|

〉2
)
|w|γ+2f(v − w)dw,

λ2[f ](v) =

∫
R3

(
1− 1

2

∣∣∣∣ v|v| × w

|w|

∣∣∣∣2
)
|w|γ+2f(v − w)dw,

and satisfy, for |v| → ∞

λ1[f ](v) ' 2

3
|v|γ

∫
R3

|w|2f(w)dw, λ2[f ](v) ' |v|γ+2

∫
R3

f(w)dw

with
min

(
λ1[f ](v), λ2[f ](v)

)
> λε[f ], ∀ v ∈ R3
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for some λε[f ] > 0. Moreover, the function σij [f ] is smooth and, for any multi-index β ∈ N3,∣∣∣∂β σij [f ](v)
∣∣∣ . 〈v〉γ+2−|β| ,

and
3∑

i,j=1

σij [f ](v)ξiξj = λ1[f ](v) |Pv(ξ)|2 + λ2[f ](v)
∣∣ξ − Pv(ξ)∣∣2 ∀ ξ ∈ R3 .

Pv is the projection on Span(v). Finally,

trace
(
σ[f ](v)

)
= 2

∫
R3

|v − v∗|γ+2f(v∗)dv∗,

and,

bi[m](v) = −2bε viλ1

[
m− 2εmMε

]
(v) ∀ i = 1, 2, 3. (B.1)

Proof. The first part of the statement is a general property of the matrix (aij)ij , see also [22, 13].
The computation of the trace of σ[f ](v) is as in [6, Lemma 2.7]. Let us compute bi[m](v). Note
that

bi[m](v) =

3∑
j=1

∂jaij ∗m(v) =

3∑
j=1

aij ∗ ∂jm.

Since ∂jm = ∂jMε(1− 2εMε) = −2bεvjm(v) + 4ε bεvjmMε, we get that

bi[m](v) = −2bε
∑
j

σij [m](v)vj + 4ε bε

3∑
j=1

σij [mMε](v)vj

which gives the result. �

The key point in the sequel is the fact that, since m =Mε − εM2
ε it follows that

Bεg =
3∑

i,j=1

σij [m](v)∂2
ijg − c[m](v) g(v)−ΥχRg

where c[m] = c ∗m. The computations of [6, Lemma 2.8, Eq. (2.19)] give the following lemma.

Lemma B.3. For any θ ∈ R, p > 1, and positive weight $(v) > 0, it follows that

3∑
i,j=1

∫
R3

σij [m](v)∂2
ijg |g(v)|p−1sign(g(v))$(v)dv −

∫
R3

c[m](v)|g(v)|p$(v)dv

= −(p− 1)

3∑
i,j=1

∫
R3

σij [m](v)∂i

(
$θg

)
∂j

(
$θg

)
$p(1−θ)−1|g(v)|p−2dv

+

∫
R3

ϕ$,p,θ(v)|g(v)|p$(v)dv ,
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with

ϕ$,p,θ(v) = η1(p, θ)
∑
ij

σij [m](v)
∂2
ij$

$
+ η2(p, θ)

∑
ij

σij [m](v)
∂i$

$

∂j$

$

+

(
1

p
+ η1(p, θ)

) 3∑
i=1

bi[m](v)
∂i$

$
− p− 1

p
c[m](v)

where η1(p, θ) = 1−2θ(p−1)
p , and η2(p, θ) = −θ p η1(p, θ) + θ[1− θ(p− 1)].

In particular, for $ = $k(v) = 〈v〉k since

∂i$

$
= kvi〈v〉−2,

∂2
ij$

$
= δijk〈v〉−2 + k(k − 2)vivj〈v〉−4 ,

we deduce from Lemma B.2 that∑
ij

σij [m](v)
∂2
ij$

$
= k trace (σ[m](v)) 〈v〉−2 + k(k − 2)〈v〉−4

∑
ij

σij [m](v)vivj

= 2k 〈v〉−2

∫
R3

|v − v∗|γ+2m(v∗)dv∗ + k(k − 2)λ1[m](v)|v|2〈v〉−4

and, in the same way ∑
ij

σij [m](v)
∂i$

$

∂j$

$
= λ1[m](v)k2|v|2〈v〉−4

3∑
i=1

bi[m](v)
∂i$

$
= k〈v〉−2

3∑
i=1

bi[m](v)vi.

Moreover, one notices that

c[m](v) = −2(γ + 3)

∫
R3

|v − v∗|γm(v∗)dv∗.

Using (B.1) and Lemma B.3 with θ = 1
2 and p = 2, one is led to the following lemma.

Lemma B.4. Setting $k = 〈v〉k we have∫
R3

Bεg(v) g(v)$k(v)dv = −
3∑

i,j=1

∫
R3

σij [m](v)∂i

(
$ k

2
g
)
∂j

(
$ k

2
g
)

dv

+

∫
R3

(Φk(v)−ΥχR(v)) g2(v)$k(v)dv (B.2)

with

Φk(v) =
k2

4
λ1[m](v)|v|2〈v〉−4 − bε k|v|2〈v〉−2

(
λ1[m](v)− 2ελ1[mMε](v)

)
+ (γ + 3)

∫
R3

|v − v∗|γm(v∗)dv∗. (B.3)
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Proposition B.5. Fix ε > 0 such that ε aε < 1. For any a ∈ R and

k > kε := %(γ + 3)ζ−1
ε

there exist Υ, R sufficiently large so that Bε generates a C0-semigroup
(
Uε(t)

)
t>0

in L2($k)

with
‖Uε(t)‖B(L2($k)) 6 exp(at), t > 0 .

Proof. Following [6, Lemma 2.8], the proof consists in identifying the dominant terms in Φk(v)
for large |v|. According to Lemma B.2, as |v| → ∞ the first term in Φk(v) converges to zero while

−bε k|v|2〈v〉−2
(
λ1[m](v)−2ελ1[mMε](v)

)
' −2bεk

3
|v|γ

∫
R3

|w|2
(
1−2εMε(w)

)
m(w)dw ,

and since m 6Mε ∫
R3

|v − v∗|γm(v∗)dv∗ 6 % Jγ(v) .

Here we used the notations of Lemma B.1. Therefore,

lim sup
|v|→∞

|v|−γΦk(v) 6 −
(

2bεk

3

∫
R3

|w|2m(w) (1− 2εMε(w)) dw − %(γ + 3)

)
and as soon as k > kε, it follows that for any a ∈ R one can choose Υ, R sufficiently large such
that

Φk(v)−ΥχR(v) 6 a ∀ v ∈ R3.

Since the first term on the right-hand side of (B.2) is nonpositive due to the ellipticity of σ[m](v),
we conclude that ∫

R3

Bεg g $k(v)dv 6 a
∫
R3

g2(v)$k(v)dv ,

which proves the result. �

B.2. Regularization. Let us now investigate the regularization properties ofAε. Introducing, for
any g = g(v)

Gε(v) = g(v)
(
1− 2εMε(v)

)
one has

Aεg(v) =

3∑
i,j=1

(aij ∗Gε) ∂2
ijMε − (c ∗Gε)Mε + ΥχRg

where Υ, R have been chosen sufficiently large so that Proposition B.5 holds. Notice that, for any
positive weight function $ and q 6 2, the multiplication operator

ΥχR : g 7→ ΥχRg

is bounded from L2($) to Lq(M−1
ε ). Thus, we focus on the operator

Ãεg =

3∑
i,j=1

(aij ∗Gε) ∂2
ijMε − (c ∗Gε)Mε.
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Lemma B.6. For any k > 0, there is C1(k, ε) > 0 such that

‖Ãεg‖L2(M−1
ε ) 6 C1(k, ε)‖Gε‖L1

γ+2
6 C1(k, ε)‖1− 2εMε‖L∞‖g‖L1

γ+2
. (B.4)

Consequently, for any k > 2γ + 7, it holds

Ãε ∈ B(L1
γ+2(R3), L2(M−1

ε )) ∩B(L2($k, L
2(M−1

ε )).

Proof. Recall from [6, Lemma 2.10] that for any multi-index β ∈ N3 with |β| 6 2, it holds that

|∂β (aij ∗ f) (v)| . min
(
〈v〉γ+2‖∂βf‖L1

γ+2
, 〈v〉γ+2−|β|‖f‖L1

γ+2−|β|

)
.

Thus, as in [6, Lemma 2.11],∥∥(aij ∗Gε) ∂2
ijMε

∥∥2

L2(M−1
ε )
6 C ‖Gε‖2L1

γ+2

∫
R3

〈v〉2γ+4
∣∣∂2
ijMε(v)

∣∣2 M−1
ε dv ,

that is, ∥∥∥∥∑
ij

(aij ∗Gε) ∂2
ijMε

∥∥∥∥
L2(M−1

ε )

6 C(k, ε)‖Gε‖L1
γ+2

.

Since
‖(c ∗Gε)Mε‖L2(M−1

ε ) 6 2(γ + 3)‖Gε‖L1
γ
‖Mε‖L1($2γ) ,

we get (B.4) and Ãε ∈ B(L1
γ+2, L

2(M−1
ε )). Now, by Cauchy-Schwarz inequality, it holds that

for s > 3
2

‖g‖L1
γ+2
6 ‖g‖L2($2γ+4+2s) ‖〈·〉

−s‖L2 = Cs ‖g‖L2($2γ+4+2s)

which proves that for k > 2γ + 4 + 3 one also has Ãε ∈ B(L2($k), L
2(M−1

ε ). �

Combining Lemma B.6 and Proposition B.5, we prove the following lemma as in [6, Corollary
2.12].

Lemma B.7. Fix ε > 0 such that ε aε < 1 and k > max(kε, 2γ + 7). Then, for any a ∈ R there
exists C(a, k, ε) > 0 such that

‖AεUε(t)‖B(L2($k),L2(M−1
ε )) 6 C(a, k, ε) exp(at) ∀ t > 0.
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[7] J. A. CARRILLO, PH. LAURENÇOT, & J. ROSADO, Fermi-Dirac-Fokker-Planck equation: well-posedness and
long-time asymptotics. J. Differential Equations, 247 (2009), 2209–2234.

[8] S. CHAPMAN, & T. G. COWLING, The mathematical theory of non-uniform gases, Cambridge University
Press, 1970.
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