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A solvable two-dimensional degenerate singular stochastic control

problem with non convex costs

Tiziano De Angelis∗ Giorgio Ferrari† John Moriarty‡
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Abstract. In this paper we provide a complete theoretical analysis of a two-dimensional
degenerate non convex singular stochastic control problem. The optimisation is motivated by a
storage-consumption model in an electricity market, and features a stochastic real-valued spot
price modelled by Brownian motion. We find analytical expressions for the value function, the
optimal control and the boundaries of the action and inaction regions. The optimal policy is
characterised in terms of two monotone and discontinuous repelling free boundaries, although
part of one boundary is constant and the smooth fit condition holds there.

Keywords: finite-fuel singular stochastic control; optimal stopping; free boundary; Hamilton-
Jacobi-Bellman equation; irreversible investment; electricity market.
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1 Introduction

Consider the following problem introduced in [4]: a firm purchases electricity over time at a
stochastic spot price (Xt)t≥0 for the purpose of storage in a battery. The battery must be full
at a random terminal time τ , and any deficit leads to a terminal cost given by the product
of a convex function Φ of the undersupply and the terminal spot price Xτ . The terminal cost
accounts for the use of a quicker but less efficient charging method at the time τ of demand,
while the restriction to purchasing is interpreted as the firm not having necessary approval to
sell electricity to the grid.

Taking X as a real-valued Markov process carried by a complete probability space (Ω,F ,P),
and letting τ be independent of X and exponentially distributed with parameter λ > 0, it is
shown in Appendix A of [4] that this optimal charging problem is equivalent to solving

U(x, c) = inf
ν
E

[ ∫ ∞
0

e−λtλXx
t Φ(c+ νt)dt+

∫ ∞
0

e−λtXx
t dνt

]
, (x, c) ∈ R× [0, 1]. (1.1)

Here Φ is taken to be a strictly convex, twice continuously differentiable, decreasing function
and the infimum is taken over a suitable class of nondecreasing controls ν such that c+ νt ≤ 1,
P-a.s. for all t ≥ 0. The control νt is the cumulative amount of energy purchased up to time t
and c + νt represents the inventory level at time t of the battery whose inventory level is c at
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time 0. The finite fuel constraint c+ νt ≤ 1, c ∈ [0, 1], P-a.s. for all t ≥ 0, reflects the fact that
the battery has limited total capacity (normalised to one with no loss of generality).

Certain deregulated electricity markets with renewable generation exhibit periods of negative
electricity price, due to the requirement to balance real-time supply and demand. Such nega-
tive prices are understood to arise from a combination of the priority given to highly variable
renewable generation, together with the short-term relative inflexibility of traditional thermal
generation units [8], [10]. In order to capture this feature, which is unusual in other areas of
mathematical finance, we assume a one-dimensional spot price X taking negative values with
positive probability. In [4] X is an Ornstein-Uhlenbeck (OU) process. In the present paper,
with the aim of a full theoretical investigation, we take a more canonical example letting X be
a Brownian motion and we completely solve problem (1.1).

From the mathematical point of view, (1.1) falls into the class of singular stochastic control
(SSC) problems. The associated Hamilton-Jacobi-Bellman (HJB) equation is formulated as
a two-dimensional degenerate variational problem with a state-dependent gradient constraint.
The problem is degenerate because the control acts in a direction of the state space which is
orthogonal to the diffusion. It is worth mentioning that explicit solutions of problems with
state-dependent gradient constraints are relatively rare in the literature (a recent contribution
is [12]) when compared to problems with constant constraints on the gradient and one or two-
dimensional state space (see for example [1] and [16] amongst others).

A standard assumption in two-dimensional degenerate singular control problems of minimi-
sation (respectively maximisation) is that for each value Xt of the driving stochastic process X,
the running cost is a convex (respectively concave) function of the controlled state variable c
(i.e. the one associated to the controlled state c+νt). As an example, in the maximisation prob-
lem of [11, Sec. 2.1] X is nonnegative and the running cost is XtH(Yt), where Y = (Yt)t≥0 is the
controlled state process and H is a concave function. Therefore for each x ≥ 0 the running cost
function xH( · ) is concave. This structure is clearly lost when X is a Brownian motion, taking
both positive and negative values, as in our running cost XtΦ(c+ νt). We express this unusual
feature by saying that the total expected cost functional (1.1) is non convex with respect to the
controlled state variable (or, more informally, non convex with respect to the control process ν).
SSC problems of minimisation (maximisation) whose cost functionals are convex (concave) with
respect to ν typically have optimal controls of reflecting type, with a certain differential connec-
tion to problems of optimal stopping (OS), see for example [7] and [14]. We have established in
[4] that a cost functional which is neither convex nor concave with respect to the control process
can give rise to a fundamentally different problem structure, which exhibits both differential and
direct connections with parametric families of OS problems. Indeed we establish in the latter
paper that the nature of the connection to OS changes depending on the problem parameters.
In order to develop further insight, it is therefore of interest to obtain a complete solution in
the non convex case. In the present paper we therefore go beyond [4] and derive the complete
problem structure.

In particular, the analysis in [4] identifies three regimes, two of which are solved and the
third of which is left as an open problem under the OU dynamics. Since Brownian motion is a
special case of OU with null rate of mean reversion, in this work we do not present analytical
results for the two previously solved cases, instead focusing exclusively on the third regime. Thus
with the Brownian dynamics, the analytical results of this paper are complementary to those
in the earlier paper and, taken together, they provide the complete solution. The geometric
methodology we employ in this paper (see Figures 2 and 3) is a significant departure from that
in [4]. In Section 4.2 below we rely on the characterisation via concavity of excessive functions for
Brownian motion introduced in [5], Chapter 3 (later expanded in [2]) to study a parameterised
family of OS problems. It is thanks to this characterisation that we succeed in obtaining the
necessary monotonicity and regularity results for the optimal boundaries of the action region
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associated to (1.1) (i.e. the region in which it is profitable to exert control). In contrast to the
OU case, the Laplace transforms of the hitting times of Brownian motion are available in closed
form and it is this feature which ultimately enables the method of the present paper.

We show that the action region of problem (1.1) is disconnected. It is characterised in terms
of two boundaries which we denote below by c 7→ β̂(c) and c 7→ γ̂(c) which are discontinuous,
the former being non-increasing everywhere but at a single jump and the latter being non-
decreasing with a vertical asymptote (see Fig. 1). Through a verification argument we are able
to show that the optimal control always acts by inducing discontinuities in the state process.
The boundaries β̂ and γ̂ are therefore repelling (in the terminology of [3] or [15]). However, in
contrast with most known examples of repelling boundaries, if the optimally controlled process
hits the upper boundary β̂ the controller does not immediately exercise all available control but,
rather, causes the inventory level to jump to a critical level ĉ ∈ (0, 1) (which coincides with the
point of discontinuity of the upper boundary c 7→ β̂(c)). After this jump the optimally controlled
process continues to evolve until hitting the lower boundary γ̂ where all the remaining control is
spent to fill the inventory (the upper boundary is then formally infinite; for details see Sections
4 and 4.3).

The present solution does in part display a differential connection between SSC and OS.
In particular, when the initial inventory level c is strictly larger than ĉ there is a single lower
boundary γ̂ which is constant. Moreover Uc coincides with the value function of an associated
optimal stopping problem on R × (ĉ, 1] and the so-called smooth fit condition holds at γ̂ (for
c > ĉ) in the sense that Uxc is continuous across it. This constant boundary can therefore
be considered discontinuously reflecting. That is, it may be viewed as a limiting case of the
more canonical strictly decreasing reflecting boundaries. On the other hand, when the initial
inventory level c is smaller than the critical value ĉ the control problem is more challenging due
to the presence of two moving boundaries, which we identify in Section 4.2 with the optimal
boundaries of a family of auxiliary OS problems. In this case it can easily be verified that Uxc is
discontinuous across the optimal boundaries so that the smooth fit condition breaks down, and
there is no differential connection to OS.

Smooth fit is one of the most studied features of OS and SSC theory and it is per se interesting
to understand why it breaks down. It is known for example (see [17]) that diffusions whose scale
function is not continuously differentiable may induce a lack of smooth fit in OS problems with
arbitrarily regular objective functionals. On the other hand when the scale function is C1 Guo
and Tomecek [11] provide necessary and sufficient conditions for the existence of smooth fit in
two-dimensional degenerate SSC problems. In particular [11] looks at bounded variation control
problems of maximisation for objective functionals which are concave with respect to the control
variable and one of their results states that the smooth fit certainly holds if the running profit
(i.e. their counterpart of our function xΦ(c)) lies in C2. It is therefore interesting to observe
that in the present paper we indeed have a smooth running cost and the break down of smooth
fit is a consequence exclusively of the lack of convexity (in ν) of the cost functional. To the best
of our knowledge, this phenomenon is a novelty in the literature.

The rest of the paper is organised as follows. In Section 2 we set up the problem and make
some standing assumptions. In Section 3 we provide a heuristic study of the action region and
of the optimal control, and then we state the main results of the paper (see Theorems 3.1 and
3.3) which provide a full solution to (1.1). Section 4 is devoted to proving all the technical steps
needed to obtain the main result and it follows a constructive approach validated at the end
by a verification argument. Finally, proofs of some results needed in Section 4 are collected in
Appendix A.
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2 Setting and assumptions

Let (Ω,F ,P) be a complete probability space carrying a one-dimensional standard Brownian
motion (Bt)t≥0 adapted to its natural filtration augmented by P-null sets F := (Ft)t≥0. We
denote by Xx the Brownian motion starting from x ∈ R at time zero,

Xx
t = x+Bt, t ≥ 0. (2.1)

It is well known that Xx is a (null) recurrent process with infinitesimal generator LX := 1
2
d2

dx2
.

The fundamental decreasing and increasing solutions of the characteristic equation (LX−λ)u = 0
are given respectively by

φλ(x) := e−
√

2λx and ψλ(x) := e
√

2λx. (2.2)

Letting c ∈ [0, 1] be constant, we denote by Cc,ν the purely controlled process evolving
according to

Cc,νt = c+ νt, t ≥ 0, (2.3)

where ν is a control process belonging to the set

Ac := {ν : Ω× R+ 7→ R+, (νt(ω) := ν(ω, t))t≥0 is nondecreasing, left-continuous, adapted

with c+ νt ≤ 1 ∀ t ≥ 0, ν0 = 0 P− a.s.}.

From now on controls belonging to Ac will be called admissible.
Given a positive discount factor λ and a running cost function Φ, our problem (1.1) is to

find

U(x, c) := inf
ν∈Ac

Jx,c(ν), (2.4)

with

Jx,c(ν) := E

[ ∫ ∞
0

e−λsλXx
s Φ(Cc,νs )ds+

∫ ∞
0

e−λsXx
s dνs

]
, (2.5)

and to determine a minimising control policy ν∗ if one exists. A priori existence results for the
optimal solutions of SSC problems with cost criteria which are not necessarily convex are rare
in the literature. Two papers dealing with questions of such existence in abstract form are [6]
and [13]. Here we do not provide any abstract existence result for the optimal policy of problem
(2.4), but we explicitly construct it in Section 4 below.

Throughout this paper, for t ≥ 0 and ν ∈ Ac we will make use of the notation
∫ t

0 e
−λsXx

s dνs
to indicate the Stieltjes integral

∫
[0,t) e

−λsXx
s dνs with respect to ν. Moreover, from now on the

following standing assumption on the running cost factor Φ will hold.

Assumption 2.1. Φ : [0, 1] 7→ R+ lies in C2([0, 1]) and is decreasing and strictly convex with
Φ(1) = 0.

A typical example of cost factor is Φ(c) = a(1− c)b, with a > 0 and b ≥ 2.
We will observe in Section 3 below that the sign of

k(c) := λ+ λΦ′(c) (2.6)

plays a crucial role. For future reference we also define the function

R(c) := 1− c− Φ(c), c ∈ [0, 1]. (2.7)
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It follows from the strict convexity of Φ that the function c 7→ k(c) is strictly increasing and
that in (0, 1) there exist at most two points ĉ, co such that

R(co) = 0, and (2.8)

R′(ĉ) = 0 (or equivalently, k(ĉ) = 0). (2.9)

In the rest of the paper we make the following assumption.

Assumption 2.2. Both co and ĉ lie in (0, 1).

We notice that the cases ĉ ≤ 0 and ĉ ≥ 1 were considered in [4] for X of Ornstein-Uhlenbeck
type. Results in [4] carry over to our setting by taking null mean reversion rate. Also, the
assumption that co lies in (0, 1) allows us to consider the most general setting but the case
where co does not exist in (0, 1) is also covered by the method presented in the next sections.
The next result easily follows from properties of Φ.

Lemma 2.3. R(1) = 0 and R is strictly concave, hence it is negative on [0, co) and positive on
(co, 1); also, R has a positive maximum at ĉ and therefore co < ĉ.

3 Preliminary discussion and main results

In order to derive a candidate solution to problem (2.4) we perform a preliminary heuristic
analysis, distinguishing three cases according to the signs of k(c) and x.

(A). When k(c) > 0 (i.e. when c ∈ (ĉ, 1]) consider the costs of the following three strategies
exerting respectively: no control, a small amount of control, or a large amount. Firstly if control
is never exercised, i.e. νt ≡ 0, t ≥ 0, one obtains from (2.5) an overall cost Jx,c(0) = xΦ(c) by an
application of Fubini’s theorem. If instead at time zero one increases the inventory by a small
amount δ > 0 and then does nothing for the remaining time, i.e. νt = νδt := δ for t > 0 in (2.5),
the total cost is Jx,c(νδ) = x(δ+Φ(c+δ)). Writing Φ(c+δ) = Φ(c)+Φ′(c)δ+o(δ2) we find that
Jx,c(νδ) = Jx,c(0) + δx(1 + Φ′(c)) + o(δ2) so that exercising a small amount of control reduces
future expected costs relative to a complete inaction strategy only if xk(c)/λ < 0, i.e. x < 0,
since k(c) > 0. It is then natural to expect that for each c ∈ (ĉ, 1] there should exist γ(c) < 0
such that it is optimal to exercise control only when Xx

s ≤ γ(c).
We next want to understand whether a small control increment is more favourable than

a large one and for this we consider a strategy where at time zero one exercises all available
control, i.e. νt = νft := 1 − c for t > 0. The latter produces a total expected cost equal to
Jx,c(νf ) = x(1− c), so that for x < 0 and recalling that k is increasing one has

Jx,c(νf )− Jx,c(νδ) =
x

λ

(∫ 1

c
k(y)dy − δk(c)

)
+ o(δ2) ≤ x

λ
k(c)(1− c− δ). (3.1)

Since k(c) > 0 the last expression is negative whenever 1−c > δ, so it is reasonable to expect that
large control increments are more profitable than small ones. This suggests that the threshold
γ introduced above should not be of the reflecting type (see for instance [16]) but rather of
repelling type as observed in [3] and [15] among others. Using this heuristic a corresponding
free boundary problem is formulated and solved in Section 4.1.

(B1). When k(c) < 0 (that is, when c ∈ [0, ĉ)) we again compare inaction to small and large
control increments. Observe that now νδ is favourable (with respect to complete inaction) if and
only if xk(c)/λ < 0, i.e. x > 0, since now k(c) < 0. Hence we expect that for fixed c ∈ [0, ĉ) one
should act when the process X exceeds a positive upper threshold β(c). Then compare a small
control increment with a large one, in particular consider a policy ν ĉ that immediately exercises
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an amount ĉ − c of control and then acts optimally for problem (2.4) with initial conditions
(x, ĉ). The expected cost associated to ν ĉ is Jx,c(ν ĉ) = x(ĉ− c) + U(x, ĉ) and one has

Jx,c(ν ĉ)− Jx,c(νδ) ≤
x

λ

(∫ ĉ

c
k(y)dy − δk(c)

)
+ o(δ2) (3.2)

where we have used that U(x, ĉ) ≤ xΦ(ĉ). If we fix c ∈ [0, ĉ) and x > 0, then for δ > 0 sufficiently
small the right-hand side of (3.2) becomes negative, which suggests that a reflection strategy at
the upper boundary β would be less favourable than the strategy described by ν ĉ.

(B2). Finally, when x < 0 and k(c) < 0 we compare the ‘large’ increment to inaction. Note
that U(x, ĉ) ≤ x(1− ĉ) to obtain

Jx,c(ν ĉ)− Jx,c(0) ≤ x

λ

∫ 1

c
k(y)dy =

x

λ

(∫ ĉ

c
k(y)dy +

∫ 1

ĉ
k(y)dy

)
. (3.3)

The first integral on the right-hand side of (3.3) is negative but its absolute value can be made
arbitrarily small by taking c close to ĉ. The second integral is positive and independent of
c. Thus the overall expression becomes negative when c approaches ĉ from the left, and more
negative as x ↓ −∞. Hence we expect that when the inventory is a little below the critical value
ĉ, one should act when the process X falls below a negative lower threshold γ(c). (After that,
for c ∈ (ĉ, 1], the optimisation continues as discussed in (A) above.) Similarly we can show that
for x < 0, c a little below ĉ and small δ > 0, one has Jx,c(ν ĉ)−Jx,c(νδ) < 0, with ν ĉ as in (B1)
above. Hence ν ĉ, the policy of filling the inventory up to the level ĉ, seems to be preferable to
small increments of the inventory. We therefore explore the presence of both upper and lower
repelling boundaries when c is a little below ĉ, and this is done in Section 4.2.1. In contrast, for
smaller values of c (that is, for c lying well below ĉ), there is no such reason to postulate the
existence of a lower boundary. This is borne out by our analysis in Sections 4.2.1–4.2.2 below:
recalling the value co < ĉ from Section 2, we show that for c ∈ (co, ĉ) there is a lower boundary
(Section 4.2.1) and for c ∈ [0, co) there is not (Section 4.2.2).

In each of the previous heuristics it is preferable to exert a large amount of control. This sug-
gests suitable connections to optimal stopping problems (although not necessarily of differential
type) and the main novelty in this paper is to exploit these expected connections. In particular
we take advantage of the opportunity to solve optimal stopping problems using geometric argu-
ments as in [2]. This allows candidates for the control boundaries, value function and optimal
control policy to be constructed and analytical properties to be derived. Further these optimal
stopping problems have similar variational inequalities to the control problem, which facilitates
verification of the candidate solution.

Before proceeding with the formal analysis we present the solution to problem (2.4), which
is our main result. As suggested by the above heuristics the solution is somewhat complex, but
a straightforward graphical presentation is given in Figure 1. The formal solution is given in
the next three results. Recalling ĉ and co from (2.9) and (2.8) respectively, we have:

Theorem 3.1. An optimal control ν∗ can be constructed from two functions β̂, γ̂ : [0, 1] →
R ∪ {±∞} which have the following properties:

i) For c ∈ [0, ĉ) we have β̂(c) ∈ (0, 1/
√

2λ) and the function β̂ is C1 and decreasing, whereas
for c ∈ [ĉ, 1] we have β̂(c) = +∞;

ii) For c ∈ (co, 1] we have γ̂ ≤ −1/
√

2λ and the function γ̂ is C1 and non decreasing, whereas
for c ∈ [0, co] we have γ̂(c) = −∞.

This optimal control ν∗ is defined as follows: for (x, c) ∈ R× (0, 1) given and fixed let

ν∗t := (1− c)1{t> τ∗}1{τ∗= τγ̂} +
[
(ĉ− c)1{t≤σ∗} + (1− ĉ)1{t>σ∗}

]
1{t> τ∗}1{τ∗= τβ̂}, (3.4)
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where
τβ̂ := inf{t ≥ 0 : Xx

t ≥ β̂(c)}, τγ̂ := inf{t ≥ 0 : Xx
t ≤ γ̂(c)}, (3.5)

τ∗ := τβ̂ ∧ τγ̂ , σ∗ := inf{t ≥ τβ̂ : Xx
t ≤ γ̂(ĉ)}, (3.6)

and we take the convention inf ∅ = +∞ (note that τβ̂ = +∞ = σ∗, P-a.s. if c ≥ ĉ).

Proposition 3.2. The optimal boundaries β̂ and γ̂ of Theorem 3.1 are characterised as follows:

i) For c ∈ [ĉ, 1] one has γ̂(c) = −1/
√

2λ (and β̂(c) = +∞);

ii) For c ∈ (co, ĉ) one has γ̂(c) = 1
2
√

2λ
ln(ŷ1(c)) and β̂(c) = 1

2
√

2λ
ln(ŷ2(c)) where ŷ1 and ŷ2

are the unique couple solving the following problem:

Find y1 ∈ (0, e−2) and y2 ∈ (1, e2) such that F1(y1, y2; c) = 0 and F2(y1, y2; c) = 0 with

F1(x, y; c) := x−
1
2 (1 + 1

2 lnx)R(c)− y−
1
2 (1 + 1

2 ln y)(R(c)−R(ĉ)), (3.7)

F2(x, y; c) := x
1
2 (1− 1

2 lnx)R(c)− y
1
2 (1− 1

2 ln y)(R(c)−R(ĉ))− 2e−1R(ĉ); (3.8)

iii) For c ∈ [0, co] one has β̂(c) = 1
2
√

2λ
ln(ŷ2(c)) (and γ̂(c) = −∞) where ŷ2 is the unique

solution in (1, e2) of F3(y; c) = 0 with

F3(y; c) := y
1
2
(
1− 1

2 ln y
)
− 2e−1R(ĉ)

R(ĉ)−R(c)
. (3.9)

Theorem 3.3. Let O := R × (0, 1). The function U of (2.4) belongs to C1(O) ∩ C(O) with
Uxx ∈ L∞loc(O) and it solves the variational problem

max
{

(−1
2wxx + λw)(x, c)− λxΦ(c) , −wc(x, c)− x

}
= 0, for a.e. (x, c) ∈ O (3.10)

with U(x, 1) = 0, x ∈ R.

The boundaries β̂ and γ̂ of Proposition 3.2 fully characterise the optimal control ν∗ illustrated
in Figure 1, which prescribes to do nothing until the uncontrolled process Xx leaves the interval
(γ̂(c), β̂(c)), where c ∈ [0, 1) is the initial inventory level. Then, if τγ̂ < τβ̂ one should immediately

exert all the available control after hitting the lower moving boundary γ̂(c). If instead τγ̂ > τβ̂
one should initially increase the inventory to ĉ after hitting the upper moving boundary β̂(c) and
then wait until X hits the new value γ̂(ĉ) of the lower boundary before exerting all remaining
available control.

4 Construction of a candidate value function

The direct solution of (3.10) is challenging in general as it is a free boundary problem with
(multiple) non constant boundaries. When necessary, however, for each fixed value of c we
will identify an associated optimal stopping problem whose solution is simpler since its free
boundaries are given by two points. Our candidate solution W is then effectively obtained by
piecing together partial solutions on different domains. More precisely, recalling the definitions
of co and ĉ from (2.8)-(2.9), we carry out the following steps:

Step 1) Directly solve (3.10) when the initial value of the inventory c ∈ [ĉ, 1], obtaining a partial
candidate solution W o (Section 4.1).
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Figure 1: An illustrative diagram of the the optimal boundaries and of the optimal control ν∗ of (3.4).

The upper boundary β̂ and the lower boundary γ̂ split the state space into the inaction region (white)

and action region (hatched). When the initial state is (x, c) with c ∈ [0, co) and x < β̂(c) one observes

the following three regimes: in regime (I) the process X diffuses until hitting β̂(c), then an amount
∆ν = ĉ − c of control is exerted, horizontally pushing the process (X,C) to the regime (II); there X
continues to diffuse until it hits γo and at that point all remaining control is exercised and (X,C) is
pushed horizontally until the inventory reaches its maximum (III).

Step 2) Identify an associated (parameter-dependent) problem of optimal stopping for c ∈ [0, ĉ)
(Section 4.2),

Step 3) Solve the stopping problems when c ∈ (co, ĉ) (Section 4.2.1; cf. heuristic (B2)).

Step 4) Solve the stopping problems when c ∈ [0, co) (Section 4.2.2; cf. heuristic (B1)).

Step 5) Construct a partial candidate solution W 1 from the OS solutions of steps 3 and 4, verifying
that it solves the variational problem (3.10) when the initial value of the inventory c ∈ [0, ĉ)
(Section 4.2.3),

Step 6) Paste together the partial candidate solutions from steps 1 and 5 to obtain the complete
candidate solution W , verifying that it solves the variational problem (3.10) when the
initial value of the inventory c ∈ [0, 1] (Section 4.3).

We begin the construction of a candidate value function by establishing the finiteness of the
expression (2.4) under our assumptions.

Proposition 4.1. Let U be as in (2.4). Then there exists K > 0 such that |U(x, c)| ≤ K(1+ |x|)
for any (x, c) ∈ R× [0, 1].

Proof. Take ν ∈ Ac and integrate by parts the cost term
∫∞

0 e−λsXx
s dνs in (2.5) noting that

Mt :=
∫ t

0 e
−λsνsdBs is a uniformly integrable martingale. Then by well known estimates for

Brownian motion we obtain

|Jx,c(ν)| ≤ E

[ ∫ ∞
0

e−λsλ|Xx
s |
[
Φ(Cc,νs ) + νs

]
ds

]
≤ K(1 + |x|), (4.1)

for some K > 0, since Φ(c) ≤ Φ(0) for c ∈ [0, 1] by Assumption 2.1 and ν ∈ Ac is bounded from
above by 1. By (4.1) and the arbitrariness of ν ∈ Ac the proposition is proved.
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4.1 Step 1: initial value of inventory c ∈ [ĉ, 1]

We formulate the first heuristic of Section 3 mathematically by writing (3.10) as a free boundary
problem, to find the couple of functions (u, γ), with u ∈ C1(R× [ĉ, 1]) and Uxx ∈ L∞loc(R× (ĉ, 1)),
solving 

1
2uxx(x, c)− λu(x, c) = −λxΦ(c) for x > γ(c), c ∈ [ĉ, 1)
1
2uxx(x, c)− λu(x, c) ≥ −λxΦ(c) for a.e. (x, c) ∈ R× [ĉ, 1)

uc(x, c) ≥ −x for x ∈ R, c ∈ [ĉ, 1)

u(x, c) = x(1− c) for x ≤ γ(c), c ∈ [ĉ, 1]

ux(x, c) = (1− c) for x ≤ γ(c), c ∈ [ĉ, 1)

u(x, 1) = 0 for x ∈ R.

(4.2)

Proposition 4.2. Recall R from (2.7) and φλ, ψλ as in (2.2). Then the couple (W o, γo) defined
by γo := − 1√

2λ
and

W o(x, c) :=

{
− 1√

2λ
e−1R(c)φλ(x) + xΦ(c), x > γo,

x(1− c), x ≤ γo,
(4.3)

solves (4.2) with W o ∈ C1(R× [ĉ, 1]) and W o
xx ∈ L∞loc(R× (ĉ, 1)).

Proof. A general solution to the first equation in (4.2) is given by

u(x, c) = Ao(c)ψλ(x) +Bo(c)φλ(x) + xΦ(c), x > γ(c),

with Ao, Bo and γ to be determined. Since ψλ(x) diverges with a superlinear trend as x → ∞
and U has sublinear growth by Proposition 4.1, we set Ao(c) ≡ 0. Imposing the fourth and fifth
conditions of (4.2) for x = γ(c) and recalling the expression for R in (2.7) we have

Bo(c) := − 1√
2λ
e−1R(c), γ(c) = γo = − 1√

2λ
. (4.4)

This way the function W o of (4.3) clearly satisfies W o(x, 1) = 0, W o
x is continuous by con-

struction and by some algebra it is not difficult to see that W o
c is continuous on R× [ĉ, 1] with

W o
c (γo, c) = −γo, c ∈ [ĉ, 1]. Moreover one also has

W o
cx(x, c) + 1 = (1 + Φ′(c))

(
1− e−1φλ(x)

)
≥ 0, x > γo, c ∈ [ĉ, 1], (4.5)

and hence W o
cx(γo+, c) = −1, for c ∈ [ĉ, 1], i.e. the smooth fit condition holds, and W o

c (x, c) ≥ −x
on R× [ĉ, 1] as required. It should be noted that W o

xx fails to be continuous across the boundary
although it remains bounded on any compact subset of R× [ĉ, 1].

Finally we observe that

1
2W

o
xx(x, c)− λW o(x, c) = −λx(1− c) ≥ −λxΦ(c) for x ≤ γo, c ∈ [ĉ, 1], (4.6)

since γo < 0 and R(c) ≥ 0 on c ∈ [ĉ, 1].

Remark 4.3. We may observe a double connection to optimal stopping problems here, as fol-
lows:

1. We could have applied heuristic (A) from Section 3, approaching this sub-problem as one of
optimal stopping (given that all available fuel is spent in a single transaction). However the free
boundary turns out to be constant for c ∈ [ĉ, 1] and the direct solution of (3.10) is straightforward
in this case. Links to OS are, instead, more convenient in the following sections.
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2. Alternatively we may differentiate the explicit solution (4.3) with respect to c. Then
holding c ∈ [ĉ, 1) constant it is straightforward to confirm that W o

c solves the free boundary
problem associated to the following OS problem:

w(x, c) := sup
τ≥0

E
[
λΦ′(c)

∫ τ

0
e−λtXx

t dt− e−λτXx
τ

]
. (4.7)

This differential connection to optimal stopping is formally the same as the differential connec-
tion previously observed in convex SSC problems (see [14]).

4.2 Step 2: an auxiliary problem of optimal stopping for c ∈ [0, ĉ)

We now use heuristics (B1) and (B2) from Section 3 to identify an associated parametric family
of optimal stopping problems, which are solved in this section. More precisely we conjecture
here (and will verify in Section 4.3) that for x ∈ R and c ∈ [0, ĉ), the value function U(x, c)
equals

W 1(x, c) := inf
τ≥0

E

[ ∫ τ

0
e−λtλXx

t Φ(c)dt+ e−λτXx
τ (ĉ− c) + e−λτW o(Xx

τ , ĉ)

]
, (4.8)

where the optimisation is taken over the set of (Ft)-stopping times valued in [0,∞), P-a.s. We
begin by noting that Itô’s formula may be used to express (4.8) as an OS problem in the form:

W 1(x, c) = xΦ(c) + V (x, c), (4.9)

where

V (x, c) := inf
τ≥0

E
[
e−λτG(Xx

τ , c)
]
, (4.10)

G(x, c) := x(ĉ− c− Φ(c)) +W o(x, ĉ). (4.11)

Note that G ∈ C(R× [0, ĉ]), |G(x, c)| ≤ C(1 + |x|) for suitable C > 0 and x 7→ E
[
e−λτG(Xx

τ , c)
]

is continuous for any fixed τ and c ∈ [0, ĉ). Then from standard theory an optimal stopping
time is τ∗ := inf{t ≥ 0 : Xx

t ∈ Sc} where

Cc := {x ∈ R : V (x, c) < G(x, c)} and Sc := {x ∈ R : V (x, c) = G(x, c)} (4.12)

are continuation and stopping regions respectively, and V is finite valued.
The solution of the parameter-dependent optimal stopping problem (4.10) is somewhat com-

plex and we will apply the geometric approach originally introduced in [5], Chapter 3, for
Brownian motion and expanded in [2]. The solutions are illustrated in Figures 2 and 3 in a
sense which will be clarified in Proposition 4.4. This allows the analytical characterisation of
the optimal stopping boundaries as c varies and thus the study of their properties, avoiding the
difficulties encountered in the more direct approach of [4]. We define

Fλ(x) :=
ψλ(x)

φλ(x)
= e2

√
2λx, x ∈ R, (4.13)

together with its inverse

F−1
λ (y) =

1

2
√

2λ
ln(y), y > 0, (4.14)

and the function

H(y, c) :=

{
G(F−1

λ (y),c)

φλ(F−1
λ (y))

, y > 0

0 y = 0.
(4.15)

Using Proposition 5.12 and Remark 5.13 of [2] we obtain the next result.
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Proposition 4.4. Fix c ∈ [0,ĉ) and let Q( · , c) be the largest non-positive convex minorant of
H( · , c) (cf. (4.15)), then V (x, c) = φλ(x)Q(Fλ(x), c) for all x ∈ R. Moreover Sc = F−1

λ (SQc ),

where SQc := {y > 0 : Q(y, c) = H(y, c)} (cf. (4.12)).

Note that characterising W 1 is equivalent to characterising V , which is in turn equivalent to
finding Q. The latter and its contact sets SQc will be the object of our study in Sections 4.2.1
and 4.2.2. Fixing c ∈ [0, ĉ), we first establish regularity properties of H. We have (from (4.3)
and (4.11))

G(x, c) =

{
xR(c), x ≤ γo

− 1√
2λ
e−1R(ĉ)φλ(x) + x(R(c)−R(ĉ)), x > γo.

(4.16)

Noting that φλ(F−1
λ (y)) = y−

1
2 , y > 0, we obtain

H(y, c) =


0, y = 0

1
2
√

2λ
R(c)y

1
2 ln y, 0 < y ≤ e−2

− 1√
2λ
e−1R(ĉ) + 1

2
√

2λ
(R(c)−R(ĉ))y

1
2 ln y, y > e−2.

(4.17)

Lemma 4.5. The function H belongs to C1((0,∞) × [0, ĉ]) ∩ C([0,∞) × [0, ĉ]) with Hyy ∈
L∞([δ,∞)× [0, ĉ]) for all δ > 0 and Hyc ∈ C((0,∞)× [0, ĉ]).

Proof. Since G is continuous in (x, c) the function H is continuous on (0,∞)× [0, ĉ] by construc-
tion and it is easy to verify that lim(y′,c′)→(0,c)H(y, c) = 0 for any c ∈ [0, ĉ]. Since

Hy(y, c) =
1

2
√

2λ
y−

1
2 (1 +

1

2
ln y)×

{
R(c), 0 < y ≤ e−2

R(c)−R(ĉ), y > e−2,
(4.18)

then for any c ∈ [0, ĉ], letting (yn, cn)→ (e−2, c) as n→∞, cn ∈ [0, ĉ), one has

lim
n→∞, yn<e−2

Hy(yn, cn) = lim
n→∞, yn>e−2

Hy(yn, cn) = 0,

hence Hy is continuous on (0,∞)× [0, ĉ]. Moreover we also have

Hc(y; c) =
1

2
√

2λ
R′(c)y

1
2 ln y on (0,∞)× [0, ĉ] (4.19)

Hyc(y; c) = R′(c)
1

2
√

2λ
y−

1
2 (1 +

1

2
ln y) on (0,∞)× [0, ĉ] (4.20)

Hyy(y; c) = − y−
3
2

8
√

2λ
ln(y)×

{
R(c), 0 < y ≤ e−2

R(c)−R(ĉ), y > e−2,
(4.21)

so that the remaining claims easily follow.

The sign of R(c) (defined in (2.7)) will play an important role in determining the geometry
of the obstacle H. Recalling that co is the unique root of R in (0, 1), in Sections 4.2.1 and 4.2.2
we consider the cases c ∈ [0, co) and c ∈ (co, ĉ) respectively. The intermediate case c = co is
obtained by pasting together the former two in the limits as c ↑ c0 and c ↓ c0 and noting that
these limits coincide.
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Figure 2: An illustrative plot of the functions y 7→ H(y, c) and y 7→ Q(y, c) (bold) of (4.17) and (4.26),
respectively, for fixed c ∈ (co, ĉ). The bold region [0, ŷ1(c)] ∪ [ŷ2(c),∞) on the y-axis is the stopping
region SQc .

4.2.1 Step 3: initial value of inventory c ∈ (co, ĉ)

We start by considering c ∈ (co, ĉ), so that R(c) > 0 and k(c) < 0. Lemma 4.6 collects some
geometric properties of H while Proposition 4.7 enables us to establish that in the present case,
the minorant of Proposition 4.4 has the form illustrated in Figure 2.

Lemma 4.6. Let c ∈ (co, ĉ) be arbitrary but fixed. The function H( · , c) is strictly decreasing,
with limy↓0Hy(y, c) = −∞ and limy↑∞Hy(y, c) = 0, and H( · , c) is strictly convex on [0, e−2) ∪
(1,∞) and concave in [e−2, 1].

Proof. The proof is a simple consequence of (4.18), (4.21) and Lemma 2.3, since we assume
c ∈ (co, ĉ).

The next proposition uses these properties to uniquely define a straight line tangent to H(·, c)
at two points ŷ1(c) < e−2 and ŷ2(c) > 1, which will be used to define the moving boundaries
c 7→ β̂(c) and c 7→ γ̂(c) introduced in Proposition 3.2. The convexity/concavity of H(·, c) then
guarantees that the largest non-positive convex minorant Q(·, c) of Proposition 4.4 is equal to
this line on (ŷ1(c), ŷ2(c)) and equal to H(·, c) otherwise.

Proposition 4.7. For any c ∈ (co, ĉ) there exists a unique couple (ŷ1(c), ŷ2(c)) solving the
system {

Hy(y1, c) = Hy(y2, c)

H(y1, c)−Hy(y1, c)y1 = H(y2, c)−Hy(y2, c)y2

(4.22)

with ŷ1(c) ∈ (0, e−2) and ŷ2(c) > 1.

Proof. Define

ry(z) := Hy(y, c)(z − y) +H(y, c), y ≥ 1, z ≥ 0, (4.23)

g(y) := ry(0) = − 1√
2λ
e−1R(ĉ) + 1

2
√

2λ
(R(c)−R(ĉ))y

1
2

(
1

2
ln y − 1

)
, (4.24)

Pr(y, c) := sup
z∈[0,1]

h(z, y, c), where h(z, y, c) := ry(z)−H(z, c), (4.25)



A solvable singular control problem with non convex costs 13

so that ry( · ) is the straight line tangent to H(·, c) at y, with vertical intercept g(y). The
function y 7→ Pr(y, c) is decreasing and continuous and it is clear that Pr(1, c) > 0, since H(·, c)
is concave on [e−2, 1]. To establish the existence of a unique ŷ2(c) > 1 such that Pr(ŷ2(c), c) = 0,
it is therefore sufficient to find y > 1 with Pr(y, c) < 0. Such a y exists since g(y) → −∞ as
y →∞: it is clear from (4.25) that if g(y) < H(1, c) then Pr(y, c) < 0.

Note that the map z 7→ h(z, y, c) is continuous, h(1, y, c) < 0 for y > 1 (cf. Figure 2) and
Pr(ŷ2(c), c) = 0; then when y = ŷ2(c), the supremum in (4.25) is attained on the convex portion
of H(·, c) (i.e. in the interior of [0, 1]) and thus is attained uniquely at a point ŷ1(c) ∈ (0, e−2).
By construction (ŷ1(c), ŷ2(c)) uniquely solves system (4.22).

For c ∈ (co, ĉ) the minorant Q is therefore

Q(y, c) =


H(y, c), y ∈ [0, ŷ1(c)],

Hy(ŷ2(c), c)(y − ŷ2(c)) +H(ŷ2(c), c), y ∈ (ŷ1(c), ŷ2(c)),

H(y, c), y ∈ [ŷ2(c),∞).

(4.26)

The following proposition is proved in Appendix A.

Proposition 4.8. The functions ŷ1 and ŷ2 of Proposition 4.7 belong to C1(co, ĉ) with c 7→ ŷ1(c)
increasing and c 7→ ŷ2(c) decreasing on (co, ĉ) and

1. limc↑ĉ ŷ1(c) = e−2;

2. limc↓co ŷ1(c) = 0;

3. ŷ2(c) < e2 for all c ∈ (co, ĉ);

4. limc↑ĉ ŷ
′
1(c) = 0.

4.2.2 Step 4: initial value of inventory c ∈ [0, co).

The geometry indicated in Figure 2 does not hold in general. Indeed in heuristic (B2), a lower
repelling boundary is suggested only for values of c close to ĉ. It turns out that ‘close’ in this
sense means greater than or equal to co. We now take c ∈ [0, co) and show that in this case
the geometry of the auxiliary optimal stopping problems is as in Figure 3, so that each of these
problems (which are parametrised by c) has just one boundary. The following Lemma has a
proof very similar to that of Lemma 4.6 and it is therefore omitted.

Lemma 4.9. Let c ∈ [0, co) be arbitrary but fixed. The function H( · , c) of (4.17) is strictly
increasing in (0, e−2) and strictly decreasing in (e−2,∞). Moreover, H( · , c) is strictly concave
in the interval (0, 1) and it is strictly convex in (1,∞) with Hyy(1, c) = 0.

The strict concavity of H in (0, 1) suggests that there should exist a unique point y∗2(c) > 1
solving

Hy(y, c)y = H(y, c). (4.27)

The straight line ry∗2 : [0,∞) 7→ (−∞, 0] given by

ry∗2 (y) := H(y∗2(c), c) +Hy(y
∗
2(c), c)(y − y∗2(c))

is then tangent to H at y∗2(c) and ry∗2 (0) = 0.
The proof of the next result may be found in Appendix A.



A solvable singular control problem with non convex costs 14

Figure 3: An illustrative plot of the functions y 7→ H(y, c) and y 7→ Q(y, c) (bold) of (4.17) and (4.30),
respectively, for fixed c ∈ [0, co). The bold interval [y∗2(c),∞) on the y-axis is the stopping region SQc .

Proposition 4.10. For each c ∈ [0, co) there exists a unique point y∗2(c) ∈ (1, e2) solving
(4.27). The function c 7→ y∗2(c) is decreasing and belongs to C1([0, co)). Moreover, for ŷ2 as in
Proposition 4.7 one has

y∗2(co−) := lim
c↑co

y∗2(c) = lim
c↓co

ŷ2(c) =: ŷ2(co+) (4.28)

and
(y∗2)′(co−) := lim

c↑co
(y∗2)′(c) = lim

c↓co
(ŷ2)′(c) =: (ŷ2)′(co+). (4.29)

For c ∈ [0, co) the minorant Q is therefore

Q(y, c) =

{
Hy(y

∗
2(c), c)y, y ∈ [0, y∗2(c)),

H(y, c), y ∈ [y∗2(c),∞).
(4.30)

Note that (4.30) may be rewritten in the form (4.26) taking ŷ1(c) = 0 and replacing ŷ2 by y∗2,
since y∗2 solves (4.27).

4.2.3 Step 5: partial candidate value function W 1

In this section we paste together the solutions obtained in sections 4.2.1 and 4.2.2 across c = co,
and then apply the transformation of Proposition 4.4 to obtain V (x, c) = xΦ(c) − W 1(x, c)
(recall (4.9)) and thus the partial candidate solution W 1 conjectured at the beginning of Section
4.2 for initial inventory levels c ∈ [0, ĉ). We also establish a free boundary problem solved by V ,
which will help to show that W 1 solves (3.10) for c ∈ [0, ĉ).

The function ŷ1 ∈ C1(co, ĉ) of Section 4.2.1 may be extended to a function ŷ1 ∈ C0([0, ĉ)) by
setting ŷ1(c) = 0 for c ∈ [0, co]. The function ŷ2 ∈ C1(co, ĉ) may be extended to ŷ2 ∈ C1([0, ĉ))
(thanks to Proposition 4.10) by setting ŷ2(c) = y∗2(c) for c ∈ [0, co]. With these definitions the
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expression (4.26), which we now recall, is valid for all c ∈ [0, ĉ):

Q(y, c) =


H(y, c), y ∈ [0, ŷ1(c)],

Hy(ŷ2(c), c)(y − ŷ2(c)) +H(ŷ2(c), c), y ∈ (ŷ1(c), ŷ2(c)),

H(y, c), y ∈ [ŷ2(c),∞),

(4.31)

Note that by construction and thanks to the regularity of H and of the boundaries (cf. Lemma
4.5 and Proposition 4.10) Q is well defined across co and is continuous on (0,∞) × [0, ĉ). We
next confirm that Q is continuously differentiable.

Proposition 4.11. The function Q lies in C1((0,∞)× [0, ĉ)).

Proof. Denoting
A(y, c) := Hy(ŷ2(c), c)(y − ŷ2(c)) +H(ŷ2(c), c),

the surfaces A and H are clearly C1 on (0,∞)× [0, ĉ) since ŷ2 ∈ C1([0, ĉ)). As a consequence Q
is C1 away from the free boundaries ŷ1(c) and ŷ2(c) and its derivatives Qy and Qc exist in the
closure of the sets delimited by the free boundaries. It remains to verify whether the pasting
across the boundaries is C1 as well. At the two boundaries we clearly have (cf. Proposition 4.7)

H(ŷ1(c), c) = A(ŷ1(c), c), c ∈ (co, ĉ) and H(ŷ2(c), c) = A(ŷ2(c), c), c ∈ [0, ĉ). (4.32)

Recall that ŷ1 ∈ C1(co, ĉ), then an application of the chain rule to the left hand side of (4.32)
gives

Hy(ŷ1(c), c)ŷ′1(c) +Hc(ŷ1(c), c) = Ay(ŷ1(c), c)ŷ′1(c) +Ac(ŷ1(c), c) (4.33)

for c ∈ (co, ĉ). Hence Hc(ŷ1(c), c) = Ac(ŷ1(c), c) for c ∈ (co, ĉ) since from the construction
of Q we know that Qy = Ay = Hy at the two boundaries. Similar arguments also provide
Hc(ŷ2(c), c) = Ac(ŷ2(c), c) for c ∈ [0, ĉ).

For the rest of the paper we employ exclusively analytical arguments, working in the coor-
dinate system of the original problem (1.1). Using Proposition 4.4 we therefore set

β̂(c) := F−1
λ (ŷ2(c)), c ∈ [0, ĉ) and γ̂(c) :=

{
−∞, c ∈ [0, co],

F−1
λ (ŷ1(c)), c ∈ (co, ĉ)

(4.34)

and obtain the following expression for V :

V (x, c) =


G(x, c), x ∈ (−∞, γ̂(c)]

φλ(x)
[
Hy(Fλ(β̂(c)), c)

(
Fλ(x)− Fλ(β̂(c))

)
+H(Fλ(β̂(c)), c)

]
, x ∈ (γ̂(c), β̂(c))

G(x, c), x ∈ [β̂(c),∞).
(4.35)

Remark 4.12. For c ∈ (co, ĉ) note that ŷ1 and ŷ2 solve (4.22) and the second expression
in (4.31) may be equivalently rewritten in terms of ŷ1, i.e. Q(y, c) = Hy(ŷ1(c), c)(y − ŷ1(c)) +
H(ŷ1(c), c) for y ∈ (ŷ1(c), ŷ2(c)). Analogously (4.35) may be equivalently rewritten in terms of γ̂,

that is V (x, c) = φλ(x)
[
Hy(Fλ(γ̂(c)), c)

(
Fλ(x)−Fλ(γ̂(c))

)
+H(Fλ(γ̂(c)), c)

]
for x ∈ (γ̂(c), β̂(c)).

Corollary 4.13. We have

i) The boundary β̂ lies in C1([0, ĉ)) and is strictly decreasing with β̂(c) ∈ (0, 1/
√

2λ) for all
c ∈ [0, ĉ);
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ii) The boundary γ̂ lies in C1((co, ĉ]) and is strictly increasing with γ̂(c) ≤ −1/
√

2λ for all
c ∈ [0, ĉ).

Proof. This follows immediately from Propositions 4.8 and 4.10, and (4.34).

We can now show that the parameter-dependent optimal stopping value function V satisfies
the following free boundary problem. This will in turn establish some properties of W 1(x, c) =
xΦ(c) + V (x, c) required to verify optimality in Section 4.3.

Proposition 4.14. The value function V of (4.10) belongs to C1(R× [0, ĉ)) with Vxx ∈ L∞loc(R×
(0, ĉ)). Moreover V ≤ G and satisfies

1
2Vxx(x, c)− λV (x, c) = 0 for γ̂(c) < x < β̂(c), c ∈ [0, ĉ)
1
2Vxx(x, c)− λV (x, c) ≥ 0 for a.e. (x, c) ∈ R× [0, ĉ)

V (x, c) = G(x, c) for x ≤ γ̂(c), x ≥ β̂(c), c ∈ [0, ĉ)

Vx(x, c) = Gx(x, c) for x ≤ γ̂(c), x ≥ β̂(c), c ∈ [0, ĉ)

Vc(x, c) = Gc(x, c) for x ≤ γ̂(c), x ≥ β̂(c), c ∈ [0, ĉ).

(4.36)

Proof. From Proposition 4.4 we have that Q ∈ C1((0,∞) × [0, ĉ)) implies V ∈ C1(R × [0, ĉ)).
Analogously to prove that Vxx is locally bounded it suffices to show it for Qyy. Since Qyy = Hyy

for x ≤ γ̂(c), x ≥ β̂(c), c ∈ [0, ĉ) and Q is linear in y elsewhere the claim follows.
By construction Q ≤ H and therefore V ≤ G. From (4.35) we see that inside the continuation

region V may be rewritten as V (x, c) = A(c)ψλ(x) + B(c)φλ(x), with suitable A(c) and B(c),
and therefore the first equation of (4.36) holds. Outside the continuation region one has V = G
so that 1

2Vxx − λV can be computed explicitly by recalling the expression for W o (see (4.3))
and it may be verified that the subsequent inequality holds (using that k(c) < 0 since c < ĉ and
R(c) > 0 for c > co). The last three equalities in (4.36) follow since V ∈ C1(R× [0, ĉ)).

Recalling W o as in (4.3) and W 1 as in (4.9) we obtain the next results.

Corollary 4.15. W 1 ∈ C1(R× [0, ĉ)), with W 1
xx ∈ L∞loc(R× (0, ĉ)) and in particular we have

W 1
c (x, c) = −x and W 1

x (x, c) = ĉ− c+W o
x (x, ĉ) (4.37)

for x ∈ (−∞, γ̂(c)] ∪ [β̂(c),+∞) and c ∈ [0, ĉ).

The next two propositions follow from results collected above and their detailed proofs are
given in Appendix A.

Proposition 4.16. W 1
c (x, c) ≥ −x for all (x, c) ∈ R× [0, ĉ).

Proposition 4.17. Let

W (x, c) :=

{
W 1(x, c), for (x, c) ∈ R× [0, ĉ)

W o(x, c), for (x, c) ∈ R× [ĉ, 1],
(4.38)

then W ∈ C1(R× [0, 1]) and Wxx ∈ L∞loc(R× [0, 1]).

In the next definition we extend the boundaries β̂ and γ̂ to the whole of [0, 1]. With this
extension they correspond to the boundaries introduced in the statement of Theorem 3.1.

Definition 4.18. The function γ̂ can be extended to [ĉ, 1] by putting γ̂(c) = γo, c ∈ [ĉ, 1] (by
(1) and (4) of Proposition 4.8 and (4.34)). This extension is C1 on (co, 1] and will be assumed
in the rest of the paper. We also set β̂(c) = +∞ for c ∈ [ĉ, 1].
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4.3 Step 6: verification theorem and the optimal control

In this section we establish the optimality of the candidate value function W and show that the
purely discontinuous control ν∗ defined in (3.4) of Theorem 3.1 is indeed optimal for problem
(2.4). Firstly, several results obtained above are summarised in the following proposition.

Proposition 4.19. The function W of (4.38) solves the variational problem (3.10). Moreover,
|W (x, c)| ≤ K(1 + |x|) or some K > 0 and W (x, 1) = U(x, 1) = 0.

Proof. The functions W o and W 1 solve the variational problem on R × [ĉ, 1) and R × (0, ĉ)
respectively (see Proposition 4.2 for the claim regarding W o and Propositions 4.14, 4.16 and
Corollary 4.15 for the claim regarding W 1). Then Proposition 4.17 guarantees that W solves
the variational problem on R× (0, 1) as required. From the definitions of W , W o and W 1 (see
(4.38), (4.3) and (4.8)) one also obtains the sublinear growth property and W (x, 1) = 0.

Theorem 4.20. The admissible control ν∗ of (3.4) is optimal for problem (2.4) and W ≡ U .

Proof. The proof is based on a verification argument and, as usual, it splits into two parts.

(i) Fix (x, c) ∈ R × [0, 1] and take R > 0. Set τR := inf
{
t ≥ 0 : Xx

t /∈ (−R,R)
}

, take an
admissible control ν, and recall the regularity results for W in Proposition 4.17. Then we can
use Itô’s formula in the weak version of [9], Chapter 8, Section VIII.4, Theorem 4.1, up to the
stopping time τR ∧ T , for some T > 0, to obtain

W (x, c) =E
[
e−λ(τR∧T )W (Xx

τR∧T , C
c,ν
τR∧T )

]
− E

[ ∫ τR∧T

0
e−λs(1

2Wxx − λW )(Xx
s , C

c,ν
s )ds

]
− E

[ ∫ τR∧T

0
e−λsWc(X

x
s , C

c,ν
s )dνs

]
− E

[ ∑
0≤s<τR∧T

e−λs
(
W (Xx

s , C
c,ν
s+ )−W (Xx

s , C
c,ν
s )−Wc(X

x
s , C

c,ν
s )∆νs

) ]
where ∆νs := νs+ − νs and the expectation of the stochastic integral vanishes since Wx is
bounded on (x, c) ∈ [−R,R]× [0, 1].

Now, recalling that any ν ∈ Ac can be decomposed into the sum of its continuous part and
its pure jump part, i.e. dν = dνcont + ∆ν, one has (see [9], Chapter 8, Section VIII.4, Theorem
4.1 at pp. 301-302)

W (x, c) =E
[
e−λ(τR∧T )W (Xx

τR∧T , C
c,ν
τR∧T )

]
− E

[ ∫ τR∧T

0
e−λs(1

2Wxx − λW )(Xx
s , C

c,ν
s )ds

]
− E

[ ∫ τR∧T

0
e−λsWc(X

x
s , C

c,ν
s )dνconts +

∑
0≤s<τR∧T

e−λs
(
W (Xx

s , C
c,ν
s+ )−W (Xx

s , C
c,ν
s )
) ]
.

Since W satisfies the Hamilton-Jacobi-Bellman equation (3.10) (cf. Proposition 4.19) and by
writing

W (Xx
s , C

c,ν
s+ )−W (Xx

s , C
c,ν
s ) =

∫ ∆νs

0
Wc(X

x
s , C

c,ν
s + u)du, (4.39)

we obtain

W (x, c) ≤E
[
e−λ(τR∧T )W (Xx

τR∧T , C
c,ν
τR∧T )

]
+ E

[ ∫ τR∧T

0
e−λsλXx

s Φ(Cc,νs )ds

]
+ E

[ ∫ τR∧T

0
e−λsXx

s dν
cont
s

]
+ E

[ ∑
0≤s<τR∧T

e−λsXx
s ∆νs

]
(4.40)

=E

[
e−λ(τR∧T )W (Xx

τR∧T , C
c,ν
τR∧T ) +

∫ τR∧T

0
e−λsλXx

s Φ(Cc,νs )ds+

∫ τR∧T

0
e−λsXx

s dνs

]
.
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When taking limits as R → ∞ we have τR ∧ T → T , P-a.s. By standard properties of
Brownian motion it is easy to prove that the integral terms in the last expression on the right
hand side of (4.40) are uniformly bounded in L2(Ω,P), hence uniformly integrable. Moreover,
W has sub-linear growth by Proposition 4.19. Then we also take limits as T ↑ ∞ and it follows
that

W (x, c) ≤ E

[ ∫ ∞
0

e−λsλXx
s Φ(Cc,νs )ds+

∫ ∞
0

e−λsXx
s dνs

]
, (4.41)

due to the fact that limT→∞ E[e−λTW (Xx
T , C

c,ν
T )] = 0. Since (4.41) holds for all admissible ν we

have W (x, c) ≤ U(x; c).

(ii) If c = 1 then W (x, 1) = 0 = U(x, 1). Then take c ∈ [0, 1) and define C∗t := Cc,ν
∗

t = c+ν∗t ,
with ν∗ as in (3.4). Throughout this step it is important to bear in mind that γ̂(c) = γ̂(ĉ) = γo

for all c ∈ [ĉ, 1]. Applying Itô’s formula again (possibly using localisation arguments as above)
up to time ργ̂ := inf{t ≥ 0 : Xx

t ≤ γ̂(C∗t )} we find

W (x, c) =E

[
e−λργ̂W (Xx

ργ̂
, C∗ργ̂ )−

∫ ργ̂

0
e−λs(1

2Wxx − λW )(Xx
s , C

∗
s )ds

]
− E

[ ∑
0≤s<ργ̂

e−λs
(
W (Xx

s , C
∗
s+)−W (Xx

s , C
∗
s )
)]
, (4.42)

where we have used that ν∗ does not have a continuous part. We observe that ργ̂ < +∞, P-
a.s. under the control policy of ν∗. Recalling τγ̂ and τβ̂ as in (3.5), we also notice that τγ̂ = ργ̂
on {τγ̂ < τβ̂} and τβ̂ ≤ ργ̂ on {τγ̂ > τβ̂}. Therefore we have τ∗ ≤ ργ̂ , P-a.s. (recall τ∗ from (3.6)).
Hence we can always write∫ ργ̂

0
e−λs(1

2Wxx − λW )(Xx
s , C

∗
s )ds

=

∫ τ∗

0
e−λs(1

2Wxx − λW )(Xx
s , C

∗
s )ds+

∫ ργ̂

τ∗
e−λs(1

2Wxx − λW )(Xx
s , C

∗
s )ds

=−
∫ τ∗

0
e−λsλXx

s Φ(C∗s )ds+

∫ ργ̂

τ∗
e−λs(1

2Wxx − λW )(Xx
s , C

∗
s )ds (4.43)

where the last equality follows by recalling that (1
2Wxx − λW )(x, c) = −λxΦ(c) for γ̂(c) < x <

β̂(c) and hence it holds in the first integral for s ≤ τ∗. To evaluate the last term of (4.43) we
study separately the events {τ∗ = τβ̂} and {τ∗ = τγ̂}. We start by observing that under the

control strategy ν∗ one has {τ∗ = τβ̂} = {ργ̂ = σ∗} and we get

1{τ∗=τβ̂}

∫ ργ̂

τ∗
e−λs(1

2Wxx − λW )(Xx
s , C

∗
s )ds = −1{τ∗=τβ̂}

∫ ργ̂

τ∗
e−λsλXx

s Φ(C∗s )ds (4.44)

by Proposition 4.2 since (Xx
s , C

∗
s ) = (Xx

s , ĉ) for any τ∗ < s ≤ ργ̂ = σ∗ on {τ∗ = τβ̂}. On the

other hand, noticing that on {τ∗ = τγ̂} we have τγ̂ = ργ̂ , we get

1{τ∗=τγ̂}

∫ ργ̂

τ∗
e−λs(1

2Wxx − λW )(Xx
s , C

∗
s )ds = 0 = 1{τ∗=τγ̂}

∫ ργ̂

τ∗
e−λsλXx

s Φ(C∗s )ds. (4.45)

Then it follows from (4.43), (4.44) and (4.45) that∫ ργ̂

0
e−λs(1

2Wxx − λW )(Xx
s , C

∗
s )ds = −

∫ ργ̂

0
λe−λsXx

s Φ(C∗s )ds. (4.46)
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Moreover Φ(C∗s ) = 0 for any s > ργ̂ because C∗s = 1 for any such s and thus we finally get from
(4.46) ∫ ργ̂

0
e−λs(1

2Wxx − λW )(Xx
s , C

∗
s )ds = −

∫ ∞
0

λe−λsXx
s Φ(C∗s )ds. (4.47)

Using similar arguments, and in particular that under the control strategy ν∗ we also have
{τγ̂ > τβ̂} = {ργ̂ = σ∗}, we can obtain from (3.4)

E
[
e−λργ̂W (Xx

ργ̂
, C∗ργ̂ )

]
=E
[
1{τγ̂>τβ̂}e

−λργ̂W (γ̂(ĉ), ĉ)
]

+ E
[
1{τγ̂<τβ̂}e

−λργ̂W (γ̂(c), c)
]

=E
[
1{τγ̂>τβ̂}e

−λργ̂ γ̂(ĉ)(1− ĉ)
]

+ E
[
1{τγ̂<τβ̂}e

−λργ̂ γ̂(c)(1− c)
]

=E

[ ∫ ∞
ργ̂

e−λsXx
s dν

∗
s

]
(4.48)

by using that W (γ̂(c), c) = γ̂(c)(1− c) for all c ∈ (co, 1) as proved in Section 4 (see also Figure
1). Notice that {τγ̂ < τβ̂} = ∅ if C∗0 = c ∈ [0, co].

For the jump part of the control, i.e. for the last term in (4.42), again we argue in a similar
way as above and use that on the event {τ∗ = τγ̂} (where ργ̂ = τγ̂) there is no jump strictly
prior to τγ̂ , hence the sum in (4.42) is zero, whereas on the event {τ∗ = τβ̂} a single jump occurs
prior to ργ̂ , precisely at τβ̂. This gives

E
[ ∑

0≤s<ργ̂

e−λs
(
W (Xx

s , C
∗
s+)−W (Xx

s , C
∗
s )
)]

=E
[
1{τ∗=τγ̂} · 0− 1{τ∗=τβ̂}e

−λτβ̂Xx
τβ̂

(ĉ− c)
]

= −E
[ ∫ ργ̂

0
e−λsXx

s d ν
∗
s

]
. (4.49)

Combining (4.47), (4.48) and (4.49) it follows from (4.42) that

W (x, c) = E

[ ∫ ∞
0

e−λsλXx
s Φ(C∗s )ds+

∫ ∞
0

e−λsXx
s dν

∗
s

]
≥ U(x, c), (4.50)

which together with (i) above implies W (x, c) = U(x, c), (x, c) ∈ R × [0, 1] and ν∗ of (3.4) is
optimal.

Remark 4.21. Note that, unusually, from (4.3) we see W o
c (x, ĉ) = −x for all x ∈ R (see

Figure 1) whereas we would expect W o
c (x, ĉ) > −x for x > γo. This is however possible because

(1
2Wxx − λW )(x, ĉ) = −λΦ(ĉ)x for x > γo and therefore, as long as X stays above γo, an

inaction strategy does not increase the overall costs.

A Some proofs needed in Section 4

Proof. [Proposition 4.8]

Rewrite (4.22) as

F1(ŷ1(c), ŷ2(c); c) = 0 and F2(ŷ1(c), ŷ2(c); c) = 0, (A-1)

with the two functions Fi : (0,∞) × (0,∞) × [0, 1], i = 1, 2, defined by (3.7) and (3.8) of
Proposition 3.2. The Jacobian matrix

J(x, y, c) =

[
∂F1
∂x

∂F1
∂y

∂F2
∂x

∂F2
∂y

]
(x, y, c) =

1

4

[
−R(c)x−

3
2 lnx (R(c)−R(ĉ))y−

3
2 ln y

−R(c)x−
1
2 lnx (R(c)−R(ĉ))y−

1
2 ln y

]
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has determinant

D(x, y, c) :=
1

16

[
R(c)−R(ĉ)

]
R(c)

1
√
xy

(1

y
− 1

x

)
lnx ln y

which is strictly negative when x ≤ e−2, y > 1 and c ∈ (c0, ĉ). To simplify notation we suppress
the dependency of ŷ1 and ŷ2 on c. Total differentiation of (A-1) with respect to c and the
Implicit Function Theorem imply that ŷ1 and ŷ2 lie in C1(co, ĉ), with[
ŷ′1(c)
ŷ′2(c)

]
= J−1

[
−∂F1

∂c

−∂F1
∂c

]
(ŷ1, ŷ2, c) = R′(c)J−1(ŷ1, ŷ2, c)

[
ŷ
− 1

2
1 (1 + 1

2 ln ŷ1)− ŷ−
1
2

2 (1 + 1
2 ln ŷ2)

ŷ
1
2
1 (1− 1

2 ln ŷ1)− ŷ
1
2
2 (1− 1

2 ln ŷ2)

]
so that

ŷ′1(c) =
1

4

R′(c)
[
R(c)−R(ĉ)

]
D(ŷ1, ŷ2, c)

[√ ŷ1

ŷ2
(1− 1

2
ln ŷ1) + ln ŷ2 −

√
ŷ2

ŷ1
(1 +

1

2
ln ŷ1)

]
ŷ−1

2 ln ŷ2

=:D1(ŷ1, ŷ2, c)/D(ŷ1, ŷ2, c) (A-2)

and

ŷ′2(c) =− 1

4

R(c)R′(c)

D(ŷ1, ŷ2, c)

[
ŷ

1
2
1 ln ŷ1 − ŷ1ŷ

− 1
2

2 (1 +
1

2
ln ŷ2) + ŷ

1
2
2 (1− 1

2
ln ŷ2)

]
ŷ
− 3

2
1 ln ŷ1

=:D2(ŷ1, ŷ2, c)/D(ŷ1, ŷ2, c) (A-3)

It is not hard to verify that ŷ′1(c) > 0 by using 0 < ŷ1 < e−2, ŷ2 > 1 and R(c) < R(ĉ). The sign
of the right hand side of (A-3) is opposite to the sign of

D̂ := ŷ
1
2
1 ln ŷ1 − ŷ1ŷ

− 1
2

2 (1 +
1

2
ln ŷ2) + ŷ

1
2
2 (1− 1

2
ln ŷ2) (A-4)

since ln ŷ1 < 0, R′(c) > 0 and D(ŷ1, ŷ2, c) < 0 for c ∈ (c0, ĉ). Recalling now (A-1), (3.7) and
(3.8), we obtain

ŷ
1
2
2

(
1− 1

2
ln ŷ2

)
=

R(c)

R(c)−R(ĉ)
ŷ

1
2
1

(
1− 1

2
ln ŷ1

)
− 2e−1

R(c)−R(ĉ)
R(ĉ),

and

ŷ
− 1

2
2

(
1 +

1

2
ln ŷ2

)
=

R(c)

R(c)−R(ĉ)
ŷ
− 1

2
1

(
1 +

1

2
ln ŷ1

)
,

which plugged into (A-4) give

D̂ = − R(ĉ)

(R(c)−R(ĉ)
(
√
ŷ1 ln ŷ1 + 2e−1) =: − R(ĉ)

(R(c)−R(ĉ)
q(ŷ1).

It is now easy to see that x 7→ q(x) is strictly decreasing on (0, e−2) and such that q(e−2) = 0
and limx↓0 q(x) = 2e−1 > 0. Hence q(ŷ1) > 0 implies that D̂ > 0 and ŷ

′
2(c) < 0.

To complete the proof we need to show properties (1)-(4). We observe that due to the
monotonicity of ŷi(·), i = 1, 2, on (co, ĉ) their limits exist at all points of this interval.

(1) Taking limits as c ↑ ĉ in the second equation of (A-1), using (3.8) and defining ŷ1(ĉ−) :=
limc↑ĉ ŷ1(c) we get

ŷ
1
2
1 (ĉ−)

(
1− 1

2
ln ŷ1(ĉ−)

)
= 2e−1,

which is uniquely solved by ŷ1(ĉ−) = e−2.
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(2) We argue by contradiction and assume that limc↓co ŷ1(c) = y1 > 0. Then taking limits as
c ↓ co in the first equation of (A-1) and recalling that R(co) = 0 we find

R(ĉ)
√
ŷ2(co+)

[
1 +

1

2
ln ŷ2(co+)

]
= 0,

which is clearly impossible since ŷ2(co+) ≥ 1 due to the fact that ŷ2(c) > 1 for any
c ∈ (co, ĉ).

(3) From the second equality in (A-1) and by (3.8) one finds

√
ŷ2(c)

[
1− 1

2
ln ŷ2(c)

]
=

2e−1R(ĉ)−R(c)
√
ŷ1(c)

[
1− 1

2 ln ŷ1(c)
]

R(ĉ)−R(c)
≥ 2e−1 > 0 (A-5)

where the first lower bound follows by the fact that x 7→
√
x[1− 1

2 ln(x)] is strictly increasing
and positive on [0, e−2], with maximum value 2e−1. Since also ŷ2(c) > 0, from (A-5) we
conclude that

[
1− 1

2 ln ŷ2(c)
]
> 0, thus implying ŷ2(c) < e2.

(4) We take limits as c ↑ ĉ in (A-2) and notice that ŷ′1(c)→ 0 since R′(c)→ 0 (notice also that
both functions D1(ŷ1, ŷ2, c) and D(ŷ1, ŷ2, c) are proportional to ln ŷ2 so that their quotient
remains finite, should ŷ2 converge to 1 as c ↑ ĉ).

Proof. [Proposition 4.10]

Note first that by (4.17) and (4.18), equation (4.27) may be rewritten in the equivalent form

F3(y; c) = 0, (A-6)

where the jointly continuous function F3 : (0,∞)× [0, 1] 7→ R is defined in (3.9) of Proposition
3.2. The proof is carried out in three parts and for simplicity we omit the dependency of y∗2 on
c.

(i) The function f(y) :=
√
y(1 − 1

2 ln(y)) is strictly decreasing on (1, e2) with f(1) = 1 and
f(e2) = 0 so, since the absolute value of the second term of (3.9) is smaller than one (due to
R(c) < 0 for c ∈ [0, co)), there exists a unique y∗2(c) ∈ (1, e2) solving (A-6). Moreover since

∂F3

∂y
(y, c) = −1

4y
− 1

2 ln y < 0 for (y, c) ∈ (1, e2)× [0, co) (A-7)

we can use the implicit function theorem to conclude that y∗2 ∈ C1([0, co)) and

(y∗2)′(c) = −
(∂F3

∂y

/∂F3

∂c

)
(y∗2, c) = − 8e−1R(ĉ)R′(c)(

R(ĉ)−R(c)
)2
√
y∗2

ln y∗2
< 0 for c ∈ [0, co). (A-8)

(ii) The limit y∗2(co−) := limc↑co y
∗
2(c) exists by monotonicity and so by continuity we have

F3(y∗2(co−); co) = 0, i.e. √
y∗2(co−)

(
1− 1

2 ln y∗2(co−)
)

= 2e−1. (A-9)

We now take limits as c ↓ co in (3.8) and use part 2 of Proposition 4.8 to conclude that√
ŷ2(co+)

(
1− 1

2 ln ŷ2(co+)
)

= 2e−1, (A-10)
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where ŷ2(co+) := limc↓co ŷ2(c) exists by monotonicity of ŷ2 (cf. Proposition 4.8). Hence from
(A-9), (A-10) and uniqueness of the solution to F3(y; co) = 0 we obtain (4.28).

(iii) Setting ŷ2(co) := y∗2(co−) = ŷ2(co+) and taking limits as c ↑ co in (A-8) we obtain

(y∗2)′(co−) = −
8e−1R′(co)

√
ŷ2(co)

R(ĉ) ln ŷ2(co)
. (A-11)

We now turn to study the limit of ŷ
′
2(c) when c ↓ co. We have ŷ1(c) ↓ 0 and R(c) ↓ 0.

However, as c approaches co from above, we have the following asymptotic behaviours in (A-3):

D(ŷ1(c), ŷ2(c), c) ≈ 1

16
R(ĉ)R(c)ŷ

− 1
2

2 (c) ln ŷ2(c)ŷ
− 3

2
1 (c) ln ŷ1(c),

by using that R(c)−R(ĉ) ≈ −R(ĉ) and (ŷ2(c)−1 − ŷ1(c)−1) ≈ −ŷ1(c)−1; moreover, noting that

ŷ1(c)
1
2 ln ŷ1(c)− ŷ1(c)ŷ2(c)−

1
2
(
1 + 1

2 ln ŷ2(c)
)
→ 0

as c ↓ co we also have

D2(ŷ1(c), ŷ2(c), c) ≈ −1
4R
′(c)R(c)ŷ

1
2
2 (c)

(
1− 1

2 ln ŷ2(c)
)
ŷ
− 3

2
1 (c) ln ŷ1(c).

Hence

ŷ′2(c) ≈ −4
R′(c)

R(ĉ)

 ŷ
1
2
2 (c)

(
1− 1

2 ln ŷ2(c)
)

ŷ
− 1

2
2 (c) ln ŷ2(c)

 . (A-12)

and (4.29) now follows from (A-10) in the limit as c ↓ co.

Proof. [Proposition 4.16]

Recalling (4.9), (4.10), (4.11) and Proposition 4.14 we see that it suffices to show that
Vc(x, c) ≥ Gc(x, c) for any x ∈ (γ̂(c), β̂(c)) and c ∈ [0, ĉ). The proof is performed in two parts.

(i) Fix c ∈ [0, co] and recall that (cf. Section 4.2.2 and (4.12)) for any such c the continuation
set is of the form (−∞, β̂(c)). Define u := Vc−Gc, then it is not hard to see by (4.11), Proposition
4.14 and (4.36) that u ∈ C(R× [0, co]) and it is the unique classical solution of

(1
2
d2

dx2
− λ)u(x, c) = −λx(1 + Φ′(c)), for x < β̂(c) with u(β̂(c), c) = 0. (A-13)

Therefore, setting τβ := inf{t ≥ 0 : Xx
t ≥ β̂(c)} and using the Feynmann-Kac representation

formula (possibly up to a standard localisation argument), we get

u(x, c)=E

[
e−λτβu(Xx

τβ
, c) + λ(1 + Φ′(c))

∫ τβ

0
e−λtXx

t dt

]
=(1 + Φ′(c))E

[∫ τβ

0
λe−λtXx

t dt

]
, (A-14)

where we have used that u(Xx
τβ
, c) = 0 P-a.s. since τβ < ∞ P-a.s. by the recurrence property

of Brownian motion. Recalling that Xx
t = x + Bt (cf. (2.1)) Dynkin’s formula and standard

formulae for the Laplace transform of τβ lead from (A-14) to

u(x, c) = (1 + Φ′(c))
(
x− E

[
e−λτβXx

τβ

])
= (1 + Φ′(c))

[
x− β̂(c)

ψλ(x)

ψλ(β̂(c))

]
. (A-15)

Since (1 + Φ′(c)) < 0 for c ∈ [0, co], we have u(x, c) = Vc(x, c)−Gc(x, c) ≥ 0 if and only if

θ(x, c) := x− β̂(c)
ψλ(x)

ψλ(β̂(c))
≤ 0 for x < β̂(c). (A-16)
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From Proposition 4.10 we obtain 1 < ŷ2(c) < e2 and hence 0 < β̂(c) < 1/
√

2λ. Therefore, also

recalling that ψλ(x) = e
√

2λx, one has for any x < β̂(c)

θx(x, c) = 1− β̂(c)
√

2λe
√

2λ(x−β̂(c)) ≥ 1− β̂(c)
√

2λ ≥ 0.

We can now conclude that (A-16) is fulfilled since θ( · , c) is increasing for x < β̂(c) and
θ(β̂(c), c) = 0. Hence u ≥ 0 in (−∞, β̂(c))× [0, co].

(ii) Fix now c ∈ (co, ĉ), take x ∈ (γ̂(c), β̂(c)) and denote again u := Vc − Gc. As in part (i)
above it is not hard to see that

(1
2
d2

dx2
− λ)u(x, c) = −λx(1 + Φ′(c)) for x ∈ (γ̂(c), β̂(c)) and u(γ̂(c), c) = u(β̂(c), c) = 0.

(A-17)

Set τγ,β := τγ ∧ τβ with τβ as in part (i) above and τγ := inf{t ≥ 0 : Xx
t ≤ γ̂(c)}. Then u is

continuous and it admits the Feynmann-Kac representation

u(x, c)=(1 + Φ′(c))E

[ ∫ τγ,β

0
λe−λtXx

t dt

]
(A-18)

where we have used that u(Xx
τγ,β

, c) = 0 P-a.s. due to (A-17) and to the fact that τγ,β <∞ P-a.s.

by the recurrence property of Brownian motion. Since (1 + Φ′(c)) < 0 on [co, ĉ) then u(x, c) ≥ 0
on (γ̂(c), β̂(c)) (i.e. Vc ≥ Gc) if and only if E[

∫ τγ,β
0 λe−λtXx

t dt] ≤ 0 for x ∈ (γ̂(c), β̂(c)). Thanks
to Dynkin’s and Green’s formulae (cf. also [2], eq. (4.3))

E

[ ∫ τγ,β

0
λe−λtXx

t dt

]
= x− E

[
e−λτγ,βXx

τγ,β

]
= x−

{
γ̂(c)E

[
e−λτγ1{τγ<τβ}

]
+ β̂(c)E

[
e−λτβ1{τβ<τγ}

]}
= x−

{
γ̂(c)

sinh
(√

2λ(β̂(c)− x)
)

sinh
(√

2λ(β̂(c)− γ̂(c))
) + β̂(c)

sinh
(√

2λ(x− γ̂(c))
)

sinh
(√

2λ(β̂(c)− γ̂(c))
)}

=
1

sinh
(√

2λ(β̂(c)− γ̂(c))
)Θ(x, c; β̂(c), γ̂(c)), (A-19)

where we define

Θ(x, c; γ̂(c), β̂(c)) (A-20)

:=
[
x sinh

(√
2λ(β̂(c)− γ̂(c))

)
− γ̂(c) sinh

(√
2λ(β̂(c)− x)

)
− β̂(c) sinh

(√
2λ(x− γ̂(c))

)]
.

To simplify notation we set ϑ(x, c) := Θ(x, c; γ̂(c), β̂(c)). The right-hand side of (A-19) is
negative for any x ∈ (γ̂(c), β̂(c)) if and only if ϑ(x, c) ≤ 0 therein. To study the sign of ϑ we
first note that ϑ(γ̂(c), c) = 0 = ϑ(β̂(c), c) and

ϑx(x, c) = sinh
(√

2λ(β̂ − γ̂)(c)
)

+
√

2λ
[
γ̂(c) cosh

(√
2λ(β̂(c)− x)

)
− β̂(c) cosh

(√
2λ(x− γ̂(c))

)]
ϑxx(x, c) = −2λγ̂(c) sinh

(√
2λ(β̂(c)− x)

)
− 2λβ̂(c) sinh

(√
2λ(x− γ̂(c))

)
ϑxxx(x, c) = 2λ

√
2λ
[
γ̂(c) cosh

(√
2λ(β̂(c)− x)

)
− β̂(c) cosh

(√
2λ(x− γ̂(c))

)]
.

(A-21)

From (A-21) it is easy to see that i) ϑx(γ̂(c), c) < 0, since γ̂(c) ≤ −1/
√

2λ, ii) ϑxx(γ̂(c), c) >
0, ϑxx(β̂(c), c) < 0 and iii) ϑxxx(x, c) < 0. Hence x 7→ ϑxx(x, c) is strictly decreasing and
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there exists a unique point x∗ := x∗(c) such that ϑxx(x∗, c) = 0. Clearly x∗ is a maximum of
x 7→ ϑx(x, c) in (γ̂(c), β̂(c)). We claim now, and will prove later, that ϑx(β̂(c), c) > 0. Then
ϑx(x, c) > 0 for x ∈ (x∗, β̂(c)). Moreover since ϑx(γ̂(c), c) < 0, there exists a unique point
x′∗ := x′∗(c) < x∗ such that ϑx(x′∗, c) = 0. This point x′∗ is the unique stationary point of ϑ( · , c)
in (γ̂(c), β̂(c)) and it is a negative minimum due to the fact that ϑxx(x, c) > 0 for any x < x∗
and recalling (i) above with ϑ(γ̂(c), c) = 0. Therefore, recalling also ϑ(γ̂(c), c) = 0 = ϑ(β̂(c), c),
we conclude that ϑ(x, c) < 0 for any x ∈ (γ̂(c), β̂(c)). From (A-18) and (A-19) we thus get
u(x, c) ≥ 0 for any x ∈ (γ̂(c), β̂(c)).

To complete the proof it remains to show that ϑx(β̂(c), c) > 0. For that it is convenient to
rewrite the first equation of (A-21) in terms of ŷ1(c) and ŷ2(c) (cf. (4.34)) so to have

ϑx(β̂(c), c) = Θx(F−1
λ (ŷ2(c)), c;F−1

λ (ŷ1(c)), F−1
λ (ŷ2(c)))

= ŷ
1
2
2 (c)ŷ

− 1
2

1 (c)
(
1− 1

2 ln ŷ2(c)
)
− ŷ−

1
2

2 (c)ŷ
1
2
1 (c)

(
1 + 1

2 ln ŷ2(c)
)
. (A-22)

From system (4.22) (see also (A-1), (3.7) and (3.8)) we obtain
ŷ

1
2
2 (c)

(
1− 1

2 ln ŷ2(c)
)

=
−2e−1R(ĉ) +R(c)ŷ

1
2
1 (c)

(
1− 1

2 ln ŷ1(c)
)

R(c)−R(ĉ)

ŷ
− 1

2
2 (c)

(
1 + 1

2 ln ŷ2(c)
)

=
R(c)

R(c)−R(ĉ)
ŷ
− 1

2
1 (c)

(
1 + 1

2 ln ŷ1(c)
)
,

(A-23)

which plugged into (A-22) give

2ϑx(β̂(c), c) = 2Θx(F−1
λ (ŷ2(c)), c;F−1

λ (ŷ1(c)), F−1
λ (ŷ2(c)))

=
ŷ
− 1

2
1 (c)

R(ĉ)−R(c)

[
2e−1R(ĉ) +R(c)

√
ŷ1(c) ln ŷ1(c)

]
. (A-24)

Recalling now that 0 < ŷ1(c) < e−2, R(ĉ) > R(c) > 0 and noting that the function
√
x ln(x)

is nonnegative on [0, e−2], we conclude by (A-24) that ϑx(β̂(c), c) > 0 for all c ∈ (co, ĉ) as
claimed.

Proof. [Proposition 4.17]

Since β̂, γ̂ ∈ C1(co, ĉ) and their limits exist and are finite at ĉ, one can verify by direct
computation in (4.35) (recalling also Lemma 4.5 and that V ∈ C1(R× (0, ĉ))) that W 1, W 1

c and
W 1
x are uniformly continuous on open sets of the form (−R,R)× (δ, ĉ) for δ > 0 and arbitrary

R > 0. Therefore W 1 has a C1 extension to R× (0, ĉ] which we denote again by W 1.
For x ∈ (−∞, γo] ∪ [β̂(ĉ−),+∞) we have W 1(x, ĉ) = W o(x, ĉ), W 1

c (x, ĉ) = W o
c (x, ĉ) and

W 1
x (x, ĉ) = W o

x (x, ĉ) since V = G, Vc = Gc and Vx = Gx in that set (cf. (4.10), (4.11) and (4.3)).
For x ∈ (γo, β̂(ĉ−)) we have

W 1(x, ĉ) =xΦ(ĉ) + φλ(x)Q(Fλ(x), ĉ−) (A-25)

W 1
c (x, ĉ) =xΦ′(ĉ) + φλ(x)Qc(Fλ(x), ĉ−) (A-26)

W 1
x (x, ĉ) =Φ(ĉ) + φλ(x)

[
Qx(Fλ(x), ĉ−)F ′λ(x)−

√
2λQ(Fλ(x), ĉ−)

]
(A-27)

by (4.9) and Proposition 4.4. To find an explicit expression of (A-25) we study Q(y, ĉ−) for
y ∈ (e−2, ŷ2(ĉ−)) (see (1) of Proposition 4.8). In particular from (4.26), Remark 4.12 and
Proposition 4.8 (noting that ŷ1(c) < e−2 for c < ĉ) we find

Q(y, ĉ−) = Hy(e
−2−, ĉ)(y − e−2) +H(e−2−, ĉ) = − 1√

2λ
R(ĉ)e−1. (A-28)
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It then follows that W 1(x, ĉ) = W o(x, ĉ) by simple calculations, (4.3) and (4.13).
For (A-26) we consider Qc(y, ĉ−) for y ∈ (e−2, ŷ2(ĉ−)) and arguing as above we obtain

Qc(y, ĉ−) =
[
Hyc(e

−2−, ĉ) +Hyy(e
−2−, ĉ)ŷ′1(ĉ−)

]
(y − e−2) +Hc(e

−2−, ĉ) = 0 (A-29)

by (4.17), (4.18) and (4.21), hence Vc(x, ĉ−) = 0 and W 1
c (x, ĉ) = W o

c (x, ĉ) = −x by recalling
that Φ′(ĉ) = −1 (cf. (2.9)).

To conclude the proof we observe that Qy(y, ĉ−) = Hy(ŷ1(ĉ−), ĉ) = 0 for y ∈ (e−2, ŷ2(ĉ−)),
hence (A-28) and (A-27) give W 1

x (x, c) = W o
x (x, ĉ) = Φ(ĉ) + φλ(x)R(ĉ)e−1.
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