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The epithelial to mesenchymal transition (EMT) is an evolutionarily conserved process.

In cancer, EMT can activate biochemical changes in tumor cells that enable the

destruction of the cellular polarity, leading to the acquisition of invasive capabilities. EMT

regulation can be triggered by intrinsic and extrinsic signaling, allowing the tumor to

adapt to the microenvironment demand in the different stages of tumor progression.

In concomitance, tumor cells undergoing EMT actively interact with the surrounding

tumor microenvironment (TME) constituted by cell components and extracellular matrix

as well as cell secretome elements. As a result, the TME is in turn modulated by the

EMT process toward an aggressive behavior. The current review presents the intrinsic

and extrinsic modulators of EMT and their relationship with the TME, focusing on the

non-cell-derived components, such as secreted metabolites, extracellular matrix, as well

as extracellular vesicles. Moreover, we explore how these modulators can be suitable

targets for anticancer therapy and personalized medicine.

Keywords: epithelial to mesenchymal transition, tumor microenvironment, extracellular matrix, extracellular

vesicles, personalized medicine

EPITHELIAL TO MESENCHYMAL TRANSITION IN CANCER
PROGRESSION

Epithelial to mesenchymal transition (EMT) has been described as an evolutionarily conserved
process, where polarized epithelial cells undergo phenotypical changes and assume a motile
migrating mesenchymal cell phenotype (1). Such process is involved in different contexts in the
organisms and therefore is classified in three types based on the regulatory molecules involved, the
microenvironment and the EMT role in a specific tissue: (i) EMT type I is crucial during embryonic
development and in the formation of tissues and organs, generating primary mesenchyme that
posteriorly can undergo mesenchymal to epithelial transition and lead to the formation of
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secondary epithelia (2). (ii) EMT type II is involved with wound
healing, tissue regeneration, and the fibrotic process. Different
from type I, EMT type II is responsive to the inflammatory
process and therefore is associated with chronic diseases that,
in long terms, can result in the impairment of organ functions
and its failure (3, 4). (iii) EMT type III characterizes a
biological process that occurs in neoplastic cells and represents
a key element in tumor migration and metastasis development.
Different from embryogenesis, the mechanism associated with
the regulation of such a process presents distinct molecular
signatures where genetically abnormal cells do not respond to
normal growth regulatory signals (5, 6).

During the EMT process in cancer, epithelial cells lose their
polarity and the cell–cell interactions (like adhesion molecules—
E-cadherin and cytokeratins—tight junctions and gap junctions)
to acquire a more mesenchymal phenotype, presenting increased
migratory and invasiveness capacity, apoptosis resistance, and
enhanced extracellular matrix (ECM) secretion (7, 8). Moreover,
EMT has been shown to increase the activity of matrix
metalloproteinases (MMPs), leading to ECM remodeling which
corroborates to cell motility and invasion (9). It is important
to take into consideration the fact that EMT is not a complete
process in cancer resulting in a cell with a hybrid phenotype
that expresses epithelial and mesenchymal genes (10) (Figure 1),
leading to a more aggressive behavior that facilitates the
development of secondary tumors (11). The wide extension of
EMT modifications also provides to the tumor the acquisition
of drug resistance (12). Although the mechanisms were not
entirely elucidated, EMT seems to trigger different pathways that
promote the increase of drug efflux pumps and anti-apoptotic
effects (13). Such properties have been of great interest as a
possible therapeutic target against cancer (14). In addition, the
cancer stem cells (CSCs) concept has been connected to the EMT
process, supporting the notion of stemness as a temporary flexible
characteristic of tumor cells that can be lost and regained (15, 16).

Abbreviations: EMT, epithelial to mesenchymal transition; TME, tumor
microenvironment; EV, extracellular vesicle; MMP,matrix metalloproteinase; CSC,
cancer stem cell; GLUT, glucose transporter; HIF-1α, hypoxia-inducible factor
1α; ZEB, zinc finger E-box-binding homeobox; HK, hexokinase; ALDO, aldolase;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; TCA, tricarboxylic acid
cycle; SDH, succinate dehydrogenase; TGFβ, transforming growth factor beta;
ACSL, acetyl-CoA synthetase; SCD, stearoyl-CoA desaturase; ACL, ATP citrate
lyase; LOX, lysyl oxidase; IDO, indoleamine 2,3-dioxygenase; YAP, YES-associated
protein; TAZ, transcriptional coactivator with PDZ-binding motif; SREBP, sterol
regulatory element-binding protein; AKT, protein kinase B; CAF, cancer-associated
fibroblast; HGF, hepatocyte growth factor; TKI, tyrosine kinase inhibitor; EGF,
epidermal growth factor; CXCL, C-X-C motif ligand; IGF, insulin growth factor;
TAM, tumor-associated macrophage; MCT, monocarboxylate transporter; HCC,
hepatocellular carcinoma; CD, cluster of differentiation; DDR, discoidin domain
receptor; α-SMA, alfa-smooth muscle actin; HA, hyaluronic acid; TDE, tumor-
derived exosome; ECM, extracellular matrix; FN, fibronectin; PAI, plasminogen
activator inhibitor; NSCLC, non-small-cell lung carcinoma; CAM, cell adhesion
molecule; UPR, unfolded protein response; PERK, protein kinase RNA-like ER
kinase; TF, tissue factor; COL, collagen; PN, periostin; VEGF, vascular endothelial
growth factor; MSC, mesenchymal stem cell; exoNA, exosomal nucleic acid;
cfDNA, cell-free DNA; miRNA, microRNA; lncRNA, long non-coding RNA;
MIBC, muscle-invasive bladder cancer; PCa, prostate cancer; EC, endometrial
cancer; MIBC, muscle-invasive bladder cancer; CRC, colorectal cancer; UBC,
urothelial bladder cancer; MTEX, melanoma tumor-derived exosome; MAA,
melanoma-associated antigen; E-cad, E-cadherin.

Cancer cells that undergo EMT gain stem cell-related capabilities
and mesenchymal traits together with enhanced capacity to
generate spheroids in vitro and to be tumorigenic in vivo (15).

The regulation of EMT is a complex process and can
be triggered by different components present in the tumor
microenvironment (TME) like inflammation, hypoxia, and
secreted bioactive molecules (17). In particular, EMT-dependent
invasion and metastatic programs in tumor cells are strongly
influenced by the TME, which can facilitate cell extravasation
from the primary tumor and cancer therapy resistance (18).
Moreover, in the past years, the metastatic process has been
reconsidered as a heterogeneous and adaptive activity (19), in
which tumor cells and the stroma influence one another in a
reciprocal manner, mutually supporting cancer progression (19).

In this review, we summarize the more relevant intrinsic
and extrinsic signals affecting metabolic reprogramming and
EMT process in cancer cells. Moreover, we dissect the complex
interaction between tumor cells and the surrounding TME
components and how they can be modulated by the EMT process
toward tumor progression and metastasis.

SIGNALS PROMOTING EPITHELIAL TO
MESENCHYMAL TRANSITION

Intrinsic Signals—Metabolic Pathways and
Epithelial to Mesenchymal Transition
During primary and then metastatic neoplastic transformation,
tumor cells have to adapt their metabolism according to
environmental changes (20). Recently, many studies have
highlighted how the reprogramming of cancer cell metabolism
and the processes of EMT are closely interconnected (21).

Cancer cell metabolism is characterized by improved
utilization of glucose, a phenomenon known as the Warburg
effect, a characteristicmetabolic alteration of cancer cells (22–24).
Glucose transporter (GLUT)1 is induced by hypoxia-inducible
factor 1α (HIF-1α) increase during cancer progression (25, 26).
Overexpression of GLUT1 increases MMP-2 expression both in
vitro and in vivo, which is essential for EMT (27–29). Differently,
GLUT3 is a transcriptional target of the Zinc finger E-box-
binding homeobox 1 (Zeb1), an EMTmarker. GLUT3 expression
in lung cancer patients has been shown to correlate with
poor patient survival (30). Hexokinase 2 (HK2), a well-known
hypoxia-inducible gene, has been described to be upregulated
in different types of brain cancers and correlated with EMT
(31, 32). In particular, its upregulation increases the expression
of the EMT marker Snail Family Transcriptional Repressor
1 (Snai1) (33). Another enzyme is aldolase A (ALDOA),
linked with the stimulation of mesenchymal markers in
lung carcinoma (34). Furthermore, glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) shows a crucial role in metabolism
and gene transcription. In colon cancer, the silencing of GAPDH
expression resulted in a reduction of Snai1, leading to inhibition
of EMT and attenuation of cell migration (35).

Dysfunctions in mitochondria, in particular, downregulation
of mitochondrial genes, is a common feature of highly
aggressive cancers and significantly correlates with the activation
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FIGURE 1 | Bright-field and immunofluorescence analysis of circulating tumor cells from a non-small-cell lung cancer patient (single cell in A–E or cluster in F–J),

showing hybrid-phenotype cells expressing both epithelial and mesenchymal markers. Keratins (B,G, red); vimentin (C,H, green), and nucleus (D,I). (E,J) images are

merged panels. Contribution from Lecharpentier et al. (10).

of EMT signals (36, 37). Some enzymes involved in the
tricarboxylic acid cycle (TCA) are linked with EMT. For
example, mutations in succinate dehydrogenase (SDH), a
component of the respiratory chain that transforms succinate
to fumarate, have been described in pheochromocytomas,
paragangliomas (38–40), and gastrointestinal stromal
neoplasia (41, 42). A recent study by Guo (43) revealed
that transforming growth factor-beta 1 (TGFβ1) treatment can
induce mitochondrial morphologic variations in connection with

a shift from epithelial to mesenchymal phenotype of pancreatic
cancer cells.

Furthermore, dysfunctions in lipid metabolism are also
connected with EMT. For instance, it has been demonstrated that
the overexpression of acetyl-CoA synthetase (ACSL1 andACSL4)
and stearoyl-CoA desaturase (SCD) activates EMT, increasing
migration, invasion, and colony formation (44). From the clinical
point of view, the high expression of ACSL1, ACSL4, and SCD
is associated with poor prognosis in colorectal cancer patients
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(45). Moreover, it has been observed that ATP citrate lyase (ACL)
reverses EMT in non-small-cell lung cancer cell lines by Snai1
repression (46). Furthermore, the role of lysyl oxidase (LOX)
family in EMT promotion is also important. LOX expression
is regulated by HIF factors and often upregulated in metastatic
tumors (47, 48). Patients with a high expression of LOX in tumors
have poor overall survival (Figure 2) (49, 50). Conversely, 5-LOX
which catalyzed the conversion of arachidonic acid to lipoxin
A4, functions as an EMT suppressor (51), supporting alternative
antitumor activity of LOX substrates.

The amino acid metabolism also plays an important role
in maintaining cellular metabolic homeostasis. Altered amino
acid metabolism is also involved in the mechanisms of EMT
regulation. Glutamine is known as the most abundant amino
acid with nutrient functions involved in multiple phases of
cancer metabolism (52). The relation between glutamine and
EMT activation has recently been demonstrated in a study
in which inhibition of glutaminase 1 pathway reduces lung
metastasis formation by the repression of Snai1 (53). Moreover,
asparagine bioavailability intensely influences tumor potential
(54). The knockdown of asparagine in an in vivo breast
cancer model induces the alteration of Twist Family BHLH
Transcription Factor 1 (Twist1) and E-cadherin expression only
at the metastasis site, which indicates an impaired EMT behavior
(54). Indoleamine 2,3-dioxygenase 1 (IDO1) is a central enzyme
in tryptophan metabolism. High levels of IDO1 have been found
in different human tumor tissues as lung (55), colorectal (56, 57),
and bladder (58) cancers, where its reduction has been correlated
to EMT inhibition (58).

One of the well-known crucial pathways in tumor
dissemination is the Hippo signaling pathway. Glycolis, the
most used ATP supplier system in invasive cancer cells, has been
described to strongly regulate the Hippo-downstream interacting
proteins, YES-associated protein (YAP), and its partner, the
transcriptional coactivator with PDZ-binding motif (TAZ)
(59, 60). Wang et al. (60) demonstrated that glucose deprivation
in cancer cells can activate large tumor suppressor kinase (LATS)
and AMP-activated protein kinase (AMPK), which in turn
phosphorylate YAP, contributing to its inactivation. On the other
hand, YAP stimulated GLUT3 expression at the transcriptional
level, inducing glucose metabolism and lactate production
in cancer cells (60). The YAP/TAZ pathway is also involved
in amino acid-dependent activation of mammalian target of
rapamycin complex (mTORC)1, mediating tumor biosynthesis
and growth (61). In particular, YAP/TAZ knockout cells were
unable to activate the high-affinity amino acid transporter
LAT1, blocking leucine uptake and cancer cell aggressive growth
advantage (61). Lastly, Sorrentino et al. (62) reported a role of
sterol regulatory element-binding protein (SREBP)/mevalonate
pathway in the activation of YAP/TAZ pathway both in MDA-
MB-231 and MCF10A breast cancer cell lines, impacting tumor
proliferation and self-renewal properties.

Downregulation of Hippo pathway components has been
observed in various human cancers and strongly correlated
with EMT and aggressiveness (63). Morvaridi et al. (64)
demonstrated that activated pancreatic stellate cells show an
increased expression of YAP and TAZ proteins and actively

FIGURE 2 | Representative histological analysis [hematoxilin and eosin (HE)]

and immunohistochemistry of lysyl oxidase (LOX), TWIST, E-cadherin (E-Cad),

vimentin and Slug in hepatocellular carcinoma (HCC) expressing high (left

panels) and low (right panels) LOX levels. Contribution from Umezaki et al. (49).

participate in the metastatic process. In addition, Yuan et al.
(65) proposed the YAP/TAZ-dependent AKT upregulation in
pancreatic cancer, one of the principal mechanisms involved in
the resistance of gemcitabine treatment. There is a broad and
rapidly growing literature which shows how dysregulated Hippo
pathway extensively affects the TGFβ, Wnt, Sonic hedgehog, and
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Notch signaling, which are not the focus of this review, but are
reviewed in depth elsewhere (66, 67).

TUMOR MICROENVIRONMENT-DERIVED
EXTRINSIC SIGNALS PROMOTING
EPITHELIAL TO MESENCHYMAL
TRANSITION

Stromal Cells
Today, it is well-known that TME consists of different stromal
players, which coevolve with cancer cells and contribute to
cancer progression and metastasis: fibroblast (68), immune
cells (69), and endothelial cells (70). These “accessories to
the crime” stromal cells (71) are recruited by cancer cells
through stimulatory growth factor, cytokines, and chemokine.
In turn, attracted stromal cells foster cancer cell progression by
secreting growth factor, ECM-remodeling, enzymes and essential
intermediate metabolites (71).

The most involved stromal cells in cancer progression and
EMT stimulation are represented by fibroblasts. Fibroblasts
during healthy homeostatic processes are critical for epithelial
steady-state maintenance and essential during wound healing.
During his histological studies, Dvorak (72), describing the
tumor as “wounds which do not heal,” seminally suggested a
possible involvement of fibroblasts in carcinogenesis. In the
TME, the main source of cancer-associated fibroblasts (CAFs)
derives from normal fibroblasts accumulating directly genetic
and epigenetic alterations. However, recently, CAFs have been
demonstrated to be generated from endothelial cells, epithelial
cells, and cancer cells (73). For example, CAFs may originate
from fibroblasts exposed to chronical oxidative stress (74)
or from senescent cells. Wang et al. (75) demonstrated that
CAFs isolated from lung tumors secrete hepatocyte growth
factors (HGFs), which in turn activate EMT-related tyrosine–
protein kinase Met (c-Met) pathway. Interestingly, they further
demonstrated that lung cancer cells with activated c-Met
undergo EMT and acquire resistance to tyrosine kinase inhibitors
(TKIs) against the epidermal growth factor (EGF) receptor.
Giannoni et al. (76) demonstrated that prostate carcinoma-
derived interleukin-6 (IL6) activates CAFs, which in turn secrete
MMPs, leading prostate cancer (PCa) cells to acquire EMT
phenotype and to develop metastases in vivo (76). Interestingly,
a study proposed by Zhang et al. (77) showed that CAFs could
be involved also in organ-specific determination of metastasis.
In triple-negative breast cancer, CAFs were described to secrete
C-X-C motif chemokine ligand 12 (CXCL12) and insulin-like
growth factor-1 (IGF1) factors that promote the expansion of
high metastatic clones with high Src activity, a known predictor
of bone metastasis (77).

Another key cellular component of TME extensively involved
in EMT and metastasis is represented by tumor-associated
macrophages (TAMs). TAMs are macrophages that are recruited
at the tumor site by tumor-derived chemokines and acquired a
tumor-promoting effect (78). In this context, there is evidence
that cancer cells can secrete colony-stimulating factor 1 and
interleukins in the TME. These molecules can in turn stimulate

the production by TAMs of growth factors and MMPs, affecting
cancer cell invasion and metastases (78, 79). Using intravital in
vivo imaging, Condeelis and Segall (80) demonstrated that cancer
cells undergoing EMT migrate under the partial guide of the
inflammatory microenvironment provided by TAMs. As well as
for CAFs, there is evidence that TAMs could promote a specific
anatomical site for metastasis development at the premetastatic
niche (81).

Secreted Metabolites
The secretion of active metabolites is an important component
of TME communication by supporting tumor metabolism and
stimulating tumor growth and metastasis formation (82). The
metabolic waste produced by cells in the TME can essentially
work as a source of energy or for the synthesis of new molecules.
For example, in the condition of low oxygen supply, lactate
metabolites generated by anaerobic glycolysis within cancer cells
can be posteriorly secreted via monocarboxylate transporter 4
(MCT4) that is upregulated under hypoxia (83). Concurrently,
adjacent cells can uptake the lactate, via MCT1, that will be
used to feed the TCA to support energetically the mitochondrial
metabolism, showing how lactate can regulate the oxidative
metabolism of cancer cells (83). This phenomenon has also been
shown tomediate CAFs–cancer cells interactions. Coculture with
PCa cells resulted in reprogramming of CAFs toward a Warburg
phenotype by upregulation of GLUT1 andMCT4 genes, resulting
in the increase of glycolytic activity and secretion of lactate. The
lactate is posteriorly metabolized by the PCa cells leading to their
growth (84). In addition, lactate has been reported to work as
a signaling molecule by suppressing inflammatory responses on
immune cells (84).

Similarly, the interaction between cancer cells and CAFs
can be mediated by paracrine secretion of amino acids. CAFs,
stimulated by ovarian cancer cells, increase glutamine synthesis,
that after secretion is used by the same cancer cells, leading to
tumor growth (85). Such mutual cross talk was also described
with alanine in the interaction between CAFs and pancreatic
cancer cells (86). Alanine secreted by CAFs is used by cancer cells
for macromolecular biosynthesis, reducing the dependence on
glucose and nutrients derived from serum that are usually limited
in the TME.

The fatty acids are another class of metabolites that can
be released and contribute to tumor propagation. Ovarian and
breast cancer cells were shown to be capable to mobilize fatty
acids from adipocytes to stimulate tumor proliferation and
migration (87, 88). The use of fatty acid as an energy source
instead of other molecules (glucose or amino acids) can be
dependent on the tumor environment like the presence of
adipose tissue or availability of other energy supplies. Moreover,
a study correlating obesity and EMT in hepatocellular carcinoma
(HCC) revealed that fatty acid uptake via fatty acid translocase
(CD36) activates Wnt and TGFβ signaling pathways and
intensifies HCC progression (89).

Extracellular Matrix
TME is often seen as a collection of stromal cells that participate
in the molecular and phenotypic evolution of cancer. However, it
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is often overlooked that the most abundant component of TME
is represented by the ECM. ECM is a set of structural proteins
(such as collagen, laminin, fibronectin, glycans, proteoglycans,
and hyaluronic acid) and non-structural secreted enzymes (such
as growth factor, hormones, and the family of remodeling
proteases). Initially considered as an amorphous scaffold upon
which cells are organized, in the past years, ECM has been
proposed as a crucial player in tumor progression and diffusion.
The involvement of ECM in EMT was anticipated by the seminal
paper of Greenburg and Hay (90). They suspended adult and
embryonic anterior lens epithelial cells within a mesh of collagen
gel. From the morphological point of view, both adult and
embryonic epithelial cells developed pseudopodia and filopodia,
acquiring a phenotype similar to that of mesenchymal cells
in vivo (90). From the functional point of view, cells showed
an unprecedented behavior for a differentiated epithelium;
they became elongated and migrated as single cells within
the gel. The author, therefore, concluded that cell interaction
with the three-dimensional collagen network is sufficient to
promote dissociation and migration and can abolish the original
epithelium polarity (90). In addition, they also raised a question:
what might be the physiological instructions which regulate the
epithelial polarity in vivo? They hypothesized that since epithelial
surfaces are usually protected by the direct contact with collagens,
the disruption of this constraint in pathological conditions could
be the accessory driver to EMT. Three decades after this work,
Zhang et al. (91) demonstrated that increased stromal deposition
of collagen was able to favor the metastatic process in breast
cancer. In detail, they observed that the activation of collagen-
1 receptor discoidin domain receptor 2 (DDR2) stimulates
extracellular signal-regulated kinase (ERK) 2 in a Src-dependent
manner, which directly phosphorylates Snai1. Phosphorylated
Snai1 accumulates in the nucleus, reduces ubiquitination, and
increases the protein half-life. They functionally observed that
Snai1 activation induced by DDR2 increased in vitro migration
and invasion and in vivo metastatization of breast cancer
cell lines. Finally, they demonstrated that breast cancer cell
lines with an invasive phenotype frequently and overexpressing
DDR2 associated with nuclear-activated Snai1 and absence of E-
cadherin (91). Park et al. (92) highlighted an interplay network
between a structural and non-structural component of ECM
involved in EMT. In their work, they observed that fibronectin
(FN), which is essentially absent in healthy breast tissue but
increased in breast cancer, is able to promote EMT in vitro. In
fact, by exposing MCF-10 cell line to an exogenous combination
of FN and TGFβ, they observed an overexpression of EMT
markers such as N-cadherin, MMP2, Snai1, phospho-Smad2,
vimentin, and α-smooth muscle actin (α-SMA), as well as the
acquisition of a cell migratory behavior (92). Also, in this context,
the upregulation of EMT genes induced by FN follows the Src
kinase/mitogen-activated protein (ERK/MAP) kinase signaling
pathways (92).

Hyaluronan (HA) is another component of the ECM that
in the TME provides a cancer cell–ECM anchoring site and is
associated with a poor prognosis in advanced cancer patients
(93). HA exerts its role through the interactionwith itsmembrane
receptor CD44, which is frequently overexpressed in different

human malignancies. El-Haibi et al. (94) demonstrated that, in
the breast cancer cell line, extracellular HA after its binding to
CD44 induces CD44 translocation to the nucleus and induction
of LOX transcription activation. LOX, in turn, stimulates
the transcription of Twist, a well-known marker of EMT.
Interestingly, they also demonstrated that de novo production of
LOX by mesenchymal stromal cells (MSCs) associated to tumor
is able to transduce the same signal along the CD44–LOX–Twist
axis (94).

In another context, Bourguignon et al. (95) identified a
population of CD44high-tumor cells exhibiting stem cell-like
properties and mesenchymal phenotype able to bind HA through
their receptor CD44. This interaction was instrumental in
promoting a spheroid formation, as well as cell growth/self-
renewal properties in CD44+ tumor cells. These findings strongly
indicated that HA–CD44 interaction in the ECM of highly
metastatic cancer cells is correlated with the transcription of stem
cell markers which are important contributors to the head and
neck squamous cell carcinoma progression (95).

Between the non-structural components of ECM, periostin
is one of the most known factors contributing to EMT. Bao
et al. (96) demonstrated that periostin is strongly upregulated
in the majority of colorectal cancers, with the highest index of
expression in metastatic tumors. They observed that exogenous
overexpression of periostin in colorectal cancer cell lines
promotes liver metastasis growth in vivo, reduces stress-
induced apoptosis, and enhances neo-vascularization. Finally, by
exploring the molecular mechanism by which periostin promotes
EMT, they observed that periostin activates the Akt/PKB kinase
through the interaction with αvβ3 and the αvβ5 integrins (96). In
this work, they concluded that “The life and death decision at the
cellular level is controlled by the proper cell–matrix interactions”
(96). Kim et al. (97) added some captivating alternative results on
the behavior of periostin in different tumors. Periostin resulted
down-expressed in PCa but overexpressed in bladder cancer. In
bladder cancer, periostin antagonizes EMT by downregulating
Twist. On the contrary, in PCa, periostin upregulates Snai1
favoring EMT (97). During tumor progression, ECM is submitted
to continuous remodeling by different types of stromal cells.
In this context, the cross-linking of collagen mediated by LOX
plays a crucial role in the EMT process. Paszek et al. (98)
noted a possible link between the increased stiffness observed
in tumor and the mechanotransduction ability of cells, mainly
through integrins. In their work, they demonstrated that the
substrate’s stiffness in which cells are cultivated affects epithelial
morphogenesis by an integrin-mediated ERK activation and
increases contractility and focal adhesions mediated by the
activation of ROCK (98). Levental et al. (99) found that breast
cancer progression goes in parallel with collagen cross-linking
and ECM stiffening. They demonstrated that a stiffer ECM
promotes focal adhesions, enhances phosphoinositide (PI)3
kinase activity, and induces EMT (99). Once again, these data
confirm that the non-cellular part of TME plays a fundamental
role in the extrinsic regulation of EMT.

The mechanical signals including ECM rigidity, shape and
porosity, cell matrix adhesion, cell geometry, and cytoskeletal
tension can regulate EMT by affecting the YAP/TAZ signaling.
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Mechanical tension has been demonstrated to stimulate a
β-catenin-independent YAP triggering, involved in cell cycle
progression through G1 into S phase (100). In this context, it has
been recently demonstrated that changes in the TME architecture
can play a crucial role in the oncogenic mechanotransductional
regulation of YAP/TAZ signaling through Rac1 activation (101).

Although interesting results are yet present, many efforts still
have to be made to understand how to use these molecules
as a diagnostic, prognostic, or predictive biomarker. Finally,
since the TME component of cancer is less susceptible to the
evolutionary pressure of cancer cells, which leads to therapy
resistance, these components could also be used as therapeutic
targets to inhibit EMT.

Extracellular Vesicles
Since the seminal formulation of the “seed-and-soil” hypothesis
by Paget (102), significant advances in research have made it
possible to demonstrate the molecular mechanisms of cancerous
metastasis and the complex interplay between cancer cell and the
host microenvironment. Studies on extracellular vesicles (EVs),
first identified as a garbage disposal (103, 104), demonstrated
their ability to transferring biological information from donor to
receiving cells in both physiological and pathological processes
(105). The EV cargo molecules cover all the spectrums of
bioactive molecules such as proteins, lipids, oncogenic virus-
derived molecules, microRNAs (miRNAs), mRNAs, and DNA
fragments (106), allowing them to exert an autocrine, paracrine
(when they diffuse to neighboring cells), and endocrine (when
they are carried via systemic transport) signaling transduction
on organ-specific locations or recipient cells. A body of evidence
suggests that tumor-derived EVs or EVs secreted by CAFs in the
TME play a fundament role in triggering EMT, tumor invasion,
and metastasis (107, 108). The direct role and mechanism of
action of EVs in tumor are described along this review and
resumed in Table 1. Furthermore, referring to the “seed-and-
soil” hypothesis, the major breakthrough in the tumor-derived
EV research was the preliminary observation of their possible
role as “fertilizer” in the organ-specific determination of pre-
metastatic niches (81, 128, 129). In this context, the ability
of tumor-derived EVs to use systemic circulation induces the
organotropism of metastatic tumors and promotes the pre-
metastatic niche formation by showing “avidity” for specific
recipient cells (109, 110).

In recent years, tumor-derived exosomes (TDEs), a particular
subclass of EVs is largely involved in EMT plasticity (107).
Exosomes are 30–100-nm-diameter vesicles secreted into the
extracellular space through fusion with the cell membrane
(106). Franzen et al. (111) isolated exosomes from patient urine
and bladder barbotage and from invasive bladder cancer cell-
conditioned media. Noninvasive urothelial cell treated with
isolated TDEs showed overexpression of S100 calcium-binding
protein A4 (S100A4), Snai1, and α-SMA compared with control
cells. Moreover, the treatment of non-invasive urothelial cell with
bladder cancer TDEs functionally increased their migration and
invasion ability (111). Similarly, Rahman et al. (112) isolated
TDEs from serum of lung cancer patients and both from cancer
non-metastatic and metastatic cells. They demonstrated that

TDE derived from highly metastatic lung cancer cells and serum
from late-stage lung cancer patients induced EMT through
vimentin overexpression in human bronchial epithelial cells.
Furtermore, they functionally showed that both sources of TDEs
induce migration, invasion, and proliferation in the same cell
type (112).

Interestingly, some work highlighted that also stromal cells
secrete exosomes that could promote EMT in cancer cells. Luga
et al. (125). reported that TDEs released by the specific CD81-
positive CAF subpopulation induced breast cancer motility by
the autocrine release of Wnt11 from the breast cancer cell
line. Donnarumma et al. (126) demonstrated that CAF-derived
exosomes are enriched in the content of miRNA-21, –378e,
and –143 compared to normal fibroblasts. Breast cancer cell
lines exposed to CAF-derived exosomes significantly increased
their capacity to form spheroids with the expression of stem
cell and EMT markers compared to normal fibroblast exosome
exposure (126). Finally, Li et al. (127) demonstrated that ovarian
CAF-derived exosomes contained a higher level of TGFβ1
compared to normal omentum fibroblasts. SKOV-3 and CAOV-
3 cell lines treated with CAF-derived exosomes showed an
enhanced invasion capability and the EMT promotion through
the activation of a SMAD signaling pathway (127).

EPITHELIAL TO MESENCHYMAL
TRANSITION AS A MODULATOR OF THE
TUMOR MICROENVIRONMENT

During the EMT, tumor cells contribute to several interactions
with the surrounding TME, composed of cell components and
ECM as well as cell secretome elements (130). As a result, the
TME is also modulated by the EMT process toward tumor
progression andmetastasis (Figure 3). In this section, we focused
our attention on the non-cell-derived components, such as ECM
as well as EVs, on their modifications and how they can act as
suitable tools for anticancer therapy.

Epithelial to Mesenchymal Transition
Promotes Extracellular Matrix Modification
In cancer, as described above, ECM remodeling plays an
important role by affecting different processes such as tumor
growth (99) and metastasis induction (131). During the
activation of EMT, tumor cells are submitted to mechanical
perturbations mediated by the activation of specific oncogenes
(132). This molecular pattern stimulated tumor cells to respond
alternatively to the microenvironment stimuli, enhancing their
actin cytoskeleton arrangement and affecting ECM composition
(132). To invade, tumor cells undergoing EMT should remodel
the ECM by enhancing the secretion of proteases as well
as large scaffolding proteins by affecting their migratory
potential (8). Scaffolding proteins embrace molecules such as
FN1, plasminogen activator inhibitor 1 (PAI1), collagens, and
periostin and composed the ECM network, providing molecular
signals and tensional forces that are required to the cell to
migrate. The modification in ECM conformation determines
changes in physical parameters, such as stiffness and network
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TABLE 1 | Summary of the studies highlighting the active role of EVs as tool and effector in TME remodeling, EMT, and pre-metastatic niche preparation.

References Sources Activated pathways Biological function

Tumor-derived EVs

Hoshino et al. (109) TDEs from human breast and

pancreatic cancer cell lines

TDE-derived integrins activate Src

phosphorylation and pro-inflammatory

S100 gene expression in resident

fibroblast and endothelial cells

Stimulation of the preparation of the

pre-metastatic niche

Costa-Silva et al. (110) Exosomes from pancreatic ductal

adenocarcinomas (PDACs)

PDAC-derived exosomes induce TGFβ

secretion by Kupffer cells and

upregulation of FN production by hepatic

stellate cells

Induction of liver pre-metastatic niche

formation in naive mice and increase

in liver metastatic burden

Franzen et al. (111) Exosomes from T24 or UMUC3

invasive bladder

TDEs induce overexpression of α-SMA,

S100A4, and Snai1 in of Non-invasive

urothelial cells

Increase of the migration and invasion

ability

Rahman et al. (112) TDEs from serum of lung cancer

patients and from lung cancer

metastatic cells (PC14HM cells)

Serum-derived TDEs induce the

upregulation of N-cadherin and the

reduction of E-cadherin and ZO-1

expression in exosome treated HBECs

Induction of migration, invasion, and

proliferation

Chen et al. (113) Exosomes from highly metastatic

hepatocarcinoma cells (MHCC97H)

TDEs induce the activation of EMT via

MAPK/ERK signaling pathway in low

metastatic HCC cells

Stimulation of the migration,

invasiveness, and chemotactic ability

Zhou et al. (114) Exosomes from metastatic breast

cancer cells

Exosomes transfer miR-105 to

endothelial monolayer cells

Elimination of tight junctions and

induction of vascular permeability

promoting metastasis in distant

organs

Hakulinen et al. (115) EVs released from human melanoma

and fibrosarcoma cells

Exosomes containing MT1-MMP activate

pro-MMP-2 and degrade type 1 collagen

and gelatin

Direct effects on ECM composition

regulating tissue homeostasis and cell

invasion

Graves et al. (116) Malignant ovarian tumor-derived EVs EVs carry specific kallikreins and MMP

inducers

Contribution to matrix degradation

that facilitates tumor cell invasion and

metastasis

EMT–modified EVs

Garnier et al. (117); van

Hinsbergh et al. (118);

Garnier et al. (119)

Exosomes from EMT-derived epithelial

cancer cells (A431 and DLD-1)

Modification of EV proteome with the

upegulation of different proteins such as

TF, integrin α2, and CD9

Induction of a switch from classical

endothelial anticoagulant properties

Tauro et al. (120) Exosomes from Ras-transformed

MDCK cells

EMT-derived exosomes are enriched with

several proteases, integrins,

transcriptional regulators (e.g., the master

transcriptional regulator YBX1), and core

splicing complex components

Induction of invasive and

mesenchymal phenotype in recipient

epithelial cells

Karaosmanoglu et al.

(121)

Exosomes derived from Slug

overexpressing HCC-derived HepG2

and Huh7 cells

Exosomes express elevated levels of

posttranslationally modified FN1,

COL2A1, and native FGG

Induction chemoresistance and EMT

in HCC

Hardin et al. (122) Exosomes derived from TGFβ-treated

and CSC subpopulation of papillary

thyroid carcinoma (PTC) cell lines

Exosomes induce the upregulation of the

lncRNA MALAT1 and the transcription

factors SLUG and SOX2 in the normal

thyroid cells

Involvement in TGFβ pathway and cell

motility; reprogramming of the

pre-metastatic niche

Cancer stem cell–derived EVs

Grange et al. (123) Renal CD105+ CSC-derived EVs CSC-derived EVs contain proangiogenic

mRNAs and microRNAs potentially

implicated in metastasis formation.

CSC-derived EVs induce the expression

of VEGFR1, VEGF, MMP9, and MMP2 in

lungs of SCID mice.

Activation of angiogenesis and

stimulation of lung metastasis

formation

Lindoso et al. (124) Renal CD105+ CSC-derived EVs CSC-derived EVs promote an increased

expression of genes associated with cell

migration (CXCR4, CXCR7), matrix

remodeling (COL4A3), angiogenesis, and

tumor growth (IL-8, osteopontin and

myeloperoxidase) in MSCs

Enhancement of migration in

EV-stimulated MSCs. EV-stimulated

MSCs became pro-angiogenic

(Continued)
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TABLE 1 | Continued

References Sources Activated pathways Biological function

TME–derived EVs

Luga et al. (125) Exosomes from CD81-positive CAF

subpopulation

CD81-positive exosomes promote breast

cancer cell autocrine release of Wnt11

and activation of Wnt-planar cell polarity

(PCP) signaling pathway

Induction of cancer protrusive activity

and motility

Donnarumma et al.

(126)

Breast CAF-derived exosomes CAF-derived exosomes induce the

increase in the expression of stem cell

and EMT markers in breast cancer cell

lines through the transfer of miR-21,

–378e, and –143

Stimulation of the capacity to form

spheroids and the

anchorage-independent cell growth

Li et al. (127) Ovarian CAF-derived exosomes

enriched of TGFβ1

SKOV-3 and CAOV-3 cell lines treated

with CAF-derived exosomes activate the

SMADs signaling pathway by inducing

phosphorylation of SMAD2/3 complex

Enhancement of invasion capability

and EMT promotion

TDEs, tumor-derived exosomes; FN, fibronectin; α-SMA, α-smooth muscle actin; Snai1, Snail family transcriptional repressor 1; HBECs, human bronchial epithelial cells; HCC,

hepatocarcinoma cells; MT1-MMP, membrane-type 1–matrix metalloproteinase; TF, tissue factor; MDCK, Madin–Darby canine kidney; COL2A1, collagen type II alpha 1; FGG, fibrinogen

gamma chain; CSCs, cancer stem cells; MSCs, mesenchymal stem cells; CAFs, cancer-associated fibroblasts; EMT, epithelial to mesenchymal transition; TGFβ, transforming growth

factor-beta 1; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; MMPs, matrix metalloproteinases; CRCRs, C-X-C chemokine receptors;

COL4A3, collagen type IV alpha 3 chain; Wnt11, Wnt family member 11.

dimension, that can reveal the clinical diagnosis of cancer
progression (133–135).

Recently, Peixoto et al. (136) identified a specific epigenetic
signature in genes associated with ECM remodeling in three
different tumor models of EMT (lung, breast, and renal
tumors). Interestingly, the epigenetic signature identified in
seven genes was identical independently from the cancer cell
model and the EMT inducer (136). The authors identified
ADAM19 and its epigenetic regulation as a robust new
biomarker of EMT in vitro and in vivo (136). With another
experimental approach using 3D biomimetic scaffolds, Liverani
et al. (137) demonstrated that metastatic breast tumors have a
higher capability to alter the extracellular collagen structures,
affecting the mechanobiology of cell-ECM in metastatic tumors.
Moreover, the modification in collagen hydroxylation state
was associated with pyruvate metabolism in metastatic breast
cancer cell lines (138). The authors demonstrated that pyruvate
functions as an essential nutrient in the pre-metastatic niche by
inducing ECMmodification and metastasis formation (138).

The extracellular matrix-remodeling enzyme LOX, when
secreted, controls the tissue flexible force through the catalysis
of elastin and collagen cross-linking (48). LOX-mediated
collagen cross-linking was demonstrated to affect tissue fibrosis
and matrix stiffness, enhancing cell metastatic colonization
and growth in vivo in breast (99), colorectal (139), and
lung cancers (140). Interestingly, the expression of LOX was
found significantly correlated with MMP2/MMP9 expression in
metastatic non-small-cell lung carcinoma (NSCLC) (141).

Alterations in ECM composition have been related to
metastatic niche formation in numerous tumors (142). The
proteins identified such as cell adhesion molecules (CAMs),
MMPs and collagens, specific CXC motif-chemokines (CXCLs),
and citrullinated proteins/PAD have a different biological
function, and their alterations depend on the originating primary
tumor (142). Different reports identified in colorectal liver

metastatic patients included elevated levels of type I collagen
in urine (143, 144) and blood (145). These results not only
demonstrate that the active turnover of specific collagens in the
liver is propaedeutic to the preparation of the soil for tumor
seeding in the metastatic niche but also suggest the use of
these molecules as metastasis biomarkers (146). In the bone,
metastatic cancer cells in the first stage after extravasation are
quiescent and mimic osteoblasts to escape immune surveillance
(147). During this phase, cancer cells recruit the surrounding
bone-derived osteoclasts and fibroblasts and indirectly modify
collagens and fibronectin (FN) deposition, thus leading to ECM
disorganization (148).

Endoplasmic reticulum (ER) stress signaling has been strongly
connected to cancer cell migration and invasion through adaptive
stress responses that include the unfolded protein response
(UPR) (149). UPR activation induced morphological changes
in cancer cells that modulated classical EMT markers such
as vimentin and E-cadherin (150, 151). Furthermore, protein
kinase RNA-like ER kinase (PERK)–eukaryotic initiation factor
2 (eIF2α)–activating transcription factor 4 (ATF4) axis, which
is involved in the ER homeostasis, has been directly associated
to EMT-dependent invasion and metastatic processes (152) by
supporting the synthesis of ECM components, i.e., collagens and
FN, and enzymes, i.e., cathepsin and MMPs, involved in ECM
remodeling (152, 153).

Epithelial to Mesenchymal Transition Shifts
Extracellular Vesicles Into a Pro-metastatic
Phenotype
EMT process is strongly associated with the change in the
cellular secretome including EVs. EVs as carriers of molecular
information have been demonstrated to influence the EMT
process. In a complementary way, tumor cells undergoing EMT
can generate EVs able to modify the surrounding TME (154).
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FIGURE 3 | Tumor cells undergoing epithelial to mesenchymal transition (EMT) interact with the surrounding tumor microenvironment (TME), composed of cellular and

non-cellular components, modifying its composition and metabolic properties. The mutual influence between tumor cells and TME promotes tumor growth,

extravasation, and metastasis formation.

In particular, EMT induction in epithelial cancer cells (A431
and DLD-1) has been demonstrated to induce quantitative
changes in the vesiculation pattern of EMT-induced A431 cells,
with the stronger release of procoagulant exosomes enriched of
tissue factor (TF) (117). Such EMT-derived EVs can interact
with endothelial cells causing a switch from their classical
anticoagulant properties (118). The same group demonstrated
that the induction of EMT by E-cadherin blockade and EGFR
stimulation enrich in a subpopulation of the CD44high/CD24low

tumor cells (119). This modification was reflected also in the EV
proteome through the detection of 30 unique proteins and the
enrichment of pathways related to cellular growth and migration

(119). Furthermore, Tauro et al. (120) demonstrated a proteome
modification in exosomes derived from mesenchymal Madin–
Darby canine kidney cells reprogrammed with H-Ras (21D1
cells), with enrichment of classical mesenchymal markers both
in the cells and their released exosomes. Several MMPs and
integrins implicated in regulating metastatic progression were
also compartmentalized in 21D1 exosomes (120). Additionally,
the authors observed an enhancement of transcription factors
that function as EMT inducers in 21D1 exosomes, suggesting
a spread of the invasive and mesenchymal phenotype through
EVs in cancer (120). In another work, exosomes derived from
Slug-overexpressing HCC cells were shown to express elevated
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levels of posttranslationally modified FN1, collagen type II
alpha 1 (COL2A1), and native fibrinogen gamma chain (FGG)
(121). These molecules have been proposed as non-invasive
biomarkers for chemoresistance and EMT in HCC. In a thyroid
cancer model, the treatment of papillary thyroid carcinoma cell
line (TPC1) with TGFβ was able to induce the release of a
higher number of exosomes in respect to the untreated cells
(122). Moreover, exosomes derived from TGFβ-treated cells
significantly upregulated the long non-coding RNA (lncRNA)
MALAT1 and the transcription factors SLUG and SOX2 in naive
treated cells, involved in TGFβ pathway and cell motility (122).
In another study, Chen et al. (113) demonstrated that through the
activation of EMT viamitogen-activated protein kinase (MAPK)/
ERK signaling pathway, highly metastatic hepatocarcinoma cells
(MHCC97H) are able to similarly stimulate the migration and
invasiveness ability of low metastatic hepatocarcinoma cell line.

Recently, different reports have shown that the formation
of a pre-metastatic niche depends on tumor-derived EVs and
their capacity to modulate adjacent and distant TME (155,
156). Grange et al. (123) demonstrated that renal CD105+

CSCs can release EVs able to activate angiogenesis and enhance
lung metastasis, accounting for the preparation of a pre-
metastatic niche in the lung. The same EVs were able to
educate MSCs to a pro-tumorigenic phenotype by stimulated
pro-angiogenetic and pro-invasive actions (124). Interestingly,
the long intergenic non-coding RNA regulator of reprogramming
(linc-ROR) was transferred from thyroid CSCs to normal thyroid
cells via exosomes, mediating the induction of EMT and the
reprogramming of the metastatic niche (122).

EVs can affect all the components of the TME. In breast
cancer, exosomes from metastatic breast cancer cells transferred
miR-105 to endothelial monolayer cells. Exosome treatment
efficiently destroys tight junctions and induced vascular
permeability promoting metastasis in distant organs (114).
Shu et al. (157) discovered the ability of human melanoma-
derived exosomes to reprogram adult dermal fibroblast
metabolism by increasing glycolysis, thus contributing to
the favorable conditions for the pre-metastatic niche. Lastly,
Costa–Silva et al. (110) demonstrated that pancreatic ductal
adenocarcinoma-derived exosomes can function at the level of
hepatic stellate cells which in turn upregulate the TGFβ and
FN production and enhance the recruitment of bone marrow-
derived macrophages. The synergistic activity of a fibrotic
microenvironment combined with pro-tumor recruitment of
bone marrow-derived macrophages suggests an active role of
pancreatic ductal adenocarcinoma-derived exosomes in directing
pancreatic cancer cells toward metastatic liver priming (110).

Huleihel et al. (158) recently showed that biologic scaffolds can
contain functional EVs bound by matrix components supporting
that EVs can be classified as structural and active components
of the ECM that participate in matrix organization as well
as contributing to the physical properties of ECM. Hakulinen
et al. (115) demonstrated the capability of EVs released from
human melanoma and fibrosarcoma cells to affect the ECM
composition through the enzymatically activemembrane-type 1–
matrix metalloproteinase (MT1-MMP). In addition, malignant
tumor-derived EVs carry also specific kallikreins and MMP

inducers that also contribute to matrix degradation, which may
facilitate tumor cell invasion and metastasis (116).

NEW TOOLS FOR THE TREATMENT OF
TUMOR MICROENVIRONMENT
COMPONENTS

Targeting the Tumor Extracellular Matrix
In recent years, studies applied to the biomarkers field for
identifying diseases and new therapeutic options have grown
exponentially (159). EMT has been demonstrated to play a
relevant role in numerous phases of tumor development such as
induction of CSC phenotype, resistance to apoptosis, migration,
and metastasis formation, being a promising therapeutic target
in cancer (160). However, the possibility to directly affect the key
molecules involved in EMT is challenging.

An alternative approach followed in different preclinical
studies is to directly target the EMT-inducing TME to interfere
in cancer metastatic and invasive profiles (160). Both the
formation of pre-metastatic niche and the following tumor
migration to distant sites have been strongly implied in
the involvement of ECM. For this reason, tumor ECM has
been proposed as a possible target for anticancer therapy.
The use of methylumbelliferone, an HA synthesis inhibitor
supplemented with zoledronic acid, a conventional therapeutic
agent for bone metastases, was more effective than the single
therapies in suppressing proliferation, migration, and invasion
of murine lung carcinoma cell lines (161). Moreover, the
combination therapy showed a stronger effect in the reduction
of metastatic bone lesions in vivo (161). The use of a neutralizing
antibody directed against the ECM component periostin (PN1-
Ab) produced by mouse breast cancer cells significantly
inhibited tumor cell proliferation and invasion. Moreover, the
administration of PN1-Ab prolonged cell survival through
inhibition of the lung metastasis formation in vivo (162). In
the same pathological context, targeting the hypoxia-dependent
ECM enzyme LOX suppresses migration and invasion of MDA-
MB-231 cells in a FAK-dependent inhibition mechanism (163).
In addition, the use of epigenetic drugs, targeting EMT-induced
epigenetic modification in the ECM component ADAM19 (136),
has been proposed as an anticancer therapy in combination
with conventional drugs in metastatic NSCLCs. Affecting ECM
components with pharmacological approaches based on single
molecules already gave disappointing results or limited benefits
as reported by Paolillo and Schinelli (142). For this reason, almost
all the different approaches hypothesized to neutralize metastasis
formation are combination treatments, as already described for
other pathologies, that are affecting multiple signaling pathways
and TME components involved in the metastatic process (160).

Another approach proposed is the use of ECM molecules for
drug delivery purposes, taking advantage of uniquemodifications
induced by EMT in the TME, to achieve a potent and selective
delivery system. For example, engineered HA-based conjugates
have emerged as a promising strategy to efficiently target tumors
with drugs exerting poor solubility and strong side effects (164).
Lee et al. (165) demonstrated that HA-conjugated paclitaxel
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(PTX) strongly inhibited proliferation and increased apoptosis
of ovarian cancer cells in xenograft nude mice. Moreover, HA-
PTX increased the survival rate of mice, significantly reduced the
density of microvessels in tumor tissues, and eliminated ascites
formation in transplanted ovarian cancer cell lines in the same
model (166). HA-mediated targeting of intracellular nucleic acids
and other drugs has great potential for clinical application (166).
Park et al. (167) demonstrated that intratumoral injection of
vascular endothelial growth factor (VEGF) siRNA conjugated
with modified HS molecules dramatically reduced tumor growth
and directly regulated tumor vasculature and VEGF expression
in melanoma tumors.

Targeting the Tumor Extracellular Vesicles
The capabilities of EVs to “educate” distant cells and prepare
the so-called “soil” for metastasis formation classified EVs as a
therapeutic target for cancer treatment. A block in EV uptake can
represent a strategy to affect EV capability to modify TME and
prepare the pre-metastatic niche. Using this approach, Carney
et al. (168) demonstrated the capacity of LXY30 peptide to
selectively bind α3β1 integrin overexpressed on tumor cell-
derived exosomes. LXY30-modified Dil-EVs from ovarian cancer
cells reduced cell uptake up to ∼80% in respect to their naive
counterpart (168) (Figure 4). The selectivity of LXY30 to tumor
EVs and not to non-tumor EVs strongly improves its application
in therapeutic and diagnostic nanomedicine (168).

The transfer of genetic information (ncRNAs and mRNAs)
through cancer and non-cancer EVs is a potential mechanism
of intercellular communication in TME. Therefore, modulating
or changing the genetic content of EVs might be a strategy to
prevent cancer propagation. In this direction, EVs have also been
proposed as a delivery carrier for antitumor molecules. This is
in line with previous reports that demonstrated that naive EVs
from different sources of MSCs were able to exert an antitumor
activity in different cancer cell models (169–171). By applying
modification in the EV molecular content, Ota et al. (172)
observed that miR-30e-enriched EVs can reduce proliferation
and invasion of cholangiocarcinoma cell (CCA) through direct
regulation of EMT (172). Moreover, EVs carrying miR-379
generated from engineered MSCs impaired metastatic breast
cancer growth in vivo, acting partially through the regulation of
COX-2 (173).

Extracellular Vesicles as Fingerprint of
Tumor Metabolic State
Recent studies have proposed the use of tumor-derived EVs
as tools for cancer detection and monitoring (174). EVs are
released from the primary tumor and metastasis, and they
can be directly detected in biofluids, providing real-time non-
invasive tumor tracking. Using the next-generation sequencing
(NGS) technology, Möhrmann et al. (175) demonstrated that
the detection of common mutations (BRAF, RAS, and EGFR)
in plasma exosomal nucleic acids (exoNAs) showed a stronger
sensitivity compared with other clinical testing plasma cell-
free DNA (cfDNA). The same approach was applied by using
another biological matrix as a source of EVs, the urine. Clos–
Garcia et al. (176) were able to detect selective metabolites

FIGURE 4 | Example of a therapeutic approach based on the targeting of

tumor extracellular vesicles (EVs). Inhibition of the EV uptake by SKOV-3 cells

treated with increased concentrations of LXY30 peptide (A) by measuring

fluorescence intensity in target cells *p < 0.005. (B–F) Representative laser

scanning microscope images of SKOV-3 cells treated with unlabeled (B) or

labeled DiL-EV in combination with different concentrations (C–F) of LXY30

peptide. Contribution from Carney et al. (168). Copyright Wiley-VCH Verlag

GmbH & Co. KGaA. Reproduced with permission.
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in urine EVs of PCa patients. They also demonstrated that
the most elevated metabolites detected in PCa urine EVs were
correlated to steroid biosynthesis and associated with increased
perineural invasion (176). Interestingly, EVs isolated from tumor
proximal body fluids can offer a real representation of the
metabolic alterations occurring at the tumor site. In endometrial
cancer (EC), Martinez–Garcia et al. (177) identified a uterine
fluid aspirate-based EV protein signature to diagnose EC and
classify tumors subtypes. In another study, Sequeiros et al. (178)
identified a set of proteins in urinary EVs able to discriminate
high- and low-grade PCa, reflecting the histological changes
in tumor specimens. This study underlines the potential to
produce a new diagnostic assay for EV-based liquid biopsies
using proteomic approaches for the diagnosis and prognosis of
PCa (178).

MiRNAs isolated from tumor-derived EVs are more stable
and therefore considered to be more reliable biomarkers (179).
In addition, EVs containing lncRNAs are also other attractive
options as diagnostic/prognostic factors for cancer progression
(180). Baumgart et al. (181) identified a miRNA panel in
tumor tissues as well as in urinary EVs able to discriminate
muscle-invasive bladder cancer (MIBC) patients from healthy
individuals. Similarly, Roman–Canal et al. (182) characterized
a cohort of miRNAs in EVs derived from ascitic liquid
and peritoneal lavages of colorectal cancer (CRC) patient as
promising biomarkers for CRC diagnosis. Berrondo et al. (183)
identified HOTAIR and other tumor-associated lncRNAs in the
urinary exosomes derived from urothelial bladder cancer (UBC).
Loss of HOTAIR was able to reduce the expression of EMT genes
as well as in vitro invasive properties in UBC cell lines, suggesting
a cardinal role for exosome-derived HOTAIR in tumor initiation
and progression (183).

Recent studies have demonstrated the enrichment of specific
surface molecules in EVs derived from a variety of tumor
cells, accounting for their use as disease biomarkers. Sharma
et al. (184) demonstrated melanoma tumor-derived exosomes
(MTEX) contain on their surface a set of melanoma-associated
antigens (MAAs) that were not detectable in exosomes produced
by normal cells. By applying immune-based capture technique
for the CSPG4 epitope, the authors identified a specific protein
profile of MTEX that was qualitatively and quantitatively
distinct from normal cell-derived exosomes in plasma of
patients with melanoma. In a similar way, Bai et al. (185)
recently developed an immuno-based microfluidic chip using
a quantum dot multiplex detection system to characterize lung
cancer exosomes for the expression of different cancer-related
surface molecules.

Ideally, for cancer diagnostic purposes, the development of
tools to identify biomarkers in tumor–EV subpopulations should

be designed, considering the following needs: (i) a sensitive
detection method that considers the small proportion of tumor-
derived EVs in respect to the total non-tumor secretome in
the body fluids; (ii) the selectivity in the chosen molecules
that can separate tumor from non-tumor EV background;
and (iii) the representativity in the tumor metabolic state
that can discriminate stages and progression/relapse during the
clinical treatment.

CONCLUSION

In cancer, EMT appears as a key pathological process
characterized by abnormal metabolic reprogramming of cancer
cells toward an invasive and pro-metastatic phenotype. The
signals responsible for the activation of the EMT can derive
directly from an alteration of cancer cell metabolism. However,
extrinsic inductors, coming from the cellular and non-cellular
TME components, can directly participate in the EMT process
modulating cancer cells toward a pro-tumorigenic and pro-
invasive phenotype. In turn, tumor cells undergoing EMT
modify the surrounding environment that actively helps
the tumor to invade and metastasize. The non-cell TME-
derived components, participating actively in the tumor
spread, have been proposed as possible tools for cancer
monitoring and treatment, being on one side biomarkers
of disease regression/relapse (i.e., EVs) and on the other
side possible direct targets for new-combination anticancer
personalized medicine.
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