
On the Safety of Automotive Systems Incorporating
Machine Learning based Components

A position paper
Mohamad Gharib∗, Paolo Lollini∗, Marco Botta†, Elvio Amparore†, Susanna Donatelli†, Andrea Bondavalli∗

∗ University of Florence, Italy
{mohamad.gharib,paolo.lollini,andrea.bondavalli}@unifi.it

† University of Torino, Italy
{botta,amparore,susi}@di.unito.it

Abstract—Machine learning (ML) components are increasingly
adopted in many automated systems. Their ability to learn
and work with novel input/incomplete knowledge and their
generalization capabilities make them highly desirable solutions
for complex problems. This has motivated the inclusion of ML
techniques/components in products for many industrial domains
including automotive systems. Such systems are safety-critical
systems since their failure may cause death or injury to humans.
Therefore, their safety must be ensured before they are used in
their operational environment. However, existing safety standards
and Verification and Validation (V&V) techniques do not prop-
erly address the special characteristics of ML-based components
such as non-determinism, non-transparency, instability. This posi-
tion paper presents the authors’ view on the safety of automotive
systems incorporating ML-based components, and it is intended
to motivate and sketch a research agenda for extending a safety
standard, namely ISO 26262, to address challenges posed by
incorporating ML-based components in automotive systems.

Index Terms—Automotive systems, Functional safety, Machine
learning, ISO 26262, ADAS

I. I NTRODUCTION

The last few years have witnessed an increasing adoption
of Machine learning (ML) components in many automated
systems covering almost all the main domains of our lives
[1]. Their ability to learn and work with incomplete knowl-
edge [2], and their generalization capabilities make them
highly desirable solutions for complex problems [3]. This
has motivated many system manufacturers to adopt ML-based
components in their products, and the use of such components
has emerged in many industrial domains (e.g., medical, auto-
motive), performing complex tasks such as pattern recognition,
image recognition, and even control [3]. However, most of
the systems in these domains are classified as safety-critical
systems, where their failure may cause death or injury to
humans [4]. Thus, their safety should be assessed and assured
before they are used in their operational environment [5].

Typically, the safety of such systems can be assessed by
their compliance with safety standards [5], [6], such as the
Road vehicles - functional safety (ISO 26262) [7]. Yet the
adequacy of such standards for ML remains controversial since
they, usually, do not address the special characteristics of ML-
based components such as the presence of non-determinism,

limited or missing transparency, uncertain error rate, instability
of results [3], [8], [9]. Not only the certification of ML for
safety-critical systems is problematic, but also their Verifica-
tion and Validation (V&V), mostly due to the same previously
mentioned ML special characteristics [3], [10], [11].

In particular, the traditional concept of safe software and
V&V process does not apply to machine learning. The fact that
the software is correct (it is free from bugs) does not imply
that the recognition process will behave as expected since it
can fail due to several reasons including the limitations ofthe
machine learner itself. For example, a recent article showed
that the change of a single pixel on the frame of a camera could
lead the machine learner to completely different decisions
[12], without exploiting software bugs but only because of
the nature of the trained network.

Currently, the automotive industry is reacting to this prob-
lem with the development of a new standard, SOTIF (Safety
of the intended functionality) [13], which is currently in its
draft stages. However, this standard is still far from proposing
a definitive approach to the safe use of machine learning.
Other domains, where the application of machine learning and
autonomy is still limited, are much behind.As per today, there
is neither a safety standard for certifying automotive systems
that incorporate ML-based components, nor a concrete agreed
upon method for their V&V. Thus, there is no sufficient
evidence to assure their safety.

This position paper presents the authors’ view on the safety
of automotive systems incorporating ML-based components.
We discuss the limitations of a well-adopted safety standard,
namely ISO 26262/SOTIF1, and then the activities required to
extend it to address challenges posed by incorporating ML-
based components in automotive systems. The rest of the
paper is organized as follows; Section II presents the research
baseline, and we describe an illustrative example in Section III.
In Section IV, we present the problem statement and research
questions, while we discuss the possible solutions in Section
V. Finally, we conclude the paper in Section VI.

1The focus will be on ISO 26262 since SOTIF is currently in its draft stages
and not publicly available
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II. RESEARCHBASELINE

A. ISO 26262

ISO 26262 [7] is a functional safety standard developed with
the main objective to provide guidelines and best practicesto
increase the safety of Electronic and Electric (E/E) systems
in vehicles. It covers the overall automotive safety life cycle,
and it focuses on the identification of hazards related to E/E
systems and their associated risks. Then, the associated risks
are assigned an Automotive Safety Integrity Level (ASIL),
which can be classified under, Quality Management (QM2),
ASIL A, ASIL B, ASIL C, and ASIL D, where ASIL D
requires the highest risk reduction effort.

As previously mentioned, the adequacy of ISO 26262 for
ML remains controversial since it, usually, does not address
the special characteristics of ML-based components [1]. More
specifically, ISO 26262 deals with ML-based components as a
traditional software system (Part 6 of the ISO 26262 - product
development at the software level). Despite this, some attempts
have been made to provide recommendations/suggestions on
how to adapt some of these standards to accommodate ML
(e.g., [1], [11]).

B. Machine Learning and Safety

Recent advances in ML algorithms, like Deep Learning
(DL), have resulted in an impressive performance boost for a
broad spectrum of complex, real-world tasks including object
recognition, image segmentation, and speech recognition.ML-
based components are increasingly getting deployed in safety-
critical systems and applications such as self-driving cars
[14], automated passenger screening, and medical diagnosis.
Artificial Neural Networks (ANN) are inspired by the physical
structure of the human brain [15], and they are the basis of
modern DL systems. ANN are organized into well-defined
structures, such as discrete layers, grids, or controlled loops.

Engineering a safe system always carries some level of
epistemic uncertainty, once it is dependent on the knowledge
that the people involved in the safety assessment have of all
the different aspects of the system, including its expected
behavior. With the introduction of ML, the challenge of
managing epistemic uncertainty is increased by the impos-
sibility of being certain that the ML algorithm will make a
correct prediction. An ML algorithm makes predictions based
on a model calculated from its input data. Inherently, these
predictions carry some chance of being wrong. Learning is
an inductive process; whereas in deduction one can guarantee
that a conclusion follows from its premises; the same does
not apply in induction. Making the case that a system whose
behavior cannot be fully predictable is sufficiently safe isnot
obvious. It breaks the classical paradigm of high-integrity
systems’ development. The natural step forward is then to
understand the factors contributing to the accuracy of ML
systems and if and how it is possible to limit the magnitude
of misbehavior.

2QM does not require a risk reduction effort

The use of learned components in safety-critical systems
poses several challenges. On one hand, the complexity of
deep neural networks, with millions of parameters, makes it
difficult to verify and test such systems. Also, the traceability
of safety requirements is lost in the network. At the same
time, their ability to generalize to novel situations is useful
in many tasks, but a major challenge during verification and
validation. Although there are several safety principles and
methods for engineering safer systems in the literature (e.g.,
[9], [16], [17]), no proper effort has been devoted on how they
should be adapted to address challenges posed by the use of
ML-based components.

III. I LLUSTRATIVE EXAMPLE : MANEUVER ASSISTANCE

SYSTEM

Our illustrative example is an Advanced Driver Assis-
tance Systems (ADAS), namely Maneuver Assistance System
(MAS) that is expected to increase the drivers safety by
detecting and preventing unintended maneuvers3.

MAS will collect information about the vehicle, its sur-
roundings, and the driver’s 1- head pose and motion that is
used to identify the driver’s visual orientation and predict some
of its maneuvers (e.g., head motion may precede a maneuver);
2- hands and foot location and motions that is used to predict
some driver’s actions. This information is analyzed by an ML-
based component to identify whether the maneuver is intended
or not depending on an already learnedintended/unintended
maneuvers patterns, i.e., if there is a need and/or desire for
such maneuver it is considered anintendedone. Otherwise,
it is considered as anunintendedone. Accordingly, MAS
should allow intended maneuvers and preventsunintended
ones depending on lock actuator.

MAS is a good example to represent an automotive system
that incorporates ML-based component, where its failure to
identify intended/unintendedmaneuvers and act accordingly
in a reasonable time can lead to life-threatening situations.

IV. PROBLEM STATEMENT AND RESEARCHQUESTIONS

Considering the previous example, the ML-based compo-
nent may wrongly categorize an intended maneuver as an
unintended one, which will prevent the driver from perform-
ing an intended maneuver, or it may wrongly categorize an
unintended maneuver as an intended one, which will allow an
unintended maneuver to be performed. Both of these situations
can be life-threatening. To mitigate such threat, MAS should
be able to minimize the wrong identification of the type of
the maneuver and it should also be able to minimize the
consequences of wrong identification when occurred.

In general, we need to research and investigate how ML-
based components can be used safely in automotive systems.
More specifically, any automotive system that incorporates
ML-based components should be designed in a way that
minimizes the ML-based component related errors, faults and
failures. Moreover, it should be able to assess the occurrence

3For more information about the example, please refer to [18]



and consequences of such errors, faults and failures. Finally,
it should be able to mitigate any safety-related consequences
due to such errors, faults and failures. In order to achieve that,
we need to answer the following questions:

• RQ1: How ML-based components are different from
traditional software components with respect to safety-
related aspects?As previously mentioned, although if an
ML-based component is free from bugs it still can fail to
behave correctly due to several reasons.

• RQ2: How the main safety-related concepts should be
modified to find an adequate context to limit the safety
risks of automotive systems that incorporate ML-based
components?Since ML-based components and standard
software components are different in nature, does exist-
ing safety-related concepts (e.g., errors, faults, failures)
applies to ML-based components as they are, or they
need to be adapted and modified to capture the challenges
posed by the use of ML-based components?

• RQ3: How can we assess the likelihood and severity of
ML-based components errors, faults and failures?As any
safety-related consequences of ML-based components
errors, faults and failures should be mitigated, we need
to provide techniques enabling such assessment.

• RQ4: Do existing safety principles applies to the design
of automotive systems that incorporate ML-based com-
ponents?Several safety principles for engineering safer
systems have been proposed4: do such principles apply
to assure the safe design of automotive systems that
incorporate ML-based components as they are or they
need to be adapted?

• RQ5: How the ISO 26262 standard should be extended to
address the use of ML-based components?As previously
mentioned, ISO 26262 deals with ML-based components
as a traditional software system. Therefore, we need
to investigate how it should be extended to address
challenges posed by incorporating ML-based components
in automotive systems.

V. PROPOSEDSOLUTIONS AND DISCUSSION

In this section, we present and discuss our research agenda
along with our ideas to answer the research questions. The
research agenda has been structured in a process of five steps
(depicted in Fig. 1), each of these steps aims to answer its
corresponding research questions:

• Step 1. Investigating the specific characteristics of ML-
based components with respect to safety-related aspects:
ML makes predictions based on a model calculated
from its input data. Inherently, these predictions carry
some chance of being wrong. Learning is an inductive
process; whereas in deduction one can guarantee that a
conclusion follows from its premises, the same does not
apply in induction. Therefore, it is required to understand
the factors that might contribute to the errors of ML
predictions and if and how it is possible to limit such

4For extensive list of safety principles please refer to [17]

errors. In particular, the specific characteristics of ML
to be investigated are their non-determinism (i.e., our
inability to predict which is the output for a specific
input), non-transparency (i.e., our inability to scrutinize
the reasons of a given decision), their error rate (i.e.,
we can only estimate the final error rate with a given
degree of confidence), and their instability (i.e. when
small change in the input, typically not significant for
the human, produces very different output).

• Step 2. Developing a conceptual model for modeling
automotive systems incorporating ML-based components:
in order to design safer systems, first we should be able
to capture/model their main safety aspects. Therefore, the
results of the analysis performed at step 1 will be used to
develop a conceptual model that identifies the main safety
concepts (e.g., errors, faults, failures) of both automotive
systems and ML-based components, the different inter-
relations among these concepts, and how such concepts
should be adapted/modified to be used for modeling
automotive systems incorporating ML-based components.
One main purpose of this model is reducing the cognitive
complexity while incorporating ML-based components in
automotive systems by providing simple but expressive
concepts for modeling the main safety-related aspects. In
addition, a Model Driven Engineering (MDE) framework,
and a supporting tool could be developed at this step to
facilitate the design of automotive systems incorporating
ML-based components.

• Step 3. Developing safety assessment techniques:the
conceptual model developed in step 2 will be used as
a base to develop techniques for assessing the safety of
automotive systems incorporating ML-based components.
These techniques will enable to detect the occurrence of
ML errors, faults and failures as well as assessing their
consequences, which can be used for avoiding, tolerating
and/or mitigating any safety-related consequences that
may arise due to such errors, faults and failures. We be-
lieve developing model-based stochastic techniques will
be a good option for enriching the MDE to perform the
required safety assessment activities.

• Step 4. Developing safety principles for assuring the safe
incorporation of ML-based components in automotive
systems:taking into consideration the safety assessment
techniques developed in step 3, we will conduct an exten-
sive analysis of existing safety engineering principles to
identify which of such principles can be adopted as they
are, when and how they need to be adapted to address the
characteristics of ML-based components, and when novel
safety principles specialized for automotive systems in-
corporating ML-based components need to be developed.
The final result of this activity will be a set of safety
principles specialized for assuring the safe incorporation
of ML-based components in automotive systems. This
list will be used to develop architectural principles and
design guidelines for assuring the safety of automotive
systems incorporating ML-based components (e.g., fail-
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Fig. 1. The research process

safe depending on redundancy and/or segregation).
• Step 5. Extending ISO 26262 standard to address the use

of ML-based components:we will investigate how the
safety standard ISO 26262 should be adapted/extended
to consider the proposed solutions developed within this
research. In particular, the authors will mainly focus on
Part 6 of the ISO 26262 - product development at the
software level, trying to extend and modify its Clauses
(6-6, 6-7, 6-8, 6-9, 6-10, and 6-11) in accordance to
the findings and results of this research. In addition, we
intend to consult or even involve members of the ISO
26262 standardization body in this step.

VI. CONCLUSION

In this position paper, we argued that the safe use of ML-
based components in automotive systems must be assessed
and assured before as such systems are classified as safety-
critical systems, since ML-based components are subject to
uncertainty and instability due to the nature of the trained
network as well as their execution environment. Our argument
is based on the ML and safety related literature concerning
the automotive domain in which, we were not able to find
neither a safety standard for certifying automotive systems
that incorporate ML-based components, nor a concrete agreed
upon method for their V&V. In addition, we presented our
view on the safety of automotive systems incorporating ML-
based components. Then, we have motivated and provided a
research agenda for extending the ISO 26262 (Road vehicles
- functional safety standard), in order to address challenges
posed by incorporating ML-based components in automotive
systems.
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