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Abstract. Finding good variable orders for decision diagrams is essen-
tial for their effective use. We consider Multiway Decision Diagrams
(MDDs) encoding a set of fixed-size vectors satisfying a set of linear
invariants. Two critical applications of this problem are encoding the
state space of a discrete-event discrete state system (DEDS) and en-
coding all solutions to a set of integer constraints. After studying the
relations between the MDD structure and the constraints imposed by
the linear invariants, we define iRank, a new variable order metric that
exploits the knowledge embedded in these invariants. We evaluate iRank

against other previously proposed metrics on a benchmark of 40 different
DEDS and show that it is a better predictor of the MDD size and it is
better at driving heuristics for the generation of good variable orders.

Keywords: Decision diagrams, variable order metrics and computation.

1 Introduction

Decision diagrams (DDs) are a popular data structure to encode large sets of
structured data, for example vectors whose elements take values over finite do-
mains, but it is well-known [10] that the size of the DD strongly depends on
how the structure of the data (its “variables”) is mapped to the structure of the
DD (its “levels”). The problem of determining the association of variable(s) to
levels is the “variable ordering problem” and it is known that finding an optimal
order is an an NP-complete problem [9] for any DD class, including binary DDs
(BDDs [10]) and multiway DDs (MDDs [19]). This has given rise to a variety
of metrics (to compare the effectiveness of two orders without actually building
the corresponding DDs) and of heuristics (to compute sub-optimal orders, often
by attempting to optimize a given metric). DDs play a central role in many sys-
tem verification tools [4, 11, 14, 20, 22], where they typically support state space
exploration. Tools often make use of general-purpose DD libraries [8, 18, 26, 27].
Libraries typically support dynamic reordering to improve the current order at
run-time, while the definition of an initial order (static ordering) is typically up
to the verification tool, which can rely on domain knowledge. The two problems
are synergistic: reordering works better if the initial order is at least fairly good.



Our research seeks to find good variable order metrics and good variable or-
der heuristics for MDDs encoding sets of fixed-size vectors, when these vectors
satisfy some linear invariants. We want to answer whether it is possible to lever-
age invariant information to define effective metrics and heuristics for variable
order. Two applications where this is important are encoding the state space of a
discrete-event discrete state system and encoding all solutions to a set of integer
constraints. In this paper, we concentrate on the first problem, but also address a
special case of the second. Specifically, we study the relationship between MDDs
and linear invariants with integer coefficients, and define two new metrics, PF
and iRank, and associated heuristic and meta-heuristic. PF and iRank exploit the
constraint imposed by the invariants. Our evaluation shows that iRank is superior
to any other metric we consider, in all experiments we performed.

We do not discuss the state-of-the art on heuristics, see [7] for a full survey,
but only metrics and on how metric optimization can guide a meta-heuristic.
After the necessary background in Section 2, Sections 3 and 4 define the metrics
PF and iRank, based on a number of observation and propositions on the relation
between MDD and invariants. Section 5 experimentally evaluates the two metrics
against several other metrics on 40 different models, considering thousands of
variable orders. Section 6 summarizes our results and discusses future work.

2 Background

Let B = {⊥,>}, N and Z denote the set of booleans, natural numbers, and
integers, respectively. All other sets are denoted by calligraphic letters, e.g., A.

2.1 Discrete-event discrete-state system and their state space

A discrete-event discrete-state system can be generally described by providing:
(1) The set of potential states Spot , defining the type of system states. We assume
Spot = NV ; i.e., a state m is a valuation of a finite set V of natural variables.
(2) The state minit ∈ Spot , describing the initial state of the system.
(3) The relation R ⊆ Spot × Spot , describing the state-to-state transitions; if
(m,m′) ∈ R, the system can move from m to m′ in one step. We assume that R
is defined by a finite set of events E and a function Effect : E×Spot → (Spot∪{◦}),
specifying the unique state m′ reached if event e occurs in state m, none if
Effect(e,m) = ◦ (e is disabled in m). We write m

e
⇁m′ iff Effect(e,m) = m′ 6= ◦.

The reachable states are Srch = {m : ∃e1, . . . , en ∈ E ,minit
e1⇁ · · · en⇁m} and,

for such a system, an invariant is a boolean function f : Spot → B with the
property that it evaluates to > in all reachable states: m ∈ Srch ⇒ f(m), while
it may be either > or ⊥ in the unreachable states Spot \ Srch .

We specify DEDSs as Petri nets, because of their widespread use and the large
body of literature on Petri net invariants. In Petri net terminology, the evaluation
of variables describes the number of tokens in the set P of places (thus the state,
or marking, is a vector in NP), the events E correspond to the transitions T , while
two NP×T matrices C− and C+ define the system evolution. Effect(t,m) = m+



C+[P, t]−C−[P, t] (transition firing) iff m ≥ C−[P, t], otherwise Effect(t,m) =
◦, i.e., t is disabled in m, where ≥ is interpreted component-wise. The incidence
matrix C = C+−C− is the net change to the marking caused by firing transition
t is C[P, t]. Figure 1 shows two Petri nets used as running example. Places
are shown as circles, transitions as bars, and C− (C+) as incoming (outgoing)
arcs for transitions with the corresponding value in C− (C+) shown on the arc
(omitted if 1). The incidence matrix and initial marking are next to the nets.

A p-flow is a vector π ∈ ZP \ {0} such that πT · C = 0, and its support
is Supp(π) = {v ∈ P : π[v] 6= 0}. A p-flow π implies a linear invariant of the
form ∀m ∈ Srch : πT ·m = πT ·minit , where πT ·minit = Tc(π) is obviously a
constant value, the token count of the invariant, which depends only on minit .
If clear from the context, π may refer to either a p-flow or the implied invariant.

P-flows with no negative entries are called p-semiflows. Let F be the set
of p-flows, F+ the set of p-semiflows, and F− = F \ F+ the p-flows that are
not p-semiflows. Since multiplying a p-flow by a non-zero integer results in a p-
flow, these sets are either empty or infinite. Figure 1 shows the minimal p-flows
(defined later) as column vectors, with the token count below the vector.

A p-semiflow π describes a conservative invariant, which implies a bound
m[v] ≤ Tc(π)/π[v] on the number of tokens in each place v of the support of π
for any reachable marking m. Column “bnd” in Figure 1 reports these bounds.
The two p-semiflows in Figure 1(A) express the following invariants:

f1 : ∀m ∈ Srch , m[P0] + m[P1b] + m[P2b] + m[P3b] = 2

f2 : ∀m ∈ Srch , m[P0] + m[P1a] + m[P2a] + m[P3a] = 2.

These in turn imply that the number of tokens in each place is bounded by 2.
We assume that each place v is bounded by some nv ∈ N, and redefine Spot as
×v∈P [0, 1, . . . , nv]. This ensures that Srch is finite and therefore can be encoded
in a (large enough but finite) MDD. This is the case if the Petri net is covered
by conservative invariants, i.e., each place is in the support of some p-semiflow.

Work on Petri net invariants has mainly targeted F+ rather than F , possibly
because it is easier to compute properties, like the bounds of places, with F+.
On the other hand, F can be characterized by a basis (whose size equals to the
dimension of the null space of C, thus cannot exceed the smaller of |P| and
|T |), while F+ can only be characterized by a minimal generator, the smallest
set of vectors that can generate its elements through non-negative integer linear
combinations of its elements. It has been shown [15] that this set is finite, is
unique (thus we can denote it as F+

min), and consists of all minimal p-semiflows
(where a p-semiflow is minimal if the g.c.d. of its coefficients is 1 and its support
does not strictly contain the support of another p-semiflow). However, F+

min may
have size exponential in |P|. A classic example of this is a Petri net sequence of
fork and join models with n + 1 transitions and 2n + 1 places whose F+

min has
size 2n. Figure 1(B) shows the case n = 3. The reader can find in [15] full details
and a thorough analysis of the cost of computing F+

min.
In addition to Srch , we can define Ssat = {m ∈ NP : ∀π ∈ F ,m · π =

Tc(π)}. Obviously Srch ⊆ Ssat . We let S refer to either when the distinction is
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Fig. 1. Two Petri nets, their incidence matrices, and their p-flows.

not relevant. Note that Ssat is a superset of the linearized reachability set [21]
{m ∈ NP : ∃ y ∈ NT ,m = minit + C · yT }, used in Petri net theory to devise a
semi-decidable procedure for safety properties.

2.2 Multiway decision diagrams

Definition 1 (MDD). Given a global domain X =×L
k=1Xk, where each local

domain Xk is of the form {0, 1, . . . , nk} for some nk ∈ N, an (ordered, quasi-
reduced) MDD over X is a directed acyclic graph with exactly two terminal
nodes, > and ⊥, at level 0 (we write >.lvl = ⊥.lvl = 0), with each non-terminal
node p at some level p.lvl = k ∈ {1, . . . , L} having one outgoing edge for each
i ∈ Xk, pointing to a node p[i] at level k−1 or to ⊥, and with no duplicates (there
cannot be nodes p and q at level k with p[i] = q[i] for all i ∈ Xk) or redundant
nodes (node p at level k is redundant if p[0] = p[i] for all i ∈ Xk) pointing to
⊥. The function fp : X → B encoded by an MDD node p is recursively defined
as fp(i1, . . . , iL) = fp[ik](i1, . . . , iL) if p.lvl = k > 0, and fp(i1, . . . , iL) = p
if p.lvl = 0. Interpreting fp as an indicator function, p also encodes the set
Sp ⊆ X , defined as Sp = {(i1, . . . , iL) : fp(i1, . . . , iL)}. This is the set of variable
assignments compatible with the paths from p to >. �

MDDs are a canonical representation of subsets of X : given MDD nodes p
and q at the same level, Sp = Sq iff p = q. We observe that quasi-reduced MDDs
differ from the more common fully-reduced MDDs, which allow edges to skip
levels by eliminating all redundant nodes, not just those encoding ⊥. As it will
be clear, though, the quasi-reduced MDD encoding the state space of a Petri net
covered by invariants cannot contain redundant nodes, thus coincides with the
fully-reduced MDD for such models. When drawing MDDs, edges point down
and we omit node ⊥, edges pointing to it, and the corresponding cells in the
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Fig. 2. P-semiflows and MDD for two variable orders for the net in Fig. 1(A).

originating node, so that, if node p at level k with Xk = {0, . . . , 4} is drawn as

2 3 , it means that p[0] = p[1] = p[4] = ⊥. We also omit node > and edges
pointing to it, but not the corresponding cell in the originating node.

MDDs have been successfully employed to generate and store the reachable
state space of DEDSs, in particular Petri nets, using fixpoint symbolic iterations.
The MDD representation of a state space Srch is computed as the least fixpoint
of the equation Z = Z ∪ {minit} ∪ {m′ : m ∈ Z ∧ ∃e ∈ E ,m e

⇁m′}, while the
generation of Ssat simply needs to consider one flow (and associated invariant)
at a time, thus can be achieved by performing exactly |F| − 1 intersections of
the sets of assignments satisfying each individual constraint.

Since we focus on the size of the MDD encoding S, we only consider MDDs
with a single root node r, so that Sr = S. Letting Nk be the set of MDD nodes
al level k, we characterize the MDD size in terms of its nonterminal nodes N ,
i.e., |N | = ∑L

k=1 |Nk| (although, unlike for BDDs [10] where nodes have exactly

two outgoing edges, the number of MDD edges
∑L

k=1 |{(p, i) : p ∈ Nk, p[i] 6= ⊥}|
could also be a meaningful measure of size). The first step to generate S is
to map the places P of the Petri net to the L levels of the MDD. We limit
ourselves to mapping each place to a different level, i.e., requiring a variable
order λ : P → {1, . . . , L}, where L = |P|. It is known that the choice of λ
can exponentially affect the size of MDD and finding an optimal mapping is
NP-complete [9]. We stress that we consider only the final size of the MDD. In
reality, the fixpoint iterations to compute Srch or the intersections to compute
Ssat can lead to an intermediate size of the MDD (peak size) that is normally
much larger than the final size. However, our work to reduce the final MDD size is
largely orthogonal to other strategies (like saturation [13] for Srch construction)
aimed at reducing the peak size, thus both can be employed to improve efficiency.

The MDDs in Figure 2 encode Srch for the Petri net of Fig. 1(A), for two
different variable orders. More precisely Figure 2 shows, left to right, and for
each order, the variable order (with level L at the top), the place bounds, the
p-semiflows F+

min (with the token count at the bottom), and the corresponding
MDDs. The variable order in (B) is poor, resulting in an MDD with 40 nodes,
while that in (A) requires only 19 nodes.



2.3 Metrics for variable orders

A metric M is a perfect predictor of MDD size if M(λ1) ≤ M(λ2) implies
|N (λ1)| ≤ |N (λ2)| for any variable orders λ1 and λ2, where N (λ) is the number
of nodes in the MDD for S when using variable order λ; no efficiently-computable
perfect predictor is known. Metrics have been defined based on the span of events
in the incidence matrix C, on the bandwidth of C, on the center of gravity of
events, and on p-semiflows. Metrics that consider the span of each event t (dis-
tance between the top and bottom nonzero in C−[P, t] or C+[P, t] for the given
variable order) are the Normalized sum of Event Span (NES), the Weighted NES
(WES), Sum of Span (SOS) [24], Sum of Tops (SOT) [11] and Sum of Unique
and Productive Spans (SOUPS) [25]. Classic bandwidth reduction techniques
from linear algebra were applied to variable order computation for the first time
in [23]. The corresponding metrics are Bandwidth (BW), Profile (PROF), or
Wavefront (WF), computed on a squared matrix derived from the incidence ma-
trix C. Point-transition spans (PTS) is the metric used as a convergence criterion
by the widely used heuristic Force [3], an algorithm for multi-dimensional clus-
tering of graphs that has been adapted to variable order generation. A center
of gravity for the variables is defined and the orders are measured in terms of
hyperdistance of the variable from the center of gravity. PTSP [6] is a variation
of PTS to consider also the effect of p-semiflows in the PTS variable clustering.
Finally, the p-semiflow span (PSF) is the metric optimized by the heuristic de-
fined in [5], which works by ordering the variables according to p-semiflows. PSF
is a measure of the proximity of places that belong to the same p-semiflow.

An overview of these metrics can be found in [6], which also studies their
coefficient of correlation to determine the predictive power of each metric over a
large set of models and of orders. All models in the study are Petri nets, mostly
conservative. We now provide some details for SOUPS and PSF which, together
with PTSP , have been reported as valuable predictors [6].

SOUPS modifies the sum of transition spans (SOS) metric [24] by considering
only once the maximal common portion of multiple transition spans having
the same effect on the marking and avoids counting the bottom portion of a
transition span if it checks but does not change the marking of the corresponding
places. SOUPS performs particularly well in conjunction with saturation [13], as
it tends to result in even smaller peak MDDs. SOS and SOUPS, just like WES
and NES [24] or SOT [11], are easily computed from the matrices C− and C+.

PSF is computed analogously to SOS, but considering p-semiflow spans in-
stead of transition spans:

PSF(λ) =
∑

π∈F+
min

(
max

{
λ(v) : π[v] 6= 0

}
−min

{
λ(v) : π[v] 6= 0

}
+1
)
.

In our figures, the column for p-flow π has a dark cell with π[v] in it for each
place v in Supp(π), a light empty cell for each place not in the support but
bracketed by places in the support, and a white empty cell for the remaining
places not in the support. With this notation, PSF is just the count of the
number of non-white squares in the matrix of F+

min.



There has been a proposal [16] to use of p-semiflows to eliminate some state
variables (decision diagram levels) through a greedy heuristic, but later work
[12] observed that this leads to a loss of locality in the MDD representation of
the transition relation, and suggested instead to use p-semiflows to merge vari-
ables, proving that this always reduces the MDD size. The same paper [12] also
proposed to modify the sum-of-transition-tops (SOT) metric so that it considers
also a set of linearly independent p-semiflows, but provided no hints about the
relative weight given to transitions vs. p-semiflows when computing the metric.

3 MDD and invariants: the PF metric

We now begin investigating the relationship between p-flows and the shape of
the MDD encoding Srch and Ssat , and introduce the new metric PF.

P-flows and information remembered at level k. The invariant corre-
sponding to a p-flow π imposes a constraint on the reachable markings, since it
implies a constant weighted sum of the tokens in the places belonging to Supp(π).
Thus, the MDD must “remember” (using distinct nodes at level k) the possible
partial weighted sums corresponding to places in the invariant support that are
above level k, as long as the invariant is active, i.e., its support contains places
mapped to levels k or below, and this is true even if the place mapped to level k
is not in the support. Thus, intuitively, places in the support should be mapped
to levels close to each other. This can be easily seen seen in Figure 2(B), where
the places in the support of the two p-semiflows in F+

min are not in consecutive
levels, resulting in more nodes: the level for P2b has 9 nodes, since the MDD
must remember the partial sum of tokens of the places in the two branches of
the Petri net of Figure 1(A), and each of them can range from 0 to 2. In the
order of Figure 2(A), all places in the top branch are instead above the level
of place P0, which is in turn above all places in the bottom branch. Thus, level
P0 has only three possible values to remember: whether in the top (and thus in
the bottom) branch there are 0, 1, or 2 tokens (and therefore P0 has 2, 1, or 0
tokens, respectively). This dependence is captured by the metric PSF of Section
2.3. The PSF value for order (B) is 13, while it is 8 for order (A), consistent
with the intuition that a smaller value of PSF results in a smaller MDD.

P-flows and singletons. The token count of an invariant π determines a
single possible value for the number of tokens in the level “completing” π (the
lowest level corresponding to a place in Supp(π)), which can then only contain
singletons (nodes with a single outgoing edge). This is the case for level P0 in
the MDD of Figure 2(A) and P0 in the MDD of Figure 2(B). Interestingly, level
P3a in the MDD of Figure 2(B) also contains only singletons. This is due to an
invariant generated by a p-flow in F−:

π3 : m[P1a] + m[P2a] + m[P3a]−m[P1b]−m[P2b]−m[P3b] = 0,

As p-flows in F− have similar implications on the MDD structure as those in
F+, we define a new metric PF, by extending PSF to consider also non-positive



p-flows. Give a set of p-flows Fmin, we can then define:

PF(λ) =
∑

π ∈Fmin

(
max

{
λ(p) : π(p) 6= 0

}
−min

{
λ(p) : π(p) 6= 0

}
+1
)
,

But what is an appropriate choice for Fmin? To have a consistent definition
of the metric we need Fmin to be uniquely and appropriately defined. While
p-semiflows are characterized by a unique generator set F+

min, p-flows can be
characterized by a basis, but the choice of basis is not unique and can lead to
meaningless value of PF (for example if we choose a basis where each p-flow has
the same span over the places, so that any variable order results in the same
value for the PF metric).

Continuing the analogy with PSF, we define Fmin as the set of minimal p-
flows, i.e., the g.c.d. of their entries is 1 and their support does not strictly include
the support of any other p-flow; in addition, to avoid considering both a p-flow
and its negative, we assume an arbitrary place order (unrelated to the MDD
variable order) and require the first nonzero entry to be positive. We now prove
that this set Fmin is unique and that it can generate a multiple of any p-flow. In
the figures, the set Fmin is shown partitioned into F+

min and F−min = Fmin\F+
min.

Theorem 1. Set Fmin is unique, and it spans all p-flow directions, i.e., given
π ∈ F , for some a ∈ Z, aπ equals a linear combination of elements in Fmin.

Proof. To prove uniqueness, it suffices to show that there can be at most one
minimal p-flow with a given support. Assume by contradiction that there are
two distinct minimal p-flows π1 and π2 with Supp(π1) = Supp(π2) = Q, and
let a1 > 0 and a2 > 0 be the coefficients in π1 and π2 corresponding to the first
place v ∈ Q, respectively. Then, define π = a2π1 − a1π2, so that π[v] = 0.
If π 6= 0, then π ∈ F but Supp(π) ⊆ Q\{v}, thus π1 and π2 cannot be minimal
p-flows since their support strictly contains the support of π, a contradiction.
If π = 0, then a2π1 = a1π2, which implies a2 = a1, since the g.c.d. of both π1

and π2 is 1. But then, π1 = π2, again a contradiction.
To prove that Fmin spans all p-flow directions, consider π′1 ∈ F . There must exist
π1 ∈ Fmin with Supp(π1) ⊆ Supp(π′1); pick v ∈ Supp(π1) and let a1 = π1[v]
and b1 = π′1[v], so that a1π

′
1 = b1π1 + π′2, with Supp(π′2) ⊆ Supp(π′1) \ {v}.

Either Supp(π′2) = ∅, or it is a p-flow, in which case we can repeat the process
to obtain a2π

′
2 = b2π2 + π′3, and so on. Eventually, we must reach the case

Supp(π′n+1) = ∅, i.e., π′n+1 = 0, at which point we can write a1 · · · anπ′1 =
b1a2 · · · anπ1 + b2a3 · · · anπ2 + · · ·+ bnπn, where π1, . . . ,πn ∈ Fmin, i.e., we can
express a multiple of π′1 as a linear combination of elements of Fmin. �

We observe that the size of Fmin, like that of F+
min, is at most exponential

in |P|, since the proof of Theorem 1 shows that the elements of Fmin must have
uncomparable supports.

4 MDD and invariants: the iRank metric

As we shall see in Section 5, both PSF and PF exhibit significant correlation
with the MDD size. However, there are cases where they do not perform well,
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Fig. 3. Three variable orders for the Petri net of Figure 1(B), and the resulting MDDs.

especially when Fmin is large. Consider for example the Petri net of Figure 1(B),
and the three MDDs corresponding to different variable orders in Figure 3. This
Petri net has many minimal p-flows, |F+

min| = 8 and |Fmin| = 11. The three
p-flows in F−min relate the places inside each fork-and-join subnet (Pia = Pib,
for i = 1, 2, 3), while the eight p-semiflows in F+

min relate the tokens in the three
fork-and-join subnets with those in place P0. The order in Figure 3 (B) produces
the smallest MDD size (37 nodes against the 49 nodes of order (A) and 69 of
(C)), but it is the one with the worst (highest) value of PSF. On the other side
also PF fails to chose the order with the smallest MDD: the smallest value for
PF is 55 for order (A), which is only the second best for MDD size. One reason is
that, when Fmin contains many related, dependent constraints affecting a given
MDD level, counting all of them may confuse the metric. On the other hand,
we have seen that considering instead a basis depends strongly on the choice of
vectors included in the basis, with a meaningless metric in the worst case.

We then propose iRank, a new variable order metric which, like PSF and PF,
is based on linear invariants but, unlike PSF and PF, is unaffected by redun-
dant minimal p-flows and is independent of the choice of the specific p-flows
being considered, as long as they constitute a generator set. iRank focuses on the
number ρ(k) of linearly independent partial p-flows that are still active at level
k. The definition of iRank requires a deeper understanding of the relationships
among the MDD structure and the p-flows, as illustrated next.

Given an MDD with root node r and two MDD nodes p, q 6= ⊥ with p.lvl = k
and q.lvl = h, let Ap (for above) be the set of paths from r to p, Bp (for below)
the set of paths from p to >, and Cp,q the set of paths from p to q:

Ap = {(iL, . . . , ik+1) : r[iL] · · · [ik+1] = p}
Bp = {(ik, . . . , i1) : p[ik] · · · [i1] = >}
Cp,q = {(ik, . . . , ih+1) : p[ik] · · · [ih+1] = q},



thus Ar =B>= {()}, A>=Br =Sr, Ap = Cr,p, Bp = Cp,>, Cp,q = ∅ if q.lvl ≥ p.lvl .
When using an MDD to store S with a given variable order λ, the sets of paths
defined by Ap, Bp, and Cp,q also denote sets of submarkings, by interpreting ik
as the number of tokens in place v = λ−1(k), and so on.

Theorem 2. [28] The nodes at level k can be used to define a partition of Sr:⋃
p∈Nk

Ap × Bp = Sr, and ∀p, q∈Nk, p 6= q ⇒ Ap×Bp ∩ Aq×Bq = ∅.
We can relate MDD nodes and the p-flows by proving that all submarkings

described by Cp,q, therefore by Ap, have the same partial sum for any given p-
flow. Given nodes p and q with p.lvl = k > q.lvl = h, σ = (ik, . . . , ih+1) ∈ Cp,q,
and a p-flow π ∈ F , we let the partial sum of submarking σ for invariant π be:

Sum(p, q, σ,π) =
∑

p.lvl≥j>q.lvl ij · π[λ−1(j)].

In particular, for any σ ∈ Cr,> = Srch , we have Sum(r,>, σ,π) = Tc(π).
We can now introduce two fundamental properties enjoyed by an MDD en-

coding a state space subject to a set of p-flows F , which will pave the way to
the definition of our new metric called iRank.

Theorem 3. Assume a set of states S subject to the set of p-flows F is encoded
by an MDD rooted at r. Then, all paths between a given pair of nodes have the
same partial sum for any given invariant: ∀σ, σ′ ∈ Cp,q, ∀π ∈ F , Sum(p, q, σ,π) =
Sum(p, q, σ′,π). We can therefore write Sum(p, q,π)

Proof. Consider two nodes p and q, with p.lvl = k > q.lvl = h, two paths σ
and σ′ from p to q, and any σa ∈ Ap and σb ∈ Bq, so that both (σa, σ, σb)
and (σa, σ

′, σb) describe markings in S. Then, for any p-flow π ∈ F , we have
that Sum(r,>, (σa, σ, σb),π) = Sum(r,>, (σa, σ′, σb),π) = Tc(π). However,
Sum(r,>, (σa, σ, σb),π) = Sum(r, p, σa,π)+Sum(p, q, σ,π)+Sum(q,>, σb,π) =
Sum(r,>, (σa, σ′, σb),π) = Sum(r, p, σa,π)+Sum(p, q, σ′,π)+Sum(q,>, σb,π),
thus we must have Sum(p, q, σ,π) = Sum(p, q, σ′,π). �

An even stronger property holds if the MDD encodes Ssat : then, every node
in the MDD is completely identified by a unique pattern of partial p-flow sums.

Theorem 4. Let Ssat be encoded by an MDD rooted at r. Then, the nodes at
level k have different partial sums:

∀p, p′ ∈ Nk, p 6= p′ ⇒ ∃π ∈ F , Sum(r, p,π) 6= Sum(r, p′,π).

Proof. Remember that Ssat = {m ∈ NP : ∀π ∈ F ,m · π = Tc(π)}. Assume
that distinct nodes p, p′ ∈ Nk satisfy ∀π ∈ F : Sum(r, p,π) = Sum(r, p′,π).
Since the MDD is canonical, p and p′ must encode different sets, thus there
must be a σ in Bp \ Bp′ or in Bp′ \ Bp (w.l.o.g. assume the former case). Then,
considering any σa ∈ Ap and σ′a ∈ Ap′ , we have (σa, σ) ∈ Ssat and (σ′a, σ) 6∈ Ssat .
But (σa, σ) ∈ Ssat implies ∀π ∈ F ,Sum(r,>, (σa, σ),π) = Tc(π) and, since
Sum(r,>, (σa, σ),π) = Sum(r, p, σa,π) + Sum(p,>, σ,π) = Sum(r, p′, σ′a,π) +
Sum(p,>, σ,π) = Sum(r,>, (σ′a, σ),π), and this holds for any π in F , we should
also have (σ′a, σ) ∈ Ssat , a contradiction. �
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Fig. 4. Computations of the rank weights from a matrix F with rank(F) = 4.

Theorem 4 implies that every node in the MDD encoding Ssat is completely
identified by a unique pattern of partial p-flow sums. However, not every p-flow
is relevant at a given level k of the MDD, and, more importantly, the portions
from level L to level k of different p-flows may encode the same information,
i.e., may be linearly dependent, yet these redundant portions contribute to the
computation of the PF metric. iRank, then, attempts to estimate the number of
possible combinations of partial path sums that may actually be found in the
nodes at level k of the MDD, taking into account these linear dependencies.

To this end, we consider the |P|×|Fmin| matrix F (rows ordered according to
λ, columns in any order) describing the p-flows in Fmin, and define the number
ρup(k) of linearly independent partial p-flows up to level k:

ρup(k) = rank
(
F[L : k + 1, ·]

)
,

where F[L : k + 1, ·] is the submatrix of F with rows L through k + 1 (level k
is excluded because we are counting the partial sums reaching level k). ρup(k)
counts both p-flows active at level k and those that are not, as the lowest place
in their support is mapped to a level above k (p-flow already “closed” at level
k). The number ρdown(k) of linearly independent closed p-flows at level k is
obtained by subtracting the rank of submatrix F[k : 1, ·] from the rank of the
entire matrix F:

ρdown(k) = rank(F)− rank
(
F[k : 1, ·]

)
.

Then, the value we are seeking is the difference of these two quantities:

ρ(k) = ρup(k)− ρdown(k).

Figure 4 depicts the definition of ρup(k) and ρdown(k). The rectangles in the
invariant matrix F represents the portions used to compute the ranks for level k.
The values of ρup(k), ρdown(k), and ρ(k), for all levels k, are listed on the right.

The value of the iRank metric is then the sum of all the ρ(k) values:

iRank =
∑

1≤k≤L ρ(k),

which can be thought of as an estimate of the number of independent factors
affecting the number of MDD nodes at the various levels. Thus, we should expect
that a linear increase in iRank implies an exponential increase in the MDD size.



The main advantage of iRank is that it does not suffer in the presence of an
excessive number of p-flows (as do PF and PSF). Indeed, since the metric is
computed on the rank of F and on the rank of sets of rows of F, and since these
ranks do not change while adding linear combinations of p-flows (larger F) or by
removing p-flows (smaller F) as long as we remove only linear dependent vectors,
we have a metric that is rather robust. Additionally, it is also fairly inexpensive
to compute, O(min{P, T }3).

5 Experimental assessment of the metrics

We now experimentally assess the efficacy of PF and iRank: since the relationship
between p-flows and MDD nodes is stronger for Ssat than for Srch (Theorem 4),
we expect higher correlation when the MDD encodes the former. We also seek to
determine whether these metrics can be used to drive iterative heuristics or meta-
heuristics that compute variable orders. All experiments are on different sets of
orders for 40 models taken from the Petri Net Repository [2]. The experiments
have been conducted using the GreatSPN tool [1, 4], which uses the Meddly
library [8]. All MDDs generated had fewer than one million nodes. We follow the
evaluation procedure of [6] and compute the Spearman coefficient of correlation
(CC), whose interpretation is: [1, 0.8] means very strong correlation, [0.6, 0.8]
strong correlation, [0.4, 0.6] moderate correlation, and so on decreasing. Negative
values indicate anti-correlation.

Figure 5 compares the correlation of iRank and PF to that of the metrics of
Section 2.3. Although all experiments have been performed, for sake of space
only 6 metrics are considered in the tables. We have chosen to include PSF,
PF and iRank (for obvious reasons), plus the best among the C span metrics
(SOUPS), and two versions of PTS (PTS and PTSP , without and with p-flow)
since PTS is the metrics implicitly optimized by the widely used Force heuris-
tic. No bandwidth metric is reported since they all exhibit at best a moderate
correlation. Each row represents a metric, columns report the CC of the metrics
with the MDD encoding Ssat (columns [A] and [B]) and Srch (columns [C] and
[D]) for two different sets of orders. The CC of a single model for a single metric is
computed from the bivariate series relating, for each variable order λ, the MDD
size built using λ with the value of the metric for that λ. ICC is the CC com-
puted over the set of orders λ in VIMPR and BCC is computed over VBEST. The
sets VIMPR and VBEST are built from 1,000 initial random orders by generating
sequences of increasingly better orders (in terms of MDD final size) until a con-
vergence criterion is satisfied; VIMPR retains all orders while VBEST retains only
the last orders in each sequence (thus exactly 1,000 orders). This construction
is explained in [6], where it was observed that VBEST tends to contain mostly
good orders, and VIMPR a mixture of good and bad orders. The above sets have
been built for each of the 40 models. For each combination, we report the mean
CC (over all models) and the CC distribution for the 40 models; the x axis is
partitioned into 20 bins, so the y axis indicates the number of models whose CC
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Out[68]=

@AD ICC HSsatL @BD BCC HSsatL @CD ICC HSrchL @DD BCC HSrchL
Metric Distribution Mean Distribution Mean Distribution Mean Distribution Mean

iRank 0.963 0.914 0.921 0.744

PSF 0.845 0.685 0.798 0.538

SOUPS 0.775 0.530 0.767 0.489

PTS_P 0.759 0.437 0.753 0.408

PF 0.721 0.668 0.666 0.516

PTS 0.668 0.379 0.673 0.363
-1 0 1 -1 0 1 -1 0 1 -1 0 1

Fig. 5. Two correlation coefficients for different metrics for Ssat and Srch

falls into each bin. All plots have the same scale on the y axis. and the height of
the bar at 0 is fixed at 36 for all rows.

The results of Figure 5 indicate that iRank has the highest correlation for both
ICC and BCC and for both Srch and Ssat . iRank is better than the second best
by 12% (ICC on Ssat) and up to 28% (BCC on Srch). The comparison with PTS
(the metric used as a convergence criteria by the widely used Force heuristic) is
even more striking. It is also evident that in none of the four cases PF performs
better than PSF, supporting our observation that considering more p-flows is
not always (or even usually) a good idea. Figure 5 also indicates that all metrics
have better CC when the MDD encodes Ssat (column [A] vs. [C], and column
[B] vs. [D]). This is not surprising for iRank, given Theorem 4, but it also holds
for all other metrics. This could be due to the fact that, since Srch ⊆ Ssat , the
MDD for Srch encodes additional constraints not captured by any of the metrics.

Comparing columns [A] and [B] (and columns [C] and [D]) of Figure 5, we
observe that ICC is higher than BCC for all metrics, meaning that they have
better correlation when the set of considered orders is VIMPR (mix of good and
bad orders) rather than VBEST (mostly good orders). This is related to the use of
the Spearman CC, which quantifies how well the i-th largest value of the metric
correlates with the i-th largest value of the MDD size: certainly with VBEST we
tend to have more MDDs of similar size, making it more difficult to discriminate.

The experiments reported in Figure 6 serve to evaluate whether the metrics
can be used as an objective function inside a simulated annealing procedure
(columns [A] and [C]) or as a meta-heuristic to select one among the orders
produced during the simulated annealing (columns [B] and [D]). Given an initial
variable order and a metric m the procedure searches an “optimal” order through
a simulated annealing procedure [17], aimed at minimizing the value of m. We
employ a standard simulated annealing procedure, described in [6]. Unlike the
construction of the set of orders used for the computation of ICC and BCC in
Figure 5, no MDD is built during the construction of the candidate variable
order. For each metric, the simulated annealing procedure is run 1,000 times,
from different initial orders, and Figure 6 reports, in columns [A] and [C], the
mean and distribution of the “score” of the MDDs built using the 1,000 orders
produced by the 1,000 runs of the simulated annealing for each metric m, for the
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Metric @AD Ann. Distrib. HSsatL Mean @BD Metaheuristic HSsatL Mean @CD Ann. Distrib. HSrchL Mean @DD Metaheuristic HSrchL Mean
iRank 0.819 0.885 0.665 0.806
PSF 0.748 0.806 0.607 0.719
PF 0.717 0.785 0.574 0.703
SOUPS 0.690 0.759 0.590 0.731
PTS_P 0.684 0.762 0.584 0.716
PTS 0.641 0.726 0.554 0.684
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In[110]:= Text@ToString@NumberForm@N@PiD, 10DD <> "c"D

Out[110]= 3.141592654c

In[94]:= "3.141592654" <> "c"

StringJoin::string : String expected at position 1 in 3.14159 <> c. à

Out[94]= 3.14159 <> c

In[95]:= "3.141592654" <> "c"

StringJoin::string : String expected at position 1 in 3.14159 <> c. à

Out[95]= 3.14159 <> c

Fig. 6. Evaluation of metrics on simulated annealing produced orders
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Metric RND+Force Score HSsatL Mean RND+Force Score HSrchL Mean

iRank 0.898 0.853

PSF 0.873 0.829

PF 0.870 0.822

SOUPS 0.860 0.842

PTS_P 0.829 0.813

PTS 0.812 0.794

Baseline 0.834 0.721
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 7. Evaluation of metrics on Force-produced orders.

40 models. The score is the distance from the size of the smallest MDD built,
normalized on the distance between the smallest and the largest MDD size built
(see [6], Eq. 5), obviously computed separately for each model. A value of 1 for
order λ for a given model indicates that the smallest MDD seen for that model
was built using λ. A value of 0 indicates the worst order. Column [A] refers to
the MDDs storing Ssat , while column [C] refers to Srch . Again, iRank performs
better than any other metrics in both cases.

Columns [B] and [D] instead report the results of using each metric m as a
meta-heuristic: for each model a single order is chosen (the order with the best
value for metric m), and the 40 resulting scores are plotted. This corresponds to
using metrics in practice to select a given order for a model. Again, iRank shows
the best performance, indicating that it can select good candidate orders.

Figure 7 shows the evaluation of a meta-heuristic also defined in [6], based
on Force. Each metric m is used to drive the selection of the “best” variable
order among a set of variable orders produced using Force from an initial set
of 1,000 random orders. This is done for each of the 40 models. The last row
is the baseline (40×1,000 points, all computed using Force), while all other
histograms are built out of 40 MDD sizes, one per model. A mean value greater
than the baseline mean indicates that the metric selects the best orders among
the ones computed by Force. A mean below the baseline indicates otherwise.
Again, when we employ iRank to select the order to use, we get a better score
than with any other metric for both Ssat (left column) and Srch (right column).



6 Conclusion and future work

We considered the problem of defining and evaluating variable orders for MDDs
encoding either the reachable states of a DEDS (Srch) or the states satisfying a
set of linear invariants (Ssat). We studied the relation between the MDD size and
structure and the linear invariants, and proposed two new metrics: PF, a trivial
extension to PSF; and iRank. Through a set of experiments, metrics have been
evaluated both as predictors of the MDD size and as drivers for two heuristics
(and associated meta-heuristics). The experiments follow the procedure proposed
in [6], as defining a good and fair procedure to compare metrics and MDD sizes
for a set of models is a nontrivial task. The results show that iRank is better than
any other metrics we found in the literature.

The definition of iRank, and PF, assumes that linear invariants are available.
For DEDSs specified as Petri nets, the linear invariants are derived from the p-
flows, the left annullers of the incidence matrix, an integer matrix describing how
an event modifies a state. Clearly, whenever a DEDS can be specified through
a similar matrix, the application of our method is straightforward, as in the
case of various formalisms used in system modeling and verification. For other
formalisms, this may be less immediate, but our method only assumes a set of
linear invariants on the state space, regardless of how they are computed.

In our experiments, we considered only conservative Petri nets, where each
place appears in at least one invariant. This allowed us to compare with previ-
ously defined metrics that exploit linear invariants generated from p-semiflows.
If no invariants are available, or if most places are not part of any invariant, PF
and iRank could perform very poorly. If a net is not conservative, a subset of
places may “lose” tokens, “gain tokens”, or both. The last two cases cause Srch
to be infinite, but the first case can still be managed by our approach, thanks
to p-flows. As an example, consider the net obtained from the net in Fig. 1(B)
by removing the arc from transition T3 back to P0 Such a net does not have
any p-semiflow, but all the places between each pair of fork-and-join belong to
a p-flow, allowing us to apply our method. A further extension could consider
invariants where the weighted sum of tokens in a subset of places is less than or
equal a constant (instead of just equal).

Several directions for additional exploration remain. First, iRank does not
consider the initial state of the DEDS, but the number of nodes at a given
level depends on the token count of the p-flows, and this may be especially
important when the p-flows have significantly different token counts. Then, the
efficient computation of iRank is obviously important, as heuristics using it could
probably evaluate it many times. The computation could be expensive since it
involves matrix rank computations.

Finally, we are interested in extending iRank to more general constraints,
which can still provide hints on good variable orders; for example, a constraint
“if A = 3 then B = C” imposes no limitations on C along paths where A 6=
3, (assuming A is above B and B is above C in the MDD), but, requires to
remember the value of B until reaching C along paths where A = 3.
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