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Abstract In the paper some results of microlocal continuity for pseudodif-
ferential operators whose symbols belong to weighted Fourier Lebesgue spaces
are given.
Inhomogeneous local and microlocal propagation of singularities of Fourier
Lebesgue type are then studied, with applications to some classes of semilin-
ear equations.
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1 Introduction

Consider the general nonlinear partial differential equation

F
(
x, {∂αu}|α|≤m

)
= 0, (1)

where F (x, ζ) ∈ C∞(Rn × CN ) for suitable positive integer N .
In order to investigate the regularity of the solutions, we can reduce the study
to the linearized equation, obtained by differentiation with respect to xj∑

|α|≤m

∂F

∂ζα
(
x, {∂βu}|β|≤m

)
∂α∂xju = − ∂F

∂xj

(
x, {∂βu}|β|≤m

)
. (2)
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Notice that the regularity of the coefficients aα(x) =
∂F

∂ζα
(
x, {∂βu}|β|≤m

)
,

depends on the solution u and the function F (x, ζ). We need then to study
as first step the algebra properties of the function spaces wherein we are in-
tended to operate, as well as the behavior of the pseudodifferential operators
with symbols in such spaces.
When working in Hölder spaces and Sobolev spaces Hs,2, we can refer to the
paradifferential calculus, developed by J.M. Bony and Y. Meyer, [2], [25], [31].
Generalizations of these arguments to symbols in weighted spaces can be found
in [36], [37], [7], [8], [11].
In this paper we fix the attention on pseudodifferential operators with sym-
bols in weighted Fourier Lebesgue spaces FLpω(Rn), following an idea of S.
Pilipović - N. Teofanov - J. Toft, [26], [27].
Passing now to consider the microlocal regularity properties, let us notice
that the Hörmander wave front set, introduced in [20] for smooth singularities
and extended to the Sobolev spaces Hs,2 in [22], uses as basic tool the conic
neighborhoods in Rn \ {0}. Thus the homogeneity properties of the symbol
p(x, ξ) and the characteristic set Char P of the (pseudo) differential operator
P = p(x,D), play a key role. In order to better adapt the study to a wider
class of equations, starting from the fundamental papers of R. Beals [1], L.
Hörmander [21], an extensive literature about weighted pseudodifferential op-
erators has been developed, see e.g. [36], [4], [24], [3].
We are particularly interested here in the generalizations of the wave front
set not involving the use of conic neighborhoods. In some cases, for exam-
ple in the study of propagation of singularities of the Schroedinger operator,
i∂t −∆, we can use the quasi-homogeneous wave front set, introduced in [23],
see further [30], [37]. More generally, failing of any homogeneity properties,
the propagation of the microlocal singularities are described in terms of filter
of neighborhoods, introduced in [28] and further developed in [6], [7], [8], [10],
[11], [16], [17] [18].
In some previous works of the authors, continuity and microlocal properties
are considered in Sobolev spaces in Lp setting, see [12], [13], [15], [16], [17],
[18].
In the present paper we prove a result of propagation of singularities of Fourier
Lebesgue type for partial (pseudo) differential equations, whose symbol satis-
fies generalized elliptic properties. Namely we obtain an extension of the well
known propagation of singularities given by Hörmander [22] for the Sobolev
wave front set WFHs,2 and operators of order m:

WFHs−m,2(Pf) ⊂WFHs,2(f) ⊂WFHs−m,2(Pf) ∪ Char (P ),

given in terms of filter of microlocal singularities and quasi-homogeneous wave
front set.
Applications to semilinear partial differential equations are given at the end.
The plan of the paper is the following: in §2 the weight funtions ω and the
Fourier Lebesgue spaces FLpω(Rn) are introduced and their properties studied.
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In §3, §4, under suitable additional conditions on the weight function, alge-
bra properties in FLpω(Rn) and continuity of pseudodifferential operators with
symbols in Fourier Lebesgue spaces are studied. The microlocal regularity, in
terms of inhomogeneous neighborhoods, is introduced and studied in §5, while
the propagation of microlocal singularities is given in §6, namely in Proposi-
tion 15. In §6 applications to semilinear equations are studied, with specific
examples in the field of quasi-homogeneous partial differential equations.

2 Preliminaries

2.1 Weight functions

Throughout the paper, we call weight function any positive measurable map
ω : Rn →]0,+∞[ satisfying the following temperance condition

(T ) ω(ξ) ≤ C(1 + |ξ− η|)Nω(η) , ∀ ξ , η ∈ Rn ,

for suitable positive constants C and N .
In the current literature, a positive function ω obeying condition (T ) is

said to be either temperate (see [11], [20]) or, in the field of Modulation Spaces,
polynomially moderated (cf. [5], [19], [26], [27]).

For ω, ω1 weight functions; we write ω � ω1 to mean that, for some C > 0

ω(x) ≤ Cω1(x) , ∀x ∈ Rn ;

moreover we say that ω, ω1 are equivalent, writing ω � ω1 in this case, if

ω � ω1 and ω1 � ω . (3)

Applying (T ) it yields at once that ω(ξ) ≤ C(1 + |ξ|)Nω(0) and ω(0) ≤
C(1 + | − ξ|)Nω(ξ) = C(1 + |ξ|)Nω(ξ) , for any ξ ∈ Rn.

Thus, for every weight function ω there exist constants C ≥ 1 and N > 0
such that

1

C
(1 + |ξ|)−N ≤ ω(ξ) ≤ C(1 + |ξ|)N , ∀ ξ ∈ Rn . (4)

Proposition 1 Let ω, ω1 be two weight functions and s ∈ R. Then ωω1, 1/ω
and ωs are again weight functions.

Proof Assume that for suitable constants C,C1, N,N1

ω(ξ) ≤ C(1 + |ξ − η|)Nω(η) ,

ω1(ξ) ≤ C1(1 + |ξ − η|)N1ω(η) ∀ ξ , η ∈ Rn .
(5)

Then we deduce that

ω(ξ)ω1(ξ) ≤ CC1(1 + |ξ − η|)N+N1ω(η)ω1(η) ,

1/ω(η) ≤ C(1 + |η − ξ|)N1/ω(ξ) , ∀ ξ , η ∈ Rn ,
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which show that ωω1 and 1/ω are temperate.

If s ≥ 0 then condition (T ) for ωs follows at once from (5). If s < 0 it
suffices to observe that ωs = 1/ω−s and then combining the preceding results.

We introduce now some further conditions on the weight function ω which will
be repeatedly used in the following.

(SV) Slowly varying condition: there exist positive constants C ≥ 1, N such
that

1

C
≤ ω(η)

ω(ξ)
≤ C , when |η − ξ| ≤ 1

C
ω(ξ)1/N ; (6)

(SA) Sub additive condition: for some positive constant C

ω(ξ) ≤ C {ω(ξ − η) + ω(η)} , ∀ ξ , η ∈ Rn ; (7)

(SM) Sub multiplicative condition: for some positive constant C

ω(ξ) ≤ Cω(ξ − η)ω(η) , ∀ ξ , η ∈ Rn ; (8)

(G) δ condition: for some positive constants C and 0 < δ < 1

ω(ξ) ≤ C
{
ω(η)ω(ξ − η)δ + ω(η)δω(ξ − η)

}
, ∀ ξ , η ∈ Rn ; (9)

(B) Beurling’s condition: for some positive constant C

sup
ξ∈Rn

∫
Rn

ω(ξ)

ω(ξ − η)ω(η)
dη ≤ C . (10)

For a thorough account on the relations between the properties introduced
above, we refer to [11]. For reader’s convenience, here we quote and prove only
the following result.

Proposition 2 For the previous conditions the following relationships are
true.

i. Assume that ω is uniformly bounded from below in Rn, that is

inf
ξ∈Rn

ω(ξ) = c > 0 . (11)

Then (SV) ⇒ (T ) and (G) ⇒ (SM).
ii. Assume that

1

ω
∈ L1(Rn) . (12)

Then (SA) ⇒ (B) and (G) ⇒ ω
1

1−δ satisfies (B).
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Proof Statement i: Let the constants C, N be fixed as in (6). For ξ, η ∈ Rn
such that |ξ−η| ≤ 1

Cω(ξ)1/N , it follows directly from (6) that ω(ξ) ≤ Cω(η) ≤
Cω(η)(1 + |ξ − η|)N . On the other hand, when |ξ − η| > 1

Cω(ξ)1/N from (11)

we deduce at once ω(ξ) ≤ CN |ξ − η|N ≤ CN

c ω(η)(1 + |ξ − η|)N .
This shows the validity of the first implication. As for the second one, it is

sufficient to observe that ω(ξ) ≥ c > 0 and 0 < δ < 1 yield at once

ω(ξ)δ ≤ cδ−1ω(ξ) , ∀ ξ ∈ Rn . (13)

Then the result follows from estimating by (13) the function ωδ in the right-
hand side of (9).

Statement ii: For every ξ ∈ Rn, using (7) we get

ω(ξ)

ω(ξ − η)ω(η)
≤ C

{
1

ω(η)
+

1

ω(ξ − η)

}
;

hence the first implication follows observing that, by a suitable change of
variables, the right-hand side is an integrable function on Rn, whose integral
is independent of ξ.

Concerning the second implication, for every ξ ∈ Rn, from (9) we get(
ω(ξ)

ω(ξ − η)ω(η)

) 1
1−δ

≤ Cδ
(
ω(ξ − η)δ−1 + ω(η)δ−1

) 1
1−δ

≤ Cδ
{(
ω(ξ − η)δ−1

) 1
1−δ +

(
ω(η)δ−1

) 1
1−δ
}

= Cδ

{
1

ω(ξ − η)
+

1

ω(η)

}
,

for a suitable constant Cδ > 0 depending on δ. Now we conclude as in the
proof of the first implication.

Examples

1. The standard homogeneous weight

〈ξ〉m :=
(
1 + |ξ|2

)m/2
, ξ ∈ Rn , m ∈ R , (14)

is a weight function according to the definition given at the beginning of
this Section.
The well-known Peetre inequality

〈ξ〉m ≤ 2|m|〈ξ − η〉|m|〈η〉m , ∀ ξ , η ∈ Rn , (15)

shows that 〈·〉m satisfies the condition (T ) for every m ∈ R (with N = |m|)
as well as the condition (SM) form ≥ 0. For everym ≥ 0, the function 〈·〉m
also fulfils (SV) (where N = m) as a consequence of a Taylor expansion,
and (SA). Finally 1/〈·〉m satisfies the integrability condition (12) as long
as m > n; hence 〈·〉m satisfies condition (B) for m > n, in view of the
statement ii of Proposition 2.
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2. For M = (m1, . . . ,mn) ∈ Nn, the quasi-homogeneous weight is defined as

〈ξ〉M :=

1 +

n∑
j=1

ξ
2mj
j

1/2

, ∀ ξ ∈ Rn . (16)

The quasi-homogeneous weight obeys the polynomial growth condition

1

C
〈ξ〉m∗ ≤ 〈ξ〉M ≤ C〈ξ〉m

∗
, ∀ ξ ∈ Rn , (17)

for some positive constant C and m∗ := min
1≤j≤n

mj , m
∗ := max

1≤j≤n
mj . More-

over, for all s ∈ R, the derivatives of 〈·〉sM decay according to the estimates
below ∣∣∂αξ 〈ξ〉sM ∣∣ ≤ Cα〈ξ〉s−〈α , 1

M 〉
M , ∀ ξ ∈ Rn , ∀α ∈ Zn+, (18)

where 〈α , 1
M 〉 :=

n∑
j=1

αj
mj

and Cα > 0 is a suitable constant. Using (18)

with s = 1
m∗ we may prove that 〈·〉M fulfils condition (SV) with N = m∗;

indeed from the trivial identities

〈ξ〉1/m
∗

M − 〈η〉1/m
∗

M =

n∑
j=1

(ξj − ηj)
∫ 1

0

∂j

(
〈·〉1/m

∗

M

)
(η + t(ξ − η)) dt (19)

and (18), we deduce

∣∣∣〈ξ〉1/m∗M −〈η〉1/m
∗

M

∣∣∣ ≤ n∑
j=1

Cj |ξj − ηj |
∫ 1

0

〈η + t(ξ − η)〉1/m
∗−1/mj

M dt

≤
n∑
j=1

Cj |ξj − ηj | ,

since m∗ ≥ mj for every j. Now for ξ, η satisfying |ξ− η| ≤ ε〈ξ〉1/m
∗

M , from

the previous inequality we deduce
∣∣∣〈ξ〉1/m∗M − 〈η〉1/m

∗

M

∣∣∣≤ Ĉε〈ξ〉1/m∗M , with

Ĉ :=
n∑
j=1

Cj , that is (1 − Ĉε)〈ξ〉1/m
∗

M ≤ 〈η〉1/m
∗

M ≤ (1 + Ĉε)〈ξ〉1/m
∗

M , from

which we get the conclusion, if we assume for instance 0 < ε ≤ 1

2Ĉ
.

From (SV) and the trivial inequality 〈ξ〉M ≥ 1, using the statement i of
Proposition 2 we obtain that (T ) is also satisfied with N = m∗.
Also, the weight 〈·〉M satisfies condition (SA) and, because of the left
inequality in (17), 1/〈·〉sM satisfies condition (12) provided that s > n

m∗
.

Then from the statement ii of Proposition 2, 〈·〉sM satisfies condition (B)
for s > n

m∗
.

At the end, let us observe that for M = (m, . . . ,m), with a given m ∈ N,
〈ξ〉M � 〈ξ〉m.
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3. Let P be a complete polyhedron of Rn in the sense of Volevich-Gindikin,
[35]. The multi-quasi-elliptic weight function is defined by

λP(ξ) :=

 ∑
α∈V (P)

ξ2α

1/2

, ξ ∈ Rn , (20)

where V (P) denotes the set of vertices of P.
We recall that a convex polyhedron P ⊂ Rn is the convex hull of a finite set
V (P) ⊂ Rn of convex-linearly independent points, called vertices of P, and
univocally determined by P itself. Moreover, if P has non empty interior,
it is completely described by

P = {ξ ∈ Rn; ν · ξ ≥ 0,∀ν ∈ N0(P)} ∩ {ξ ∈ Rn; ν · ξ ≤ 1,∀ν ∈ N1(P)};

where N0(P) ⊂ {ν ∈ Rn; |ν| = 1}, N1(P) ⊂ Rn are finite sets univocally
determined by P and, as usual, ν · ξ =

∑n
j=1 νjξj . The boundary of P,

F(P), is made of faces Fν(P) which are the convex hulls of the vertices
of P lying on the hyper-planes Hν orthogonal to ν ∈ N0(P) ∪ N1(P), of
equation :

ν · ξ = 0 if ν ∈ N0(P), ν · ξ = 1 if ν ∈ N1(P).

A complete polyhedron is a convex polyhedron P ⊂ Rn+ =: {ξ ∈ Rn : ξj ≥
0, j = 1, ..., n} such that:
i) V (P) ⊂ Nn;
ii) (0, . . . , 0) ∈ V (P), and V (P) 6= {(0, . . . , 0)};

iii) N0(P) = {e1, . . . , en} with ej = (0, . . . , 1j−entry, . . . 0) ∈ Rn+;
iv) every ν ∈ N1(P) has strictly positive components νj , j = 1, ..., n.
On can prove that the multi-quasi-elliptic weight growths at infinity ac-
cording to the following estimates

1

C
〈ξ〉µ0 ≤ λP(ξ) ≤ C〈ξ〉µ1 , ∀ ξ ∈ Rn , (21)

for a suitable positive constant C and where

µ0 := min
γ∈V (P)\{0}

|γ| and µ1 := max
γ∈V (P)

|γ| (22)

are called minimum and maximum order of P respectively. Moreover it can
be proved that for all s ∈ R the derivatives of λsP decay according to the
estimates below∣∣∂αξ λsP(ξ)

∣∣ ≤ CαλP(ξ)s−
1
µ |α| , ∀ ξ ∈ Rn , (23)

where
µ := max {1/νj , j = 1, . . . , n , ν ∈ N1(P)} , (24)

satisfying µ ≥ µ1, is the so-called formal order of P, see e.g. [3] (see also
[12] where more general decaying estimates for λsP are established).
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Representing λP(ξ)1/µ − λP(η)1/µ as in (19), for arbitrary ξ, η ∈ Rn, and
using (23) (with s = 1/µ), we deduce that λP satisfies (SV) with N = µ.
Using also that λP(ξ) ≥ 1 (recall that 0 ∈ V (P)), in view of Proposition
2 it follows that λP also satisfies (T ) with N = µ, hence it is a weight
function agreeing to the definition given at the beginning of this Section.
The weight function λP does not satisfy condition (SA); on the other hand
it can be shown (see [8]) that condition (G) is verified taking

δ = max
β∈P\F(P)

max
ν∈N1(P)

{ν · β} . (25)

Since, from the left inequality in (21) we also derive that λ−sP satisfies (12)
for s > n

µ0
, we conclude from the statement ii of Proposition 2 that λrP

satisfies condition (B) if r > n
(1−δ)µ0

for δ defined above.

In the end, we notice that λP verifies (SM) as a consequence of (G), since
λP(ξ) ≥ 1 and 0 < δ < 1, cf. Proposition 2, statement i.

Remark 1 We notice that the quasi-homogeneous weight 〈·〉M , with M =
(m1, . . . ,mn) ∈ Nn, considered in the example 2 is just the multi-quasi-elliptic
weight λP introduced in the example 3 corresponding to the complete poly-
hedron P defined by the convex hull of the finite set V (P) = {0 , mjej , j =
1, . . . , n}; in particular, the growth estimates (17) are the particular case of
(21) corresponding to the previous polyhedron P (in which case µ0 = m∗ and
µ1 = m∗). Notice however that the decaying estimates (18) satisfied by the
quasi-homogeneous weight 〈·〉M do not admit a counterpart in the case of the
general multi-quasi-elliptic weight λP . Estimates (18) give a precise decay in
each coordinate direction: the decrease of 〈ξ〉M corresponding to one derivative

with respect to ξj is measured by 〈ξ〉−1/mjM
1. The lack of homogeneity in the

weight associated to a general complete polyhedron P in (20), prevents from
extending to derivatives of λP(ξ) the decay properties in (18): estimates (23)
do not take account of the decay corresponding separately to each coordinate
direction.

2.2 Weighted Lebesgue and Fourier Lebesgue spaces

Let ω : Rn →]0,+∞[ be a weight function.

Definition 1 For every p ∈ [1,+∞], the weighted Lebesgue space Lpω(Rn)
is defined as the set of the (equivalence classes of) measurable functions f :
Rn → C such that∫

Rn
ω(x)p|f(x)|p dx < +∞ , if p < +∞ ,

ωf is essentially bounded in Rn , if p = +∞ .

(26)

1 In other words the decay of the derivatives is measured here by the vector weight

(〈ξ〉1/m1
M , . . . , 〈ξ〉1/mnM ), in the sense of vector weighted symbol classes, see [7], [18], [28].
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For every p ∈ [1,+∞], Lpω(Rn) is a Banach space with respect to the natural
norm

‖f‖Lpω :=


(∫

Rn ω(x)p|f(x)|p dx
)1/p

, if p < +∞ ,

ess supx∈Rnω(x)|f(x)| , if p = +∞ .

(27)

Remark 2 It is easy to see that for all p ∈ [1,+∞]

Lpω2
(Rn) ↪→ Lpω1

(Rn) , if ω1 � ω2 . (28)

If in particular ω1 � ω2 then Lpω1
(Rn) ≡ Lpω2

(Rn), and the norms defined in
(27) corresponding to ω1 and ω2 are equivalent. When the weight function ω is
constant the related weighted space Lpω(Rn) reduces to the standard Lebesgue
space of order p, denoted as usual by Lp(Rn).

Remark 3 For an arbitrary p ∈ [1,+∞], f ∈ Lpω(Rn) and every ϕ ∈ S(Rn) we
obtain ∫

Rn
f(x)ϕ(x) dx ≤

∥∥∥ϕ
ω

∥∥∥
Lq
‖ωf‖Lp ,

1

p
+

1

q
= 1 . (29)

From (29) and the estimates (4), we deduce at once that

S(Rn) ↪→ Lpω(Rn) ↪→ S ′(Rn) .

Moreover, C∞0 (Rn) is a dense subspace of Lpω(Rn) when p < +∞, see [9].

Remark 4 For Ω open subset of Rn, Lpω(Ω), for any p ∈ [1,+∞], is the set of
(equivalence classes of) measurable functions on Ω such that

‖f‖p
Lpω(Ω)

:=

∫
Ω

ω(x)p|f(x)|p dx < +∞ (30)

(obvious modification for p = +∞). Lpω(Ω) is endowed with a structure of
Banach space with respect to the natural norm defined by (30).

Definition 2 For every p ∈ [1,+∞] and ω weight function, the weighted
Fourier Lebesgue space FLpω(Rn) is the vector space of all distributions f ∈
S ′(Rn) such that

f̂ ∈ Lpω(Rn) , (31)

equipped with the natural norm

‖f‖FLpω := ‖f̂‖Lpω . (32)

Here f̂ is the Fourier transform f̂(ξ) =
∫
e−iξ·xf(x) dx, defined in S(Rn) and

extended to S ′(Rn).
The spaces FLpω(Rn) were introduced in Hörmander [20], with the nota-

tion Bp,k, k(ξ) weight function, for the study of the regularity of solutions to
hypoelliptic partial differential equations with constant coefficients, see also
[9], [10].

From the mapping properties of the Fourier transform on S(Rn) and S ′(Rn)
and the above stated properties of weighted Lebesgue spaces we can conclude,
see again [9], that for all p ∈ [1,+∞] and ω weight function
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(a) FLpω(Rn) is a Banach space with respect to the norm (32);
(b) S(Rn) ↪→ FLpω(Rn) ↪→ S ′(Rn);
(c) C∞0 (Rn) is a dense subspace of FLpω(Rn) when p < +∞;
(d) FLpω2

(Rn) ↪→ FLpω1
(Rn) if ω1 � ω2; in particular, we have FLpω2

(Rn) ≡
FLpω1

(Rn) as long as ω1 � ω2 and the norms corresponding to ω1 and ω2

by (32) are equivalent in this case.

When ω is a positive constant the weighted space FLpω(Rn) is simply de-
noted by FLp(Rn). Moreover we will adopt the shortcut notations Lps(Rn) :=
Lp〈·〉s(R

n), FLps(Rn) := FLp〈·〉s(R
n) for the corresponding Lebesgue and Four-

ier Lebesgue spaces.

Analogously, when ω(ξ) = 〈ξ〉sM or ω(ξ) = λP(ξ)s, for s ∈ R, the corre-
sponding Lebesgue and Fourier Lebesgue spaces will be denoted Lps,M (Rn),

FLps,M (Rn) and Lps,P(Rn), FLps,P(Rn) respectively.

A local counterpart of Fourier Lebesgue spaces can be introduced in the
following natural way (see [26]).

Definition 3 For ω weight function, Ω open subset of Rn and any p ∈
[1,+∞], FLpω, loc(Ω) is the class of all distributions f ∈ D′(Ω) such that
ϕf ∈ FLpω(Rn) for every ϕ ∈ C∞0 (Ω).

For x0 ∈ Ω, f ∈ FLpω, loc(x0) if there exists φ ∈ C∞0 (Ω), with φ(x0) 6= 0,
such that φf ∈ FLpω(Rn).

The family of semi-norms

f 7→ ‖ϕf‖FLpω , ϕ ∈ C∞0 (Ω) , (33)

provides FLpω ,loc(Ω) with a natural Fréchet space topology. Moreover the fol-
lowing inclusions hold true with continuous embedding

C∞(Ω) ↪→ FLpω ,loc(Ω) ↪→ D′(Ω) (34)

and for Ω1 ⊂ Ω2 open sets

FLpω(Rn) ↪→ FLpω ,loc(Ω2) ↪→ FLpω ,loc(Ω1) . (35)

Remark 5 It is worth noticing that, as it was proved in [29], locally the weight-
ed Fourier Lebesgue spaces FLqω(Rn) are the same as the weighted modulation
spaces Mp,q

ω (Rn) and the Wiener amalgam spaces W p,q
ω (Rn), in the sense that

for p ∈ [1,+∞]

FLqω(Rn) ∩ E ′(Rn) = Mp,q
ω (Rn) ∩ E ′(Rn) = W p,q

ω (Rn) ∩ E ′(Rn) .

We refer to Feichtinger [5] and Gröchenig [19] for the definition and basic
properties of modulation and amalgam spaces.
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Agreeing with the previous notations, when the weight function ω re-
duces to those considered in the examples 1, 2, 3 above, the corresponding
local Fourier Lebesgue spaces will be denoted respectively by FLps,loc(Ω),

FLps,M,loc(Ω), FLps,P,loc(Ω).

Notice at the end that, from Plancherel Theorem, when p = 2 the global
and local weighted Fourier Lebesgue spaces FL2

ω(Rn), FL2
ω ,loc(Ω) coincide

with weighted spaces of Sobolev type, see Garello [11] for an extensive study
of such spaces.

3 Algebra conditions in spaces FLp
ω(Rn)

In order to seek conditions on the weight function ω which allow the Fourier
Lebesgue space FLpω(Rn) to be an algebra with respect to the point-wise prod-
uct, let us first state a general continuity result in the framework of suitable
mixed-norm spaces of Lebesgue type.

Following [5], [19] and in particular [26], for p, q ∈ [1,+∞] we denote
by Lp,q1 (R2n) the space of all (equivalence classes of) measurable functions
F = F (ζ, η) in Rn × Rn such that the mixed norm

‖F‖Lp,q1
:=

(∫ (∫
|F (ζ, η)|p dζ

)q/p
dη

)1/q

(36)

is finite (with obvious modifications if p or q equal +∞).
We also define Lp,q2 (R2n) to be the space of measurable functions F =

F (ξ, η) in Rn × Rn such that the norm

‖F‖Lp,q2
:=

(∫ (∫
|F (ζ, η)|q dη

)p/q
dζ

)1/p

(37)

is finite.

Lemma 1 For p, q ∈ [1,+∞] such that 1
p+ 1

q = 1, let f=f(ζ, η)∈Lp,∞1 (R2n)

and F = F (ζ, η) ∈ L∞,q2 (R2n). Then the linear map

T : C∞0 (Rn)→ S ′(Rn)

g 7→ Tg :=

∫
F (ξ, η)f(ξ − η, η)g(η) dη .

(38)

extends uniquely to a continuous map from Lp(Rn) into itself, still denoted by
T ; moreover its operator norm is bounded as follows

‖T‖L(Lp) ≤ ‖f‖Lp,∞1
‖F‖L∞,q2

. (39)

The proof is given in [9, Lemma 2.1], where the statement reads in quite
different formulation. The reader can find a restricted version, independently
proved, in [26, Proposition 3.2].
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Proposition 3 Assume that ω, ω1, ω2 are weight functions such that

Cq := sup
ξ∈Rn

∥∥∥∥ ω(ξ)

ω1(ξ − ·)ω2(·)

∥∥∥∥
Lq
< +∞ , (40)

for some q ∈ [1,+∞], and let p ∈ [1,+∞] be the conjugate exponent of q. Then

(1) the point-wise product map (f1, f2) 7→ f1f2 from S(Rn)× S(Rn) to S(Rn)
extends uniquely to a continuous bilinear map from FLpω1

(Rn)×FLpω2
(Rn)

to FLpω(Rn). Moreover for all fi ∈ FLpωi(R
n), i = 1, 2, the following holds:

‖f1f2‖FLpω ≤ Cq‖f1‖FLpω1
‖f2‖FLpω2

. (41)

(2) for every open set Ω ⊆ Rn the point-wise product map (f1, f2) 7→ f1f2 from
C∞0 (Ω)×C∞0 (Ω) to C∞0 (Ω) extends uniquely to a continuous bilinear map
from FLpω1,loc

(Ω)×FLpω2,loc
(Ω) to FLpω,loc(Ω).

Proof The proof of statement (2) follows at once from that of statement (1).
As for the proof of statement (1), for given f1, f2 ∈ S(Rn) one easily

computes:

ω(ξ)f̂1f2(ξ) = (2π)−n
∫
ω(ξ)f̂1(ξ − η)f̂2(η) dη

=

∫
F (ξ, η)f(ξ − η)g(η) dη ,

(42)

where

F (ζ, η) =
ω(ζ)

ω1(ζ − η)ω2(η)
, f(ζ) = ω1(ζ)f̂1(ζ) , g(ζ) = ω2(ζ)f̂2(ζ) .

The right-hand side of (42) provides a representation of ωf̂1f2 as an inte-
gral operator of the form (38). Condition (40) just means that the function
F (ζ, η) ∈ L∞,q2 (R2n) (cf. (37)) and of course the η−independent function
f = f(ζ) ∈ S(Rn) also belongs to Lp,∞1 (R2n). Then applying to (42) the re-
sult of Lemma 1, together with the definition of the norm in Fourier Lebesgue
spaces, we obtain that the point-wise product f1f2 satisfies the estimates in
(41) and the proof is concluded.

When the weight functions ω, ω1 and ω2 in the statement of Proposition
3 coincide, condition (40) provides a sufficient condition for FLpω(Rn) (or its
localized counterpart FLpω,loc(Ω)) is an algebra for the point-wise product.
Then we have the following

Corollary 1 Let ω be a weight function such that

Cq := sup
ξ∈Rn

∥∥∥∥ ω(ξ)

ω(ξ − ·)ω(·)

∥∥∥∥
Lq
< +∞ , (43)

for q ∈ [1,+∞], and p ∈ [1,+∞] the conjugate exponent of q. Then
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(1) (FLpω(Rn), ·) is an algebra and for f1, f2 ∈ FLpω(Rn)

‖f1f2‖FLpω ≤ Cq‖f1‖FLpω‖f2‖FLpω . (44)

(2) for every open set Ω ⊆ Rn,
(
FLpω,loc(Ω), ·

)
is an algebra.

The algebra properties of Corollary 1 allow us to handle the composition
of a Fourier Lebesgue distribution with an entire analytic function; namely we
have the following result, see [9, Corollary 2.1].

Corollary 2 Under the same assumptions of Corollary 1 on ω and p, let
F : C → C be an entire analytic function such that F (0) = 0. Then F (u) ∈
FLpω(Rn) for every u ∈ FLpω(Rn), and

‖F (u)‖FLpω ≤ C‖u‖FLpω , (45)

with C = C(p, F, ‖u‖FLpω ).

Remark 6 A counterpart of Corollary 2 for the local space FLpω,loc(Ω) can be
obtained by replacing F = F (z) above with a function F = F (x, ζ) mapping
Ω × CM into C, which is locally smooth with respect to the real variable
x ∈ Ω and entire analytic in the complex variable ζ ∈ CM uniformly on
compact subsets of Ω; namely:

F (x, ζ) =
∑
β∈ZM+

cβ(x)ζβ , cβ ∈ C∞(Ω), ζ ∈ CM ,

where, for any compact set K ⊂ Ω, α ∈ Zn+, β ∈ ZM+ , supx∈K |∂αx cβ(x)| ≤
cα,Kλβ and F1(ζ) :=

∑
β∈ZM+

λβζ
β is entire analytic.

Under the assumptions of Corollaries 1, 2, we get F (x, u) ∈ FLpω,loc(Ω) as

long as the components of the vector u = (u1, ..., uM ) belong to FLpω,loc(Ω).

Remark 7 Let us notice that for 1 ≤ q < +∞, condition (43) on ω is nothing
but condition (B) for the weight function ωq, while for q = +∞ (43) reduces to
condition (SM) for ω. The latter case means that

(
FL1

ω(Rn), ·
)

is an algebra
provided that the weight function ω is sub-multiplicative, which is in agreement
with the more general result of [26, Lemma 1.6].

The next result shows that the sub-multiplicative condition (SM) on a
weight function is a necessary condition for the corresponding scale of weighted
Fourier Lebesgue spaces to possess the algebra property.

Proposition 4 Let ω1, ω2, ω be weight functions and p1, p2, p ∈ [1,+∞]. If
we assume that the map (f1, f2) 7→ f1f2 from S(Rn) × S(Rn) to S(Rn) ex-
tends uniquely to a continuous bilinear map from FLp1ω1

(Rn) × FLp2ω2
(Rn) to

FLpω(Rn), then a positive constant C exists such that

ω(η + θ) ≤ Cω1(η)ω2(θ) , ∀ η , θ ∈ Rn . (46)
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Proof By assumption, there exists a constant C ′ > 0 such that for all f ∈
FLp1ω1

(Rn), g ∈ FLp2ω2
(Rn)

‖fg‖FLpω ≤ C
′‖f‖FLp1ω1

‖g‖FLp2ω2
. (47)

From condition (T ) (cf. also (4)) we may find some constants ε > 0, C > 0
such that

ε ≤ ωi(η)

ωi(ξ)
≤ ε−1 (i = 1, 2) and ε ≤ ω(η)

ω(ξ)
≤ ε−1 , when |ξ − η| ≤ ε

C
(48)

We follow here the same arguments of the proof of [11, Theorem 3.8]. Let us
take a function ϕ ∈ S(Rn) such that

ϕ̂(ξ) ≥ 0 and supp ϕ̂ ⊆
{
ξ ∈ Rn : |ξ| ≤ ε

2C

}
.

For arbitrary points η, θ ∈ Rn, let us define

f(x) = eiη·xϕ(x) , g(x) = eiθ·xϕ(x) , (49)

hence
f(x)g(x) = ei(η+θ)·xϕ2(x) .

In view of the assumption on the support of ϕ̂ we compute:

‖f‖p1FLp1ω1

=

∫
ω1(ξ)p1 ϕ̂(ξ − η)p1dξ =

∫
|ξ−η|≤ ε

2C

ω1(ξ)p1 ϕ̂(ξ − η)p1dξ ,

‖g‖p2FLp2ω2

=

∫
ω2(ξ)p2 ϕ̂(ξ − θ)p2dξ =

∫
|ξ−θ|≤ ε

2C

ω2(ξ)p2 ϕ̂(ξ − θ)p2dξ ,
(50)

In the domain of the integrals above (48) holds, then we get

‖f‖p1FLp1ω1

≤ ε−p1ω1(η)p1
∫
|ξ−η|≤ ε

C

ϕ̂(ξ − η)p1dξ = cp11 ε
−p1ω1(η)p1 ,

hence
‖f‖FLp1ω1

≤ c1ε−1ω1(η) , (51)

where c1 := ‖ϕ̂‖Lp1 . The same holds true for the norm of g in FLp2ω2
(Rn), by

replacing η with θ, that is

‖g‖FLp2ω2
≤ c2ε−1ω2(θ) , for c2 = ‖ϕ̂‖Lp2 . (52)

The preceding calculations are performed under the assumption that both p1
and p2 are finite; however the same estimates (51), (52) can be easily extended
to the case when p1 or p2 equals +∞.

As for the norm in FLpω(Rn) of fg we compute

‖fg‖pFLpω =

∫
|ξ−η−θ|≤ ε

C

ω(ξ)pϕ̂2(ξ − η − θ)pdξ , (53)
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where we used that supp ϕ̂2 = supp (ϕ̂ ∗ ϕ̂) ⊆
{
|ξ| ≤ ε

C

}
and it is assumed

p < +∞ (to fix the ideas). Then recalling again that (48) holds true for ω on

supp ϕ̂2 we obtain

‖fg‖FLpω ≥ cεω(η + θ) , with c := ‖ϕ̂2‖Lp . (54)

The same estimate (54) can be easily recovered in the case p = +∞.
We use now (51), (52) and (54) to estimate the right- and left-hand sides

of (47) written for f and g defined in (49) to get

cεω(η + θ) ≤ C ′c1c2ε−2ω1(η)ω2(θ) .

In view of the arbitrariness of η, θ and since the constants c1, c2 and ε are inde-
pendent of η and θ the preceding inequality gives (46) with C = C ′c1c2c

−1ε−3.

Remark 8 It is worth observing that any specific relation is assumed on the
exponents p1, p2, p ∈ [1,+∞] in the statement of Proposition 4. Notice also
that condition (46) is just (40) for q = +∞. When in particular ω1 = ω2 = ω,
it reduces to (SM).

Notice also that from the results given by Corollary 1 (see also Remark 9)
and Proposition 4, we derive that condition (SM) is necessary and sufficient
to make the Fourier Lebesgue space FL1

ω(Rn) an algebra for the point-wise
product2.

Combining the results of Corollary 1 with the remarks made about the
weight functions quoted in the examples 1-3 at the end of Section 2.1 we can
easily prove the following result.

Corollary 3 Let r ∈ R, M = (m1, . . . ,mn) ∈ Nn and P a complete polyhe-
dron of Rn be given and assume that p, q ∈ [1,+∞] satisfy 1

p + 1
q = 1. Then

i. (FLpr(Rn) , ·) is an algebra if r > n
q ;

ii.
(
FLpr,M (Rn) , ·

)
is an algebra if r > n

m∗q
, where m∗ = min

1≤j≤n
mj;

iii.
(
FLpr,P(Rn) , ·

)
is an algebra if r > n

(1−δ)µ0q
, where µ0 and δ are defined

in (22) and (25).

Analogous statements hold true for the localized version of the previous spaces
on an open subset Ω of Rn, defined according to Definition 3.

Proof Let us prove the statement iii of the Theorem; the proof of the other
statements is completely analogous. Assume that p > 1, thus q < +∞. From
(21) we have that s > n

µ0q
implies λ−sqP ∈ L1(Rn); on the other hand, λsqP

satisfies (G) with δ defined as in (25), see Example 3 in Sect. 2. From Propo-
sition 2 applied to λsqP we derive that λrqP fulfils condition (B), which amounts
to say that λrP satisfies (43), where r = s

1−δ . Then the result of Corollary 1

2 However condition (SM) is far from being sufficient for FLpω(Rn) to be an algebra, as
long as p > 1.
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applies to FLpλrP (Rn) = FLpr,P(Rn) and gives the statement iii. Notice that

condition r > n
(1−δ)µ0q

reduces to r > 0 when q = +∞ (corresponding to

p = 1). That FL1
r,P(Rn) with r > 0 is an algebra for the point-wise product

follows again from Corollary 1 by observing that λrP satisfies (SM) (that is
(43) for q = +∞).

Remark 9 In agreement with the observation made at the end of Section 2.2,
for p = 2 the lower bounds of r given in i-iii of Corollary 3 are exactly the
same required to ensure the algebra property for the corresponding weighted
Sobolev spaces (see [11] and [13] for the case of a general 1 < p < +∞).

To the end of this Section, let us observe that, as a byproduct of Proposi-
tions 3 and 4, the following result can be proved.

Proposition 5 Assume that ω, ω1, ω2 are weight functions satisfying con-
dition (40) for some 1 ≤ q < +∞. Then ω, ω1, ω2 also satisfy condition
(46). In particular, if ω is a weight function satisfying condition (43) for some
1 ≤ q < +∞ then it also satisfies condition (SM).

Remark 10 The second part of Proposition 5 slightly improves the result of
[11, Proposition 2.4], where the sub-multiplicative condition (SM) was de-
duced from Beurling condition (B) (corresponding to (43) with q = 1) and
conditions (SV) and (11); here ω, ω1, ω2 are only required to satisfy condition
(T ) (included in our definition of weight function), which is implied by (SV)
and (11) in view of Proposition 2.i.

4 Pseudodifferential operators with symbols in weighted Fourier
Lebesgue spaces

This Section is devoted to the study of a class of pseudodifferential operators
whose symbols a(x, ξ) have a finite regularity of weighted Fourier Lebesgue
type with respect to x.

Let us first recall that, under the only assumption a(x, ξ) ∈ S ′(R2n), the
pseudodifferential operator defined by

a(x,D)f = (2π)−n
∫
eix·ξa(x, ξ)f̂(ξ)dξ , f ∈ S(Rn) , (55)

maps continuously S(Rn) to S ′(Rn)3. Similarly, if Ω is an open subset of Rn
and a(x, ξ) ∈ D′(Ω × Rn) is such that ϕ(x)a(x, ξ) ∈ S ′(Rn × Rn) for every
ϕ ∈ C∞0 (Ω), then (55) defines a linear continuous operator from S(Rn) to
D′(Ω).

3 The integral in the right-hand side of (55) must be understood here in a weak (distri-
butional) sense.
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Let us also recall that, as a linear continuous operator from C∞0 (Ω) to
D′(Ω), every pseudodifferential operator with symbol a(x, ξ) ∈ D′(Ω × Rn)
admits a (uniquely defined) Schwartz kernel Ka(x, y) ∈ D′(Ω ×Ω) such that

〈a(x,D)ψ,ϕ〉 = 〈Ka, ϕ⊗ ψ〉 , ∀ϕ ,ψ ∈ C∞0 (Ω) .

The operator a(x,D) is said to be properly supported on Ω when the support
of Ka is a proper subset of Ω × Ω, that is suppKa ∩ (Ω ×K) and suppKa ∩
(K×Ω) are compact subsets of Ω×Ω, for every compact set K ⊂ Ω. It is well
known that every properly supported pseudodifferential operator continuously
maps C∞0 (Ω) into the space E ′(Ω) of compactly supported distributions and it
extends as a linear continuous operator from C∞(Ω) into D′(Ω). In particular
for every function φ ∈ C∞0 (Ω) another function φ̃ ∈ C∞0 (Ω) can be found in
such a way that

φ(x)a(x,D)u = φ(x)a(x,D)(φ̃u) , ∀u ∈ C∞(Ω) . (56)

Following [9], we introduce some local and global classes of symbols with
finite Fourier Lebesgue regularity.

Definition 4 Let ω = ω(ξ), γ = γ(ξ) be arbitrary weight functions.

1. A distribution a(x, ξ) ∈ S ′(R2n) is said to belong to the class FLpωSγ if
ξ 7→ a(·, ξ) is a measurable FLpω(Rn)−valued function on Rnξ such that∥∥∥∥a(·, ξ)

γ(ξ)

∥∥∥∥
FLpω

≤ C , ∀ ξ ∈ Rn , (57)

for some constant C > 0. More explicitly, the above means that

ω(η)â(·, ξ)(η)

γ(ξ)
∈ Lp(Rnη ) ,

with norm uniformly bounded with respect to ξ.
2. We say that a distribution a(x, ξ) ∈ D′(Ω×Rn), where Ω is an open subset

of Rn, belongs to FLpωSγ(Ω) if φ(x)a(x, ξ) ∈ FLpωSγ for every φ ∈ C∞0 (Ω)
(which amounts to have that a(·, ξ)/γ(ξ) ∈ FLpω,loc(Ω) uniformly in ξ).

Remark 11 For ω, γ as in Definition 4, FLpωSγ is a Banach space with respect
to the norm

‖a‖FLpωSγ := sup
ξ∈Rn

∥∥∥∥a(·, ξ)
γ(ξ)

∥∥∥∥
FLpω

, (58)

while FLpωSγ(Ω) is a Fréchet space with respect to the family of semi-norms

a 7→ ‖φa‖FLpωSγ , φ ∈ C∞0 (Ω) . (59)
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Let us point out that any assumption is made about the ξ−derivatives of
the symbol a(x, ξ) in the above definition: the weight function γ only measures
the ξ−decay at infinity of the symbol itself. It is clear that FLpωSγ1 ≡ FLpωSγ2 ,
whenever γ1 ∼ γ2 (the same applies of course to the corresponding local classes
on an open set). When the weight function γ is an arbitrary positive constant,
the related symbol class FLpωSγ will be simply denoted as FLpωS, and its
symbols (and related pseudo-differential operators) will be referred to as zero-
th order symbols (and zero-th order operators). Finally, we notice that for every
weight function ω = ω(ξ) and p ∈ [1,+∞], the inclusion FLpω(Rn) ⊂ FLpωS
holds true (the elements of FLpω(Rn) being regarded as ξ−independent zero-th
order symbols).

Proposition 6 For p ∈ [1,+∞] let the weight functions ω, ω1, ω2 and γ
satisfy

Cq := sup
ξ∈Rn

∥∥∥∥ ω2(ξ)γ(·)
ω1(·)ω(ξ − ·)

∥∥∥∥
Lq
< +∞ , (60)

where q is the conjugate exponent of p. Then the following hold true.

i. For every a(x, ξ) ∈ FLpωSγ the pseudodifferential operator a(x,D) extends
to a unique linear bounded operator

a(x,D) : FLpω1
(Rn)→ FLpω2

(Rn) .

ii. For every a(x, ξ) ∈ FLpωSγ(Ω), with Ω open subset of Rn, the pseudodif-
ferential operator a(x,D) extends to a unique linear bounded operator

a(x,D) : FLpω1
(Rn)→ FLpω2,loc

(Ω) .

If in addition the pseudodifferential operator a(x,D) is properly supported,
then it extends to a linear bounded operator

a(x,D) : FLpω1,loc
(Ω)→ FLpω2,loc

(Ω) .

Proof The second part of the statement ii is an immediate consequence of the
first one; indeed, since the operator a(x,D) is properly supported, for every
function φ ∈ C∞0 (Ω) another function φ̃ ∈ C∞0 (Ω) can be chosen in such a
way that φa(·, D)u = φa(·, D)(φ̃u), cf. (56).

The first part of the statement ii follows, in its turn, from the statement
i by noticing that φ(x)a(x, ξ) ∈ FLpωSγ for every function φ ∈ C∞0 (Ω) (cf.
Definition 4).

As for the proof of the statement i, we first observe that for every u ∈ S(Rn)
one computes

̂a(·, D)u(η) = (2π)−n
∫
â(η − ξ, ξ)û(ξ) dξ , (61)
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where â(η, ξ) := â(·, ξ)(η) denotes the partial Fourier transform of the symbol
a(x, ξ) with respect to x. From (61) we find the following integral representa-
tion

ω2(η) ̂a(·, D)u(η) = (2π)−n
∫
ω2(η)â(η − ξ, ξ)û(ξ) dξ

= (2π)−n
∫

ω2(η)γ(ξ)

ω(η − ξ)ω1(ξ)

ω(η − ξ)â(η − ξ, ξ)
γ(ξ)

ω1(ξ)û(ξ) dξ

= (2π)−n
∫
F (η, ξ)f(η − ξ, ξ)g(ξ) dξ ,

(62)

where it is set

f(ζ, ξ) =
ω(ζ)â(ζ, ξ)

γ(ξ)
, F (ζ, ξ) =

ω2(ζ)γ(ξ)

ω(ζ − ξ)ω1(ξ)
, g(ξ) = ω1(ξ)û(ξ) . (63)

The assumptions of Proposition 6 (see (60), (57)) yield the following

sup
ζ∈Rn

‖F (ζ, ·)‖Lq = Cq , sup
ξ∈Rn

‖f(·, ξ)‖Lp = ‖a‖FLpωSγ , g ∈ Lp(Rn) .

Now we apply to ω2(η) ̂a(·, D)u(η), written as the integral operator in (62),
the result of Lemma 1. Then we have

‖a(·, D)u‖FLpω2
= ‖ω2

̂a(·, D)u‖Lp ≤ (2π)−nCq‖a‖FLpωSγ‖u‖FLpω1
.

Remark 12 It is clear that Proposition 6 provides a generalization of the re-
sult given by Proposition 3; indeed the multiplication by a given function
v = v(x) ∈ FLpω(Rn) ⊂ FLpωS can be thought to as the zero-th order pseu-
dodifferential operator with ξ−independent symbol a(x, ξ) = v(x), cf. Remark
10.

5 Microlocal regularity in weighted Fourier Lebesgue spaces

This Section is devoted to introduce a microlocal counterpart of the weighted
Fourier Lebesgue spaces presented in Section 2.2 and to define corresponding
classes of pseudodifferential operators, with finitely regular symbols, naturally
acting on such spaces.

Because of the lack of homogeneity of a generic weight function ω = ω(ξ),
in order to perform a microlocal analysis in the framework of weighted Fourier
Lebesgue spaces it is convenient to replace the usual conic neighborhoods (used
in Pilipović et al. [26], [27]) by a suitable notion of ε−neighborhood of a set,
modeled on the weight function itself, following the approach of Rodino [28]
and Garello [7].

In the following, let ω : Rn →]0,+∞[ be a weight function satisfying the
subadditivity condition (SA) and
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(SH): for a suitable constant C ≥ 0

ω(tξ) ≤ Cω(ξ) , ∀ ξ ∈ Rn , |t| ≤ 1 . (64)

Every weight function ω = ω(ξ) satisfying (SA) and (SH) also obeys the
following

1

C
≤ ω(ξ + tθ)

ω(ξ)
≤ C , when ω(θ) ≤ 1

C
ω(ξ) , |t| ≤ 1 , (65)

for a suitable constant C > 1, cf. [7].
Throughout the whole Section, the weight function ω = ω(ξ) will be as-

sumed to be continuous4. Then an easy consequence of condition (SH) is that
ω(ξ) satisfies (11).

To every set X ⊂ Rn one may associate a one-parameter family of open
sets by defining for any ε > 0

X[εω] :=
⋃
ξ0∈X

{ξ ∈ Rn : ω(ξ − ξ0) < εω(ξ0)} . (66)

We call X[εω] the [ω]−neighborhood of X of size ε.

Remark 13 Since {ξ ∈ Rn ; ω(ξ − ξ0) < εω(ξ0)} = ∅ when ω(ξ0) ≤ c/ε, where
c is the constant in (11), we effectively have

X[εω] =
⋃

ξ0∈X : ω(ξ0)>
c
ε

{ω(ξ − ξ0) < εω(ξ0)} ,

and for X bounded a constant ε0 = ε0(X) > 0 exists such that X[εω] = ∅
when 0 < ε < ε0.

As a consequence of (SA), (SH) and (65), the [ω]-neighborhoods of a set
X fulfil the following lemma.

Lemma 2 Given ε > 0, there exists 0 < ε′ < ε such that for every X ⊂ Rn(
X[ε′ω]

)
[ε′ω]
⊂ X[εω] ; (67)(

Rn \X[εω]

)
[ε′ω]
⊂ Rn \X[ε′ω] . (68)

Moreover there exist constants ĉ > 0 and 0 < ε̂ < 1 such that for all X ⊂ Rn
and 0 < ε ≤ ε̂

ξ ∈ X[εω] yields ω(ξ) >
ĉ

ε
. (69)

4 This assumption is not as much restrictive, since it can be shown (see e.g. [32]) that for
any weight function ω an equivalent weight function ω0 exists such that ω0 ∈ C∞(Rn) and
∂αω0/ω0 ∈ L∞(Rn) for each multi-index α.
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Proof (67) and (68) are direct consequences of (SA), (SH) and (65), see [7]
for details.

If ξ ∈ X[εω] then ξ0 ∈ X exists such that

ω(ξ − ξ0) < εω(ξ0) , (70)

hence ω(ξ − ξ0) ≥ c implies ω(ξ0) >
c

ε
, cf. (11) and Remark 13.

In view of (65)

ω(ξ) = ω(ξ0 + (ξ − ξ0)) ≥ 1

C
ω(ξ0) >

c

Cε

follows from (70), provided that ε ≤ 1

C
(where C is the same constant involved

in (65)).

We use the notion of [ω]−neighborhood of a set to define a microlocal version
of the weighted Fourier Lebesgue spaces.

Definition 5 We say that a distribution u ∈ S ′(Rn) belongs microlocally to
FLpω at X ⊂ Rn, writing u ∈ FLpω,mcl(X), p ∈ [1,+∞], if there exists ε > 0
such that

|u|pX[εω]
:=

∫
X[εω]

ω(ξ)p|û(ξ)|p dξ < +∞ (71)

(with obvious modification for p = +∞).
For Ω open subset of Rn, x0 ∈ Ω and X ⊂ Rn, we say that a distribution

u ∈ D′(Ω) belongs microlocally to FLpω on the set X at the point x0, writing
u ∈ FLpω,mcl(x0×X), if there exists a function φ ∈ C∞0 (Ω) such that φ(x0) 6= 0

and φu ∈ FLpω,mcl(X).

Remark 14 In view of Remark 13, condition (71) is meaningful only for un-
bounded X.

We can say that u ∈ FLpω,mcl(X) and u ∈ FLpω,mcl(x0 ×X) if respectively

χ[εω](ξ)ω(ξ)û(ξ) ∈ Lp(Rn) (72)

and

χ[εω](ξ)ω(ξ)φ̂u(ξ) ∈ Lp(Rn) , (73)

where χ[εω] = χ[εω](ξ) denotes the characteristic function of the set X[εω] and
ε > 0, φ = φ(x) are given as in Definition 5.

According to Definition 5 one can introduce the notion of filter of Fourier
Lebesgue singularities, which is in some way the extension of the wave front
set of Fourier Lebesgue singularities when we lack the homogeneity properties
necessary to use effectively conic neighborhoods.
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Definition 6 Assume that u ∈ D′(Ω), x0 ∈ Ω, p ∈ [1,+∞]. Then the filter
of FLpω−singularities of u at the point x0 is the class of all sets X ⊂ Rn such
that u ∈ FLpω,mcl(x0 × (Rn \X)). It may be easily verified that

ΞFLpω , x0
u :=

⋃
φ∈C∞0 (Ω) , φ(x0)6=0

ΞFLpωφu , (74)

where for every v ∈ S ′(Rn), ΞFLpωv is the class of all sets X ⊂ Rn such that
v ∈ FLpω,mcl(Rn \X).

ΞFLpωv and ΞFLpω , x0
u defined above are [ω]−filters, in the sense that they

satisfy the standard filter properties and moreover for all X ∈ ΞFLpωv (respec-
tively X ∈ ΞFLpω , x0

u) there exists ε > 0 such that Rn \ (Rn \X)[εω] ∈ ΞFLpωv
(respectively Rn \(Rn \X)[εω] ∈ ΞFLpω , x0

u), see e.g. [33] for the definition and
properties of a filter.

5.1 Symbols with microlocal regularity in spaces of Fourier Lebesgue type

Throughout the whole Section, we assume that λ = λ(ξ) and Λ = Λ(ξ) are
two continuous weight functions, such that λ satisfies condition (11) and Λ
conditions (SA) and (SH).

For given p ∈ [1,+∞] and X ⊂ Rn, the space FLpλ(Rn) ∩ FLpΛ,mcl(X) is
provided with the inductive limit locally convex topology defined on it by the
family of subspaces

FLpλ(Rn) ∩ FLpΛ,ε(X) := {u ∈ FLpλ(Rn) : |u|X[εΛ]
< +∞}

(cf. (71)), endowed with their natural semi-norm

‖u‖FLpλ + |u|X[εΛ]
, ε > 0 .

Analogously for every x0 ∈ Ω, the space FLpλ ,loc(x0) ∩ FLpΛ ,mcl(x0 ×X)
is provided with the inductive limit topology defined by the subspaces

FLpλ ,φ ∩ FL
p
Λ,ε(X) := {u ∈ D′(Ω) : φu ∈ FLpλ(Rn) ∩ FLpΛ,ε(X)} ,

endowed with the natural semi-norms

‖φu‖FLpλ + |φu|X[εΛ]
, φ ∈ C∞0 (Ω), φ(x0) 6= 0 , ε > 0 .

From the general properties of the inductive limit topology (see e.g. [33]),
it follows that a sequence {uν} converges to u in FLpλ(Rn)∩FLpΛ ,mcl(X) (resp.

FLpλ ,loc(x0) ∩ FLpΛ ,mcl(x0 × X)) if and only if there exists some ε > 0 such
that

‖uν − u‖FLpλ → 0 and |uν − u|X[εΛ]
→ 0 , as ν → +∞

(resp. there exist φ ∈ C∞0 (Ω), with φ(x0) 6= 0, and ε > 0 such that

‖φ(uν − u)‖FLpλ → 0 and |φ(uν − u)|X[εΛ]
→ 0 , as ν → +∞).
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Definition 7 Let λ = λ(ξ), Λ = Λ(ξ) be two weight functions as above
and γ = γ(ξ) a further continuous weight function, x0 ∈ Ω, X ⊂ Rn and
p ∈ [1,+∞]. We say that a distribution a(x, ξ) ∈ D′(Ω × Rn) belongs to
FLpλ, ΛSγ(x0 × X) if the function ξ 7→ a(·, ξ) takes values in FLpλ,loc(x0) ∩
FLpΛ,mcl(x0 × X) and for some φ ∈ C∞0 (Ω) such that φ(x0) 6= 0 and ε > 0
there holds

‖a‖φ,λ,γ := sup
ξ∈Rn

∥∥∥∥∥λ(·)φ̂a(·, ξ)
γ(ξ)

∥∥∥∥∥
Lp

< +∞ and

|a|φ,Λ,γ,ε,X := sup
ξ∈Rn

∥∥∥∥∥Λ(·)χε,Λ(·)φ̂a(·, ξ)
γ(ξ)

∥∥∥∥∥
Lp

< +∞ ,

(75)

where φ̂a(η, ξ) := Fx→η (φ(x)a(x, ξ)) (η) denotes the partial Fourier transform
of φ(x)a(x, ξ) with respect to x.

Theorem 1 For p ∈ [1,+∞], x0 ∈ Ω, X ⊂ Rn, let λ = λ(ξ), Λ = Λ(ξ),
γ = γ(ξ), σ = σ(ξ) be weight functions such that λ obeys condition (43), where
q is the conjugate exponent of p, Λ conditions (SA), (SH), 1/σ ∈ Lq(Rn) and

σ(ξ) � λ(ξ) � Λ(ξ) � λ(ξ)2

σ(ξ)
. (76)

(i) If a(x, ξ) ∈ FLpλ, ΛSγ(x0 × X) then the corresponding pseudodifferential
operator a(x,D) extends to a bounded linear operator

FLpλγ(Rn) ∩ FLpΛγ,mcl(X)→ FLpλ,loc(x0) ∩ FLpΛ,mcl(x0 ×X) . (77)

(ii) If in addition a(x,D) is properly supported, then it extends to a bounded
linear operator

FLpλγ,loc(x0)∩FLpΛγ,mcl(x0×X)→ FLpλ,loc(x0)∩FLpΛ,mcl(x0×X) . (78)

Proof The statement (ii) follows at once from (i) in view of the definition of
a properly supported operator. Thus, let us focus on the proof of (i).

In view of Definition 7, there exist ε > 0 and φ ∈ C∞0 (Ω), with φ(x0) 6= 0,
such that conditions in (75) are satisfied. We are going first to prove that

φ(x)a(x,D)u ∈ FLpλ(Rn) , (79)

as long as u ∈ FLpλγ(Rn). Let us denote for short

aφ(x, ξ) := φ(x)a(x, ξ) .

In order to check (79) it is enough to apply the result of Proposition 6 to
the symbol aφ(x, ξ) ∈ FLpλSγ (cf. Definition 4) where, restoring the notations
used there, we set

ω1(ζ) = λ(ζ)γ(ζ) , ω(ζ) = ω2(ζ) = λ(ζ) .
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Under the previous positions, the condition (60) of Proposition 6 reduces to
require that λ = λ(ζ) satisfies (43). From Proposition 6 we also deduce the
continuity of a(x,D) as a linear map from FLpλγ(Rn) into FLpλ,loc(x0).

It remains to show that

aφ(x,D)u ∈ FLpΛ,mcl(X) , (80)

when u ∈ FLpλγ(Rn) ∩ FLpΛγ,mcl(X), as well as the continuity of a(x,D) as
an operator acting on the aforementioned spaces. Throughout the rest of the
proof, we will denote by C some positive constant that is independent of
the symbol a(x, ξ) and the function u(x) and may possibly differ from an
occurrence to another.

In view of Lemma 2, there exists some 0 < ε′ < ε such that(
Rn \X[εΛ]

)
[ε′Λ]
⊂ Rn \X[ε′Λ] .

Let us denote for short

χ(ζ) := χ[ε′Λ](ζ) , χ1(ζ) := χ[εΛ](ζ) , χ2(ζ) := 1− χ[εΛ](ζ) (81)

and write

âφ(ζ, ξ)û(ξ) =
∑

i,j=1,2

χi(ζ)âφ(ζ, ξ)χj(ξ)û(ξ) .

Then in view of (61) and condition (SA) for Λ, we find

|χ(η)Λ(η) ̂aφ(·, D)u(η)|

≤ C(2π)−n
∫
χ(η) {Λ(η − ξ) + Λ(ξ)} |âφ(η − ξ, ξ)| |û(ξ)|dξ

≤ C(2π)−n
∫
χ(η)

∑
i,j=1,2

χi(η − ξ)Λ(η − ξ)|âφ(η − ξ, ξ)|χj(ξ)|û(ξ)|dξ

+ C(2π)−n
∫
χ(η)

∑
i,j=1,2

χi(η − ξ)|âφ(η − ξ, ξ)|χj(ξ)Λ(ξ)|û(ξ)|dξ

= I1u(η) + I2u(η) .

(82)

Let us set

g1(ζ, ξ) = χ1(ζ)Λ(ζ)γ(ξ)−1|âφ(ζ, ξ)| ;
g2(ζ, ξ) = χ2(ζ)σ(ζ)Λ(ζ)γ(ξ)−1Λ(ξ)−1|âφ(ζ, ξ)| ;
g̃2(ζ, ξ) = χ2(ζ)σ(ζ)1/2Λ(ζ)1/2γ(ξ)−1|âφ(ζ, ξ)| ;
v1(ξ) = χ1(ξ)γ(ξ)σ(ξ)|û(ξ)| ; ṽ1(ξ) = χ1(ξ)γ(ξ)Λ(ξ)|û(ξ)| ;
v2(ξ) = χ2(ξ)γ(ξ)σ(ξ)|û(ξ)| ;
ṽ2(ζ, ξ) = χ2(ξ)σ(ξ)1/2Λ(ζ)1/2γ(ξ)|û(ξ)| .

(83)



Inhomogeneous microlocal propagation of singularities in Fourier Lebesgue spaces 25

Then the first integral in the right-hand side of (82) can be rewritten as

I1u(η) =

∫
χ(η)

1

σ(ξ)
g1(η − ξ, ξ)v1(ξ)dξ

+

∫
χ(η)

1

σ(ξ)
g1(η − ξ, ξ)v2(ξ)dξ +

∫
χ(η)

1

σ(η − ξ)
g2(η − ξ, ξ)ṽ1(ξ)dξ

+

∫
χ(η)

1√
σ(ξ)σ(η − ξ)

g̃2(η − ξ, ξ)ṽ2(η − ξ, ξ)dξ .

(84)

In view of the assumptions in (76) it is easy to see that all the above functions
v1, v2, ṽ1 defined in (83) belong to Lp(Rn), if u ∈ FLpλγ(Rn) ∩ FLpΛγ,mcl(X),
with the following estimates

‖v1‖Lp ≤ |u|X[εΛγ]
, ‖ṽ1‖Lp ≤ |u|X[εΛγ]

, ‖v2‖Lp ≤ ‖u‖FLpλγ . (85)

Moreover the functions

F1(η, ξ) :=
χ(η)

σ(ξ)
, F2(η, ξ) :=

χ(η)

σ(η − ξ)
, F3(η, ξ) :=

χ(η)√
σ(ξ)σ(η − ξ)

(86)

belong to the space L∞,q2 (R2n), with the estimates

‖Fi‖L∞,q2
≤ ‖1/σ‖Lq , i = 1, 2, 3 . (87)

Again from (76) and (75) we easily obtain that g1(ζ, ξ) ∈ Lp,∞1 (R2n) and
satisfies the estimate

‖g1‖Lp,∞1
≤ |a|φ,Λ,γ,ε,X .

In view of the previous analysis, the first two integral operators involved in
(84) have the form of the operator considered in Lemma 1. Thus from Lemma
1 and the estimates collected above we get∥∥∥∥∫ χ(·) 1

σ(ξ)
g1(· − ξ, ξ)v1(ξ)dξ

∥∥∥∥
Lp

+

∥∥∥∥∫ χ(·) 1

σ(ξ)
g1(· − ξ, ξ)v2(ξ)dξ

∥∥∥∥
Lp

≤ ‖1/σ‖Lq |a|φ,Λ,γ,ε,X
{
|u|X[εΛγ]

+ ‖u‖FLpλγ
}
.

(88)

Concerning the third integral operator in (84), we notice that the involved
function g2(ζ, ξ) vanishes when ζ + ξ /∈ X[ε′Λ], due to the presence of the
characteristic function χ. For ζ + ξ ∈ X[ε′Λ] and ζ ∈ Rn \X[εΛ] it follows that

Λ(ζ) ≤ 1
ε′Λ(ξ); indeed the converse inequality Λ((ζ + ξ)− ζ) = Λ(ξ) < ε′Λ(ζ)

should mean that ζ + ξ ∈ (Rn \X[εΛ])[ε′Λ] ⊂ Rn \X[ε′Λ]. Hence we get

|g2(ζ, ξ)| ≤ 1

ε′
χ2(ζ)σ(ζ)γ(ξ)−1|âφ(ζ, ξ)| , (89)

and, using also σ � λ,

‖g2(·, ξ)‖Lp ≤
1

ε′
‖χ2(·)σ(·)γ(ξ)−1|âφ(·, ξ)‖Lp ≤

C

ε′
‖a‖φ,λ,γ .
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This yields that g2(ζ, ξ) ∈ Lp,∞1 (R2n) with norm bounded by

‖g2‖Lp,∞1
≤ C

ε′
‖a‖φ,λ,γ .

Hence we may apply again Lemma 1 to the third operator in (84), and using
also the estimates (85), (87) we find∥∥∥∥∫ χ(·) 1

σ(· − ξ)
g2(· − ξ, ξ)ṽ1(ξ)dξ

∥∥∥∥
Lp
≤ C

ε′
‖1/σ‖Lq‖a‖φ,λ,γ |u|X[εΛγ]

. (90)

Let us consider now the fourth integral operator in (84). Applying the same
argument used to provide the estimate (89), we obtain

|ṽ2(ζ, ξ)| ≤ 1

ε′
χ2(ξ)σ(ξ)1/2Λ(ξ)1/2γ(ξ)|û(ξ)| . (91)

Thanks to (76), σ1/2Λ1/2 � λ, then∣∣∣∣∫ χ(η)√
σ(ξ)σ(η − ξ)

g̃2(η − ξ, ξ)ṽ2(η − ξ, ξ)dξ

∣∣∣∣∣
≤ C

ε′

∫
χ(η)√

σ(ξ)σ(η − ξ)
|g̃2(η − ξ, ξ)|λ(ξ)γ(ξ)|û(ξ)| dξ .

(92)

On the other hand, using again σ1/2Λ1/2 � λ and aφ(·, ξ)/γ(ξ) ∈ FLpλ(Rn),
uniformly with respect to ξ, we establish that g̃2(ζ, ξ) belongs to Lp,∞1 (R2n)
and satisfies the estimate

‖g̃2‖Lp,∞1
≤ ‖σ(·)1/2Λ(·)1/2γ(ξ)−1âφ(·, ξ)‖Lp ≤ C‖a‖φ,λ,γ . (93)

Since λ(ξ)γ(ξ)|û(ξ)| ∈ Lp(Rn) (as u ∈ FLpλγ(Rn)) and F3(η, ξ) = χ(η)√
σ(ξ)σ(η−ξ)

belongs to L∞,q2 (R2n), the integral operator in the right-hand side of (92)
satisfies the assumptions of Lemma 1, then from (87) and (89) we find∥∥∥∥∫ χ(·)√

σ(ξ)σ(· − ξ)
g̃2(· − ξ, ξ)ṽ2(· − ξ, ξ)dξ

∥∥∥∥∥
Lp

≤ C

ε′
‖1/σ‖Lq‖a‖φ,λ,γ‖u‖FLpλγ .

(94)

Summing up the estimates (88), (90), (94) the Lp−norm of I1u in the right-
hand side of (82) is estimated by

‖I1u‖Lp ≤
C

ε′
‖1/σ‖Lq (|a|φ,Λ,γ,ε,X + ‖a‖φ,λ,γ)

(
|u|X[εΛγ]

+ ‖u‖FLpλγ
)
. (95)

The second integral I2u(η) in (82) can be handled similarly as before to provide
for its Lp−norm the same bound as in (95). From (82) we then get

‖χΛ ̂aφ(·, D)u‖Lp

≤ C

ε′
‖1/σ‖Lq (|a|φ,Λ,γ,ε,X + ‖a‖φ,λ,γ)

(
|u|X[εΛγ]

+ ‖u‖FLp
(λγ)

) (96)
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which proves (80) and shows the continuity of a(x,D) as a linear map from
FLpλγ(Rn) ∩ FLpΛγ,mcl(X) into FLpλ,loc(x0) ∩ FLpΛ,mcl(x0 ×X).

Remark 15 Let the same hypotheses of Theorem 1 be satisfied. Clearly every
v = v(x) ∈ FLpλ,loc(x0) ∩ FLpΛ,mcl(x0 ×X) is a ξ−independent symbol in the

class FLpλ, ΛSγ(x0×X) corresponding to the weight function γ(ξ) ≡ 1, and the
product of smooth functions by the multiplier v defines a properly supported
zero-th order operator. Therefore we find that the product of any two elements
u, v ∈ FLpλ,loc(x0)∩FLpΛ,mcl(x0×X) still belongs to the same space (giving a
continuous bilinear mapping), as a direct application of Theorem 1. Similarly
as in the proof of Corollary 2, see also the subsequent Remark 6, one can
deduce that the composition of a vector-valued distribution u = (u1, . . . , uN ) ∈(
FLpλ,loc(x0) ∩ FLpΛ,mcl(x0 ×X)

)N
with some nonlinear function F = F (x, ζ)

of x ∈ Rn and ζ ∈ CN , which is locally smooth with respect to x on some
neighborhood of x0 and entire analytic with respect to ζ in the sense of Remark
6, is again a distribution in FLpλ,loc(x0) ∩ FLpΛ,mcl(x0 ×X).

Let us even point out that in the particular case where λ ≡ Λ the as-
sumption (76) in Theorem 1 reduces to σ � λ. In such a case FLpλ,loc(x0) ∩
FLpΛ,mcl(x0 × X) ≡ FLpλ,loc(x0) and FLpλ,ΛSγ(x0 × X) ≡ FLpλSγ(Vx0

) for a
suitable neighborhood Vx0

of x0, see Definition 4, hence the statement of The-
orem 1 reduces to a particular case of the statement of Proposition 6 (where
ω1 = γλ, ω = ω2 = λ) under slightly more restrictive assumptions; indeed a
sub-additive weight function λ satisfying σ � λ for 1/σ ∈ Lq(Rn) also fulfils
condition (43) with the same q (that is the assumption required by Proposition
6), in view of Proposition 2.ii.

6 Propagation of singularities

In this Section, we give some applications to the local and microlocal regu-
larity of semilinear partial(pseudo)differential equations in weighted Fourier
Lebesgue spaces.

The smooth symbols we consider in this Section are related to a suitable
subclass of the weight functions introduced in Section 2.1. More precisely, we
consider a continuous function λ : Rn →]0,+∞[ satisfying the following:

λ(ξ) ≥ 1

C
(1 + |ξ|)ν , ∀ ξ ∈ Rn ; (97)

1

C
≤ λ(ξ)

λ(η)
≤ C , as long as |ξ − η| ≤ 1

C
λ(η)1/µ , (98)

for suitable constants C ≥ 1, 0 < ν ≤ µ.
Thanks to Proposition 2, it is clear that λ(ξ) is a weight function; indeed

it also satisfies the temperance condition (T ) for N = µ.
All the weight functions described in the examples 1–3 given in Section 2.1

obey the assumptions (97), (98).
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For r ∈ R, ρ ∈]0, 1/µ], we define Srρ,λ as the class of smooth functions

a(x, ξ) ∈ C∞(R2n) whose derivatives decay according to the following esti-
mates

|∂αξ ∂βxa(x, ξ)| ≤ Cα,βλ(ξ)r−ρ|α| , ∀ (x, ξ) ∈ R2n . (99)

If Ω is an open subset of Rn, the local class Srρ,λ(Ω) is the set of functions
a(x, ξ) ∈ C∞(Ω × Rn) such that φ(x)a(x, ξ) ∈ Srρ,λ for all φ ∈ C∞0 (Ω). We
will adopt the shortcut

Srλ := Sr1/µ,λ , Srλ(Ω) := Sr1/µ,λ(Ω) .

Hereafter, we will denote by OpSrρ,λ(Ω) the class of properly supported pseu-
dodifferential operators with symbols in Srρ,λ(Ω) and, according to the above,
we set

OpSrλ(Ω) := OpSr1/µ,λ(Ω) .

A symbol a(x, ξ) ∈ Srλ(Ω) (and the related pseudodifferential operator) is said
to be λ−elliptic if for every compact subset K of Ω some positive constants
cK and RK > 1 exist such that

|a(x, ξ)| ≥ cKλ(ξ)r , ∀x ∈ K and |ξ| ≥ RK . (100)

Let us also observe that
⋂
r∈R

Srρ,λ(Ω) = S−∞(Ω), where in the classic terms

S−∞(Ω) is the class of symbols a(x, ξ) ∈ C∞(Ω×Rn) such that for arbitrarily
large θ > 0, for all multi-indices α, β ∈ Zn+ and every compact set K ⊂ Ω there
holds

|∂αξ ∂βxa(x, ξ)| ≤ Cα,β,θ(1 + |ξ|)−θ , ∀x ∈ K , ∀ ξ ∈ Rn .

Pseudodifferential operators with symbols a(x, ξ) ∈ S−∞(Ω) are regularizing
operators in the sense that they define linear bounded operators a(x,D) :
E ′(Ω)→ C∞(Ω).

The weighted symbol classes Srρ,λ(Ω) considered above are a special case
of the more general classes Sm,Λ(Ω), associated to the weight function m(ξ) =
λ(ξ)r and the weight vector Λ(ξ) = (λ(ξ)ρ, . . . , λ(ξ)ρ), as defined and studied
in [18, Definition 1.1]. For the weighted symbol classes Srρ,λ(Ω), a complete
symbolic calculus is available, cf. [18, Sect.1]; in particular, the existence of a
parametrix of any elliptic pseudodifferential operator is guaranteed.

Proposition 7 Let a(x.ξ) be a λ−elliptic symbol in Srρ,λ(Ω). Then a symbol

b(x, ξ) ∈ S−rρ,λ(Ω) exists such that the operator b(x,D) is properly supported
and satisfies

b(x,D)a(x,D) = Id + c(x,D) ,

where Id denotes the identity operator and c(x,D) is a regularizing pseudodif-
ferential operator.
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The following inclusion

Srρ,λ(Ω) ⊂ FLpωSλr (Ω) (101)

holds true, with continuous imbedding, for all r ∈ R, ρ ∈]0, 1/µ], p ∈ [1,+∞]
and any weight function ω(ξ). As a consequence of Proposition 6 we then
obtain the following continuity result.

Proposition 8 Let ω(ξ) be any weight function and p ∈ [1,+∞]. Then every
pseudodifferential operator with symbol a(x, ξ) ∈ Srρ,λ(Ω) extends to a linear
bounded operator

a(x,D) : FLpλrω(Rn)→ FLpω,loc(Ω) .

If in addition a(x,D) is properly supported, then the latter extends to a linear
bounded operator

a(x,D) : FLpλrω,loc(Ω)→ FLpω,loc(Ω) .

Proof In view of (101), it is enough to observe that for any weight function
ω(ξ), another weight function ω̃(ξ) can be found in such a way that

sup
ξ∈Rn

∥∥∥∥ ω(ξ)

ω(·)ω̃(ξ − ·)

∥∥∥∥
Lq
< +∞ , (102)

where q ∈ [1,+∞] is the conjugate exponent of p; for instance, one can take

ω̃(ξ) = (1 + |ξ|)Ñ , with Ñ > 0 sufficiently large. Then the result follows at
once, by noticing that a(x, ξ) belongs to FLpω̃Sλr (Ω) and (102) is nothing but
condition (60), where γ, ω1, ω2 and ω in Proposition 6 are replaced respectively
by λr, λrω, ω and ω̃.

6.1 Local regularity results

Let λ = λ(ξ) be a given continuous weight function satisfying the assump-
tions (97) and (98). We consider a nonlinear pseudodifferential equation of the
following type

a(x,D)u+ F (x, bi(x,D)u)1≤i≤M = f(x) , (103)

where u = u(x) is defined on some open set Ω ⊆ Rn and a(x,D) is a properly
supported pseudodifferential operator with symbol a(x, ξ) ∈ Srλ(Ω) for given
r > 0. F (x, bi(x,D)u)1≤i≤M stands for a nonlinear function of x ∈ Ω and
b1(x,D)u, b2(x,D)u,..., bM (x,D)u where bi(x,D) are still properly supported
pseudodifferential operators, and f = f(x) is a given forcing term. We require
the equation (103) to be semilinear by assuming that the operators involved
in the nonlinear part F (x, bi(x,D)u) have order strictly smaller than the order
of the linear part a(x,D)u, that is

bi(x, ξ) ∈ Sr−ελ (Ω) for i = 1, . . . ,M , (104)
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for suitable 0 < ε < r.
For s ∈ R, p ∈ [1,+∞], let us set

FLps,λ(Rn) := FLpλs(R
n) , FLps,λ,loc(Ω) := FLpλs,loc(Ω) .

The following regularity result can be proved.

Proposition 9 Let the symbol a(x, ξ) ∈ Srλ(Ω) be λ−elliptic and the func-
tion F = F (x, ζ) obey the assumptions collected in Remark 6. For a given
p ∈ [1,+∞], take a real number t such that λt−r+ε fulfils condition (43)
with q the conjugate exponent of p. If u ∈ FLpt,λ,loc(Ω) is any solution of

the equation (103), with forcing term f ∈ FLps−r,λ,loc(Ω) for some s > t, then

u ∈ FLps,λ,loc(Ω).

If in particular u ∈ FLpt,λ,loc(Ω) solves the equation (103) with f = 0 (that
is the equation (103) is homogeneous) then u ∈ C∞(Ω).

Proof Because of Proposition 8 and the assumption (104), we have bi(x,D)u ∈
FLpt−r+ε,λ,loc(Ω) for all i = 1, . . . ,M . Since λt−r+ε satisfies (43), Corollary 2

also implies F (x, bi(x,D)u) ∈ FLpt−r+ε,λ,loc(Ω) (cf. Remark 6).

If t+ ε ≥ s then a(x,D)u = −F (x, bi(x,D)u) + f ∈ FLps−r,λ,loc(Ω) hence

u ∈ FLps,λ,loc(Ω) because of the λ−ellipticity of a(x,D).
If on the contrary t + ε < s, applying again the λ−ellipticity of a(x,D),

from a(x,D)u = −F (x, bi(x,D)u) + f ∈ FLpt−r+ε,λ,loc(Ω) we derive u ∈
FLpt+ε,λ,loc(Ω). In the latter case, we may repeat the same arguments above,

where now t is replaced by t + ε 5. After that we obtain F (x, bi(x,D)u) ∈
FLpt−r+2ε,λ,loc(Ω) and, provided that t + 2ε < s, u ∈ FLpt+2ε,λ,loc(Ω). It is
now clear that the second part of the argument above can be iterated N
times, up to get F (x, bi(x,D)u) ∈ FLpt−r+Nε,λ,loc(Ω) with t+Nε ≥ s; hence

a(x,D)u = −F (x, bi(x,D)u) + f ∈ FLps−r,λ,loc(Ω) implies u ∈ FLps,λ,loc(Ω)
from the λ−ellipticity of a(x,D).

The second part of the theorem, concerning the case f = 0, follows at
once from the first one; in this case the argument above can be applied for
arbitrarily large s, thus u ∈

⋂
s≥t
FLps,λ,loc(Ω) ⊂ C∞(Ω).

Remark 16 Let us suppose that the weight function λ = λ(ξ) fulfils condition
(SA) (respectively condition (G)), besides (97) and (98). Then λt−r+ε satisfies
condition (43) if t > r + n

νq − ε (respectively t > r + n
(1−δ)νq − ε) is assumed.

6.2 Microlocal regularity results

The results presented in this Section apply to a class of weight functions which
is smaller than the one considered in Section 6.1. More precisely here we deal

5 Let us notice in particular that if the weight function λt−r+ε satisfies condition (43),
then the same is true for any power of λ with exponent greater than t − r + ε, in view of
Proposition 5.
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with a continuous function λ : Rn →]0,+∞[ which satisfies (SA), (SH) and
obeys the following

(PG) polynomial growth conditions: for suitable constants C ≥ 1, 0 < ν ≤ µ.

1

C
(1 + |ξ|)ν ≤ λ(ξ) ≤ C(1 + |ξ|)µ , ∀ ξ ∈ Rn . (105)

Remark 17 It is known from the previous Section that such a function λ also
satisfies condition (65). Then it can be shown that (65), together with (105),
also implies that λ obeys the slowly varying condition (98)6. Thus the class
of weight functions considered in this Section is a proper subclass of that
considered in Section 6.1. It is worthy to be noticed that weight functions
described in the examples 1, 2, given in Section 2.1, are included in the class of
weight functions that we are considering here, whereas the multi-quasi-elliptic
weight function illustrated in the example 3 does not meet all the assumptions
required here, precisely the sub-additivity (SA) is not satisfied unless the
complete polyhedron P gives rise to a quasi-homogeneous weight function of
type (16). Additional examples of weight functions obeying conditions (SA),
(SH) and (PG) are provided by the following

λr,s(ξ) = 〈ξ〉s [log(2 + 〈ξ〉)]r , for r, s ∈]0,+∞[ ,

which were studied by Triebel [34] (see also [13]), or even by such functions as

〈ξ〉2µ,ν = 1 +

n∑
j=1

|ξj |µj [log(2 + |ξj |)]νj ,

for µ = (µ1, . . . , µn), ν = (ν1, . . . , νn) ∈]0,+∞[n ,

or
Λs,P(ξ) = 〈ξ〉s + log(λP(ξ)) , for s ∈]0,+∞[ ,

being λP(ξ) the multi-quasi-elliptic weight associated to a complete polyhe-
dron P, as it was introduced in Example 3 of Section 2.1 (see (20)).

In order to take advantage of the slowly varying condition (98) (which al-
lows in particular the symbolic calculus for smooth classes Srρ,λ(Ω), see Section
6), it is convenient to introduce here another family of neighborhoods of an ar-
bitrary set X (in the frequency space Rnξ ), associated to the weight function λ,
besides the [λ]−neighborhoods X[ελ] already defined as in (66). For arbitrary
X ⊂ Rn and ε > 0 we set

Xελ :=
⋃
ξ0∈X

{
ξ ∈ Rn : |ξ − ξ0| < ελ(ξ0)1/µ

}
, (106)

where µ > 0 is the same exponent involved in (105) (hence in (98) according
to Remark 17); we will refer to the set Xελ as the λ−neighborhood of X of size
ε.

6 More precisely, from Section 6.1 we know that conditions (98) and the second inequality
in (105) are equivalent under the assumptions (65) and (97)
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In the following for an open set Ω ⊂ Rn and x0 ∈ Ω, we also set for short
Xελ(x0) := Bε(x0) ×Xελ, where Bε(x0) denotes the open ball in Ω centered
at x0 with radius ε.

Compared to the case of [λ]−neighborhoods of a set X, to define the corre-
sponding λ−neighborhoods the weight function λ is replaced by the Euclidean
norm, as the measure of the distance from points in Xελ to points in X. This
reflects into a slightly different behavior of λ−neighborhoods: it is clear (just
from the definition) that for ε > 0 arbitrarily small the set Xελ is never empty
(unless X = ∅), cf. Remark 13; it is also clear that Xελ is open, for it is the
union of a family of open balls in Rn (centered at points of X).

The same set inclusions as given in Lemma 2 remain true also when the
[λ]−neighborhoods of a set are replaced by the λ−neighborhoods, see [28], [16]
for the proof.

Lemma 3 Given ε > 0, there exists 0 < ε′ < ε such that for every X ⊂ Rn

(1) (Xε′λ)ε′λ ⊂ Xελ;
(2) (Rn \Xελ)ε′λ ⊂ Rn \Xε′λ.

A significant relation between [λ]− and λ−neighborhoods is established by
the next two results.

Lemma 4 Let c > 0 be arbitrarily fixed. For every ε > 0 there exists 0 < ε′ <
ε such that the set inclusion

(X ∩ {λ(ξ) > c/ε′})ε′λ ⊂ X[ελ] ∩ {λ(ξ) > c/ε} (107)

holds true for every X ⊂ Rn.

Proof Let 0 < ε′ < min{1, ε} be such that X∩{λ(ξ) > c/ε′} be nonempty and
take an arbitrary ξ ∈ (X ∩ {λ(ξ) > c/ε′})ε′λ7; then there exists some ξ0 ∈ X
such that

|ξ − ξ0| < ε′λ(ξ0)1/µ and λ(ξ0) > c/ε′ . (108)

From (105) and (108) we get

λ(ξ − ξ0) ≤ C(1 + |ξ − ξ0|)µ ≤ C2µ−1(1 + |ξ − ξ0|µ)

< C2µ−1(1 + ε′µλ(ξ0)) < C2µ−1(ε′/cλ(ξ0) + ε′µλ(ξ0))

< C2µ−1ε′(1/c+ 1)λ(ξ0) ,

(109)

hence λ(ξ − ξ0) < ελ(ξ0) provided that ε′ is such that

C2µ−1ε′(1/c+ 1) < ε .

Thus ξ ∈ X[ελ] provided that 0 < ε′ < min
{

1, ε
C2µ−1(1/c+1)

}
.

7 If X is unbounded then X ∩ {λ(ξ) > c/ε′} 6= ∅ for ε′ > 0 arbitrarily small, because of
the left inequality of (105).
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Let us now prove that λ(ξ) > c/ε up to a further shrinking of ε′. We use
again conditions (SA), (SH), (PG) and (109) to find

λ(ξ) ≥ 1/Cλ(ξ0)− λ(ξ − ξ0) ≥ 1/Cλ(ξ0)− C(1 + |ξ − ξ0|)µ

≥ 1/Cλ(ξ0)− C2µ−1(1 + |ξ − ξ0|µ) > 1/Cλ(ξ0)− C2µ−1(1 + ε′µλ(ξ0))

=
(
1/C − C2µ−1ε′µ

)
λ(ξ0)− C2µ−1 ,

from which we deduce, using also (108),

λ(ξ) >
1

2C
λ(ξ0)− C2µ−1 >

c

2Cε′
− C2µ−1 >

c

4Cε′
>
c

ε
,

provided that ε′ > 0 is chosen such that

ε′ < min

{
1

2C2/µ
,

c

2µ+1C2
,
ε

4C

}
.

This ends the proof that ξ ∈ X[ελ] ∩ {λ(ξ) > c/ε}.

Remark 18 If X is bounded, the set X ∩ {λ(ξ) > c/ε′} (hence the neighbor-
hood (X ∩ {λ(ξ) > c/ε′})ε′λ) is empty for ε′ > 0 sufficiently small, thus the
inclusion (107) becomes trivial. However, thanks to (107), this never occurs
when X is unbounded; in such a case the set X ∩ {λ(ξ) > c/ε′} is nonempty
for arbitrarily small ε′ > 0, since λ is unbounded on X as a consequence of the
left inequality in (105). This yields in particular that, for an unbounded set X
the [λ]−neighborhood X[ελ] is nonempty with size ε > 0 arbitrarily small, cf.
Remark 13.

Corollary 4 For every ε > 0 there exists 0 < ε′ < ε such that for all X ⊂ Rn(
X[ε′λ]

)
ε′λ
⊂ X[ελ] . (110)

Proof In view of Lemma 2 we first notice that for arbitrary ε > 0 we may find
0 < ε∗ < ε sufficiently small such that(

X[ε∗λ]

)
[ε∗λ]

⊂ X[ελ] .

Then combining the results of Lemma 2 and Lemma 4, with X[ε∗λ] instead of
X, another 0 < ε′ < ε∗ sufficiently small can be chosen such that(

X[ε′λ]

)
ε′λ ≡

(
X[ε′λ] ∩ {λ(ξ) > ĉ/ε′}

)
ε′λ

⊂
(
X[ε∗λ] ∩ {λ(ξ) > ĉ/ε′}

)
ε′λ
⊂
(
X[ε∗λ]

)
[ε∗λ]

⊂ X[ελ] ,

where ĉ > 0 is given in Lemma 2. The proof is complete.

In order to perform the subsequent analysis, the next technical lemma will be
useful; for its proof, the reader is addressed to [28, Lemma 1.10], see also [16,
Lemma 1].
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Proposition 10 For arbitrary ε > 0 and X ⊂ Rn there exists a symbol σ =
σ(ξ) ∈ S0

λ such that suppσ ⊂ Xελ and σ(ξ) = 1 if ξ ∈ Xε′λ, for a suitable
ε′ > 0, with 0 < ε′ < ε, depending only on ε and λ. Moreover for every x0 ∈ Ω,
where Ω ⊂ Rn is an open set, there exists a symbol τ0(x, ξ) ∈ S0

λ(Ω) such that
supp τ0 ⊂ Xελ(x0) and τ0(x, ξ) = 1, for (x, ξ) ∈ Xε∗λ(x0), with a suitable ε∗

satisfying 0 < ε∗ < ε.

Remark 19 As an application of Corollary 4, one can easily see that a state-
ment similar to Proposition 10 also holds when λ−neighborhoods are replaced
with the corresponding [λ]−neighborhoods; indeed for arbitrary X ⊂ Rn and
ε > 0, take 0 < ε̃ < ε such that

(
X[ε̃λ]

)
ε̃λ
⊂ X[ελ] and apply the re-

sult of Proposition 10, where X is replaced by X[ε̃λ]. Then some numbers
0 < ε′′ < ε′ < ε̃ and a symbol σ = σ(ξ) ∈ S0

λ exist such that suppσ ⊂(
X[ε̃λ]

)
ε′λ
⊂
(
X[ε̃λ]

)
ε̃λ
⊂ X[ελ] and σ ≡ 1 on

(
X[ε̃λ]

)
ε′′λ

(hence on X[ε̃λ]).
As for the construction of a counterpart of the variable coefficients symbol
τ0(x, ξ) ∈ S0

λ(Ω) in the second part of the statement above, it comes from the
use of the symbol σ(ξ) by following the same lines as in Proposition 10, see
[16, Lemma 1].

Definition 8 Let us consider a symbol a(x, ξ) ∈ Srρ,λ(Ω), x0 ∈ Ω and X ⊂
Rn. We say that a(x, ξ) (or the corresponding pseudodifferential operator) is
microlocally [λ]−elliptic in X at point x0, writing a(x, ξ) ∈ mcer,[λ]X(x0), if
there exist constants c0 > 0 and ε > 0 sufficiently small such that

|a(x0, ξ)| ≥ c0λ(ξ)r , for ξ ∈ X[ελ] . (111)

Remark 20 Let us remark that in the above definition we do not explicitly re-
quire that frequencies ξ, for which (111) holds true, are larger than some pos-
itive constant (that is usual when defining an ellipticity condition, cf. (100));
indeed, because of Lemma 2, ξ ∈ X[ελ] yields λ(ξ) > ĉ/ε and, for sufficiently
small ε > 0, the latter turns out to be a largeness condition on ξ, in view of
the polynomial growth condition (PG).

Let us recall the following notion, providing a microlocal counterpart of the
notion of regularizing symbol

Definition 9 We say that a symbol a(x, ξ) ∈ Srρ,λ(Ω) is rapidly decreasing
in Θ ⊂ Ω ×Rn if there exists a0(x, ξ) ∈ Srρ,λ(Ω) such that a(x, ξ)− a0(x, ξ) ∈
S−∞(Ω) and a0(x, ξ) = 0 in Θ.

The following notion is a natural substitute of that of characteristic set of a
symbol, in the absence of any homogeneity property.

Definition 10 We define the characteristic filter of a(x, ξ) ∈ Srρ,λ(Ω) at a
point x0 ∈ Ω to be the set

Σ[λ],x0
a :=

{
X ⊂ Rn : a(x, ξ) ∈ mcer,[λ](Rn \X)(x0)

}
. (112)
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Using Lemma 2, it is easy to check that Σ[λ],x0
a is a [λ]−filter.

The reader is addressed to [28] and [18] where analogous notions as above
are stated in a more general setting.

Arguing on the properties of λ−neighborhoods of a set and the slowly
varying condition (98) as in the proof of [18, Lemma 4.3], one can prove that
a(x, ξ) ∈ Ssρ,λ(Ω) is microlocally [λ]−elliptic in X at point x0 if and only if

|a(x, ξ)| ≥ c∗λ(ξ)r , for (x, ξ) ∈ Bε̃(x0)×
(
X[ε̃λ]

)
ε̃λ
, (113)

for suitable constants c∗ > 0 and sufficiently small ε̃ > 0.
Then following the same lines of the proof of [18, Theorem 4.6] one can

prove the following

Proposition 11 For every symbol a(x, ξ) ∈ Srρ,λ(Ω) microlocally [λ]−elliptic

in {x0} ×X, there exists a symbol b(x, ξ) ∈ S−rρ,λ(Ω) such that the associated
operator b(x,D) is properly supported and

b(x,D)a(x,D) = Id + c(x,D), (114)

where c(x, ξ) ∈ S0
ρ,λ(Ω) is rapidly decreasing in Bε̃(x0)×

(
X[ε̃λ]

)
ε̃λ

for a suit-
able small ε̃ > 0.

For s ∈ R, p ∈ [1,+∞], U open neighborhood of x0 ∈ Rn and X ⊂ Rn
given, let FLps,λ,loc(U) and FLps,λ,mcl(x0×X) denote the local and microlocal
Fourier Lebesgue classes corresponding to the weight function λs, according
to Definitions 3, 5. Agreeing with these notations, we denote by Ξ[λ],FLps,λ,x0

the related [λ]−filter of Fourier Lebesgue singularities.

By resorting to Proposition 10 and arguing similarly as in the proof of [17,
Proposition 4.5] and [18, Proposition 4.10], we are able to prove the following
characterization of microlocal Fourier Lebesgue spaces.

Proposition 12 Let x0 ∈ Ω, Ω ⊂ Rn open set, and X ⊂ Rn be given. A
distribution u ∈ D′(Ω) belongs to FLps,λ,mcl(x0 ×X) if and only if one of the
following two equivalent conditions is satisfied:

i. there exist constants 0 < ε′ < ε sufficiently small and φ ∈ C∞0 (Ω), with
φ(x0) 6= 0, such that

σ(D)(φu) ∈ FLps,λ(Rn) , (115)

where σ = σ(ξ) ∈ S0
λ is some symbol satisfying suppσ ⊂ X[ελ] and σ ≡ 1

on X[ε′λ];
ii. There exist an operator τ(x,D) ∈ OpS0

λ(Ω) microlocally [λ]−elliptic in
{x0} ×X such that

τ(x,D)u ∈ FLps,λ,loc(Ω) . (116)

Following similar arguments to those in [17, Propositions 5.1, 5.2] we give the
following results.
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Proposition 13 Let s ∈ R, r > 0, x0 ∈ Ω, X ⊂ Rn, a(x,D) ∈ OpSrρ,λ(Ω)

be given. Then for p ∈ [1,∞] and u ∈ mclFLps,λ(x0 ×X) one has a(x,D)u ∈
mclFLps−r,λ(x0 ×X).

Proposition 14 For s ∈ R, r > 0, x0 ∈ Ω, X ⊂ Rn, let a(x,D) ∈ OpSrρ,Λ(Ω)
be microlocally [λ]−elliptic in {x0} × X. Then for every p ∈ [1,∞] and u ∈
D′(Ω) such that a(x,D)u ∈ mclFLps−r,λ(x0 ×X) one has u ∈ mclFLps,λ(x0 ×
X).

It is also straightforward to show that the results of Propositions 13, 14
can be restated in terms of the filter of Fourier Lebesgue singularities and
characteristic filter of a symbol as follows.

Proposition 15 Let s ∈ R, r > 0 be arbitrary real numbers, a(x,D) ∈
OpSρ,λ(Ω), x0 ∈ Ω and p ∈ [1,∞]. Then the following inclusions are sat-
isfied for every u ∈ D′(Ω):

Ξ[λ],FLps−r,λ,x0
a(x,D)u ∩Σ[λ],x0

a ⊂ Ξ[λ],FLps,λ,x0
u ⊂ Ξ[λ],FLps−r,λ,x0

a(x,D)u .

6.3 Semilinear equations

Gathering the results collected in the preceding Sections 4 and 6.2, we prove
here a result of microlocal regularity in Fourier Lebesgue spaces for solutions
to semilinear partial differential equations of type (103) already considered in
Section 6.1. Throughout this Section, we assume that the weight function λ
satisfies the conditions (SA), (SH) and (PG). Moreover the operators a(x,D),
bi(x,D), for 1 ≤ i ≤M in (103), are properly supported with symbols Srλ(Vx0)
and Sr−ελ (Vx0

) on some open bounded neighborhood Vx0
of a point x0, where

0 < ε < r are given as in Section 4; the nonlinear function F = F (x, ζ),
depending as a C∞−function on its first argument x ∈ Vx0

and entire analytic
on its second argument ζ = (ζi)1≤i≤M ∈ CM , satisfies the same requirement
made in Section 3 (see also Remark 15).

The following result was originally proved in [7].

Theorem 2 For 0 < ε < r and 1 ≤ p ≤ +∞ given as above, let τ , t̃, s be
positive real numbers such that

τ + r − ε ≤ t̃ < s (117)

and λ−τ ∈ Lq(Rn), where q is the conjugate exponent of p. As for the semilin-
ear equation (103), let us assume that the pseudodifferential operator a(x,D)
is [λ]−microlocally elliptic in X ⊂ Rn at the point x0 and the source term f =
f(x) belongs to FLps−r,λ,mcl(x0×X). Then every solution u ∈ FLp

t̃,λ,loc
(x0) to

the equation (103) with source term f also satisfies

u ∈ FLpt,λ,mcl(x0 ×X) , for all t ≤ min

{
s, t̃+

(
E

(
t̃− r − τ

ε

)
+ 2

)
ε

}
,

(118)
where E(θ) is the greatest integer less than or equal to θ ∈ R.
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Proof The proof relies on a bootstrapping argument similar to the one used to
prove Proposition 9. So let u ∈ FLp

t̃,λ,loc
(x0) be a solution to equation (103).

From Propositions 8 we get

bi(x,D)u ∈ FLp
t̃−r+ε,λ,loc(x0) , i = 1, . . . ,M . (119)

In view of the assumptions (117), λ−τ ∈ Lq(Rn) and the sub-additivity of λ
we may apply the result of Theorem 1 and its consequences stated in Remark
15; with reference to the statement of that theorem, here λτ plays the role
of the weight functions σ whereas λt̃−r+ε plays the role of both the weight
functions λ, Λ 8. Thus it follows from (119) that

F (x, bi(x,D)u)1≤i≤M ∈ FLpt̃−r+ε,λ,loc(x0) . (120)

If s ≤ t̃+ε, we derive from (103) that a(x,D)u ∈ FLps−r,λ,mcl(x0×X) hence u ∈
FLps,λ,mcl(x0×X) in view of the [λ]−microellipticity of a(x,D) in X at point

x0 and Proposition 14 (notice that t̃+ε ≤ 2t̃−r−τ+2ε under the assumption
(117) then s ≤ t̃ + ε implies s = min{s, 2t̃ − r − τ + 2ε}); if on the contrary
s > t̃ + ε again from (103) we derive that a(x,D)u ∈ FLp

t̃−r+ε,λ,mcl
(x0 ×X)

hence u ∈ FLp
t̃+ε,λ,mcl

(x0×X) by the same arguments as before. In this latter

case, using once again Propositions 8 and 13 we get

bi(x,D)u ∈ FLp
t̃−r+ε,λ,loc(x0) ∩ FLp

t̃−r+2ε,λ,mcl
(x0 ×X) , 1 ≤ i ≤M .

Now we would like to apply Theorem 1 where the role of the weight functions σ,
λ and Λ is covered respectively by λτ , λt̃−r+ε and λt̃−r+2ε; the only assumption
to check is Λ � λ2/σ which amounts to have that t̃ ≥ τ + r (cf. (76)). If this
is the case, Theorem 1 applies to find

F (x, bi(x,D)u) ∈ FLp
t̃−r+ε,λ,loc(x0) ∩ FLp

t̃−r+2ε,λ,mcl
(x0 ×X)

hence from (103) and Proposition 14

a(x,D)u ∈ FLps−r,λ,mcl(x0 ×X) ⇒ u ∈ FLps,λ,mcl(x0 ×X) , if s ≤ t̃+ 2ε

or

a(x,D)u ∈ FLp
t̃−r+2ε,λ,mcl

(x0×X) ⇒ u ∈ FLp
t̃+2ε,λ,mcl

(x0×X) , otherwise.

In the latter case

bi(x,D)u ∈ FLp
t̃−r+ε,λ,loc(x0) ∩ FLp

t̃−r+3ε,λ,mcl
(x0 ×X) , 1 ≤ i ≤M

8 Notice in particular that from the sub-additivity of λ and λτ � λt̃−r+ε (following from

(117)), we derive that λt̃−r+ε satisfies condition (43) with the conjugate exponent of p (that
is required to apply Theorem 1).
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and, provided that t̃ ≥ τ + r+ ε, we are still in the position to apply Theorem
1 where λτ and λt̃−r+ε play again the role of σ and λ, while λt̃−r+3ε plays the
role of Λ. For t̃ ≥ τ + r + ε Theorem 1 yields

F (x, bi(x,D)u) ∈ FLp
t̃−r+ε,λ,loc(x0) ∩ FLp

t̃−r+3ε,λ,mcl
(x0 ×X)

and again

a(x,D)u ∈ FLps−r,λ,mcl(x0 ×X) ⇒ u ∈ FLps,λ,mcl(x0 ×X) , if s ≤ t̃+ 3ε

or

a(x,D)u ∈ FLp
t̃−r+3ε,λ,mcl

(x0×X) ⇒ u ∈ FLp
t̃+3ε,λ,mcl

(x0×X) , otherwise.

By an iteration of the above procedure we find that if the integer j ≥ 0 is such
that

t̃ < τ + r + jε (121)

then

u ∈ FLp
min{t̃+(j+1)ε,s},λ,mcl

(x0 ×X) .

The smallest nonnegative integer j satisfying (121) is j̃ = E
(
t̃−r−τ
ε

)
+1 (from

(117) E
(
t̃−τ−r
ε

)
≥ −1 follows), hence t̃+ (j̃ + 1)ε = t̃+

(
E
(
t̃−r−τ
ε

)
+ 2
)
ε.

This gives

u ∈ FLp
min

{
t̃+
(
E
(
t̃−r−τ
ε

)
+2
)
ε,s
}
,λ,mcl

(x0 ×X) ,

which completes the proof.

In terms of the filter of Fourier Lebesgue singularities and characteristic filter
of a symbol, the result of Theorem 2 can be restated as follows: for every
solution u ∈ FLp

t̃,λ,loc
(x0) to equation (103) one has

Ξ[λ],FLps−r,λ,x0
f ∩Σ[λ],x0

a ⊂ Ξ[λ],FLpt,λ,x0
u ,

for all t ≤ min
{
s, t̃+

(
E
(
t̃−r−τ
ε

)
+ 2
)
ε
}

.

Remark 21 Because of the lower estimate of condition (PG), a sufficient con-
dition for λ−τ ∈ Lq(Rn) is τ > n

νq .
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6.4 The case of quasi-homogeneous equations

In this Section, we deal with pseudodifferential operators whose smooth sym-
bols are associated to a quasi-homogeneous weight as defined in the Ex-
ample 2 of Section 2.1. We recall that for M = (m1, . . . ,mn) ∈ Nn, with
m∗ := min

1≤j≤n
mj ≥ 1, the quasi-homogeneous weight is defined as

〈ξ〉M :=

1 +

n∑
j=1

ξ
2mj
j

1/2

. (122)

Throughout the rest of this Section, we will make use of the following no-

tations. We set m∗ := max
1≤j≤n

mj ,
1
M :=

(
1
m1
, . . . , 1

mn

)
and define the quasi-

homogeneous norm as

|ξ|2M :=

n∑
j=1

ξ
2mj
j . (123)

Clearly the usual Euclidean norm |ξ| corresponds to the quasi-homogeneous
norm in the case of M = (1, . . . , 1). For every α ∈ Zn+, ξ ∈ Rn and t > 0 we

also set 〈α, 1
M 〉 :=

n∑
j=1

αj
mj

and t1/Mξ := (t1/m1ξ1, . . . , t
1/mnξn). It is worth to

notice that, in spite of the terminology, the quasi-homogeneous norm | · |M is
not a norm; instead of the homogeneity and the triangle inequality, required
for norms, the quasi-homogeneous norm enjoys the following properties:

(i) Quasi-Homogeneity: for all t > 0, ξ ∈ Rn

|t1/Mξ|M = t|ξ|M ;

(ii) Sub-additivity: a constant C ≥ 1 depending only on M exists such that

|ξ + η|M ≤ C(|ξ|M + |η|M ) , ∀ ξ, η ∈ Rn .

For R > 0 and x0 ∈ Rn, the M−open ball centered at x0 with radius R is
defined to be the set

BM (x0;R); = {x ∈ Rn : |x− x0|M < R} .

The set

SM := {x ∈ Rn : |x|M = 1} (124)

is the unit M−sphere (centered at the origin). For further details and prop-
erties of quasi-homogeneous norm and weight, we address the reader to [14],
[15].

According to the behavior of the weight (122) expressed by the estimates
(18), we introduce suitable classes of smooth symbols displaying a decaying
behavior of quasi-homogeneous type.
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Definition 11 Given r ∈ R, SrM will be the class of functions a(x, ξ) ∈
C∞(R2n) such that for all multi-indices α, β ∈ Zn+ there exists Cα,β > 0
such that:

|∂βx∂αξ a(x, ξ)| ≤ Cα,β〈ξ〉
r−〈α, 1

M 〉
M , ∀x, ξ ∈ Rn . (125)

If Ω is an arbitrary open subset of Rn, we denote by SrM (Ω) the local class of
functions a(x, ξ) ∈ C∞(Ω×Rn) such that φ(x)a(x, ξ) ∈ SrM for all φ ∈ C∞0 (Ω).

Due to the underlying quasi-homogeneous structure, in the present frame-
work the whole theory of propagation of singularities can be based upon a
suitable notion of “conical” set in frequency space adapted to this structure.

Let us recall below some basic notions, see [15] for more details. Later on
it is set for short T ◦Rn := Rn × (Rn \ {0}).

Definition 12 We say that a set Γ ⊂ Rn\{0} is an M−cone (or is M−conic),
if

ξ ∈ Γ ⇒ t1/Mξ ∈ Γ , ∀ t > 0 .

For η ∈ Rn and R > 0 the set

ΓM (η;R) :=
{
t1/Mξ : ξ ∈ BM (η;R) , t > 0

}
∩ (Rn \ {0}) (126)

is M−conic; it is called the M−cone generated by BM (η;R).

Since (122) also belongs to the class of weight functions considered in Sec-
tions 6.1, 6.2, the results considered there, based upon the notion of [λ]−filter,
could be applied to the quasi-homogeneous setting (that is λ(ξ) = 〈ξ〉M ).
The next results of this Section will provide some evidences that these two
alternative approaches are essentially equivalent.

Proposition 16 There exist constants ĉ > 0 and ε̂ > 0 sufficiently small such
that for all 0 < ε ≤ ε̂ another 0 < ε′ < ε exists such that for all M−conic sets
X ⊂ Rn \ {0}

X[ε′〈·〉M ] ⊂
⋃

η∈X∩SM

ΓM (η; ε) ∩ {〈ξ〉M > ĉ/ε} (127)

and, conversely, ⋃
η∈X∩SM

ΓM (η; ε′) ∩ {〈ξ〉M > ĉ/ε′} ⊂ X[ε〈·〉M ] . (128)

Proof For a M−conic set X and an arbitrary ε̃ > 0, take ξ ∈ X[ε̃〈·〉M ] and let
η ∈ X such that

〈ξ − η〉M < ε̃〈η〉M . (129)

Making use of the trivial inequalities

1/
√

2(1 + |ζ|M ) ≤ 〈ζ〉M ≤ 1 + |ζ|M , ∀ ζ ∈ Rn ,
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(129) implies

1 + |ξ − η|M <
√

2ε̃(1 + |η|M ) ,

hence

|ξ − η|M <
√

2ε̃|η|M (130)

provided that 0 < ε̃ < 1/
√

2. Since in particular (129) implies η 6= 0, because of
the quasi-homogeneity of | · |M , condition (130) can be reformulated as follows

|ξ − η|M <
√

2ε̃|η|M ⇔ ||η|1/MM (ζ − η̃)|M = |η|M |ζ − η̃|M <
√

2ε̃|η|M
⇔ |ζ − η̃|M <

√
2ε̃ ,

where ζ := |η|−1/MM ξ and η̃ := |η|−1/MM η ∈ SM ∩ X because X is M−conic.
The last inequality above means that ζ belongs to the M−open ball centered

at η̃ with radius
√

2ε̃, thus ξ = |η|1/MM ζ ∈ ΓM (η̃;
√

2ε̃) cf. (126). Since in view
of Lemma 2, η ∈ X[ε̃〈·〉M ] also implies

〈η〉M > ĉ/ε̃ ,

for suitable ĉ > 0 independent of X and ε̃ > 0, the inclusion (127) follows
taking ε̂ = 1√

2C
and choosing for each 0 < ε ≤ ε̂, 0 < ε′ ≤ ε/

√
2.

Conversely, let ξ ∈
⋃

η∈X∩SM
ΓM (η; ε̃) ∩ {〈ξ〉M > ĉ/ε̃}, where ε̃ > 0 is still

arbitrary and is chosen sufficiently small such that

1 + |ξ|M ≥ 〈ξ〉M > ĉ/ε̃ ⇒ |ξ|M > ĉ/ε̃− 1 ≥ ĉ/(2ε̃) ,

that is 0 < ε̃ ≤ ĉ/2. By definition (see (126)) there exist t > 0 and η̃ ∈ X ∩SM
such that

ξ = t1/Mζ for some ζ ∈ BM (η̃; ε̃) .

Therefore, in view of the M−homogeneity, we get

|ξ − t1/M η̃|M = |t1/Mζ − t1/M η̃|M = t|ζ − η̃|M < ε̃t = ε̃t|η̃|M = ε̃|t1/M η̃|M .

Since X is M−conic, η := t1/M η̃ ∈ X; hence with such an η ∈ X we have

|ξ − η|M < ε̃|η|M . (131)

On the other hand, from the sub-additivity (ii), |ξ|M > ĉ/(2ε̃) and (131) we
derive

|η|M ≥
1

C
|ξ|M − |ξ − η|M ≥

(
1

C
− ε̃
)
|ξ|M ≥

1

2C
|ξ|M ≥

ĉ

2Cε̃
, (132)

provided that 0 < ε̃ ≤ 1
2C . Summing up (131), (132) then gives

ĉ

2C
+ |ξ − η|M < 2ε̃|η|M < 2ε̃〈η〉M .
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Combining the latter inequality with

ĉ

2C
+ |ξ − η|M ≥ (1 + |ξ − η|M ) min

{
1,

ĉ

2C

}
≥ 1√

2
min

{
1,

ĉ

2C

}
〈ξ − η〉M

we finally obtain
〈ξ − η〉M < Ĉε̃〈η〉M ,

with a suitable constant Ĉ > 0 independent of ε̃, hence ξ ∈ X[Ĉε̃〈·〉M ]. From

the previous argument, we conclude that the second inclusion (128) holds true.

Essentially the result above tells that a [〈·〉M ]−neighborhood of a M -conic set
X is made by an arbitrary union of open M -cones “outgoing from points of
X ∩ SM , truncated near their vertex”.

Remark 22 It is worthwhile noticing that the quasi-homogeneous symbols con-
sidered in Definition 11 are related to the weighted smooth symbols introduced
in Section 6 by the following inclusion

SrM ⊂ Sr1/m∗,〈·〉M
(a similar inclusion being valid for the corresponding classes of local symbols).

6.5 Example

For M = (1, 2), let us consider in R2 the quasi-homogeneous weight function

〈ξ〉M =
(
1 + ξ21 + ξ42

)1/2
. (133)

We introduce the following operator

P (x, ∂) = x1∂x1
+ i∂x1

− ∂2x2
2
. (134)

Its symbol P (x, ξ) = ix1ξ1−ξ1+ξ22 belongs to the local class S1
M (Ω) where

Ω = R2.
Introducing the M -characteristic set of P (x, ∂) as

CharP =
{

(x, ξ) ∈ R2
x × R2

ξ \ {0} , P (x, ξ) = 0
}
, (135)

we have

CharP =
{

(0, x2, ξ1, ξ2); x2 ∈ R , ξ1 = ξ22 , ξ2 6= 0
}

={0}×R×
⋂

0<k<1

(R2 \Xk) ,

where

Xk =

{
(ξ1, ξ2) ∈ R2 ; ξ1 ≤ (1− k)ξ22 or ξ1 ≥

1

1− k
ξ22

}
, 0 < k < 1 . (136)

Notice also that P (x, ξ) is quasi-homogeneous of degree one, in the sense that

P (x, t1/Mξ) = P (x, tξ1, t
1/2ξ2) = tP (x, ξ) , ∀ t > 0 . (137)



Inhomogeneous microlocal propagation of singularities in Fourier Lebesgue spaces 43

The properties collected above yield that the symbol P (x, ξ) is 〈·〉M−elliptic
at every point x0 = (x01, x

0
2) ∈ R2 with x01 6= 0; indeed since |P | does not vanish

at each point of the compact set {x0} × SM , being SM = {η = (η1, η2) ∈ R2 :
η21 + η42 = 1} the unit M−sphere, by continuity

c0 := inf
η∈SM

|P (x0, η)| > 0 .

Hence the quasi-homogeneity of P yields for |ξ|M ≥ 1:

|P (x0, ξ)| = |ξ|M |P (x0, η)| ≥ c0|ξ|M ≥ c0/
√

2〈ξ〉M ,

where η := |ξ|−1/MM ξ ∈ SM .

By resorting to Proposition 16, we show now that at every point x0 =
(0, x02), with an arbitrary x02 ∈ R, P (x, ξ) is [〈·〉M ]−microlocally elliptic in
any set of the family {Xk}0<k<1 defined by (136). So, let us take arbitrary
x0 = (0, x02) and 0 < k < 1; since |P | is different from zero and continuous
(hence uniformly continuous) on the compact subset {x0} × (Xk ∩ SM ) of
T ◦Rn \CharP , some constants ck > 0 and 0 < ε̃ < 1 sufficiently small can be
found such that

|P (x0, η)| ≥ ck , (138)

for η ranging on the covering of Xk∩SM made by the open M−balls BM (η̃; ε̃)
centered at points η̃ of Xk∩SM with radius ε̃. Take now an arbitrary point ξ ∈⋃
η̃∈Xk∩SM

ΓM (η̃; ε̃) such that |ξ|M > c/ε̃ with suitable c > 0; then η̃ ∈ Xk ∩SM

and t > 0 exist such that ξ = t1/Mη for some η ∈ BM (η̃; ε̃). Since |η̃|M = 1, we
may take ε̃ so small that |η|M ≤ ĉ for some positive constant ĉ (independent
of η and η̃). Exploiting again the quasi-homogeneity of P and the quasi-norm
| · |M we get

|P (x0, ξ)| = t|P (x0, η)| ≥ ckt =
ck
ĉ
t|η|M =

ck
ĉ
|ξ|M ≥ c̃k〈ξ〉M ,

with suitable c̃k > 0. Since the set Xk is M−conic, in view of Proposition 16
there exists 0 < ε′ < ε̃ (up to shrink ε̃ if necessary) such that

(Xk)[ε′〈·〉M ] ⊂
⋃

η̃∈Xk∩SM

ΓM (η̃; ε̃) ∩ {|ξ|M > c/ε̃} .

This shows that P is microlocally [〈·〉M ]−elliptic in Xk at the point x0 =
(0, x02).

Since P (x, ξ) ∈ S1
M (R2) and in view of Remark 22, the results of prop-

agation of Fourier Lebesgue singularities for linear and semilinear equations,
collected in the preceding Sections 6.2, 6.3, can be applied to the operator
P (x, ∂).

Let u ∈ D′(R2) be a solution to the linear equation

P (x, ∂)u = f(x) , (139)
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with a given forcing term f . Applying to (139) the result of Proposition 15
(with r = 1), we obtain at once that the following inclusions

Ξ[〈·〉M ],FLps−1,M , x
0f ∩Σ[〈·〉M ], x0P ⊂ Ξ[〈·〉M ],FLps,M , x0u ⊂ Ξ[〈·〉M ],FLps−1,M , x

0f

hold true for all s ∈ R and p ∈ [1,+∞].

Consider now the following semilinear equation

P (x, ∂)u+ F (x, u, ∂x2u) = f(x) , (140)

where F = F (x, ζ) is a nonlinear function of x = (x1, x2) and ζ = (ζ1, ζ2)
fulfilling the regularity assumptions stated in Theorem 2, and f = f(x) some
given forcing term. With respect to the quasi-homogeneous weight (133), the
order of derivatives of the unknown function u involved in the nonlinearity in
(140) is easily seen to be ≤ 1/2 (that is such derivatives are properly supported
operators in SlM with order l ≤ 1/2). Then we may apply to (140) the result
of Theorem 2 (with r = 1 and ε = 1/2) to prove the following statement.

Proposition 17 Given x0 = (x01, x
0
2) ∈ R2, p ∈ [1,+∞] and s > t̃ > 2

q + 1
2 ,

with 1
p + 1

q = 1, let u ∈ FLp
t̃,M, loc

(x0) be a solution to (140).

a. If 2t̃− 2− 4
q /∈ Z then

Ξ[〈·〉M ],FLps−1,M , x
0f ∩Σ[〈·〉M ], x0P ⊂ Ξ[〈·〉M ],FLpt,M , x0u , (141)

holds true for all t ≤ min
{
s, t̃+ 1 + 1

2E
(

2t̃− 2− 4
q

)}
;

b. if 2t̃ − 2 − 4
q ∈ Z then the previous inclusion (141) holds true for all

t ≤ min
{
s, t̃+ 1

2 + 1
2E
(

2t̃− 2− 4
q

)}
.

Proof For any t̃ > 2
q + 1

2 , let τ > 0 be chosen such that t̃ − 1
2 ≥ τ > 2

q , then

Theorem 2 can be directly applied to equation (140) (where, according to the
observations above, it is set r = 1, ε = 1/2, and we also make use of Remark
21 for λ = 〈·〉M and τ as above) to find that inclusion (141) holds true for
all t ≤ min

{
s, t̃+ 1 + 1

2E(2t̃− 2− 2τ)
}

. To conclude, it is enough to observe

that for 2t̃− 2− 4
q /∈ Z we can take τ sufficiently close to 2

q to have

E
(
2t̃− 2− 2τ

)
= E

(
2t̃− 2− 4

q

)
9;

this proves the statement a.
If, on the contrary, one has 2t̃− 2− 4

q ∈ Z then 2t̃− 2− 2τ < 2t̃− 2− 4
q =

E(2t̃− 2− 4
q ) whenever τ is taken as above; then for τ sufficiently close to 2

q
we get

E(2t̃− 2− 2τ) = E

(
2t̃− 2− 4

q

)
− 1

which gives the statement b.

9 According to the result of Theorem 2, this corresponds to the best possible range for t.
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26. S. Pilipović, N. Teofanov, J. Toft, Micro-local analysis in Fourier Lebesgue and
modulation spaces: part II, J. Pseudo-Differ. Oper. Appl., 1 (2010)(3), 341–376.
doi:10.1007/s11868-010-0013-2.
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