

Supplementary File: In Vitro Techniques Using the Daisy^{II} Incubator for the Assessment of Digestibility: A Review

Sonia Tassone 1,*, Riccardo Fortina 1 and Pier Giorgio Peiretti 2

		Step	Further Researches
1	Sample preparation		
1a	Pre-rinse F57 filter bags in acetone		
14	for 3–5 ' and completely air-dry		
		1. Number the bags with a solvent	
		resistant marker	
2	Weight samples; 0.250 g (or 0.500)	2. Homogenized sample	Test F58 filter bags
2	±0.05, in triplicate	3. Weight directly into filter bag	for AD ^{II} [28]
		4. Clean the top edge of the bag sealing	
		area to avoid sample particles	
2a	Seal the bags with heat sealer; set	5. Seale no more than 4 mm from the	
20	4–5 for 2–3 "	open end of F57	
		6. Distribute bags on both sides of the	
	Place bags in the jar with a blank	perforated agitator baffle	
2b	bag (up to 25 samples)	7. Place the same sample in three	Study the effects of
20	bag (up to 25 samples)	different jars to reduce influence of position of	jar position in AD ^{II}
		the jar in the incubator	
		8. Use a standard in each jar	
	Prepare and pour the buffer	9. Do not store the buffer for further	Define a buffer
3	solutions in the digestion jars	analysis	solution to compare
		10. Adjuste pH at 6.8 (at 39 °C)	experiments
			Modify AD ^{II} to
4	Turn on heat and agitation	11. Allow temperature of digestion jars to	allow the same
1	switches	equilibrate for at least 20–30 '	speed of rotation of
			all jars
		12. Use donor animals with feed-	Define a standard
		controlled diets	protocol to collect,
5	Rumen fluid collection	13. Maintain anaerobic conditions and	transport and store
		temperature (39 °C)	the inoculum.
		14. Filter rumen fluid with cheese clothes	
6	Add 400 mL rumen fluid to each	15. Purge the jar with CO_2 for 30 "	
	jar		
7	Incubate 48 h	16. Check the rotation of jars and the	
		temperature (39 °C)	Ci 1 1:
8	Remove jars and drain fluid	17. Rinse bags with cold tap water until	Standardize the
		water is clear	washing of bags
		10 01 11 1 1 1	(type and time)
9	Oven dry and weight samples	18. Store the bags in a freezer for	
		postponed analysis	

Table S1. Practical recommendations on the use of the Ankom Daisy^{II} incubator (AD^{II}).

Formulae				
10a	TDMD _{AD} II/FM)	%: $100 - (W_4 - (W_1 \times C_1)) \times 100 / W_2$		
	TDMD _{AD} ^{II} /DM	%: 100 – (W ₄ – (W ₁ × C ₁)) × 100 / (W ₂ × DM g/g) or 100 – ((100 – NDFD) × (NDF / 100))		
10b		$g/g: 1 - (W_4 - (W_1 \times C_1)) \times 1000 / (W_2 \times DM g/Kg)$		
		$g/kg: 1000 - (W_4 - (W_1 \times C_1)) \times 1000 / (W_2 \times DM g/g)$		
10c	ADMD _{AD} II/FM	%: 100 – (W_3 – (W_1 × C_1)) × 100 / W_2		
		%: (NDFом ai. – NDFом pi.) × 100 / NDF ai.		
		%: 100 - (W ₃ - (W ₁ × C ₁)) × 100 / (W ₂ × (NDF ai. g/g FM))		
11d	NDFD/NDF	g/g: 1 – (W ₃ – (W ₁ × C ₁)) × 1000 / (W ₂ × NDF ai. g/kg FM)		
		g/kg: 1000 – (W ₃ – (W ₁ × C ₁)) × 1000 / (W ₂ × NDF ai. g/g FM)		
		1 - ((100 - TDMD) / NDF%DM ai.)) × 100		
11e	dNDF/DM	%: % NDF%DM ai. × (NDFD / 100)		

 $AD^{II} = Ankom Daisy^{II}$ Incubator; $ADMD_{AD}^{II} =$ apparent dry matter digestibility measured with AD^{II} ; dNDF = digestible neutral detergent fiber; FM= fresh matter; NDFD = neutral detergent fiber digestibility; TDMD_{AD}^{II} = true dry matter digestibility measured with AD^{II} ; TDMD = true dry matter digestibility. W1: F57 weight; W2: sample weight (without the bag) *ante*-incubation; W3: sample weight (with the bag) *post*-incubation; W4: sample weight (with the bag) NDF treatment; C1: F57 *ante/post* incubation (final oven-dried weight/original blank bag weight); *ai.: ante*- incubation; *pi.: post*incubation.

Table S2. Variability (CV, %) of the Ankom Daisy^{II} incubator (AD^{II}) after 48 h of incubation.

Variability	ADMD	TDMD	NDFD	AOMD	TOMD	Ref.
	3.6	4.1	14.6	6.2	4.5	[23]
Instrument			2.8			[89]
-			9.1			[90]
Within laboratory			6.8			[91]
Between laboratory			10.5			[91]
Within run		14.8	23.6			[87]
Between run		4.7	12.4			[87]
Between jars		2.6				[72]
Within commu		<1–3	2-4.5			[21]
Within sample		3.5				[72]

ADMD = apparent dry matter digestibility; TDMD = true dry matter digestibility; NDFD = neutral detergent fiber digestibility; AOMD = apparent organic matter digestibility; TOMD = true organic matter digestibility.

Table S3. Linear equation between Ankom Daisy ^{II} incubator (AD ^{II}) at 48 h and other digestibility system	ms.

Instrument	In vivo (vv)	In situ (is)	Tilley and Terry (TT)	Samples	Ref.
	ADMD _{vv} = $0.335 + 0.402 \times TDMD_{AD}^{II}$ (r ² = 0.85% , n = 24, p < 0.001)	$TDMD_{is} = 0.27 + 0.904 \times TDMD_{AD^{II}}$ (r ² = 0.81%, n = 115, p < 0.001)	ADMD _{TT} = $0.101 + 0.641 \times$ TDMD _{AD} ^{II} (r ² = 0.63% , n = 115 , p < 0.001)	Meadow hay, fine fescue straw	[87]
AD ^π			ADMD _{TT} = $8.88 \pm 0.84 \times$ ADMD _{AD} ^{II} (r ₂ = 0.81, n = 17 SD = ±6.24)	Forages, concentrates, protein supplements	[73]
		NDFD _{is} = $6.39 + 0.74 \times \text{NDFD}_{AD^{II}}$ (r ₂ = 0.94, n = 18, SD = ±1.96)		Hays	[93]
		$NDFD_{is} = 7.31 + 0.95 \times NDFD_{AD}^{II}$ ($r_2 = 0.98$)		Hays	[89]

ADMD = apparent dry matter digestibility; TDMD = true dry matter digestibility; NDFD = neutral detergent fiber digestibility.

Parameter Acrony		onyms	Measured
		ADMD _{vv}	In vivo
Armonont day motton dispetibility	ADMD	ADMD _{vt}	In vitro
Apparent dry matter digestibility		$ADMD_{\rm AD^{\rm II}}$	AD ^{II} Incubator procedure
		ADMDTT	TT procedure
	TDMD	$TDMD_{\mathrm{is}}$	In situ
True dry matter digestibility		TDMD _{vt}	In vitro
		$TDMD_{\rm AD^{\rm II}}$	AD ^{II} Incubator procedure
		NDFD _{vv}	In vivo
Neutral detergent fiber digestibility	NDFD	NDFD _{is}	In situ
(% NDF)		NDFD _{vt}	In vitro
		$NDFD_{\rm AD^{II}}$	AD ^{II} Incubator procedure
		NDFDTT	TT procedure
	dNDF	dNDF _{is}	In situ
Digestible NDF (% DM)		$dNDF_{\rm vt}$	In vitro
		$dNDF_{\rm AD^{II}}$	AD ^{II} Incubator procedure
	AOMD	AOMD _{vv}	In vivo
Apparent organic matter digestibility		AOMD _{is}	In situ
Apparent organic matter digestibility		AOMD _{vt}	In vitro
		$AOMD_{\rm AD^{II}}$	AD ^{II} Incubator procedure
		$TOMD_{vv}$	In vivo
True organic matter digestibility	TOMD	TOMD _{is}	In situ
The organic matter digestibility	TOWD	TOMD	In vitro
		$TOMD_{\rm AD^{II}}$	AD ^{II} Incubator procedure

Table S4. Acronyms for digestibility trials.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).