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Abstract: Hormones are messengers circulating in the body that interact with specific receptors on
the cell membrane or inside the cells and regulate, at a distal site, the activities of specific target
organs. The definition of hormone has evolved in the last years. Hormones are considered in
the context of cell–cell communication and mechanisms of cellular signaling. The best-known
mechanisms of this kind are chemical receptor-mediated events, the cell–cell direct interactions
through synapses, and, more recently, the extracellular vesicle (EV) transfer between cells. Recently,
it has been extensively demonstrated that EVs are used as a way of communication between cells
and that they are transporters of specific messenger signals including non-coding RNAs (ncRNAs)
such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Circulating ncRNAs in body
fluids and extracellular fluid compartments may have endocrine hormone-like effects because they
can act at a distance from secreting cells with widespread consequences within the recipient cells.
Here, we discuss and report examples of the potential role of miRNAs and lncRNAs as mediator for
intercellular communication with a hormone-like mechanism in cancer.
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1. Introduction

The term “hormone” was first introduced in 1905 by Starling, referring to the discovery of
secretin [1]. A hormone is a chemical messenger (in general, a peptide or a steroid) produced by
the endocrine glands and circulating in the body to regulate the activities of specific target organs
at a distal site [2,3]. The mode of action of hormones requires an interaction of these chemical
messengers with specific receptors located on the cell membrane or inside the cell. The binding
hormone-receptor generates a signaling cascade that modifies cellular activity [4]. The definition of
hormones is quite restrictive since not all hormones are originated from endocrine glands, with many of
them acting locally via autocrine/paracrine regulation. Specialized cells in various other organs also
secrete hormones in response to specific biochemical signals from a wide range of regulatory systems.
Serum/calcium concentration, for instance, affects parathyroid hormone synthesis while serum glucose
concentration affects insulin synthesis. In addition, since the outputs of the stomach and exocrine
pancreas become the input of the small intestine, the small intestine itself secretes hormones to
stimulate/inhibit the stomach and pancreas in accordance to how busy it is, in a regulated feedback
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known more generally as “diffuse endocrine system” [5]. In a broader view, hormones are considered
in the cell–cell communication context and in mechanisms of cellular signaling [2,3]. The best-known
mechanisms of this kind are chemical receptor-mediated events, the cell–cell direct interactions through
synapses, and, more recently, the extracellular vesicle (EV) transfer between cells [6]. EVs are small
membrane-enclosed structures produced by different mechanisms that can be secreted from almost all
cell types [7,8] in a process evolutionary conserved from bacteria to humans [9]. Each cell type is able to
turn on EV biogenesis depending on the physiological states and, also, the EV cargo components can
be highly regulated [10]. EVs, such as exosomes and microvesicles, represent the way donor cells
communicate with recipient cells and influence their gene expression [11]. In the last years, it has
been extensively demonstrated that EVs are used as a way of communication between cells and that
they are transporters of specific messenger signals. EVs are, in fact, enriched for specific proteins
(as for example cytokines), lipids, messenger RNAs (mRNA), and non-coding RNAs (ncRNAs), such as
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) [6,8,12]. The nature and abundance of
EV content are related to the specific cell type, and are influenced by the physiopathological state of the
donor cell [13]. The cell–cell communication mediated by RNAs included in EVs has been described
for the first time by Valadi et al. in 2007: exosomes carried miRNAs and other RNAs from one cell to
another and, when released in the target cell, were able to interact with the gene expression machinery
to modify the gene expression profile of the recipient cell [6].

EVs result as an alternative mode of communication between neighboring and distant cells.
Respect to conventional mechanisms of cell communication, EVs differ because of specific temporal
and spatial properties and mostly because of the potentiality to group multiple signals together [14].

2. miRNAs and Their Hormone-Like Activity in Cancer

The advances in high-throughput sequencing technology and bioinformatics have revolutionized
ncRNA discovery [15]. Mammalian genomes are highly transcribed and the majority of the transcripts
do not code for proteins. However, this high rate of transcription is not done in an indiscriminate
way: the cellular repertoire of ncRNAs includes small housekeeping RNAs (such as ribosomal RNAs
(rRNAs) and transfer RNAs (tRNAs)), as well as miRNAs and lncRNAs [16].

miRNAs are a class of single-stranded ncRNAs that play a critical role in the negative regulation of
gene expression at post-transcriptional level [17]. Thousands of miRNAs have been identified in all
eukaryotes and, so far, the latest version of miRBase (release 22 March 2018) accounts for over 38,000
miRNA gene loci in 271 species. In animal cells, miRNAs pair, in a complementary manner, with
the 3′UTR of target mRNAs, inhibiting their translation or inducing their degradation [17]. miRNAs
are crucial regulators in a wide range of biological processes but they are also implicated in human
diseases, including cancer [16,18–20]. There are several lines of evidence that miRNAs are involved
in endocrinology. It has been demonstrated that miRNAs can regulate directly genes encoding
hormones or other enzymes involved in hormone maturation and metabolism. miRNAs can also
target hormone antagonists or receptors indirectly modifying the hormone-mediated cell signaling
transmission [21,22] or could be regulated by hormones either at the level of miRNA transcription and
processing [23–25]. For instance, miR-21 and miR-181-b1 genes are expressed after STAT3 induction,
which is activated by interleukin 6 (IL-6) [26]. Moreover, miR-21 is repressed by thyroid hormone
(TH) and this downregulation regulates GRHL3, a transcriptional inhibitor of type 3 iodothyronine
deiodinase (D3) which, in turn, inactivates TH [27].

Recently, the role of miRNAs as mediators for intercellular communication with a hormone-like
mechanism has also been established. miRNAs can work as autocrine, paracrine, and endocrine
messengers. In fact, the classic mechanism of action of a miRNA is to be transcribed by a cell and
induce local signaling on that same cell (autocrine signaling, Figure 1A). On the other hand, a miRNA
can also transmit local signaling between nearby cells (paracrine signaling, Figure 1B) [8]. In cancer,
the intercellular signaling mediated by miRNAs has been related to the tumor microenvironment
(TME) setting or pre-metastatic niche induction [28–30]. An example of this kind of signaling in
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cancer is the one in which tumor-derived EVs containing miRNAs can directly modify tumor cell
invasiveness and motility through modification of the TME [31,32]. Moreover, it has been observed
that the ectopic expression of miR-409 in normal prostate fibroblasts conferred a cancer-associated
stroma-like phenotype. The release of this miRNA via EVs was able to promote tumorigenesis and
epithelial-to-mesenchymal transition (EMT) through repression of Ras suppressor 1 (RUS1) and stromal
antigen 2 (STAG2), well-known tumor suppressors [33]. The discovery of miRNAs in extracellular
fluids or loaded in EVs, such as exosomes, is the main evidence that miRNAs may act as paracrine
and endocrine interactors [11,34]. EVs containing miRNAs can either work locally or distally via
transport within the circulatory system. Moreover, miRNAs circulating within bodily fluids and
extracellular fluid compartments may have an endocrine hormone-like effect because they can reach
cells that are distant from the secreting cell, modifying their gene expression (Figure 1C) [34,35].
Once released, the EVs containing miRNAs can interact with a recipient cell, deliver its cargo to the
cytosol, and modulate the phenotype of the target cell [36]. There is evidence that demonstrates
that miRNAs in EVs can be taken up into neighboring or distant cells and modulate the function of
those recipient cells in many physiological and pathological conditions [37–39]. For example, Le et al.
demonstrated, in vitro and in vivo, that murine and human metastatic breast cancer cells release
miR-200 family miRNAs to nonmetastatic cells via EVs. The transfer of these molecules altered
gene expression in the recipient cells (which were lung cancer cells in the in vivo experiments) and
promoted mesenchymal-to-epithelial transition [40]. Interestingly, the exosomal miRNA cargo occurs
non-randomly and, also, the recipient cells are finely targeted, enforcing the idea of specific function
for a single miRNA on a specific target [6,16]. miRNA species that are transported via EVs do not
reflect the miRNA expression profiling of the donor cells [41,42] and, interestingly, several studies
demonstrated that cancer patients have elevated levels of tumor-derived exosomes in plasma or
serum compared with healthy controls [43–45]. The secretion of tumor-specific miRNAs via exosomes
indicates the importance of this mechanism in influencing the surrounding microenvironment [34].
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Figure 1. MicroRNAs (miRNAs) working in a hormone-like fashion. (A) Autocrine communication:
a miRNA produced by a cell binds to autocrine receptors of the same cell inducing a local signaling.
(B) Paracrine communication: a miRNA produced by a cell transmit a local signaling between nearby
cells. (C) Endocrine communication: an extracellular vesicle (EV)-embedded miRNA is the mediator of
distant signaling.
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Functional interactions between cancer cells and the TME are mediated by small molecules such
as cytokines and growth factors [46]. In addition, cancer cells may also transfer important functional
information through paracrine communication via EVs [47]. EV cargo may actually influence the
stroma by activating molecular pathways that differ from those mediated by soluble factors [8].
Therefore, tumor-derived EVs can alter the physiology of surrounding cells and distant non-tumor
cells to facilitate cancer dissemination and growth [31].

The TME (which includes extracellular matrix, cancer-associated fibroblasts, tumor-associated
macrophages, immune cells, and others) plays a crucial role in all steps of carcinogenesis [48]. Several
examples of this biological information transfer between malignant cells and TME components via
EV-transported miRNAs have been reviewed in a recent work by Bayraktar et al. [8]. For instance,
Baroni et al. [49] found that in cancer-associated fibroblasts from triple-negative breast cancer patients,
miR-9 was upregulated when compared with normal fibroblasts. Moreover, miR-9 was released by
tumor cells and transferred via exosomes to normal fibroblasts recipients which, as a consequence,
overexpressed this miRNA and increased their motility. Therefore, high expression of miR-9 in
fibroblasts affects breast cancer progression [49]. Another example was described in the work of
Chen et al. in which it was found that miR-940, released in exosomes by ovarian cancer cells, targeted
tumor-associated macrophages and promoted tumor growth via the CD206 and CD163 pathways [50].

The assumption that a miRNA might work as a hormone or with a hormone-like mechanism
implicates the possibility of the existence of a protein receptor for miRNAs (defined as miRceptor
by [34]) and miRNA–protein interaction. The first study demonstrating miRNA–protein binding was
published in 2010 by Eiring et al., where the authors provided evidence of steric binding between
miR-328 and hnRNPE2 in blast crisis of chronic myelogenous leukemia. This “decoy activity” of
miRNA prevents hnRNPE2 binding to CEBPA mRNA, thus restoring C/EBPα expression that further
and directly enhances miR-328 transcription [51].

In 2012, it was demonstrated that EVs containing miR-21 and miR-29a released by non-small
cell lung cancer cell lines were targeting tumor-associated macrophages and, more specifically, the
human toll-like receptor 8 (TLR8), triggering the downstream pathway. As a result, authors observed
an increased secretion of IL-6 and tumor necrosis factor-α (TNFα) by tumor-associated macrophages,
which determines a pro-tumoral inflammatory response promoting cancer growth and metastasis [52].

Patel and Gooderham observed that IL-6 triggers the IL-6R/STAT3 pathway and also increases
miR-21 and miR-29b expression in colorectal cancer cells. The authors proposed a model in which
these miRNAs are released via exosomes and reach immune cells, where they interact with the
TLR8 miRceptor. This interaction may induce an increase of IL-6 in a feed-forward loop involving
miRNA–miRceptor interactions which are responsible for the increased secretion of IL-6, a typical
phenomenon in the colorectal cancer microenvironment [53]. Interestingly, a similar mechanism
has also been found in neuroblastoma. Endovesicular miR-21, released by neuroblastoma cells,
binds to TLR8 in surrounding tumor-associated macrophages, inducing in these cells the upregulation
and the release in EVs of miR-155. Macrophage-derived EVs containing miR-155 are transferred
back to neuroblastoma cells where miR-155 acts on its target, telomeric repeat-binding factor 1
(TERF1, a telomerase inhibitor). The silencing of TERF1 induces increased resistance to cisplatin
in neuroblastoma cells [54].

miRNAs released by exosomes and working in a hormone-like fashion could also be an optimal
therapeutic target in the case of tumor drug resistance [55]. Wei et al., for example, demonstrated the
role of exosomal miR-221/222 in the resistance to tamoxifen in breast cancer cells [56]. In another
study, it was demonstrated that cancer-associated fibroblasts released exosomes containing miR-21,
miR-378e, and miR-143-3p, that were able to induce stemness and epithelial–mesenchymal transition
phenotypes in breast cancer cell lines [57].
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An intriguing aspect that could be bound to the hormone-like action of miRNAs has been raised
by Zhang et al. in 2012 [58] and reinforced by Zhou et al. in 2015 [59]. In these works, researchers
demonstrated the possibility that miRNAs derived from plants could potentially travel, through
food, from plants to animals via the gastrointestinal tract and access host cellular targets, where
they work as bioactive compounds able to influence recipients’ physiopathological conditions. The
authors proposed that epithelial cells in the intestine could absorb plant-derived miRNAs contained
in food and include them into EVs to protect them from degradation and facilitate their release into
the blood stream. These “exogenous miRNAs” then seem to be able to reach organs and tissues via
circulation and modulate gene expression. The evidence supporting this theory has been summarized
in a recent review by Li et al. [60]. This sort of plant–animal communication, named cross-kingdom
transmission, is still source of debate in the scientific community. In fact, there is a large amount of
evidence contradicting this cross-kingdom communication hypothesis (also widely reviewed by [60]).
The main concern is the mechanisms by which exogenous miRNAs can bypass and survive in the
gastrointestinal tract, to enter the bloodstream and ultimately reach specific targets. This “exogenous
post-transcriptional regulation” could be another factor influencing the development in special cases
of diseases, such as cancer, inserting additional levels of complication into an already complicated
scenario. If validated, this hypothesis may expand the current knowledge on dietary bioactive
compounds and their biological actions once internalized in the organism [60,61].

3. Long Non-Coding RNAs Acting as Hormones

miRNAs are the most studied species of ncRNAs but, in the last years, the attention of researchers
has also been focused on other ncRNAs whose functions are still not well described. A special
mention should be made for lncRNAs, since their biological roles and mechanisms of action are not yet
completely understood, especially in the context of carcinogenesis [62]. Assigning molecular, cellular,
and physiological functions to lncRNAs is among the greatest challenges of the next decade, and there
is now increased attention on their biological functions in hormonal signaling systems [63–66].

lncRNAs are defined as non-protein coding RNA transcripts larger than 200 nucleotides, but this
definition is quite vague since a universal scheme does not exist [62,67]. The working definition for
lncRNAs includes all RNA molecules longer than 200 nucleotides, having little coding potential,
transcribed by PolII, capped, spliced, and polyadenylated [63]. The expression of lncRNAs is
dependent on the cellular, tissue, and metabolic context. As a consequence, there are specific lncRNAs
associated with specific cellular processes that may be inferred by their differential pattern of expression
in tissues but also in different developmental time points or under specific stimuli [61,63,68]. It is a
common belief that lncRNAs are mostly involved in transcriptional regulation and, therefore, reside
principally in the nucleus. However, several lncRNAs act, or are even exclusively localized, within
the cytoplasm by working as post-transcriptional regulators in interaction with miRNAs, mRNAs,
or proteins [69–72]. Interestingly, the EV cargo may be enriched in lncRNAs [10,73,74], as observed
in plasma exosomes of patients with castration-resistant prostate cancer [75] and in renal cancer [76].
The scenario is even more complicated due to a large number of lncRNAs that have been implicated in
competing endogenous RNA (ceRNA) mechanisms. This is possible since lncRNAs can function as
sponges, able to bind and reduce the targeted effects of miRNAs on mRNAs [77,78].

lncRNA have been recognized as having endocrine, paracrine, and autocrine regulatory functions
in a way similar to the one already described for miRNAs [74]. In fact, they can have an autocrine
hormone-like behavior since they can modulate cellular activity directly by controlling transcription.
For example, they can interact with hormone-encoding genes or hormone antagonists/receptors,
indirectly modifying the cell signaling transmission [79]. Steroid receptor RNA activator (SRA) was
among the first lncRNA to be associated to hormone receptor pathways and acting with a hormone-like
mechanism. SRA is expressed in tissues specifically targeted by steroid hormone, and it works as a
co-activator of the steroid receptor to facilitate ligand-dependent transactivation [80]. Additionally,
SRA can interact with co-repressors of nuclear receptors [81]. Different expression patterns of SRA
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have been observed in breast cancer cell lines [82], demonstrating that its hormone receptor-associated
activity may be crucial in breast tumorigenesis.

Growth arrest-specific 5 (GAS5) is another interesting example of multifunctional lncRNAs.
It works as a multiple nuclear receptor decoy, forming an RNA stem–loop structure that mimics
nuclear receptor DNA response elements. For example, it interacts with glucocorticoid DNA binding
domain working as a decoy for glucocorticoid receptor response element [83]. As a consequence,
the glucocorticoid receptor is liberated from its sites of transcriptional activity. Therefore, the overexpression
of GAS5 blocks cell growths and induces apoptosis in adherent human cell lines. On the other hand,
its reduced expression has been observed in human breast cancer cell lines, indicating a possible
involvement of this lncRNA in breast carcinogenesis [84].

lncRNAs can also travel via EVs to nearby or distant cells, where they can induce specific
phenotypical changes in a paracrine and endocrine way [31]. The most interesting examples in cancer
apply to drug resistance, angiogenesis promotion, and tumorigenesis induction [74].

The ability of tumor cells to disseminate the drug-resistant phenotype via exosomes has been
recognized mainly through transferring of miRNAs and drug-efflux pumps [85]. However, there is
substantial evidence supporting a role for lncRNAs embedded in exosomes in this mechanism.
Expression levels of exosomal lncRNAs are greatly different from those of the donor cells, and there is
evidence that lncRNAs are not randomly secreted in EVs [86,87].

The role of EVs and lncRNAs in tumor progression and aggressiveness has been demonstrated
in several studies reviewed by Andaloussi et al. [55]. The lncRNA called metastasis-associated
lung adenocarcinoma transcript (MALAT1) regulates alternative splicing and gene expression [88,89]
contributing to lung cancer metastasis [90]. In addition, high levels of MALAT1 have been detected in
serum exosomes from non-small cell lung cancer patients and connected with the promotion of cell
proliferation and migration of this cancer [91].

Notably, Qu and collaborators demonstrated, in an elegant way, that lncRNA activated in renal
cell carcinoma with sunitinib resistance (lncARSR) is correlated with poor response to sunitinib, a drug
used for the treatment of advanced renal cell carcinoma. The resistance to the drug was directly
induced by lncARSR that works as a ceRNA for miR-34/miR-449 to facilitate the expression of specific
genes implicated in the sunitinib resistance. Most interestingly, the authors found that lncARSR is
incorporated into exosomes and transmitted to sensitive cells for the dissemination of the resistance
in a hormone-like fashion. The transmission of resistance is not only between tumor cells but also
involves endothelial cells, implicating that the exosome-mediated communication is also between
tumor and stromal cells [76]. The exosomal secretion of lncRNAs is highly selective and different
between normal and cancer cells or between sensitive and resistant cells, therefore, identifying cellular
molecules responsible for RNA secretion may help in finding a strategy to block this cell-specific
mechanism [76].

Lang and collaborators found that glioma cells were enriched in POU class 3 homeobox 3 (POUF3)
lncRNA. These cells were able to release POUF3 into the exosomes and target the surrounding normal
tissue, inducing cell proliferation, migration, and angiogenesis in an in vivo model [92].

In the last years, another lncRNA, the colon cancer-associated transcript 2 (CCAT2), attracted the
attention of researchers because of its dysregulation in cancer [65,66,93,94]. Notably, CCAT2 has been
demonstrated to work in a hormone-like fashion [95]. Our group demonstrated an important role of
CCAT2 in regulating MYC, miR-17-5p, and miR-20a [96]. Interestingly, CCAT2 interacts with these
targets through TCF7L2 enhancing the WNT signaling activity. However, it has been demonstrated
that CCAT2 is itself a WNT downstream target. Therefore, in colon cancer, there is a feedback loop
mechanism between MYC, WNT, and CCAT2 [96]. Moreover, CCAT2 released in exosomes by glioma
cells has also been found to be responsible of angiogenesis induction and apoptosis inhibition in
endothelial cells [92]. The pro-angiogenesis phenotype of endothelial cells can be induced also by H19,
another important lncRNA in carcinogenesis. Conigliaro et al. found that CD90+ liver cancer cells can
reprogram endothelial cells by releasing H19-enriched exosomes [97].
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4. Conclusions

In conclusion, there is an increasing interest in circulating ncRNAs as mediators of cell–cell
communication and regulators of gene expression in recipient cells. The concept that an ncRNA might
function as a hormone (i.e., mediating cells communication) is a challenge for the research community,
and the current knowledge is still insufficient for clarifying this topic. Understanding the role of
exogenous ncRNAs that could work as messengers in inter-individual and cross-species molecular
communication is one of the next scientific targets for researchers. There is high potential for clinical
applications not only as diagnostic or prognostic biomarkers but also as therapeutics [98]. Given
the rapid and extensive progress made in the field of ncRNAs in the last decade, in the near future,
researchers will be able to address these challenges.
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