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Abstract—Ranking algorithms based on Neural Networks have
been a topic of recent research. Ranking is employed in everyday
applications like product recommendations, search results, or
even in finding good candidates for hiring. However, Neural
Networks are mostly opaque tools, and it is hard to evaluate why
a specific candidate, for instance, was not considered. Therefore,
for neural-based ranking methods to be trustworthy it is crucial
to guarantee that the outcome is fair and that the decisions are
not discriminating people according to sensitive attributes such
as gender, sexual orientation, or ethnicity.

In this work we present a family of fair pairwise learning to
rank approaches based on Neural Networks, which are able to
produce balanced outcomes for underprivileged groups and, at
the same time, build fair representations of data, i.e. new vectors
having no correlation with regard to a sensitive attribute. We
compare our approaches to recent work dealing with fair ranking
and evaluate them using both relevance and fairness metrics.
Our results show that the introduced fair pairwise ranking
methods compare favorably to other methods when considering
the fairness/relevance trade-off.

Index Terms—fairness, neural networks, ranking

I. INTRODUCTION

Information retrieval plays a prominent role in most machine
learning applications. Retrieving relevant data is a critical
task with many applications in research and industry. One of
the problems tackled by information retrieval is learning to
rank (1], [27], where document are sorted according to
their relevance to a query. This kind of model may also be
employed in tasks which have a clear and immediate impact on
human well-being, such as ranking candidates for admission to
higher education or giving out scholarships. Another example
is the COMPAS software, which has been developed to assist
court judges in deciding whether an individual is at risk
of reoffending and, ultimately, whether the person could be
released on parole. It has been shown [2] that the software
can be biased against black people, in the way that they are
consistently mis-assigned higher risk scores

§These authors contributed equally.

'We use the terms documents and instances as synonyms in the remainder
of the paper.

2The more general claim that the software is “unfair” has been challenged,
see the report from Northpointe, the company that developed COMPAS [13], a
discussion of the applicability of the “disparate impact” fairness criterion [10],
and a discussion on transparency and the role of proprietary software in the
courtroom [34].

In this situation, it is unclear whether ranking machine
learning systems can be considered trustworthy, as models
which rely on statistics extracted from biased data can per-
petrate and justify further discriminating behavior. While the
definitions of “bias” and “fairness” are still a topic of active
academic discussion, it is not a newly found concern, in neither
machine learning nor computer science, where discussions on
the matter date back to the nineties [17]. Lately, however, there
has been a growing call from both regulatory institutions [12]]
and the general public [2] for automated decision processes
to be fair and transparent. This problem is exacerbated by
the trend in employing opaque deep neural models in many
machine learning tasks, including ranking [27]]. Making sense
(in a human-intelligible way) of the decisions undertaken by
automated algorithms is the most straightforward path to solve
the fairness problem since a good explanation would allow
the end user to exclude unfair reasons from the motivations
underlying the decision. Model explanation, despite being
a relevant and very active line of research [1l, [7], is far
from being a solved problem, especially for large complex
models with millions of parameters. Our approach is instead
to condition the learning of the system in such a way that it
guarantees that no sensitive information is used to take the
final decision. To do so, we employ two different mechanisms
which predict and rank the sensitive attribute based on the
internal representation of the data built by the main network.
The output of these networks is used to penalize the main
network every time the sensitive attribute is correctly predicted
or ranked. This can be done by inverting the gradient’s sign
when it is backpropagated in the main network [20]], [38]. We
demonstrate that these approaches, when combined with further
bias-reduction mechanisms [9], can obtain fair, trustworthy
models and representations. The contributions of the paper
are thus as follows:

(i) We introduce a new family of fair pairwise ranking
methods that builds on the pairwise ranking model
DirectRanker [25] and investigate the usefulness of the
Gradient Reversal Layer by Ganin et al. [20]. More
specifically, we introduce two different mechanisms to
obtain ranking models that are also fair.

(ii)) We show how our models are able to output results which
are both high in relevance and unbiased on standard



datasets that are widely employed in the fairness literature.

(iii)) We compare our methods with a fair listwise learning to
rank approach called DELTR [44], a fair classifier [9],
[38]], and with a constraint optimized pairwise ranker [31]
and show that they are able to obtain rankings which are
more fair and just as relevant or better.

The paper is structured as follows. We discuss the underlying
models related to our approach in Section [II] and outline the
differences to other fair ranking methodologies. The models
and their properties are discussed in Section before we lay
out details of the experimental setup in Section Following
the discussion of results in Section [V| we draw our conclusions
in Section

II. RELATED WORK

In this section, we give an overview of related work, starting
with learning to rank approaches, followed by adversarial
approaches to address fairness in classification, and recent
work on fair ranking.

A. Learning to rank

Models that address the learning to rank problem, in which
a list of n documents needs to be sorted based on relevance to
a query, fall into three broad categories according to whether
the objective function is computed by considering one, two or
the whole list of documents at a time during training. The first
approach is called pointwise and is analogous to classifying
each document [11]], [26]] in the sense that instead of comparing
documents in a list, a score is predicted on each query-document
pair, indicating the single document’s relevance to the query.
In the pairwise approach a model tries to determine the more
relevant document out of two for the given query [4], [18].
The last approach is called listwise, in which the whole list is
used to compute the cost during training [6]], [39].

It is possible to extend many classification algorithms to
the ranking problem, such as decision trees [18], support
vector machines [5]], artificial neural networks [6]] and ensemble
boosting [37].

While the listwise approach allows for direct optimization of
the desired listwise metrics, more recently it has been shown
that a generalization [25] of the pairwise learning approach
RankNet [4] outperforms numerous state-of-the-art methods
on NDCG and MAP while requiring much shorter training
times. This learning algorithm has been proven to be able to
learn a total quasiorder on a wide variety of feature spaces
by having the requirements for such an order inherently built
into its network architecture using a siamese structure. Our
methodology builds on such a ranker by adding mechanisms
which are useful in making the resulting model also fair.

B. Fairness

Defining fairness in machine learning has attracted consider-
able attention. Two possible broad categories in which different
definitions fall into are individual and group fairness. Individual
fairness is defined as treating similar individuals similarly [16].
In this paper we deal with group fairness, where the focus

is instead shifted on group-wise definitions and metrics.
In classification tasks, possible definitions include disparate
impact, disparate treatment, and disparate mistreatment [42].
A model displays disparate impact when it assigns positive
outcomes with different rates to individuals belonging to
different groups. Disparate treatment can be observed when
a classifier provides different outputs for people belonging to
different groups who are otherwise similar. Lastly, disparate
mistreatment refers to the situation where a decision system
displays different error rates for individuals belonging to differ-
ent groups, as it was observed for the COMPAS software [2].
These definitions, in practice, are applied by evaluating for
instance the difference in positive outcomes for individuals
belonging to protected and non-protected groups. An individual
belongs to a protected group when it is thought or known that
data contains discriminatory or biased information about the
same group. In the aforementioned case of predicting future
re-offenders, the concern is that the historically higher rate
of incarceration for black individuals [35] can produce biased
data which will lead to biased algorithms when employed as
training information.

1) Fair classification: In the context of fair classification,
we consider a dataset D = {(z;,s;,¥:),% € {1...N}} where
z; € R™ are vectors describing the non-sensitive attributes
of the documents, s; € R™ are vectors describing sensitive
attributes (for instance, ethnicity or gender), and y; represents
the target value of each instance (for instance, getting a loan
or being admitted to higher education programs). Such a setup
has been investigated extensively. Some approaches propose
preprocessing of the data [22] so that positive outcomes of
y = 1 in the training set are balanced between different
groups, which are represented as different values of a sensitive
attribute s. Other strategies are regularization-based and insert
“fairness” into the objective function in various ways. Algo-
rithms that can be adapted to fair classification include logistic
regression [23], probabilistic models [21], and discriminative
clustering models [45]. More relevant to our approach is the
neural-based Domain Adversarial classifier [20]. This model
is able to learn a shared representation of data coming from
different domains (datasets) by “un-learning” information about
specific domains. Since then, the framework has been adapted
to fair classification [29], [38]], where it is instead information
about a sensitive attribute that is removed. However, it has
been shown [9] that the base strategy of employing Gradient
Reversal is not enough to guarantee that the features extracted
by the network will be debiased, i.e., decorrelated with respect
to the sensitive attribute. We describe how these techniques
can be employed in fair ranking in Section

2) Fair Ranking: In fair ranking one wants to find a
quasiorder of documents according to their relevance while
guaranteeing some notion of fairness with respect to a sensitive
attribute. Let us consider a dataset D = {(g;, xs, S;,9i),1 €
{1...N}} where ¢; are the queries, z; € R™ are vectors
describing the non-sensitive attributes of the documents,
s; € R™ are vectors describing sensitive attributes, and y;
represents each document’s relevance for the query. The main



motivation for exploring the task of ranking fairly is ensuring
that individuals belonging to protected groups are not relegated
to lower ranking positions because of past or present
human biases which may be reflected in training data. A number
of different metrics have been introduced for the purpose of
evaluating ranked outputs for their group fairness. Ke and
Stoyanovich [40] propose metrics which take into account
the proportion of individuals coming from underpriviledged
groups belonging in the top-i positions of the model output
(also see Section [V-AT). As protected group membership
should not influence an individual’s position in the ranked
output, the authors’ metrics can help evaluate the disparate
impact of a ranking model. Singh and Joachims [33] have
instead focused on average exposure, which is defined as
the average probabilities of all individuals belonging to a
specific group to be ranked at the top of the list. More recently,
Narasimhan et al. have argued for ranking fairness to
be measured, in continuity with the disparate mistreatment
concept in classification, as the difference in rank accuracy
between different groups (Section[[V-A2). Learning frameworks
in fair ranking have so far been focused on post-processing
methods [43], [8], [33]. A post-processing method first ranks
individuals by only taking query relevance into account, and
fairness is only enforced by re-ranking. Some authors
have however raised concerns about the legal admissibility
of these methods. Regularization techniques instead optimize
an objective which takes into consideration both relevance
and fairness. Zehlike et al. [44] propose a listwise ranking
method with a term encouraging a balanced average exposure
for different groups [33]. The methodology can be thought
of as a fair extension to a listwise ranking model. Another
neural-based, fair pairwise ranking model generalizes to
various definitions of fairness by casting them as constrained
optimization problems. In contrast, our model actively removes
sensitive information from the training vectors and is able to
generalize well to different fairness ranking measures.

III. MODEL DESCRIPTION

In the following we describe our contribution. In the
first two sections we discuss the general elements of our
methodology, the DirectRanker [23] model and the Gradient
Reversal layer [20]. Given these preliminaries, we will explain
two new methodologies that are able to learn relevant and fair
rankings (Sections [[TI-C|and [[II-D). We will also investigate the
combination of these methodologies with a noise conditioning
layer (Section [l1I-EJ.

A. DirectRanker

The DirectRanker model has been introduced as a
generalization of the RankNet architecture [4]. This model is
constrained to learn a total quasiorder on the feature space.
As such, the architecture of the model includes a pairwise
ranking function which is reflexive, antisymmetric and transitive
by construction. Reflexivity is enforced by employing two
networks which process different documents whilst sharing
their parameters and architecture. These networks are called
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Fig. 1. Schema of the Adversarial (top) and Fair Flipped (bottom) Direc-

tRanker models. nn and nna can be arbitrary networks (or other function
approximators) as long as they give the same output for the same inputs,
meaning that they share their weights. In both models, the output neuron o1
predicts the difference between the relevance labels while the bias is zero
and the activation can be any antisymmetric, sign-conserving function. In
the adversarial model, The nny,, . and nng,, . parts predict the sensitive
attributes of the two documents. In the backwards step, the gradients are flipped
when backpropagated into the feature extraction layers. In the fair flipped
model, the op;,s neuron predicts the difference of the sensitive attributes of
the two documents while also inverting the gradients when backpropagating
into the feature part (nn1 and nna). The yellow part of nni and nno shows
the last layer, which is used for extracting the unbiased representations.

nny and nny in Figs. [I(a)] and [I(b)] Antisymmetry is granted
by constraining the architecture to have sign-conserving neural
activation and no bias in the output neuron (o;), and having it
only depend on the difference of the two previously mentioned
networks, as an antisymmetric input [32]]. The authors also
detail how to prove that this model is forced to have a transitive
ranking function. This model has been shown to be as good
as listwise rankers, while also being able to be trained in a
fraction of the time. Due to these favorable properties, we will
show how to derive a fair pairwise ranking scheme on the
basis of the DirectRanker. We refer the reader to Koppel et
al. [23] for full details of the model.



B. Gradient Reversal

The concept of a Gradient Reversal layer has been first
introduced in domain adaptation [20] and since then generalized
to fair classification [38], [9], [29]. Domain adaptation is the
multi-task learning setup where one has access to labeled
examples (x;,y;);_, on a source domain and to unlabeled
examples z7, ; on a target domain. One possible approach
to exploit knowledge from both domains is to learn a shared
feature space where learning algorithms are unable to identify
whether an example was sampled from the source or target
distribution [3]]. In essence, this approach proposes to learn
representations of the data which are domain-invariant. In
this setting, Ganin et al. [20]] contributed a neural network
model which is trained to optimize two training objectives at
the same time, one expressing the risk on the target domain
and another representing the distance between the source and
target domains. In their work, the two objectives are optimized
by one sub-network each. These sub-networks are optimized
to predict the labels and the domain, respectively, from the
features extracted by a shared network. When backpropagating
the domain gradients into the network, the gradient’s sign
is, however, inverted. Ganin et al. show that this learning
scheme is able to find a saddle point equilibrium between the
two aforementioned objectives. In fair classification, learning
representations which are invariant to the sensitive attribute
is helpful in removing the complex, non-linear correlations
which can still identify a person’s gender or race even when
removing sensitive features [28], [38]]. In this work, we employ
a Gradient Reversal layer in two separate ways. In the first one
(Section [III-C), we add sub-networks that predict the sensitive
attributes from the representations that the DirectRanker model
is learning. Another option (Section [[II-D) is to instead add
another output neuron to the DirectRanker model and train its
parameters to predict whether the two input documents have
the same or a different value for the sensitive attribute. In both
cases, we invert the gradients when back-propagating in the
main feature extraction networks.

C. Fair Adversarial DirectRanker

Following the strategy outlined in the previous section, the
twin feature extraction networks of the DirectRanker can be
constrained for fairness by using two auxiliary networks nnq,,, .
and nny,,, ., which predict the sensitive attribute for a given
individual/training sample. In contrast to the networks nn,
and nny used for the ranking part, nnj,, . and nng,, do not
need shared parameters. The model architecture is shown in
Fig.

As the gradient’s sign is inverted when backpropagating into
the feature extraction layers, this has the effect of removing
information about the sensitive attribute in a feature extraction
network [9]], [291], [38]], therefore encouraging the representation
to be fair.

Since this approach requires a loss function for both the
ranking and the prediction of the sensitive attributes, we
construct our loss in the following way:

L(Ay,x1,22,51,52) = Lrank(Ay, 1, 72)
2
(D
+7 Z Lias,i (53, i),
i=1

where the ~y hyperparameter regulates the relevance-fairness
trade-off. This parameter therefore provides an option to
balance the importance of removing information about s versus
accurately predicting the relevance of the documents with
respect to the ground truth. As a ranking loss we keep the
choice employed in the original DirectRanker paper, namely

Lrank(Ayaxth) = (Ay - 01(I17I2))2 (2)

as a loss function for the prediction of the relative ranking of
instances (1,51, Y1, ¢) and (22, $2, Y2, q) with Ay = y1 — yo.
As for Ly, any classification loss can be employed, such as

Lbias,i (57 x) = —S log(Tmi bias (J?))

— (1= s)log(1 — nn;pias(x)), ®

when s is binary. In the following, we will refer to this model
as the Fair Adversarial DirectRanker (ADV DR).

D. Fair Flipped DirectRanker

Here we present another possible fair ranker based on
DirectRanker: the Fair Flipped DirectRanker (see Fig. [I(D)).
In contrast to the Fair Adversarial Direct Ranker, here we do
not try to directly predict the sensible attribute s. Instead, we
add another output neuron o0p;,s to the DirectRanker model
(having the same properties as the ranking neuron o;, namely
a sign-conserving and antisymmetric activation function) that
tries to predict whether the two input documents (x;, s;, yi, q),
i = 1,2 have the same sensitive attribute s;. We train this
neuron using a quadratic loss function similar to the ranking
loss:

Loy, (As,21,72) = (As — 0pias(71,72))? )

with As = s; — s5. As in the previous strategy, the gradient
information is inverted when backpropagated through the
feature extraction layers. The model is therefore optimized
to be agnostic to the difference between the sensitive attribute
of two input documents.

As for the ADV DR, the complete loss

L(Ayv AS, I, ‘%2) = Lrank(Aya T1, x2)

(5)
+vLo,,,.(As,x1,x2)

is a weighted combination of the ranking loss and the fairness
loss. We keep the same ranking loss as for ADV DR, as first
considered for the original DirectRanker architecture. In the
following, we will refer to this model as FFDR for short.



TABLE I
OVERVIEW OF THE HYPERPARAMETERS INCLUDED IN OUR GRID SEARCH
parameter values
activation function tanh
#layers of nny /o 2
#neurons per layer in nny /o 5, 10, 20 ... 100
#layers of nnpiqs, /biasy 2
#neurons per layer in nNy;qs, /biasy 2> 10,20 ... 50
training steps 0.5k, 1k, 1.5k ... 10k
y 0.1, 1, 2, 5, 10, 100

E. Noise Conditioning Layer

As shown in related work [9], a noise conditioning layer
can be used for simplifying the task of decorrelating the
input features with respect to s. This layer can be added to
any differentiable model and has been shown to aid neural
networks in obtaining fair representations that contain little
to no information about s. Noise conditioning layers can be
inserted at any point in a network. Assuming that layer i
computed the activations (a};)zzl, a noise layer at level ¢ 4 1
computes the following:

atl =d' O uw + 1O we, (6)
where © is the Hadamard product, w; and w, are learnable
weight vectors, and 7 is a noise which is providing random
vectors € R™. As the feature extraction part of the DirectRanker
can be any function, this can be easily added to the model.
Note that the issue of this method is that if one would sample
the noise at each forward pass of the network, the loss function
would then not be functional univalent, as different outputs
could be computed from the same input depending on the
noise value. We follow here the same approach as before [9],
meaning that we only sample once at the start of the learning
process.

IV. EXPERIMENTAL SETUP

In the following we evaluate our models on ranking datasets
commonly used in the fairness literature. To encourage fairness
in the model’s decisions, we employ two different mechanisms,
which we evaluate separately for relevance and fairness by
using standard metrics. We also show results for models which
include both the mechanisms. For the relevance task, we use
the commonly used nDCG@k and the AUROC, referred to
here as AUC. The fairness of the models is evaluated via the
rND metric (Section and explicitly by the accuracy
obtained when predicting the sensitive attribute from the
representations they learn. We also report the group-dependent
pairwise accuracies (Section [[V-AZ)), which have been recently
developed [31]. We explored a number of hyperparameter
combinations, which we report in Table |l Our evaluations
are twofold, as we assess both the ranking models and their
extracted representations, i.e. the features learned by the feature
extraction layers. This can be done by training a supervised
model on the aforementioned representations. This is a standard
way to evaluate fair classifiers [28], [43]], [9] and to understand
how much information about s has been removed by the model,

as high values for fairness can also be achieved by a weak
ranker taking random or quasi-random decisions from biased
data. We transpose this setup to the fair ranking paradigm
by training both linear and non-linear classifiers and rankers
(linear regression and random forest models, respectively).
We then evaluate their invariance to the sensitive attribute
and the fairness of the ranked outputs. Furthermore, this
experimental setup can also simulate a “separations of concerns”
regulatory scenario [29]. In this setting, users intending to train
models which directly impact individuals only have access
to representations where information about sensitive data was
purged. This enables any downstream model to be fair by
design, but poses the additional challenge of having to remove
information from the data.

A. Evaluation Metrics

1) rND: To evaluate group fairness in the whole output
list, we employ the rND metric introduced by Ke and
Stoyanovitch [40]. The metric is defined as follows:

N
1 1St 1St
ND=- i | o
r 7 logai = N D
i€{10,20,...}

This metric computes the difference between the proportion
S;;”’) and
in the overall population (%). Z is a normalization factor
which is defined as the maximum possible value of the
metric. We evaluated this factor by computing the same metric
over a dummy list in which all protected individuals can
be found at the very end of the list. As argued by Ke and
Stoyanovitch, this metric can be seen as a generalization of the
disparate impact/statistical parity concept in fair classification.
It warrants mentioning that over-representation (higher rate
than the population proportion) of protected individuals at the
top of the list is also penalized by the metric.

2) Group-dependent Pairwise Accuracy: Let Gy, ...,Gi be
a set of K protected groups such that every document inside
the dataset D belongs to one of these groups. The group-
dependent pairwise accuracy [31] Ag,>q; is then defined as
the accuracy of a ranker on documents which are labeled more
relevant belonging to group G; and documents labeled less
relevant belonging to group G;. Since a fair ranker should not
discriminate against protected groups, the difference |Ag,>q; —
Ag;>a;| should be close to zero. In the following, we call the
Group-dependent Pairwise Accuracy GPA.

of protected individuals in the top-i documents (

B. Datasets

Our experimental evaluation is focused on datasets com-
monly employed in the fairness literature, such as Adult [15],
COMPAS [2], and Law Students [44]. We also employed the
Wiki Talk Page Comments dataset to enable a comparison with
a recently developed neural-based constrained optimization
method [31].

The Adult dataset’s ground truth represents whether an
individual’s annual salary is over 50K$ per year or not [24].
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comparison model, while the dotted line also takes into consideration the models we contribute.

It is commonly used in fair classification, since it is biased
against gender [28]], [45]], 9.

The COMPAS dataset [2]] has been released as part of an
investigative journalism effort in tackling automated discrimi-
nation. The ground truth here is an individual’s “risk score”,
which is supposed to be proportional to their probability of
committing a crime in the near future. As in related work [42],
[9], we focus on non-violent crimes and use the race attribute
as the sensitive variable.

The Law Students dataset contains information relating to
21,792 US-based, first-year law students and was collected to

the end of understanding whether the Law Students Admission
Test in the US is biased against ethnic minorities [36]]. As in
related work [44], we subsampled 10% of the total samples
while maintaining the distribution of gender and ethnicity,
respectively. In this setting, it is possible to employ both
variables as the sensitive attributes, which we did in two
separate experimental setups, as done elsewhere. The task
here is to sort students based on their predicted academic
performance.

The Wiki Talk Page Comments dataset contains 127,820
Wikipedia comments which are labeled toxic or not toxic. A
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Fig. 3. Results for the Law Students datasets for the ranker outputs. Models marked with “n.” such as ADV DR n. included a noise module in their architecture.
The lines represent balanced fairness/relevance trade-offs. The dashed line represents all points with equal trade-off as the best performing comparison model,

while the dotted line also takes into consideration the models we contribute.

toxic comment can be defined as having “rude, disrespectful
or unreasonable” content. This dataset has been employed in
fairness when evaluating both classification [14]] and ranking
methods [31]. The term “gay” is commonly used as a sensitive
attribute, since 55% of the comments labeled toxic contain the
term “gay”, while only 9% of the comments which do not
have the term “gay” are labeled toxic [[14]. The task of interest
is therefore to provide a list of comments which are ranked to
most to least toxic while taking into consideration the original,
biased sorting. In related work, this task has been undertaken by
means of a convolutional neural network [31]. Our competing

model first preprocesses the comments to generate a word
representation by using a pre-trained model [30]. The obtained
representation is then fed into our models. Because of the long
training times for this model, we only focused on a smaller
set of hyperparameters on this dataset.

C. Grid Search

We performed a simple grid search to find the best hyperpa-
rameters and architecture for our models. As is often observed
in the fairness literature, removing information about the
sensitive attribute often leads to decreased accuracy or relevance
in the model. The same phenomenon has been observed



on representations extracted from fair neural models [28],
[9]. To the end of obtaining models and representations
which are both fair and relevant, we employed a metric
which combines fairness and relevance for both the models
and the representations extracted from them. Relevance and
fairness were weighted equally. We split all the datasets with
a 60/20/20 train/validation/test ratio. We then selected the
models having the highest value for our metric on the validation
test, and in the following we report their performance on the
test set. The hyperparameter set we optimized is reported
in Section 5.1. Furthermore, we tested models that had a
noise module as the first layer of their architecture. For our
implementation of the models and the experimental setup,
see https://zenodo.org/record/3889006.

V. EXPERIMENTS RESULTS

In this section we present the experimental results. First, we
look at the results for the different rankers on the datasets
described in Section Furthermore, we compare the
results of the external rankers and classifiers trained on the
representations extracted by the same models in Section
On the Wiki dataset, we also report the AUC and the GPA
metrics to enable a comparison to related work that phrases
fairness definitions as constrained optimization problems [31]
(Con. Opti. in the figures.).

The comparison methods on all other datasets include: a fair
listwise ranking model [44] (DELTR) that we also augmented
with a noise module [9] (DELTR n.), a debiasing neural
classifier [20]], [9] (Clas and Clas n. if including a noise
module), and an “unfair” baseline (Base.), which is the base
DirectRanker model with v = 0. We also employed a model
that combines both the fairness mechanisms introduced in this
work (ADV FFDR, ADV FFDR n.). These models use both the
loss functions introduced in Sections and

A. Model results

In the following we will discuss our results as far as the
relevance (nDCG or AUC) and fairness (rND, Section[I[V-AT] or
GPA, Section of the models themselves are concerned.
These results can be found in Figs. 3 through 5. Note that
for ease of reading, the rND and GPA metric is reported as
1-rND and 1-GPA, respectively. In all the figures. we plot
the optimal line representing the model which finds the best
trade-off, i.e. the smallest value of [|(1,1) — (1 — m,n)|:
with (m,n) € {(ND,nDCG),(GPA,AUC)}. The line for the
comparison models is drawn dashed, while the one for all
models (including ours) is dotted. For all datasets, we find that
members of the proposed method family push the trade-off
closer to the best possible model on both of the considered
fairness metrics.

While no single model is able to outperform the compar-
isons on both nDCG and rND/GPA, our models are able to
find strong trade-offs between relevance and fairness in all
employed datasets. Overall, we found that models including
the Adversarial fairness mechanism (ADV DR, ADV FFDR)
performed the best. On Adult (Figs. 2(a)]and[2(b)), the ADV DR

model is just as fair as DELTR, while also producing rankings
which are slightly more relevant. On COMPAS (Figs. [2(c)]
and 2(d)), our ADV DR model produces rankings which are
competitive in fairness with respect to DELTR n. and the
Debias Classifier. However, the output list has higher nDCG.
The law dataset with gender as a sensitive attribute (Figs. 3()]
and provides similar insights, where, however, our best
performing model employed both the mechanisms from this
paper (ADV FF DR). Once again, the Debias Classifier found
rankings which are fair but at the cost of slightly lowered
relevance, possibly as an effect of not employing a specialized
ranking loss. When considering race as the sensitive attribute
(Figs. and [3(d)), the ADV DR n. is able to retrieve the
fairest rankings, while still being competitive on nDCG.

When considering the AUC/GPA trade-off on the Wiki dataset
(Fig.[A(c)), ADV DR and FFDR have an identical performance,
which is, however, surpassed by the constrained optimization
model. As for the nDCG/rND trade-off (Fig.A(a)), the ADV DR
n. is once again able to find rankings which compare favorably
to the others in terms of fairness, however, also having severely
reduced nDCG. On this dataset, the ADV FFDR n. struck
an impressive trade-off, which is about as fair as the fairest
methods on the dataset (DELTR, Clas.), while also having
sensibly higher nDCG. Similar observations can be made in
the case of the nDCG/GPA tradeoff (Fig. A(b)). In general, it is
worthwhile to note how the DELTR model obtained sensibly
fairer rankings on two of the datasets (COMPAS, law-race)
when also employing a noise module, which to the best of our
knowledge has not been shown before.

B. Representation results

We report results for external rankers and classifiers which
have been trained on representations extracted from the
employed models in Table [l We trained both linear (logistic
regression) and non-linear (random forest) models and report
three different metrics. To evaluate the invariance of the
representation with respect to the sensitive attribute, we report
classifier accuracy as the absolute distance from random guess
(the majority class ratio in the dataset), which is shown
as ADRG in Tabe |, Similar analyses are common in fair
classification [9], [38], [28]. We transfer this analysis to the
fair ranking paradigm by training rankers on the aforementioned
representations. Therefore, we report the nDCG and 1-rND
values for these rankers.

Experiments on the extracted representations confirm the
insights derived from the model analysis, where models em-
ploying the Adversarial mechanism introduced in Section
were the best performing. On Adult, ADV DR and ADV FFDR
are once again strong performers in all metrics, invariance
included. ADV DR n. is a strong performer on COMPAS, where
however DELTR n. is able to achieve better nDCG results. On
law-gender ADV DR n. and ADV FF DR obtain impressive
results on nDCG and rND, respectively, while still having solid
performance. When instead using race as the sensitive attribute,
ADV FF DR n. learns representations which have the lowest
rND value, while FF DR n. displays the best nDCG with a very
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Fig. 4. Results for the Wiki datasets for the rankers. Models marked with n. included a noise conditioning layer. In Fig. the values for Con. Opti. are
taken from the original publication [31]]. The lines represent balanced fairness/relevance trade-offs. The dashed line represents all points with equal trade-off as
the best performing comparison model, while the dotted line also takes into consideration the models we contribute.

minor loss in TND. On Wiki, the DELTR n. model performs
the best on the rND metric, however, computing outputs which
are hard to sort in a relevant way. The ADV DR n. model, in
comparison, has the highest value for nDCG and competitive
values for rND.

VI. DISCUSSION AND CONCLUSIONS

We introduced a new family of neural network based models
for the purpose of ranking fairly by combining the pairwise
ranking model DirectRanker with the Gradient Reversal Layer.
Combining two fairness mechanisms achieved strong results on
several of the employed datasets. Employing the Adversarial

mechanism described in Section gave the overall best
results, often when used in conjunction with the Fair Flipped
mechanism. We also employed a noise module in conjunction
with our own models and DELTR. Overall, members of
the proposed family of fair ranking methods outperformed
existing methods on all of the tested datasets. This happened
consistently for two different fairness measures, although they
were not directly optimized by the method (only used in model
selection). Finally, we analyzed for the first time the extracted
representations for fair ranking methods by training rankers
that employ them as training vectors. When compared to other



TABLE 11
PERFORMANCE OF THE REPRESENTATIONS RANKERS FOR ALL MODELS ON
DIFFERENT FAIR DATASETS. THE METRICS EMPLOYED ARE, FROM LEFT TO
RIGHT, ABSOLUTE DIFFERENCE TO RANDOM GUESS, 1-RND, AND THE
NDCG@500. VALUES ARE MARKED BOLD IF THEY ARE THE HIGHEST
ONES OF THE METRIC. MODELS MARKED WITH n. EMPLOYED A NOISE
MODULE IN THEIR FIRST LAYER.

COMPAS Law-gender Adult
Models ADRG 1-1ND nDCG ADRG 1-1ND nDCG ADRG 1-rND nDCG
ADVDRn.  0.03 095 069 004 093 1.00 0.13 093 0.85
ADV DR 0.02 087 048 0.04 092 077 001 095 0.68

ADV FFDR n. 0.03 095 0.63 0.04 0.87 0.88 0.01 0.98 0.75
ADV FFDR  0.03 0.86 0.56 0.04 096 092 0.01 095 0.71

FFDR n. 0.07 088 0.66 0.04 092 081 0.01 095 0.77
FFDR 0.03 096 035 0.07 095 089 0.01 096 0.73
DELTR n. 0.03 095 0.72 0.03 092 098 0.04 090 0.83
DELTR 0.01 090 035 0.02 094 099 0.01 095 0.73
Clas. n. 0.04 086 045 0.04 091 097 0.01 098 0.56
Clas. 0.04 090 040 0.04 093 095 0.01 091 0.68
Base. 0.02 0.77 030 0.05 097 093 0.01 095 0.71
Law-race Wiki

Models ADRG 1-rND nDCG ADRG 1-rND nDCG

ADV DR n. 0.01 092 089 0.01 093 0.58

ADV DR 0.03 090 087 0.00 094 0.51

ADV FFDR n. 0.06 0.95 095 0.0l 093 0.17
ADV FFDR 0.01 0.86 0.79 0.00 092 0.04

FFDR n. 001 094 1.00 0.00 0.94 0.06
FFDR 0.06 090 0.98 0.00 090 0.08
DELTR n. 0.02 095 081 0.00 095 0.12
DELTR 0.03 0.82 0.89 0.00 0.89 0.55
Clas. n. 0.03 091 072 040 0.93 0.50
Clas. 020 093 068 0.02 091 0.55
Base. 001 090 094 0.00 0.92 0.22

methodologies, we have shown that our methods are able to
find better trade-offs between relevance and fairness, in both
disparate impact and disparate mistreatment settings.

REFERENCES

[1] Adadi, A., Berrada, M.: Peeking inside the black-box: A survey on
explainable artificial intelligence (xai). IEEE Access 6, 52138-52160
(2018)

[2] Angwin, J., Larson, J., S.M., L, K.: Machine bias (2016)

[3] Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of
representations for domain adaptation. In: NIPS (2007)

[4] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton,
N., Hullender, G.: Learning to rank using gradient descent. In: ICML
(2005)

[5]1 Cao, Y., Xu, J., Liu, TY,, Li, H., Huang, Y., Hon, H.-W.: Adapting ranking
svm to document retrieval. In: ACM SIGIR (2006)

[6] Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F,, Li, H.: Learning to rank: From
pairwise approach to listwise approach. In: ICML (2007)

[7] Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning inter-
pretability: A survey on methods and metrics. Electronics 8(8), 832
(2019)

[8] Celis, L.E., Straszak, D., Vishnoi, N.K.: Ranking with fairness constraints.
In: ICALP (2018)

[9] Cerrato, M., Esposito, R., Li Puma, L.: Constraining deep representations
with a noise module for fair classification. In: ACM (2020)

[10] Chouldechova, A.: Fair prediction with disparate impact: A study of bias
in recidivism prediction instruments. Big data 5(2), 153-163 (2017)

[11] Cooper, W.S., Gey, E.C., Dabney, D.P.: Probabilistic retrieval based on
staged logistic regression. In: ACM SIGIR (1992)

[12] Council of European Union: Council regulation. In: (EU) no 679/2016
(2016)

[13] Dieterich, W., Mendoza, C., Brennan, T.: Compas risk scales: Demon-
strating accuracy equity and predictive parity (2016)

[14] Dixon, L., Li, J., Sorensen, J., Thain, N., Vasserman, L.: Measuring and
mitigating unintended bias in text classification (2018)

[15]
[16]

[17]
(18]
[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]
[27]
(28]
[29]
[30]
(31]

(32]

(33]
[34]
[35]

(36]

(371
[38]
[39]

[40]

[41]

[42]

[43]
[44]

[45]

Dua, D., Graff, C.: UCI machine learning repository (2017)

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness
through awareness. In: ITCS (2012)

Friedman, B., Nissenbaum, H.: Bias in computer systems. ACM TOIS
14(3), 330-347 (1996)

Friedman, J.H.: Greedy function approximation: A gradient boosting
machine. Annals of Statistics 29, 1189-1232 (2000)

Fuhr, N.: Optimum polynomial retrieval functions based on the probability
ranking principle. ACM TOIS 7(3), 183-204 (1989)

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H.,
Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training
of neural networks. J. Mach. Learn. Res. 17(1), 2096-2030 (2016)
Kamiran, F., Calders, T.: Classifying without discriminating. 2009 2nd
International Conference on Computer, Control and Communication
pp. 1-6 (2009)

Kamiran, F., Calders, T.: Data preprocessing techniques for classification
without discrimination. Knowledge and Information Systems 33(1), 1-33
(2012)

Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier
with prejudice remover regularizer. In: ECML PKDD (2012)

Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: A decision-
tree hybrid. In: KDD (1996)

Koppel, M., Segner, A., Wagener, M., Pensel, L., Karwath, A., Kramer,
S.: Pairwise learning to rank by neural networks revisited: Reconstruction,
theoretical analysis and practical performance. In: Machine Learning and
Knowledge Discovery in Databases. pp. 237-252 (2020)

Li, P, Wu, Q., Burges, C.J.: Mcrank: Learning to rank using multiple
classification and gradient boosting. In: NIPS (2008)

Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf.
Retr. 3(3), 225-331 (2009)

Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R.: The variational
fair autoencoder. preprint arXiv:1511.00830 (2015)

McNamara, D., Ong, C.S., Williamson, R.C.: Provably fair representa-
tions. preprint arXiv:1710.04394 (2017)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of
word representations in vector space. preprint arXiv:1301.3781 (2013)
Narasimhan, H., Cotter, A., Gupta, M., Wang, S.: Pairwise fairness for
ranking and regression. In: AAAI (2020)

Rigutini, L., Papini, T., Maggini, M., Bianchini, M.: A neural network
approach for learning object ranking. In: International Conference on
Artificial Neural Networks. pp. 899-908. Springer (2008)

Singh, A., Joachims, T.: Fairness of exposure in rankings. In: ACM
SIGKDD 2018. Association for Computing Machinery (2018)
Washington, A.L.: How to argue with an algorithm: Lessons from the
compas-propublica debate. Colo. Tech. LJ 17, 131 (2018)

Western, B., Pettit, B.: Incarceration & social inequality. Daedalus 139(3),
8-19 (2010)

Wightman, L., Ramsey, H., Council, L.S.A.: LSAC national longitudinal
bar passage study. LSAC research report series, Law School Admission
Council (1998)

Wu, Q., Burges, C.J., Svore, K.M., Gao, J.: Adapting boosting for
information retrieval measures. Information Retrieval 13, 254-270 (2010)
Xie, Q., Dai, Z., Du, Y., Hovy, E., Neubig, G.: Controllable invariance
through adversarial feature learning. In: NIPS (2017)

Xu, J., Li, H.: Adarank: A boosting algorithm for information retrieval.
In: ACM SIGIR (2007)

Yang, K., Stoyanovich, J.: Measuring fairness in ranked outputs. In:
SSDBM ’17. Association for Computing Machinery, New York, NY,
USA (2017)

Yang, K., Stoyanovich, J., Asudeh, A., Howe, B., Jagadish, H., Miklau, G.:
A nutritional label for rankings. In: Proceedings of the 2018 international
conference on management of data. pp. 1773-1776 (2018)

Zafar, M.B., Valera, 1., Gomez Rodriguez, M., Gummadi, K.P.: Fairness
beyond disparate treatment & disparate impact: Learning classification
without disparate mistreatment. In: WWW (2017)

Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., Baeza-
Yates, R.: Fa*ir. In: CIKM (2017)

Zehlike, M., Castillo, C.: Reducing disparate exposure in ranking: A
learning to rank approach. preprint arXiv:1805.08716 (2018)

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair
representations. In: ICML (2013)



	Introduction
	Related Work
	Learning to rank
	Fairness
	Fair classification
	Fair Ranking


	Model description
	DirectRanker
	Gradient Reversal
	Fair Adversarial DirectRanker
	Fair Flipped DirectRanker
	Noise Conditioning Layer

	Experimental Setup
	Evaluation Metrics
	rND
	Group-dependent Pairwise Accuracy

	Datasets
	Grid Search

	Experiments Results
	Model results
	Representation results

	Discussion and Conclusions
	References

