
Well-being Forecasting using a Parametric
Transfer-Learning method based on the Fisher
Divergence and Hamiltonian Monte Carlo
Eirini Christinaki1,∗, Tasos Papastylianou1,∗, Sara Carletto2, Sergio Gonzalez-Martinez3,
Luca Ostacoli4, Manuel Ottaviano3, Riccardo Poli1, Luca Citi1,§

1School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
2Department of Neuroscience “Rita Levi Montalcini”, Università degli Studi di Torino, Turin, Italy.
3Life Supporting Technologies, Universidad Politécnica de Madrid, Madrid, Spain.
4Department of Clinical and Biological Sciences, Università degli Studi di Torino, Turin, Italy.

Abstract

INTRODUCTION: Traditional personalised modelling typically requires sufficient personal data for training.
This is a challenge in healthcare contexts, e.g. when using smartphones to predict well-being.

OBJECTIVE: A method to produce incremental patient-specific models and forecasts even in the early stages
of data collection when the data are sporadic and limited.

METHODS: We propose a parametric transfer-learning method based on the Fisher divergence, where
information from other patients is injected as a prior term into a Hamiltonian Monte Carlo framework. We
test our method on the NEVERMIND dataset of self-reported well-being scores.

RESULTS: Out of 54 scenarios representing varying training/forecasting lengths and competing methods, our
method achieved overall best performance in 50 (92.6%) and demonstrated a significant median difference in
45 (83.3%).

CONCLUSION: The method performs favourably overall, particularly when long-term forecasts are required
given short-term data.

Received on 09 June 2020; accepted on 01 October 2020; published on 16 October 2020

Keywords: Transfer Learning, MCMC, Bayesian Inference, Well-being Prediction, Personalised Modelling, NEVERMIND

Copyright © 2020 E. Christinaki, T. Papastylianou et al., licensed to EAI. This is an open access article distributed
under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which
permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.16-10-2020.166661

1. Introduction
Clinical depression is a psychiatric disorder affecting
mood in a pervasive manner, leading to a reduced qual-
ity of life and daily functioning for the patient [1]. It
is characterised by sadness, loss of interest or pleasure,
feelings of guilt or low self-esteem, disturbed sleep
or appetite, feelings of tiredness, poor concentration
and even medically unexplained symptoms. It often
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co-exists with symptoms characteristic of anxiety dis-
orders [2], and there is also evidence of a strong bi-
directional association with physical illness [3]. In other
words, having a physical illness is a strong risk factor
for developing clinical depression, while depression is
also a risk factor for developing or exacerbating existing
physical illness [4, 5], and is linked to early death [6].

Smartphones and wearable sensors are increasingly
used for prediction and management in healthcare
contexts, including depression. However, few systems
are based on patient-specific models, despite the fact
that these are known to perform better compared to
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general models. In addition, many of the proposed
systems and their purported benefits are often not
properly backed up by evidence obtained from
appropriate scientific research or clinical studies [7].
Research on constructing models to predict future
mood-states in patients with depression has shown
that, apart from the expected variables that describe
patients’ historical mood, the pertinent variables that
determine model performance tend to be diverse and
patient-specific [8].

Personalisation requires the learning and tuning of
a model to an individual user. This is a non-trivial
task for two reasons. Firstly, in an ideal situation,
predictions should be provided from day one; in other
words, the moment a patient starts using the system,
the model will be expected to start making meaningful
predictions for that individual, despite the fact that no,
or very limited patient-specific data will be available
initially. While it is possible to train/update a model
incrementally on the data available at a given time, it
is difficult to give reliable predictions when little data
are available. Secondly, such datasets are also likely to
be ‘sparse’ (in the broader sense), both because of the
nature of the data acquired, and because users may have
the option to refuse, or postpone their interaction with
the system (e.g. when prompted with a questionnaire,
or asked to wear a sensor), thereby exacerbating the
problem.

Challenges faced when training a model on such spo-
radic, limited data with traditional machine learning
algorithms include overfitting, difficulties in handling
outliers, and inappropriate assumptions of equivalence
between training and test data distributions — a con-
cept known as dataset shift [9]. As a result, mod-
els trained on such ‘sparse’ datasets run the risk of
being meaningless or unreliable in practice. In order to
account for the uncertainty surrounding data sparsity,
one could allow models to be of sufficient generality,
but then one would run the risk of creating models
that are of no practical value. Similarly, for any given
model, sparsity complicates assessing the effective fit to
the data, since there are not enough sample points to
help meaningfully differentiate between more specific
and more generalised models.

The above conundrum was one that was also faced
in the NEVERMIND project [10]. NEVERMIND is
an EU-funded project, which includes a randomised-
controlled trial, and is tasked with helping individuals
at risk of developing depressive symptoms following
a primary clinical event such as cancer, myocardial
infarction, amputation, and kidney failure [11]. It does
so by providing effective, smartphone/wearable-based
self-management tools, which in turn complement and
guide the patients’ clinical support plan. In this setting,
both subjective as well as multimodal biomedical data
are collected — including a collection of physiological

signals, body movement, and speech — through the
use of a lightweight sensorised T-shirt and patients’
smartphones. For these tools to be effective, predictions
need to be produced on a daily basis. However,
particularly in the early stages of a patient’s enrolment,
the obtained data exhibit all the problematic behaviours
mentioned earlier, making such personalised daily
predictions a very challenging task.

Our approach to overcoming these challenges has
been the following. In the early stages of a patient’s
enrolment, when data are limited and sporadic,
rather than risk overfitting with an inappropriately
personalised approach, our model relies on a more
generalised prediction, borne from prior knowledge;
however, as more personal data become available, the
model slowly starts transitioning to more personalised
predictions, in an organic, data-driven manner. In this
way, patients can still benefit from useful, general
information early on. The prior knowledge required
for the initial generalised predictions was obtained
from the other participants in the study, and used to
inform the prediction of a specific patient through an
appropriate transfer learning mechanism.

Transfer Learning (TL) methods are a recent class
of techniques, which enable one to work around the
strict requirement that the test and training data
should necessarily conform to the same probability
distribution [12]. These methods can use data from
unrelated or partially related tasks [13], and allow
the domains, tasks, and distributions used in training
and testing to be different up to a certain point,
without having to build a completely new model from
scratch [14]. They rely on the basic assumption that the
source and target domains, while not necessarily of the
same underlying distribution, may still be related in
other ways, i.e. via an explicit or implicit relationship
between the feature space of the two domains. The
goal of TL is to improve learning in the target domain
by leveraging previously acquired knowledge gained
in the source domain. These methodologies have also
been employed to improve performance in the presence
of scarce data [15], and techniques that take into
account population heterogeneity have been proposed
in domains involving sequential data modelling [16];
for a more general overview of the history, taxonomy,
and state of the art in transfer learning methods for
classification, regression, and clustering problems, see
[14, 17–21].

In this paper, we propose a new parametric TL
algorithm, addressing the challenge of creating user-
specific models and making predictions of self-
reported well-being scores, when training is performed
incrementally on limited, sporadic data that become
slowly available over time. The proposed method makes
use of the Fisher divergence to make predictions about
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a specific individual, leveraging general information
available from other patients in the form of priors.

The main contribution of this paper is the following:
we propose a personalised Bayesian inference method
making use of TL in the context of Hamiltonian
Monte Carlo sampling, which allows a population
prior to be directly represented in the sampling
process through the use of the Fisher divergence. We
demonstrate the effectiveness of the above technique in
the context of personalised prediction of self-reported
well-being scores, using data from the NEVERMIND
project [10, 11]. Our method allows for a seamless
transition from generalised to highly personalised
models, as data become gradually available.

This paper is an extended version of the work
presented in [22]. We extend our previous work in
three important ways: first, by providing a more
comprehensive literature review, particularly with
respect to the theoretical background underpinning
our approach; second, we have included information
on diagnostics, detailing how we assessed the quality
and convergence of the Markov chains; and third, we
present a more rigorous mathematical derivation of the
models involved, which was beyond the scope of [22].

The rest of the paper is organised as follows: Sec. 2
provides a brief overview of relevant work in the
field of well-being forecasting, and the motivation for
our method. Sec. 3 provides a brief description of the
predictive model used in the NEVERMIND project and
describes the proposed TL pipeline. Sec. 4 describes
the NEVERMIND dataset in some detail, and the
experimental protocol used in this work. Sec. 5 shows a
rigorous evaluation of the model and an analysis of the
factors affecting predictive performance. Finally, Sec. 6,
lays out our conclusions and provides some indications
of promising future research directions.

2. Background and motivation

There is evidence to suggest that ‘well-being’ —
i.e. the subjective presence, absence, fluctuation,
intensity, and nature of mood-states as perceived
and reported by the individual — is at least as
sensitive a predictor for the risk of adverse outcomes
as formal clinical assessment of depression based
on established diagnostic criteria [23–28]. There has
therefore been a significant research interest over
the past decade in monitoring and predicting mood
states through non-invasive means. While some of
these approaches involve laboratory-based techniques
such as electroencephalography (e.g. [29]), or elaborate,
bespoke equipment (e.g. the ‘Smart Mirrors’ project
[30]), smartphones and wearable devices due to
their ubiquity and convenience have now become
the predominant research focus for the non-invasive

collection of information and signals for this purpose
(e.g. [31–37]).

However, the majority of studies in this field focus
on mood detection and classification, and only few
focus on the more challenging problem of long-
term forecasting. In the latter case, studies commonly
employ neural network methods for this purpose.
E.g. Spathis et al. [36], used smartphones to collect
a sequence of self-reported mood states over three
weeks, by asking users to select a point from a
two-dimensional grid corresponding to ‘valence’ and
‘arousal’ dimensions. They then trained a multi-task
encoder-decoder recurrent neural network to produce
a sequence of valence/arousal forecasts (expressed as
points on the same grid) for up to 7 days. Their
model performed well, though the authors noted
performance was less reliable in participants with
high mood variability. Similarly, Yu et al. [37] used
data from the SNAPSHOT study [38], which involved
detailed data from 251 college students, including
data from surveys, mobile phones, wearables and
weather information. These were used to define mood,
health, and stress scores, on which they compared
a series of multi-task learning approaches including
Regularized Linear Models and several varieties of
Neural Networks, in next-day, and up to 7-day forecast
scenarios. Their findings showed good performance
for next-day scenarios; however, the authors noted
that even after selecting the best-performing algorithm,
there was a significant reduction in accuracy when it
came to 7-day forecasts.

One limitation of neural-network based approaches
like the above, is that any transfer learning component
learnt is typically applied as an initial point estimate of
the network’s parameters. This is typically then either
used as an initialization point for subsequent fine-
tuning, or the topmost layers are ‘frozen’, meaning that
they are excluded from subsequent training [39]. While
this approach can achieve a significant initial speed-up
in terms of learning, it is less robust, in that it does
not allow for any uncertainty present in the transfer
domain to be propagated to the prediction. Expressing
the transfer learning component as a prior probability
in the context of Bayesian inference methods [40] allows
us to make use of this information. However, this is
not necessarily a straightforward thing to do: when
dealing with complicated distributions defined in high-
dimensional spaces, obtaining posterior parameter
estimates expressed in closed form is typically not
feasible, as the integrals involved in the inference
process tend to be computationally intractable.

Markov Chain Monte Carlo (MCMC) techniques are
an elegant way to work around this problem. MCMC
refers to a very general and powerful framework that
allows sampling from a large class of distributions
and which scales well with the dimensionality of the
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sample space [41]. It can be used to empirically obtain
information about complicated distributions, and is
particularly useful in estimating posterior distributions
in Bayesian inference, even when complicated distribu-
tions in high-dimensional spaces are involved.

Therefore, the main motivation for this work, is
the use of a suitable prior probability transfer-
learning component within a Bayesian inference
framework, for the long-term prediction of mood states
from sporadic/limited data. This prior probability
is obtained empirically through the use of MCMC,
where the target distribution is obtained through an
optimisation process involving the minimization of the
Fisher Divergence over all participants in the transfer
domain. We explain the steps involved in more detail
below.

3. Method
3.1. Linear Dynamical System Model
In NEVERMIND, we propose to model participants
and predict their self-reported well-being scores using
a Linear Dynamical System (LDS) model [42] and a
Bayesian TL approach relying on MCMC sampling [43].
The method assumes that the well-being of the user can
be represented by a state vector, and that its dynamics
can be captured by an LDS of the following form:

x(t) = Ax(t − 1) + Bu(t) + εx(t), (1a)

y(t) = Cx(t) + µy + εy(t), (1b)

where x(t) ∈ Rnx is the latent state for the model,
reflecting the user’s underlying state of well-being;
y(t) ∈ Rny is a vector of observations corresponding to
the measurements collected from the user (including
biomedical signal features and self-reported well-being
scores); u(t) ∈ Rnu is the input vector (representing
external interventions, or influences from the external
environment, e.g. weather or day of the week); and
µy is the baseline value of the observation vector.
Finally, εx and εy represent noise (i.e. uncertainty) over
the state and observation vectors, and are assumed to
be distributed as εx(t) ∼ N (0,Sx) and εy(t) ∼ N (0,Sy)
respectively. The parameters of this model will be
collectively referred to as θ.

The above LDS model’s latent state at any time t
can be extended to describe an auto-regression of
arbitrary order, simply by extending the state-vector
to include its most recent values, e.g. by writing
x(t) = [ξ(t), ξ(t − 1), ξ(t − 2)]T, where ξ(t) is the original,
‘base’ latent state, and x(t) is the extended one.

3.2. Hamiltonian Monte Carlo
Our approach requires that we sample from the pos-
terior distribution of the parameters, i.e. our beliefs

about the parameters after having seen the data for a
given participant. This can be achieved using an MCMC
sampler, which constructs a Markov chain of samples
(i.e. parameter sets), having as their equilibrium distri-
bution the target posterior distribution.

In our previous work [43], we used the affine
invariant ensemble sampler for MCMC (emcee) proposed
in [44]. emcee was chosen as an easy to use, well tested,
pure Python module, where the underlying algorithm
also has an affine invariance property that allows it to
perform equally well under all linear transformations,
and therefore be insensitive to covariances among
parameters. It is also an ensemble method which relies
on multiple walkers (the members of the ensemble)
sampling in parallel. The main idea behind emcee’s
proposal strategy is that, for any given walker in the
ensemble, their next position is proposed by randomly
selecting another walker’s location and performing a
‘stretch-move’ step towards it, i.e. performing a ‘jump’
in the proposal space in the direction of the randomly
selected walker’s location, such that the length of the
jump is determined by the relative likelihood of the
two proposal values. However, there are cases where
the affine-invariant ensemble sampler may not perform
well or shows unusual and undesirable properties.
In particular, when the target density is a multi-
modal landscape, the walkers can become stuck in
different modes [45] or in lower dimensional subspaces.
Furthermore, in high dimensions, the chains can show
insufficient convergence and slow mixing, or appear to
have converged when they have not [46].

For these reasons, in this work, we decided to utilise
a Hamiltonian Monte Carlo (HMC) sampler [47], written
in the Stan language [48], and more specifically its
adaptive extension, the No-U-Turn Sampler (NUTS) [49].

The HMC approach exploits Hamiltonian dynamics
in order to propose future states in the Markov chain.
Effectively, the system simulates the movement of
particles over a surface, such that the overall energy of
the system is conserved, and can be expressed as the
sum of two energy components — a ‘kinetic energy’,
and a ‘potential energy’ component. The kinetic
energy component is generated via a pre-determined
probability distribution, and thus plays the part of the
proposal component in MCMC, whereas the potential
energy component maps directly to the underlying
probability distribution we are trying to sample from.
Standard HMC algorithms generally depend on, and are
sensitive to an appropriate choice of hyperparameters,
namely the step-size and number of steps to use during
exploration of the domain; the NUTS variant modifies
the proposal component of the base algorithm slightly,
in that it evolves the initial system both forwards and
backwards in time to form a balanced binary tree. The
system then stops automatically when the algorithm
detects that the sampler has started retracing earlier
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steps (i.e. making a “U-turn”), thus eliminating the
need to define a pre-determined number of steps; at the
same time, the step-size parameter is adapted on the fly,
completely eliminating the need to hand-tune HMC.

The HMC algorithm is advantageous, in that it
organically makes use of gradient information, enabling
it to move faster toward regions of high probability
and explore the parameter space more efficiently
compared to standard random walks. Consequently,
with this sampler we obtain faster convergence in high-
dimensional target distributions, while the resulting
Markov chain is less correlated. In addition, like in
emcee, multiple chains can be allowed to run in parallel.
Finally, the use of HMC allows for straightforward
scaling up of models to even higher dimensionality and
complexity, which may be required in future work.

According to Bayes’ Theorem, given a vector of
observations y, and a vector of parameters θ, the
posterior probability p(θ | y) is related to the likelihood
term p(y |θ) and the prior term p(θ) via

p(θ | y) ∝ p(y |θ) p(θ). (2)

Therefore, given a way to compute the product
p(y|θ)p(θ), the HMC sampler allows one to generate K
random vectors θk , distributed according to p(θ|y). One
can then use this fact to estimate a posterior expectation
Eθ|y

[
h(θ)

]
=
∫
h(θ) p(θ|y) dθ with respect to an arbitrary

function h(θ), as the sample average 1
K

∑K
k=1 h(θk),

evaluated at the posterior samples θk [40, Sec. 10.1].

In our case, the likelihood term p(y|θ) in (2) is the
marginal likelihood of the LDS model in Sec. 3.1,
marginalised over the latent state, i.e.,

p(y |θ) =
∫
p(y | x,θ) p(x |θ) dx. (3)

This likelihood term can be readily obtained from
the LDS model using a Kalman filter applied to the
participant’s data (see [42]).

Additionally, we specify a prior probability distribu-
tion p(θ) to inform and constrain our model. In this
work, we use a simplified version of the LDS model
described by (1), which ignores the influences from
the external environment; in other words, the inputs
u(t) are absent and, therefore, the matrix B is unused.
Furthermore, the observation vector y(t) is limited to
reflect only self-reported well-being scales. Given the
above, we consider a unit-root, third-order autoregres-
sive model, which can be represented by the LDS model

in (1) with:

A =

1 − a1 − a2 a1 a2
1 0 0
0 1 0

 , C =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 ,
Sx =

sx 0 0
0 0 0
0 0 0

 , Sy =


sy 0 0
0 sy 0
0 0 sy

 ,
µy=[µy , µy , µy]T and x(0) = [ξ1, ξ1, ξ1]T. The estimates of
the unknown model matrices are parametrised through
θ, where θ = [a1, a2, c11 . . . c33, sx, sy , µy , ξ1].

3.3. Bayesian Transfer Learning
When making a prediction, we want to take into
consideration the information coming from both
the individual patient, as well as more general
information available from other patients acting as
prior knowledge in a general sense. Formally, we
want to obtain the posterior predictive distribution
p(̃y | y,YN ) for a given patient (without loss of generality
we consider the one with index N+1), where ỹ is the
desired prediction, y represents the patient’s existing
observations, and YN = {y1, . . . , yN } corresponds to the
information coming from all other N participants’
observations. In theory, this expression can be obtained
by marginalising θ out as follows:

p(̃y | y,YN ) =
∫
θ
p(̃y | y,θ) p(θ | y,YN ) dθ. (4)

Unfortunately, in practice this integral is generally
intractable. Both our previous TL approach based
on Bayesian Model Averaging (BMA) [43] and the
one proposed in this paper, are essentially machine-
learning techniques for estimating the intractable
integral in (4); however, they do so in a substantially
different way. The two approaches are contrasted and
explained in more detail in the sections below.

3.4. Transfer Learning based on BMA
To explain our motivation for developing a new
approach, we first briefly review our previous approach
based on BMA (see [43] for more details). Assuming
conditional independence with respect to θ across data
coming from different participants, we expanded (4) as:

p(̃y | y,YN ) =
∫
p(̃y | y,θ)

p(y |θ) p(θ |YN )∫
p(y |θ′) p(θ′ |YN ) dθ′

dθ

≈
K∑
k=1

p(̃y | y,θk)
p(y |θk)∑K
j=1 p(y |θj )

,

(5)

with each of the K samples in {θk}Kk=1 distributed
according to p(θ |YN ), which represents our beliefs
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about the parameters for patient N+1 after observing
the data from the other N participants, but prior to
observing any data for the new patient. Effectively,
p(θ |YN ) embodies the knowledge transfer from the
other N participants to the new one. In our BMA-
based approach, p(θ |YN ) was approximated by running
the MCMC sampler on each of the N participants and
then pooling together the resulting samples. Under this
scheme, assuming each run creates M samples (i.e. M
vectors of model parameters), we obtain the K vectors
used in (5) via uniform sampling from the mixed
sample pool of N ·M vectors of model parameters. This
corresponds to sampling from the mixture distribution
obtained by combining the posterior distributions
of the N previous participants. The probabilities
p(̃y | y,θk) and p(y |θk) are then obtained by using the
Kalman filter as described earlier. The fractional term in
the summation shown in (5) represents the probability
that, out of the K models considered, the given model
θk generated the observed data y. Therefore, using (5) to
estimate (4) corresponds to performing BMA [50] over
the K candidate models.

As reported in [43], this method showed an
improvement over previous work, which relied on
Maximum Likelihood parameter estimation using a
standard Expectation Maximisation approach [42].
However, such a BMA approach does not exploit the
full potential of the MCMC sampler with respect to
estimating the integral in (4). In [43], the BMA approach
makes use of MCMC, simply in order to explore and
generate samples from p(θ |YN ); these samples are then
weighted using p(y |θk) as shown in (5), to obtain the
probability p(θ | y,YN ) required to approximate (4). To
make fuller use of the potential of the MCMC sampler
for the estimation of the integral in (4), we formulated
a new algorithm, which allows MCMC to explore
and sample from p(θ | y,YN ) directly. This improved
algorithm is the main contribution of this paper and is
described in the next section.

3.5. Transfer Learning based on the Fisher
divergence
The approach delineated in this paper is a parametric
TL method based on the Fisher divergence, which can be
used to fit a sample of data points to given probabilistic
models defined up to a normalisation constant [51–53].
In this approach, the HMC sampler uses the data from
each participant directly, to create chains of parameter
vectors reflecting the posterior probability distribution
of their personalised models; however, in doing so, the
MCMC process itself makes use of a TL component
internally, in the sense that the generated chains are
obtained based on a modified prior, where this prior
accounts for the knowledge available from all other
participants, in a manner reminiscent of empirical

Bayes approaches. Stated formally, we estimate (4) as

p(̃y | y,YN ) ≈ 1
K

K∑
k=1

p(̃y | y,θk), (6)

where the samples θk ∼ p(θ | y,YN ) are obtained via
MCMC using the likelihood p(y|θ) from (3) and a
prior p(θ |YN ) obtained as a mixture of the posterior
distributions of the N previous participants:

p(θ |YN ) =
1
N

∑
n

p(θ | yn), (7)

that we approximate in parametric form as:

p(θ |YN ) ≈ qβ(θ) p(θ), (8)

where qβ(θ) is a function governed by a vector of
hyperparameters β. Note that while p(θ |YN ) in (7)
is, from a theoretical point of view, the same as in
the BMA approach, the fact that we now consider
an approximation of it in parametric form allows us
to explore it fully using the HMC sampler, rather
than being constrained to using only the N ·M samples
previously obtained from the other participants.

In this work, the specific qβ(θ) used is an exponenti-
ated quadratic w.r.t. a non-linear mapping of θ:

qβ(θ) ∝ exp
(
− 1

2
g(θ)TQβ g(θ) − vTβg(θ)

)
, (9)

where β = vec([Qβ , vβ]) and g is a vector function such
that its i-th element is log(θi) if θi is a parameter
representing a variance (e.g. sx) and θi otherwise. The
quadratic parameter Qβ is chosen in the set of positive
semi-definite matrices so that qβ(θ) is bounded and
qβ(θ) p(θ) is a proper prior. The hyperparameters β
leading to the best approximation (8) can then be found
by minimising the Fisher divergence from qβ(θ) p(θ) to
p(θ |YN ).

The Fisher divergence. The Fisher divergence from a
distribution q(x) to a distribution p(x), denotedDF(p‖q),
is defined as:

DF(p‖q) =
∫
x
p(x)

∥∥∥∥∥∇xp(x)
p(x)

−
∇xq(x)
q(x)

∥∥∥∥∥2

dx (10)

=
∫
x
p(x)

∥∥∥∇x log p(x) − ∇x log q(x)
∥∥∥2

dx.

Much like its better known counterpart — the Kullback-
Leibler divergence (also known as relative entropy) — the
Fisher divergence can be understood as an asymmetric
measure of distance between a target distribution p,
and an approximating distribution q serving as a model
for p. In the same manner that the Kullback-Leibler
divergence is tightly linked to the concept of entropy
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(in that it corresponds to the entropy difference between
p and q) the definition of the Fisher divergence is
similarly tightly linked to the concept of the Fisher
information, defined1 by J(p) =

∫
p(x)

∥∥∥∇x log p(x)
∥∥∥2

dx.
A practical disadvantage of the Kullback-Leibler

divergence is that, for the result to be meaningful, it
requires that both the target and the approximating
function be expressed as appropriately normalised
probability density functions. However, when one
only has unnormalised quantities to work with, the
computation of an appropriate normalisation constant,
whose proper evaluation requires integration over the
entire domain of the function, tends to be intractable
in the context of high-dimensional problems. By
contrast, the Fisher divergence obviates the need
for computing such a normalisation constant, since
the fractional nature of the calculation with respect
to both the target and the approximating function,
means that a normalization constant would cancel
out from either of those two terms anyway, and
therefore lack of appropriate normalization does
not affect the final result. This makes the Fisher
divergence an advantageous measure of distance to use
when dealing with high-dimensional, unnormalised
probability density functions; this is indeed the case
in our TL approach, since both our qβ(θ) model,
and any distribution represented by the output
of an MCMC sampler, will necessarily represent
unnormalised quantities.

Minimising the Fisher divergence of the mixture distribution.
As shown in appendix A, for a mixture distribution, the
Fisher divergence of the mixture is simply the weighted
sum of the individual divergences from qβ(θ) p(θ) to
the mixture components. From a collection of samples
distributed according to p(θ | yn), obtained by running
MCMC separately for each one of the N “prior”
patients, we can derive the Fisher divergence for each
mixture component as follows:

Fn(β) = DF
(
p(θ|yn)

∥∥∥ qβ(θ) p(θ)
)

=
∫
θ
p(θ|yn)

∥∥∥∥∥∇θ[ log
p(yn|θ) p(θ)

p(yn)

]
− ∇θ

[
log

(
qβ(θ) p(θ)

)]∥∥∥∥∥2

dθ (11)

≈ 1
K

K∑
k=1

∥∥∥∥∇θ[log p(yn|θk)] − ∇θ[log qβ(θk)]
∥∥∥∥2

with θk ∼ p(θ|yn). Therefore, it becomes possible to
obtain an optimal value β∗ by solving the following

1As also noted in [51, 53], while the Fisher information can be
defined with respect to any parameter, this particular formulation is
specifically defined with respect to a hypothetical location parameter.

constrained optimisation problem:

β∗ = arg min
β :Qβ∈S+

1
N

N∑
n=1

Fn(β); (12)

where S+ is the set of symmetric positive semi-definite
matrices. The problem in (12) is an instance of a cone
quadratic program, which we solve efficiently using the
cvxopt library [54].

The prior qβ∗(θ) p(θ) so obtained is then used
alongside the likelihood provided by the LDS model
in the context of MCMC, to produce the K samples
required for (6), thus giving rise to our final prediction
as the average of K individual prediction components.

The mean and variance of the overall prediction
can be obtained at each future timepoint by pooling
the means and variances of the individual prediction
components (i.e. µk and σ2

k respectively) as follows:

µ(t) =
1
K

K∑
k=1

µk(t), (13a)

σ2(t) =
1
K

K∑
k=1

{
σ2
k (t) +

[
µk(t) − µ(t)

]2}
. (13b)

4. Experimental Study

4.1. Dataset

For the purposes of this work, we used data
collected over 112 participants in the context of the
NEVERMIND randomised controlled trial [11]. This
dataset consists of participants aged 18 or older, who
have received a diagnosis of a severe somatic disease,
including myocardial infarction, breast cancer, prostate
cancer, kidney failure and lower limb amputation.
The data were collected in Pisa, Turin and Lisbon,
with appropriate informed consent obtained from the
patients in writing, and experiments approved by local
ethical committees.

The NEVERMIND dataset consists of subjective
data in the form of questionnaires, as well as other
multimodal data, collected over time from individual
subjects via a smartphone and a specialised lightweight
sensorised T-shirt. The full dataset includes a collection
of physiological signals, accelerometer data, and voice
recordings; however, for the purposes of this work,
as mentioned earlier, we only consider the three self-
reported well-being scales that the user is prompted
to provide on a daily basis. The resulting daily scores
from each scale are fed into the LDS model as the
observation vector y(t). Each scale’s numerical input
is obtained from the participant via a sliding scale,
which takes values from 1.0 to 6.0 (at 0.2 increments),
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where lower values represent better outcomes.2 The
three scales correspond to the following questions:

- “How are you feeling today?” — the Feel score: a
measure of the participant’s subjective assessment
of their morning / waking mood;

- “How was your sleep?” — the Sleep score: a measure
of the participant’s subjective assessment of sleep
quality for the night before; and

- “How was your day?” — the Day score: a measure
of the participant’s subjective assessment of the
quality of (potentially stressful) events over the
course of the day.

Each question is prompted daily, and the participants
may refuse to provide an answer, contributing to the
sporadic nature of the dataset; human review may be
triggered if no significant interaction has occurred for a
certain time interval, according to the clinical protocol
used in the randomised controlled trial. Participants
for whom there were no available data (e.g. patients
who had already been enrolled in NEVERMIND, but
had not yet started using the system), or whose total
data recording-length was less than two weeks, were
excluded from the analysis carried out here.

4.2. Experimental protocol
This section describes the specific values and imple-
mentation of the model described above, as used in the
experiments, as well as the approach used to validate
the method.

We have chosen to use weakly informative priors
on model parameters, expressing vague or general
information; this has the effect that model selection is
primarily driven by the likelihood function, such that
in the presence of adequate data, the specific choice of
prior has a minimal effect on the final inference, relative
to the data.

Specifically, with regard to the parameters described
in Sec. 3.2, we placed a diffuse Gaussian prior over the
elements a1, a2 ∼ N (0, 0.52) of the transition matrix A,
and over the coefficients ci ∼ N (0, 1) of the observation
matrix C. A diffuse Gaussian prior was also placed
over the initial state vector x(0) where ξ1 ∼ N (1, 2);
this distribution was centred away from zero to
break the symmetry of the problem and reduce the
occurrence of multiple equivalent modes. We further
placed an inverse gamma prior over the non-zero
diagonal element of the state-noise matrix Sx, as
sx ∼ Γ -1(α, β) with shape parameter α=2 and scale
parameter β ≈ 0.06. Small values of α lead to wide

2Initially, during the early stages of the trial, the upper limit of the
scale was set at 6.8; however, this was later capped at 6.0, following
interface and user design considerations.

distributions and in particular α=2 corresponds to a
prior with infinite variance, thus allowing the inference
mechanism to explore values of sx as large as needed.
The mode of the inverse gamma distribution is given
by s∗x = β(α + 1)-1. We also set the baseline value of
the observation vector to the fixed value µy=3, and
the parameter sy to the fixed value of 0.04 (i.e. 0.22);
the latter was chosen empirically, by estimating the
variance of the error made by the subjects when they
provide answers to the questionnaires, given the fact
that they use a slider in order to do so, and that this
results in the scales being quantised at a resolution of
0.2.

The HMC sampler was set to compute Markov chains
using 8 walkers working in parallel, such that each
sample corresponds to a vector θ consisting of the
scalar parameters described in Sec. 3.2 (i.e. a1, sx, etc).
Each walker was set to create 275 samples, where the
first 150 obtained samples were discarded as ‘burn-
in’, leaving 125 representative samples per chain. The
individual chains generated from each walker were
then combined into a single larger chain, having a total
of 1000 samples.

We further monitored the convergence of the chains,
by computing the potential scale reduction factor on
split chains, typically referred to more concisely as the
‘split-R̂’ measure [40, Sec. 11.4]. The split-R̂ provides
a measure of convergence and mixing quality of the
chains in an MCMC simulation, which can be used to
gain insight into the rate and degree of convergence, as
well as in terms of detecting non-stationarity, allowing
for better evaluation of the underlying algorithms. We
also obtained the log-posterior density (denoted by the
‘lp__’ variable in Stan) and summary-statistics for each
model parameter, including means, standard deviations
(SD) and various quantiles computed from the draws.

The summary also reports the Monte Carlo Standard
Errors (SEmean), and the effective sample sizes (neff). The
Monte Carlo Standard Error is the uncertainty about
a statistic in the sample due to sampling error; the
smaller the standard error, the closer the mean estimate
of the posterior draws of the parameter is expected
to be to the true value. The effective sample size,
neff, measures the amount by which autocorrelation
in samples increases uncertainty (standard errors)
relative to an independent sample; if the samples are
independent, the effective sample-size equals the actual
sample-size. It is particularly important in terms of
gauging the reliability of the split-R̂ measure, as a
small neff can lead to unreliable values for R̂. Table S1
(see Supplementary Material) presents an indicative
example of a summary for the parameters of interest, as
estimated from a collection of samples corresponding
to one of the participants in the study. The results show
that all values for the split-R̂ are approximately 1.0
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(above 0.9 and below 1.1) and neff is well above the
minimum recommended value of 100 effective samples
per chain [55], indicating that the chains had mixed
well and the model had successfully converged.

The predictive performance of the current TL
approach — namely the Fisher-divergence minimization
approach (referred to as the M

fd
model henceforth) —

was evaluated in relation to a number of competing
models. In the first instance, we compared this model
against the BMA one used in [43] (model M

bma
). To

ensure a fairer comparison between M
fd

and M
bma

,
the chains for M

bma
were created using HMC rather

than emcee as previously done in [43]. Additionally, we
also compared M

fd
against a Maximum A Posteriori

(MAP) model (M
map

) and 4 ‘baseline’ models: a) A
patient-average prediction model (M

a
), b) A population-

average model (M
p
), c) A last-datapoint model (M

l
),

and d) An ordinary least squares regression model (M
r
).

The M
map

model was obtained by running Stan in
‘optimization’ mode instead of ‘sampling’ mode, which
uses the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) optimization algorithm under the
hood [48]; this directly provides a single ‘best’ estimate
for the parameter vector θ, corresponding to the MAP
estimate of the posterior distribution, as computed by
Stan.

Given that new data arrive incrementally, it is
necessary to rebuild each patient’s chains on a daily
basis in order to keep the models up-to-date, and ensure
that all observations available for that participant are
being used. It is important to note that, for any
given time-interval, given the fact that the patients are
allowed to refuse to answer some or all questions on
any particular day, the number of observations present
within that time-interval may well differ between
patients.

We define the following notation. Let:

- Ltr be the length of the ‘training period’, i.e. the
number of weeks used for training (regardless of
the number of actual observations that happen
to be contained within), chosen from the set
{1, 2, ..., 10},

- Lfc be the length of the ‘forecasting period’, i.e. the
number of future datapoints (one per day) to be
forecasted, chosen from the set {1, 3, 7},

- µt and σ2
t be the mean and variance of the

forecasted prediction at timepoint t,

- rt be the corresponding actual value of a well-
being score observed at time t, (which may be
missing if no answer was provided), used as a
target value for validation.

In our experiments we evaluated the forecasting
scenarios that result from all possible combinations of

training and forecasting period-length pairs {Ltr, Lfc};
however, for brevity, we only show here a representative
subset from these experiments, as explained further
in Sec 5. Please note that in each case, the number
of participants for which it is possible to obtain
predictions, depends on the choice of Ltr and Lfc.

Since our goal is to obtain predictions with an
associated measure of uncertainty (i.e. how much we
can trust the prediction itself), the quality of our
predictive algorithms must be assessed using a measure
of accuracy that takes both the mean prediction
accuracy and the estimated uncertainty into account.

One such measure is the Log Likelihood (LL), which,
for a predictive model Mi , is given by

LL =
∑
t

log p(rt |µt , σ2
t ) =

∑
t

log

 1
√

2πσ2
t

e
− (rt−µt )2

2σ2
t


(14)

where t corresponds to timepoints within the forecast-
ing period for which an actual observation is available.
The higher the LL measure, the better the probabilistic
predictions are. Note that, while the output of M

fd
and

M
bma

is not strictly speaking a Gaussian, for the pur-
poses of obtaining an LL measure, we represent them as
Gaussians of their respective mean and variance.

While we believe LL is the correct measure to account
for both mean prediction accuracy and accuracy in the
uncertainty around the prediction, we also calculate the
actual forecasting error for the predictions of each indi-
vidual, using the more traditional Root Mean Squared
Error (RMSE) calculated as RMSE =

[
1
n

∑
t(rt − µt)2

] 1
2 ,

where t here again corresponds to timepoints within
the forecasting period, n is the number of targets
present when missing values are excluded, and where
rt − µt

def= 0 when rt is missing. Note that the RMSE
ignores how accurate our estimates of the prediction
variance are.

Furthermore, for any pair of competing models, we
can calculate a ‘winning percentage’, as a measure of
predictive superiority for one model over another. This
is computed as:

wins = games − ties − losses,
winning% = [wins + (ties/2)] / games,

(15)

where games represents the total number of partici-
pants for whom it was possible to obtain predictions
given a specific {Ltr, Lfc} pair, and wins corresponds to
the subset of those participants, for whom the model
in question performed better than its counterpart, with
respect to a particular performance measure (i.e. either
LL or RMSE). Furthermore, we used the exact Wilcoxon
Signed-Rank test-statistic [56] to make pairwise com-
parisons for these methods, effectively investigating the
extent to which the winning percentages represent a
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genuine and statistically significant improvement, per
pair of competing models.

5. Results and Analysis
5.1. Model output
The output of the model at each timepoint is a
3-dimensional probability distribution expressing a
probabilistic prediction for the values of the three
questions involved, i.e. the Feel, Sleep, and Day
scores. For a different value of the length-of-training
hyperparameter Ltr, a different model output is
obtained over both the training and forecasting period.
For visualisation purposes, we graph the individual
questions independently as three separate graphs, each
reporting score as a function of time t.

Fig. 1 shows a typical example of the means and
variances of the model’s probabilistic outputs per
timepoint as learned by our model, along with the
sporadic self-reported well-being scores for one of our
participants, with Ltr=1 and Lfc=7. In the figure, the
mean prediction is represented as a dashed line, and
the uncertainty around the prediction is indicated by
a shaded ±σ area around the mean. As expected, most
(but not all) reported scores fall within the shaded
region, even in the forecast phase, where, however,
as expected σ grows progressively bigger due to the
absence of inputs to the LDS. The LL and RMSE
measures (see Sec. 4.2) corresponding to the model
outputs over the timepoints in Fig. 1 were -4.41 and
0.5447, respectively.

5.2. Comparison against competing models
We compared the performance of the M

fd
method

against the competing models outlined in Sec. 4.2
in two ways: a) by analysing the distribution of
performance differences directly; b) by analysing
‘winning percentages’ as per (15). Both analyses
were performed using the LL and RMSE measures,
separately.

A representative example of the first type of analysis
can be seen in Fig. 2 for the LL differences and Fig. 3
for the RMSE differences between models. The results
were obtained for Ltr=3 and Lfc=7, which was the most
conservative choice for comparing M

fd
and M

bma
(more

on this later). It is clear that, for both performance
measures, M

fd
performs better across the board. Also,

among all other competitors, M
bma

is the one with
the least spread in terms of pairwise differences over
all patients. Similar results were obtained with other
values of Ltr and Lfc.

Figs. 4 and 5 look at the same predictions using the
second type of analysis, again when training with 3
weeks of past data, and predicting 7 days ahead. These
show that the M

fd
model scores significantly more
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Figure 1. An example of self-reported well-being score modelling
and prediction. The dashed vertical lines mark the last time point
available to the model for training and visually separate past
observations from future predictions. The solid red circles mark
the reported scores that were used by the model, while the empty
ones are reported to visually assess the prediction accuracy. The
dashed black and blue lines and the associated yellow and green
shadows represent the mean and standard deviation, respectively,
of the distribution of the model outputs.

wins (at the 5% level, using a one-tailed hypothesis)
compared to all of its competitors, when both the
accuracy and the uncertainty of the predictions is taken
into account (i.e. when using the LL as the performance
measure). When only the RMSE is used, M

fd
scores

significantly better than four out of the six competitors,
but shows no significant difference compared to its
M

bma
and M

a
competitors.

5.3. Effect of training / testing period length on
performance
One would generally expect that increasing training-
period length would improve performance over all
models, and that predictions further away from the
last training timepoint would diminish in accuracy.
An analysis was therefore conducted to confirm this,
for training periods Ltr∈{1, 3, 7} and forecasting periods
Lfc∈{1, 3, 7}. Table 1 shows the results obtained with
respect to the LL evaluation measure.3 The top half
of the table shows the median LL values, obtained
over all patients for whom data was available for
the corresponding {Ltr, Lfc} pair; values closer to zero
represent better performance. The bottom half shows
pairwise median differences with respect to M

fd
versus

3The corresponding table for the RMSE is not shown as it was very
similar.
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Figure 2. Box and whisker graph plots showing the median,
interquartile range, and extreme cases of the LL differences when
training with 3 weeks of past data and predicting 7 days ahead.
Values above 0 represent cases where Mfd is better than its
competitors.
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Figure 3. Like Fig. 2 but for RMSE. Values below 0 represent
cases where Mfd is better than its competitors.

competing models. Note that because of the nature
of these intervals, each {Ltr, Lfc, } pair will consist of
a different number of ‘valid’ participants (i.e. the
participants who have data within this period), and
therefore it is important to note that the above medians
are calculated over different sets of patients. The last
row shows the number of such valid participants
per {Ltr, Lfc} pair. Also note that, pairwise median
differences are generally not equivalent to pairwise
differences between medians.
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Figure 4. Comparison of the winning results based on LL for the
Mfd against all competing models when training with 3 weeks of
past data and predicting 7 days ahead. The * indicates statistical
significance using a one-tailed Wilcoxon Signed-Rank test.
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Figure 5. Like Fig. 4 but for RMSE.

As shown in the table, some of the methods under
comparison initially struggle to make acceptable 7-day
predictions, when only one week or three weeks of
data are available to them (e.g. M

map
, M

p
and M

r
);

it is not until 7 weeks of training that most models
can predict one or three days ahead with reasonable
accuracy. By contrast, looking at M

fd
, we see that, not

only is it able to make predictions from week one, but
it can even make 7-day predictions with remarkable
stability for any number of training weeks. Similarly,
as expected and consistent with the findings by Yu
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Table 1. Medians of the LL (top) and of LL-differences (bottom)
for various durations of training and forecast periods.

Model
Type

Ltr = 1 Ltr = 3 Ltr = 7
Lfc=1Lfc=3 Lfc=7Lfc=1Lfc=3 Lfc=7Lfc=1Lfc=3 Lfc=7

Mfd -0.15 -2.12 -5.07 -0.76 -2.40 -5.54 -0.72 -1.09 -3.20
Mbma -1.23 -2.63 -4.87 -2.07 -3.59 -6.66 -1.23 -2.15 -3.61
Mmap 0.49 -8.25 -26.60 -1.44 -5.80 -17.57 -1.41 -3.10 -6.32
Ma -0.98 -3.67 -8.40 -1.80 -2.60 -11.03 -1.11 -1.40 -3.45
Mp -5.97 -8.02 -14.80 -7.61 -7.93 -13.85 -2.14 -4.45 -12.80
Ml -2.07 -4.14 -10.90 -1.95 -4.11 -10.03 -1.56 -3.37 -6.59
Mr -1.33 -7.87 -33.61 -1.74 -4.13 -14.73 -1.14 -2.08 -3.76

Models
Compared

Mfd vs Mbma 0.88* 0.60* 0.30* 0.71* 0.25* 0.20* 0.58* 0.57* 0.69*
Mfd vs Mmap -0.75 4.28* 22.96* 0.95* 1.78* 8.18* 0.17 0.16* 0.40*
Mfd vs Ma 0.54* 0.64* 2.27* 0.58* 0.05 0.19* 0.50* 0.23 -0.12
Mfd vs Mp 5.35* 4.24* 8.75* 5.77* 4.95* 7.07* 1.07* 2.87* 4.49*
Mfd vs Ml 1.66* 1.83* 4.70* 0.89* 0.50* 2.01* 0.73* 1.56* 1.32*
Mfd vs Mr 1.73* 6.95* 26.70* 0.29 0.24* 3.65* 0.29 0.09 0.09

participants 24 37 46 24 40 52 27 40 48

Annotations (bottom): Asterisks (*) denote entries where a statistically
significant difference (p<0.05) was observed on one-tailed Wilcoxon
Signed-Rank testing. Entries in blue indicate winning percentages above
50% (i.e. Mfd scored better than its corresponding competitor more than
50% of the time); entries in red indicate winning percentages above 90%;
entries in black indicate winning percentages equal to or below 50%.

et al. [37], there is some reduction in accuracy going
from next-day forecasts to 7-day forecasts, regardless
of training length. However, it can be seen that the
reduction in accuracy in the M

fd
model tends to be

relatively small compared to the competitors. Finally, as
shown in the bottom half of Table 1, we can see thatM

fd

is superior to most methods in most conditions, with
the median LL difference being significantly greater
than zero in 45 out of 54 comparisons (83.3%), and
scoring more ‘wins’ than its competitors in 50 out
of 54 comparisons (92.6%). In fact, focusing on the
M

fd
vs M

bma
row, we see that the new method is

also superior to its predecessor, under all scenarios
considered; the choice Ltr=3 and Lfc=7 corresponding
to the graphs shown earlier in Secs. 5.1 and 5.2 showing
a relatively narrow interquartile range between the two,
was simply selected on the basis that it represented the
worst-case scenario for M

fd
in relation to M

bma
.

6. Conclusions
The use of smartphones and wearable sensors for
quantifying and predicting well-being states through
personalised predictions, is an actively growing field,
with potential applications in the prevention and
self-management of depression and other disorders.
Personalisation refers to the ability to learn a model,

which is specifically tuned with respect to the
individual it is intended to be applied to. However, a
major obstacle to success in this field so far has been
that the more traditional machine learning approaches
to this — which typically require the availability
of large datasets of uniformly sampled data — are
generally not applicable to this domain. There are two
main reasons for this; the first is that the kind of
data provided by patients through smartphones and
wearable sensors tend to be sporadic or intermittently
available. The second is that, realistically, for such a
personalised system to be useful, users need predictions
virtually from day one, whereas in a typical situation
the data available to the system for personalisation will
initially be very limited, and acquired incrementally
over time. As has been demonstrated in the sections
above, it could take weeks before a decent amount of
data has accumulated to guarantee reliable prediction.

In this paper, we have proposed a parametric transfer
learning approach based on the Fisher divergence in
the context of Hamiltonian Monte Carlo sampling and
Bayesian inference to address these challenges. Our
approach makes it possible to create patient-specific
models and make useful predictions of self-reported
well-being scores, even when the data available for
initial training are sporadic and limited, such that
training is performed incrementally as more data
become slowly available over time. This approach
allows us to make informed predictions even in the
early stages of data collection, by leveraging external
information coming from other patients, in the form
of a prior used within a Markov-Chain Monte Carlo
process.

We demonstrated this approach on data obtained
by the NEVERMIND clinical trial, and measured its
performance against previous work (e.g. the BMA
method introduced in [43]), and a number of baseline
approaches. Our results show that this approach yields
a significant improvement over its competitors, and
is particularly useful in difficult training/forecasting
scenarios, e.g. when one requires a distant, patient-
specific forecast, with only a limited initial amount of
patient-specific data available for training.

One limitation of this study is that the Linear Dynam-
ical System model used is limited to a single latent state,
and the observations reflected questionnaire responses
only. The addition of physiological signals in the obser-
vation vector could strengthen the model’s predictive
abilities further, albeit at the cost of increased com-
plexity. Similarly, a single latent state reflecting well-
being in a general sense may not be powerful enough to
capture the underlying complexity of depressive states.
It is possible that an appropriately extended latent state
might allow a richer representation of the underlying
biological states, as well as allow linking latent states
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to observations directly. All this will be addressed in
future work.

Additionally, in this study we found that the
background patient population acting as the source
domain for the transfer learning component was
informative, as shown by the performance of TL.
However, a limitation is that we made no attempt to
quantify, or investigate ways in which this background
knowledge could be made more informative. Future
work will focus on investigating whether applying
preprocessing strategies that promote individuals in the
population that are known to be similar in some way to
the person being modeled, enhance transfer learning.

Finally, we recognise that our method has wider
applicability to other domains, such as finance,
recommender systems, training initiatives, etc, and
generally any scenario where limited or sporadic data
arrive in a sequential manner, and a seamless transition
from generalised to personalised models is required.
Therefore in the first instance, future work will also
focus on verifying the performance and generality of
this approach, both on the complete NEVERMIND
dataset (which will become available at the end of the
clinical trial), as well as other known external datasets
(such as the MIMIC-III critical care database [57]).

In the meantime, the tools we have produced can
already be used by clinicians and carers to monitor
patients. However, the broader aim is to also use them
in the context of a self-management tool. It is therefore
important to recognise that however accurate such tools
may be in the absence of user feedback, they also
need to be evaluated when users are provided with the
system’s predictions. Since it is likely that patients will
be affected by the system’s forecasts, this has not only
practical implications (which we believe the learning
element of the system will likely be able to deal with
automatically) but also ethical ones. It is issues of this
type that the randomised controlled trial leg of the
NEVERMIND project will be called to address.

Appendix A.
In this appendix we derive a relationship between the
Fisher divergence DF(p‖q) from a given distribution q
to a mixture distribution p and the Fisher divergences
DF(pi‖q) from q to p’s mixture components. Given a
mixture distribution p(x) =

∑
i wipi(x) with

∑
i wi = 1

and wi ≥ 0, the Fisher divergence from q to p can be
computed as:

DF(p‖q) =
∫
x
p(x) ‖∇x log p(x) − ∇x log q(x)‖2 dx

=
∫
x
p(x)

∥∥∥∥∥∇xp(x)
p(x)

− ∇x log q(x)
∥∥∥∥∥2

dx

=
∫
x

{
‖∇xp(x)‖2

p(x)
− 2∇xp(x)T∇x log q(x)

+ p(x)‖∇x log q(x)‖2
}

dx. (A.1)

We rearrange equation (A.1) by adding and subtracting
a convenient term, then breaking up the mixture
distribution and regrouping, obtaining:

DF(p‖q) =
∫
x

{
‖∇xp(x)‖2

p(x)
−
∑
i

wi
‖∇xpi(x)‖2

pi(x)

+
∑
i

wi

[
‖∇xpi(x)‖2

pi(x)
− 2∇xpi(x)T∇x log q(x)

+ pi(x)‖∇x log q(x)‖2
]}

dx

= J(p) −
∑
i

wi J(pi) +
∑
i

wi DF(pi‖q), (A.2)

where J(p) =
∫
x p(x)‖∇x log p(x)‖2dx is the Fisher infor-

mation [53] of p while J(pi) is that of pi . This is espe-
cially useful when looking for the best approximation
qβ to a mixture distribution p. Since J(p) and J(pi) do
not depend on β, the best approximation to the mixture
distribution can be computed by minimising a weighted
sum of the Fisher divergences between the approximant
and the mixture components:

β̂ = arg min
β
DF(p‖qβ) = arg min

β

∑
i

wi DF(pi‖qβ). (A.3)
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Supplementary Material

Table S1. Summary of results using stan for the parameters of interest estimated by the samples for a single participant

Parameter mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat

a01 0.0863 0.0029 0.0871 -0.0770 0.0278 0.0856 0.1426 0.2599 882.9309 1.0010
a02 0.0032 0.0061 0.1497 -0.3080 -0.0944 0.0076 0.1004 0.2788 604.7551 0.9982
a03 0.1771 0.0144 0.3475 -0.5423 -0.0506 0.1996 0.4243 0.8121 585.1530 1.0006
a04 0.0006 0.0027 0.0855 -0.1759 -0.0538 0.0027 0.0603 0.1637 1019.4277 1.0004
a05 0.1319 0.0054 0.1451 -0.1602 0.0338 0.1338 0.2388 0.3981 717.8639 1.0029
a11 0.0536 0.0041 0.1454 -0.2280 -0.0340 0.0480 0.1435 0.3494 1257.8595 1.0007
a12 -0.0532 0.0079 0.2459 -0.5414 -0.2140 -0.0448 0.1095 0.4344 959.2048 1.0040
a13 0.5468 0.0124 0.3718 -0.1838 0.2800 0.5573 0.7887 1.2924 892.5546 1.0028
a14 0.5410 0.0056 0.1582 0.2074 0.4403 0.5527 0.6531 0.8261 802.2508 1.0018
a15 -0.0049 0.0079 0.2330 -0.4417 -0.1745 -0.0086 0.1596 0.4523 861.1409 1.0042
a21 0.0718 0.0046 0.1517 -0.2087 -0.0301 0.0621 0.1736 0.3867 1081.4613 1.0019
a22 -0.2019 0.0107 0.2570 -0.6839 -0.3797 -0.2204 -0.0287 0.3285 573.6596 1.0013
a23 0.3631 0.0119 0.3585 -0.3241 0.1276 0.3621 0.6134 1.0868 908.1137 0.9985
a24 -0.1932 0.0049 0.1449 -0.4598 -0.2937 -0.1999 -0.0907 0.0972 887.2103 0.9997
a25 -0.1025 0.0065 0.1899 -0.4588 -0.2386 -0.1038 0.0286 0.2722 847.3869 1.0032
Sx00 0.2353 0.0032 0.0917 0.0819 0.1731 0.2233 0.2862 0.4436 811.2320 1.0041
Sx11 1.3516 0.0138 0.4259 0.7136 1.0479 1.2784 1.5717 2.3702 949.6742 0.9984
Sx22 0.5590 0.0118 0.3038 0.0943 0.3412 0.5125 0.7272 1.3054 665.3888 1.0022
ξ1 1.0116 0.0381 1.0741 -1.5606 0.4478 1.1017 1.7275 2.8530 796.3929 1.0065
ξ2 1.2758 0.0478 1.5653 -2.1297 0.2680 1.4053 2.3020 4.2206 1073.7744 0.9990
ξ3 0.7028 0.0703 1.8407 -3.2101 -0.5245 0.7903 1.9692 4.0550 685.7082 1.0085
lp__ -262.1961 0.1446 3.0299 -268.7097 -264.1561 -261.8284 -259.9745 -257.0868 438.9218 1.0004

Note: Rows correspond to model parameters, and columns to the various summary metrics. mean denotes the posterior mean, se_mean denotes the Monte
Carlo standard error, and sd denotes the posterior standard deviation. The numbers 2.5%, 25%, 50%, 75%, and 97.5% denote quantiles. n_eff denotes the
effective sample size, and Rhat denotes the split-R̂ statistic.
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