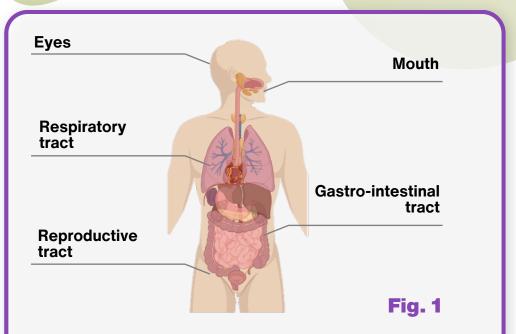


AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Drugs and mucus: an innovative biosimilar mucus model to study the diffusion of drugs


This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1763060 since 2020-11-24T11:53:57Z
Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright

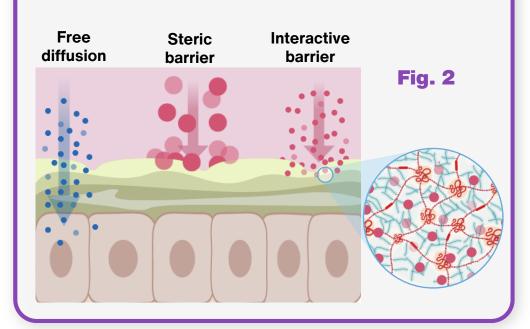
(Article begins on next page)

protection by the applicable law.

DRUGS AN INNOVATIVE BIOSIMILAR MUCUS MODEL TO STUDY THE DIFFUSION OF DRUGS AND **Cosmin Butnarasu**^a, Daniela Pacheco^b, Paola Petrini^b, Livia Visai^c, Sonja Visentin^a **MUCUS**

^a Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università degli Studi di Torino, 10125 Italia ^b Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, 20133 Italia ^o Dipartimento di Medicina Molecolare, Università degli studi di Pavia, 27100 Italia

Mucus distribution

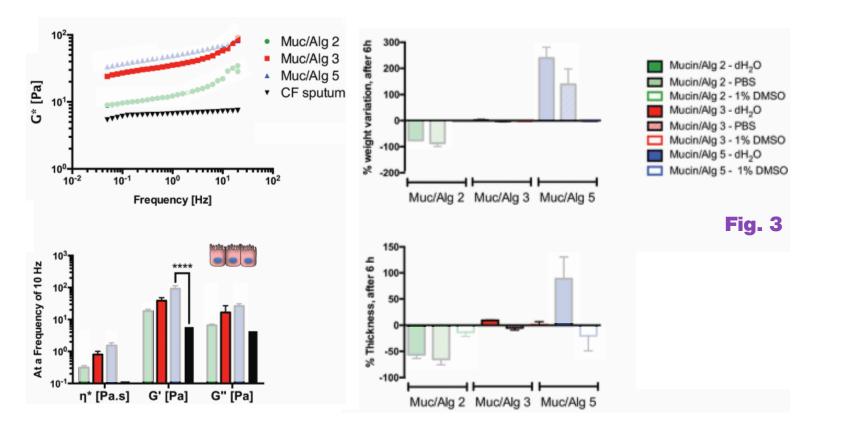

Mucus covers all the wet tissues of the human body. Mucus is helping us staying healthy. It is a natural barrier (Fig 1).

Mucus barriers

CAR

MedChem

Mucus is a selective barrier against pathogens however, it is an obstacle even for drugs orally administered. Drugs may rest trapped into the mucus network (Fig 2).


POLITECNICO

Up until now there are no standard protocols that model the passage of molecules through mucus.

Physico-chemical characteristics

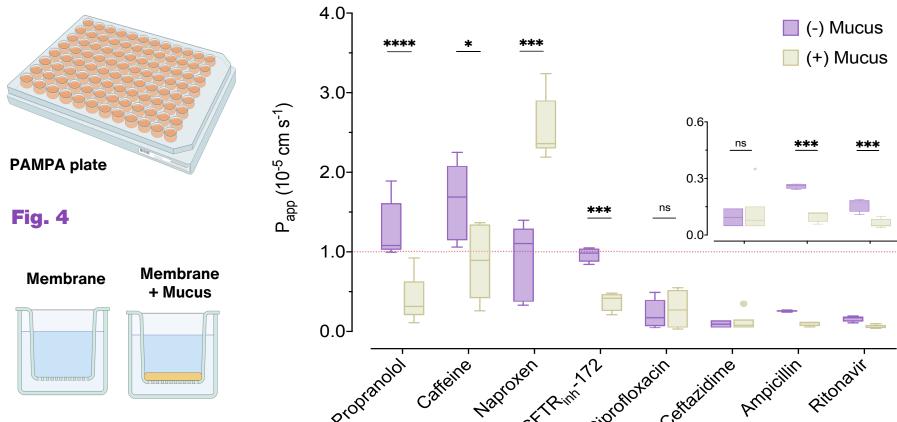
The mucus model Mu³Gel, produced by Bac³Gel (www.bac3gel.com) reproduces the physico-chemical properties of cystic fibrosis mucus.

Rheological parameters such as the elastic (G') and the viscous (G") modulus of the biosimilar mucus are as similar as possible to the pathological mucus (Fig. 3).

Take home messages

Mu³Gel is fully tuneable. The production method allow to incorporate other mucus components

Mu³Gel is cytocompatible



Pharmaceutical companies need an *in vitro* screening mucus model in order to reduce the number of non effective drugs reaching preclinical trials.

Diffusion of drugs

The mucus model can be coupled to classic diffusion platforms (e.g. PAMPA) for high throughput analysis.

The diffusion across the mucus model of different drugs was studied by means of PAMPA and compared with the diffusion rates in absence of mucus (Fig. 4).

Mu³Gel reproduces the interactive and steric barrier of human mucus

Mu³Gel can host different and competitive microorganisms

Mu³Gel is easy to use and easy to produce

