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Abstract. A Software Product Line (SPL) is a family of similar pro-
grams (called variants) generated from a common artifact base. Vari-
ability in an SPL can be documented in terms of abstract description
of functionalities (called features): a feature model (FM) identifies each
variant by a set of features (called a product). Delta-orientation is a
flexible approach to implement SPLs. An SPL Signature (SPLS) is a
variability-aware Application Programming Interface (API), i.e., an SPL
where each variant is the API of a program. In this paper we introduce
and formalize the notion of slice of an SPLS K for a set of features F,
i.e., an SPLS obtained from by K by hiding the features that are not in
F. Moreover, we introduce the problem of defining an efficient algorithm
that, given a delta-oriented SPLS K and a set of features F, returns a
delta-oriented SPLS that is an slice of K for F. The proposed notions
are formalized for SPLs of programs written in an imperative version of
Featherweight Java.

1 Introduction

A Software Product Line (SPLs) is a family of similar programs, called vari-
ants, that have a well-documented variability and are generated from a common
artifact base [9, 27, 3]. An SPL can be structured into: (i) a feature model de-
scribing the variants in terms of features (each feature is a name representing
an abstract description of functionality and each variant is identified by a set of
features, called a product); (ii) an artifact base comprising language dependent
reusable code artifacts that are used to build the variants; and (iii) configuration
knowledge connecting feature model and artifact base by specifying how, given
a product, the corresponding a variant can be derived from the code artifacts—
thus inducing a mapping from products to variants, called the generator of the
SPL.

An interface can be understood as a partial specification of the function-
alities of a system. Such a notion of interface provides a valuable support for
modularity. If a system can be decomposed in subsystems in such a way that all
the uses of each subsystem by the other subsystems are mediated by interfaces
of the subsystem, then subsystem changes that do not broke the interfaces are
transparent (with respect to the specifications expressed by the interfaces) to
the other subsystems.



In this paper, we formalize the problem of designing an efficient algorithm
that, given an SPL and subset F of it features, extracts an interface for the
SPL that exposes only the functionalities associated to the features in F . We
build on the notions of signature and interface of an SPL introduced in [12] (see
also [14]). An SPL Signature (SPLS) is a variability-aware Application Program-
ming Interface (API), i.e., an SPL where each variant is a program API. The
signature of an SPL L is an SPLS Z where: (i) the features are the same of L; (ii)
the products are the same of L; and (iii) each variant is the program signature
(i.e., a program API that exposes all the functionalities) of the corresponding
variant of L. An SPLS Z1 is:

– an interface of an SPLS Z2 iff3 (i) the features of Z1 are are a subset of the
features of Z2; (ii) the products of Z1 are obtained for the products of Z2
by dropping the features that are not in Z1; and (iii) for each product p1 of
Z1, its associated variant is an interface of all the variants associated to the
products of Z2 from which p1 can be obtained by dropping the features that
are not in Z1; and

– an interface of an SPL L iff it is an interface of the signature of L.

The contribution of this paper is twofold.

1. We introduce and formalize the notion of slice of an SPLS for a set of
features F , which lifts to SPLs the notion of slice of a FM introduced in [1]
(see also [31]). Namely, we define an operator that given an SPLS Z and a
set of features F returns an SPLS that has exactly the features in F and is
an interface of Z.

2. We introduce and formalize the problem of devising a feasible algorithm that
takes as input a delta-oriented SPLS Z [14] and a set of features F , and yields
as output a delta-oriented SPLS that is a slice of Z for F .

Organisation of the Paper. Section 2 provides the necessary background on
SPLs, SPLSs and interfaces. Section 3 provides a definition of the SPLS slice
operator that abstracts from SPL implementation approaches. Section 4 recalls
delta-oriented SPLs and illustrates the problem of devising a feasible algorithm
for slicing delta-oriented SPLSs. Related work is discussed in Section 5, and
Section 6 concludes the paper by outlining possible future work.

2 A Recollection of SPLs, SPL Signatures and Interfaces

2.1 Feature Models, Feature Module Slices and Interfaces

The following definition provides an extensional account on the notion of feature
model, namely a feature model is represented as a pair “(set of features, set
of products)”, thus allowing to abstract from implementation approaches—see
e.g. [4] for a discussion on possible representations of feature models.

3 In [14] the phrase “subsignature of an SPLS” is used instead of “interface of an
SPLS”.
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P ::= CD Program

CD ::= class C extends C { AD } Class Declaration
AD ::= FD | MD Attribute (Field or Method) Declaration
FD ::= C f Field Declaration
MH ::= C m(C x) Method Header
MD ::= MH {return e; } Method Declaration
e ::= x | e.f | e.m(e) | new C() | (C)e | e.f = e | null Expression

Fig. 1: IFJ programs

Definition 1 (Feature model, extensional representation). A feature
model M is a pair (F ,P) where F is a set of features and P ⊆ 2F is a set of
products.

The slice operator for feature models introduced by Acher et al. [1], given a
feature model M and a set of features Y , returns the feature model obtained
from M by removing the features not in Y .

Definition 2 (Feature model slice operator). LetM = (F ,P) be a feature
model. The slice operator ΠY on feature models, where Y is a set of features, is
defined by: ΠY (M) = (F ∩ Y, {p ∩ Y | p ∈ P}).

More recently, Schröter et al. [31] introduced the slice function S such that
ΠY (M) = S(M,F \Y ). Schröter et al. [31] also introduced the following notion
of feature model interface.

Definition 3 (Interface relation for feature models). A feature model
M0 = (F0, P0) is an interface of feature model M = (F ,P), denoted as M0 �
M, whenever both F0 ⊆ F and P0 = {p ∩ F0 | p ∈ P} hold.

Note that, ΠF0(M) is the unique interface ofM with exactly the features ofM
that are in F0. I.e., ifM0 = (F0,P0) �M, thenM0 = ΠF0

(M). Moreover, the
interface relation for feature models is reflexive, transitive and anti-symmetric.

2.2 SPLs of IFJ programs

Imperative Featherweight Java (IFJ) [7] is an imperative version of Featherweight
Java (FJ) [20]. The abstract syntax of IFJ programs is given in Figure 1. Fol-
lowing Igarashi et al. [20], we use the overline notation for (possibly empty)
sequences of elements—e.g., e stands for a sequence of expressions e1, . . . , en
(n ≥ 0)—and we denote the empty sequence by ∅.

A program P is a sequence of class declarations CD. A class declaration
comprises the name C of the class, the name of the superclass (which must
always be specified, even if it is the built-in class Object) and a list of attribute
(field or method) declarations AD. Variables x include the special variable this

(implicitly bound in any method declaration MD), which may not be used as the
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name of a method’s formal parameter. All fields and methods are public, there
is no field shadowing, there is no method overloading, and each class is assumed
to have an implicit constructor that initialized all fields to null.

An attribute name a is either a field name f or a method name m. Given a
program P, a class name C and an attribute name a, we write dom(P), P(C),
domP(C), ≤:P, CD(a), and lookupP(a, C) to denote, respectively: the set of class
names declared in P; the declaration of C in P when it exists; the set of attribute
names declared in P(C); the subtyping relation in P (i.e., the reflexive and tran-
sitive closure of the immediate extends relation); the declaration of attribute
a in CD; and the declaration of the attribute a in the closest superclass of C

(including C itself) that contains a declaration for a in P, when it exists. We
write <:P to denote the strict subtyping relation in P, defined by: C1 <:P C2 if
and only if C1 ≤:P C2 and C1 6= C2.

As usual, we identify two IFJ programs P1 and P2 (written P1 = P2) up to:
(i) the order of class declarations and attribute declarations, and (ii) renaming of
the formal parameters of methods. The following notational convention entails
the assumption that the classes declared in a program have distinct names, the
attributes declared in a class have distinct names, and the formal parameter
declared in a method have distinct names.

Convention 1 (On sequences of named declarations) Whenever we write
a sequence of named declarations N (e.g., classes, attributes, parameters, etc.)
we assume that they have pairwise distinct names. We write names(N) to denote
the sequence of the names of the declarations in N . Moreover, when no confusion
may arise, we sometimes identify sequences of pairwise distinct elements with
sets, e.g., we write e as short for {e1, . . . , en}.

We require that every IFJ program P satisfies the following sanity conditions:

SC1: For every class name C (except Object) appearing anywhere in P, we have
C ∈ dom(P).

SC2: The strict subtyping relation <:P is acyclic.
SC3: If C2 <:P C1, then dom(P(C1))∩dom(P(C2)) does not contain field names.
SC4: If C2 <:P C1 then for all method names m ∈ dom(P(C1)) ∩ dom(P(C2))

the methods P(C1)(m) and P(C2)(m) have the same header (up to renaming
of the formal parameters).

Note that SC3 and SC4 formalize the requirements “there is no field shadowing”
and “there is no method overloading”, respectively. Type system, operational
semantics, and type soundness for IFJ are given in [7].

Remark 1 (Sugared IFJ syntax). To improve readability, in the examples we use
Java syntax for field initialization, primitive data types, strings and sequential
composition. Encoding in IFJ syntax a program written in such a sugared IFJ
syntax is straightforward (see [7]).

Example 1 (The Expression Program). Figure 2 illustrates a sugared IFJ pro-
gram called the Expression Program (EP for short), that encodes the following
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class Exp extends Object {
String name = ”Exp”;
Int toInt() { return null; }
String toString() { return name; }
}

class Lit extends Exp {
Int val;
Lit setLit(Int x) { this.val=x; return this; }
Int toInt() { return this.val; }
String toString() { return this.val.toString(); }
}

class Add extends Exp {
Exp a; Exp b;
Int toInt() { return this.a.toInt().add(this.b.toInt()); }
String toString() { return this.a.toString() + ”+” + this.b.toString(); }
}

Fig. 2: The Expression Program

grammar of numerical expressions:

Exp ::= Lit | Add Lit ::= non-negative-integers Add ::= Exp “+” Exp

The EP consists of: (i) a class Exp representing all expressions; (ii) a class Lit

representing literals; and, (iii) a class Add representing an addition between two
expressions. All these classes implement a method toInt that computes the value
of the expression, and a method toString that gives a textual representation of
the expression. Note that the concept of expression is too general to provide a
meaningful implementation of these methods, and thus the class Exp is supposed
to be used as a type and should never be instantiated.

The following definition (taken form [23]) provides an extensional account on
the notion of SPL, thus allowing to abstract from implementation approaches—
see e.g. [30, 35] for a survey on SPL implementation approaches.

Definition 4 (SPL, extensional representation). An SPL L is a pair (ML,GL)
where ML = (FL,PL) is the feature model of the SPL and GL is the generator of
the SPL, i.e., a function from the products in PL to the variants.4

Type system, operational semantics, and type soundness for IFJ are given in [7].
We say that the extensional representation of an SPL of IFJ programs is well
typed to mean that the variants are well-typed IFJ programs.

2.3 Signatures and Interfaces for SPLs of IFJ Programs

The abstract syntax of IFJ program signatures is given Figure 3. From a syntactic
perspective, a program signature is essentially a program deprived of method
bodies, and a class signature is a class deprived of method bodies. The signature
of a program P, denoted as signature(P), is the program signature obtained
from P by dropping the body of its methods.

4 In [23] the generator is modeled as a partial function in order to encompass ill-formed
SPLs where, for some product, the generation of the associated variant fails. In this
paper we focus on well-formed SPLs, so we consider a total generator.

5



PS ::= CS Program Signature

CS ::= class C extends C { AS } Class Signature
AS ::= FD | MH Attribute (Field or Method) Signature

Fig. 3: IFJ program signatures

Remark 2 (On the signature of a sugared IFJ program). The signature of a
program written in sugared IFJ syntax (introduced Remark 1) is obtained by
dropping the body of the methods and the initialization of the field declarations.
Notably, the signature of a sugared IFJ program is an IFJ program signature.

Given a program signature PS, a class name C, a class signature CS and
an attribute name a, we write dom(PS), PS(C), domPS(C), ≤:PS, CS(a), and
lookupPS(a, C) to denote, respectively: the set of class names declared in PS; the
declaration of the class signature of C in PS when it exists; the set of attribute
names declared in PS(C); the subtyping relation in PS; the set of attribute names
declared in CS; and the signature of the attribute a in the closest supertype of
C (including itself) that contains a declaration for a in PS, when it exists. We
write <:PS to denote the strict subtyping relation in PS, defined by: C1 <:PS C2
if and only if C1 ≤:PS C2 and C1 6= C2.

We require that every IFJ program signature PS satisfies the sanity condi-
tions listed below.

SCi: For every class name C (except Object) appearing in an extends clause in
PS, we have C ∈ dom(PS).

SCii: The strict subtyping relation <:PS is acyclic.
SCiii: If C2 <:PS C1, then for all attributes a ∈ dom(PS(C1))∪dom(PS(C2)) we

have PS(C1)(a) = PS(C2)(a).

It is worth noticing that sanity condition SCi is weaker than SC1: a program
signature is not required to provide a declaration for the class names occurring in
attribute declarations. Recall that in IFJ field shadowing if forbidden (cf. sanity
condition SC3). For the sake of simplicity, in program signatures there is no
such a restriction: field and method signatures are treated uniformly.

A program signature PS can be understood as an API that expresses re-
quirements on programs. I.e., program signature PS is an interface of program
P if P provides at least all the classes, attributes and subtyping relations in PS.
Similarly, program signature PS is an interface5 of program signature PS0 if PS0

provides at least all the classes, attributes and subtyping relations in PS. These
notions are formalized by the following definitions.

Definition 5 (Interface relation for program signatures). A program
signature PS1 is an interface of a program signature PS2, denoted as PS1 � PS2,
iff: (i) dom(PS1) ⊆ dom(PS2); (ii) ≤:PS1

⊆ ≤:PS2
; and (iii) for all class name

5 In [14] the word “subsignature” is used instead of “interface”.
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C ∈ dom(PS1), for all attribute a, we have that if lookupPS1
(a, C) is defined then

lookupPS2
(a, C) is defined and lookupPS1

(a, C) = lookupPS2
(a, C).

Definition 6 (Interface relation between signatures and programs).
A program signature PS is an interface of program P, denoted as PS � P, iff
PS � signature(P) holds.

The interface relation for program signatures is a preorder. Namely, it is
reflexive (which implies signature(P) � P), transitive, and (due to the possi-
bility of overriding of attribute signatures) not antisymmetric (i.e., PS1 � PS2

and PS2 � PS1 do not imply PS1 = PS2). Since � is a preorder, the relation
u = (� ∩ �) is an equivalence relation, and the relation � can be under-
stood as a partial order (reflexive, transitive and antisymmetric) on the set of
u-equivalence classes. The (equivalence class of the) empty program signature ∅
is the bottom element with respect to �.

Example 2 (Signature and interfaces of the Expression Program). Let P be the
program illustrated in Figure 2. The following three signatures
PS =

class Exp extends Object {
String name;
Int toInt(); String toString();
}
class Lit extends Exp {
Int val; Lit setLit(Int x);
Int toInt(); String toString();
}
class Add extends Exp {
Exp a; Exp b;
Int toInt(); String toString();
}

PS1 =

class Exp extends Object {
String name;
Int toInt(); String toString();
}
class Lit extends Exp {
Int val; Lit setLit(Int x);
}

class Add extends Exp {
Exp a; Exp b;
}

PS2 =

class Exp extends Object {
String name;
String toString();
}
class Lit extends Exp {
Int toInt();
}
class Add extends Object {
Exp a;
}

are such that: PS = signature(P), PS1 u PS, PS2 � PS, and PS 6� PS2.

The notion of SPL signature (SPLS) [14] describes the API of an SPL, i.e.,
the APIs of the variants generated by the SPL. Namely, an SPLS is an SPL
where the variants are program signatures instead of programs. The following
definition provides an extensional account of this notion.

Definition 7 (SPLS, extensional representation). An SPLS Z is a pair
(MZ,GZ) where MZ = (FZ,PZ) is the feature model of the SPLS and GZ is
the generator of the SPLS, i.e., a mapping from the products in PZ to variant
signatures.

The notion of signature of an SPL [14] naturally lifts that of signature of a
program. Namely, the signature of an SPL L = (ML,GL) is the SPLS defined by
signature(L) = (ML, signature(GL)), where signature(GL) is defined by

signature(GL)(p) = signature(GL(p)), for all p ∈ PL.

The notion of interface of an SPLS [14] naturally lifts the one of interface of
a program signature (in Definition 5) by combining it with the notion of feature
model interface (in Definition 3).
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Definition 8 (Interface relation for SPLSs). An SPLS Z1 is a interface of
an SPLS Z2, denoted as Z1 � Z2, iff: (i) MZ1 �MZ2 ; and (ii) for each p ∈ PZ2 ,
GZ1(p ∩ FZ1) � GZ2(p).

Similarly, the notion of interface of an SPL lifts the notion interface of a program
(in Definition 6).

Definition 9 (Interface relation between SPLs and SPLSs). An SPLS
Z is an interface of an SPL L, denoted as Z � L, iff Z � signature(L) holds.

It is worth observing that the interface relation for SPLSs has two degrees of
freedom: it allows to hide features from the feature model (as described in Defi-
nition 3), and it allows to hide declarations from the SPLS variants (as described
in Definition 5). Additionally, note that the interface relation for SPLSs, like the
one for program signatures (see the explanation after Definition 6), is reflex-
ive, transitive and not anti-symmetric. We say that two SPLSs Z1 and Z2 are
equivalent, denoted as Z1 u Z2, to mean that both Z1 � Z2 and Z2 � Z1 hold.

3 The Slice Operator for SPLSs of IFJ Programs

In this section we lift the feature model slice operator to SPLs in extensional
form. In order to do this, we first introduce some auxiliary notions.

Given a feature model M = (F ,P) and a set F0 of features, the slice
ΠF0

(M) = M0 = (F0,P0) determines a partition of P. Namely, let cplF0,M :

P0 → 2P be the function that maps each sliced product p0 ∈ P0 to the set of
products {p | p ∈ P and p0 = p ∩ F0} that complete it, then:

1. cplF0,M(p0) is non-empty, for all p0 ∈ P0;
2. p′ 6= p′′ implies cplF0,M(p′) ∩ cplF0,M(p′′) = ∅, for all p′, p′′ ∈ P0; and
3.

⋃
p∈P0

cplF0,M(p) = P.

The following definition introduces two natural canonical forms for the ele-
ments of the equivalence classes of the relation u between program signatures
(introduced immediately after Definition 6).

Definition 10 (Fat and thin program signatures). We say that a program
signature PS is:

– in fat form ( fat for short) to mean that, for all classes C ∈ dom(PS) and for
all attributes a ∈ dom(PS(C)), if lookupPS(a, C) = AS then PS(C)(a) = AS;

– in thin form ( thin for short) to mean that, for all classes C1, C2 ∈ dom(PS)
and for all attributes a ∈ dom(PS(C1)), if C2 <:PS C1 then a 6∈ dom(PS(C2)).

We write fat(PS) and thin(PS) to denote the fat form and thin form of a pro-
gram signature PS, respectively.

Example 3 (Thin signature of the Expression Program). Recall the P pro-
gram and the signatures PS and PS1 considered in Example 2, where PS =
signature(P). It is straightforward to check PS1 = thin(PS) holds.
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Given a non-empty set of program signatures PS = PS1, ...,PSn (n ≥ 1) we
write

∧
PS to denote the thin program signature that is the infimum (a.k.a.

greatest lower bound) of PS with respect to the interface relation. The following
theorem states that

∧
PS is always defined.

Theorem 1 (Infimum for program signatures w.r.t. �). The thin pro-
gram signature

∧
PS that is the infimum with respect to � of a non empty set

of program signature PS = PS1, ...,PSn (n ≥ 1) is always defined.

Proof. See Appendix A. ut

The following definition lifts the feature model slice operator ΠF0 (Defini-
tion 2) to SPLSs.

Definition 11 (SPLS slice). Let F0 be a set of features and, let Z = (MZ,GZ)
be an SPLS with feature model MZ = (FZ,PZ) and generator GZ. The slice
operator ΠF0 on SPLSs returns the SPLS ΠF0(Z) = (M0,G0) where

(i) M0 = (F0,P0) = ΠF0(MZ); and

(ii) for each p0 ∈ P0 we have that G0(p0) =
∧

p∈cplF0,MZ
(p0)

GZ(p).

Note that ΠF0
(Z) is the greatest (with respect to the � relation between SPLSs)

interface of Z with exactly the features of Z that are in F0. I.e., if Z1 � Z and Z1
has exactly the features of Z that are in F0, then Z1 � ΠF0(Z).

4 On Slicing Delta-oriented SPLSs of IFJ Programs

The extensional representation of SPLs allowed us to formulate notion of slice
of an SPLS by abstracting from SPL implementation details. However, in order
to investigate a practical slicing algorithm, we need to consider a representa-
tion of SPLs that reflects some implementation approach. To this aim, we first
recall the propositional presentation of feature models (in Section 4.1) and the
delta-oriented approach to implement SPLs, the definition delta-oriented SPL
of IFJ programs, and the corresponding definition of SPLS (in Section 4.2).
Then we illustrate the problem of devising a feasible algorithm for slicing delta-
oriented SPLSs where the feature model is represented in propositional form (in
Section 4.3).

4.1 Propositional Representation of Feature Models

The propositional representation of feature models works well in practice [26, 6,
35, 24]. In this representation, a feature model is given by a pair (F , φ) where:

– F is a set of features, and
– φ is a propositional formula where the variables x are feature names:
φ ::= x | φ ∧ φ | φ ∨ φ | φ→ φ | ¬φ.
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A propositional formula φ over a set of features F represents the feature models
whose products are configurations {x1, ..., xn} ⊆ F (n ≥ 0) such that φ is
satisfied by assigning value true to the variables xi (1 ≤ i ≤ n) and false to
all other variables. More formally, given the propositional representation M =
(F , φ) of a feature model, we denote E(M) its extensional representation, i.e,
the feature model (F , E(φ)) with

E(φ) = { p | p ⊆ F and φ [x := true]x∈p [y := false]y∈F/p holds }.

where φ [x := c]x∈{z1,...,zn} is a shortening for φ[z1 := c, . . . , zn := c].

4.2 Delta-oriented SPLs and SPLSs

Delta-Oriented Programming (DOP) [28, 29], [3, Sect. 6.6.1] is a transformational
approach to implement SPLs. The artifact base of a delta-oriented SPL consists
of a base program (that might be empty) and of a set of delta modules (deltas for
short). A delta is a container of program modifications (e.g., for IFJ programs,
a delta can add, remove or modify classes). The configuration knowledge of a
delta-oriented SPL associates to each delta an activation condition (determining
the set of products for which that delta is activated) and specifies an application
ordering between deltas: once a product is selected, the corresponding variant
can be automatically generated by applying the activated deltas to the base
program according to the application ordering. It is worth mentioning that the
Feature-Oriented Programming (FOP) [5], [3, Sect. 6.1] approach to implement
SPLs can be understood as the restriction of DOP where deltas correspond one-
to-one to features and do not contain remove operations.

4.2.1 Delta-oriented SPLs of IFJ programs

Imperative Featherweight Delta Java (IF∆J) [7] is a core calculus for delta-
oriented SPLs of IFJ programs. The abstract syntax of the artifact base of an
IF∆J SPL is given in Figure 4. The artifact base comprises a (possibly empty)
IFJ program P, and a set of deltas DD. A delta declaration DD comprises the
name d of the delta and class operations CO representing the transformations
performed when the delta is applied to an IFJ program. A class operation can
add, remove, or modify a class. A class can be modified by (possibly) changing
its super class and performing attribute operations AO on its body. An attribute
operation can add or remove fields and methods, and modify the implementation
of a method by replacing its body. The new body may call the special method
name original, which is implicitly bound to the previous implementation of
the method.

Recall that, according to Convention 1, we assume that the deltas declared
in an artifact base have distinct names, the class operations in each delta act on
distinct classes, the attribute operations in each class operation act on distinct
attributes, etc.
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AB ::= P DD Artifact Base

DD ::= delta d{CO} Delta Declaration

CO ::= adds CD | removes C | modifies C[extends C′]{AO} Class Operation
AO ::= adds AD | removes a | modifies MD Attribute Operation

Fig. 4: Syntax of IF∆J SPL artifact base

If the feature model of a delta-oriented SPL L is in propositional represen-
tation (F , φ), then the configuration knowledge of L can be conveniently repre-
sented by a pair K = (α,<) where:

– α (the delta activation map) is a function that associates to each delta d a
propositional formula φd such that φ∧φd represents the set of products that
activate it; and

– < (the delta application order) is a partial ordering between delta names.6

Therefore an IF∆J SPL can be represented by a triple L = ((F , φ),AB,K).
The generator of L, denoted by GL, is a total function that associates each

product p in ML with the IFJ program dn(· · · d1(P) · · · ), where P is the base
program of L and d1 . . . , dn (n ≥ 0) are the deltas of L activated by p (they are
applied to P according to a total ordering that is compatible with the application
order).7

In most presentation of delta-oriented SPLs (see, e.g, [28, 29]), the generator
is considered to be a partial function in order to encompass ill-formed SPLs
where, for some product, the generation of the associated variant fails. Recall
that we focus on well-formed SPLs,8 where generators are total functions and
the generated products are well-typed IFJ programs—see [15, 11] for effective
means to ensure the well-formedness of IF∆J SPLs.

The extensional representation a delta-oriented SPL L, denoted by E(L), is
the SPL (ML,GL) whereML and GL are the feature model and the generator of
L, respectively.

4.2.2 Delta-oriented SPLSs of IFJ programs

A delta-oriented SPLS [14] can be understood as a delta-oriented SPL where
the variants are program signatures. The abstract syntax of the artifact base
of an IF∆J SPLSs [14], called artifact base signature, is given in Figure 5. An
artifact base signature ABS comprises a program signature PS and a set of
delta signatures DS that are deltas deprived of method-modifies operations and
method bodies.
6 As pointed out in [28, 29], the delta application order <L is defined as a partial

ordering to avoid over specification.
7 We assume that all the total orders that are compatible with <L yield the same

generator—see [22, 7] for effective means to enforce this constraint.
8 See footnote 4.
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ABS ::= PS DS AB Signature

DS ::= delta d { COS } Delta Signature

COS ::= adds CS | removes C | modifies C [extends C′]{AOS } CO Signature
AOS ::= adds AS | removes a AO Signature

Fig. 5: Syntax of IF∆J SPLS artifact base signature

If the feature model of a delta-oriented SPLS Z is in propositional rep-
resentation (F , φ), then the configuration knowledge of Z can be represented
by a pair K = (α,<) defined similarly to the configuration knowledge of a
delta-oriented SPL. Therefore the IF∆J SPLS can be represented by a triple
Z = ((F , φ),ABS,K).

Also generator of a delta-oriented SPLS Z, denoted by GZ, and the extensional
representation a delta-oriented SPLS Z, denoted by E(Z), are defined as for delta-
oriented SPLs.

Given two delta-oriented SPLSs Z1 and Z2 we say that:

– Z1 and Z2 are extensional equivalent to mean that their extensional repre-
sentations are equivalent, i.e., E(Z1) u E(Z2); and

– Z1 is an interface of Z2 (written Z1 � Z2) to mean that E(Z1) � E(Z2).

The signature of an IF∆J SPL L, denoted as signature(L), is the SPLS obtained
from L by dropping the method-modifies operations and the body of the methods
in the artifact base. Note that the notion of signature of a delta-oriented SPL
is consistent with the notion of signature defined for extensionally represented
SPLs (introduced immediately after Definition 7). Namely, for all IF∆J SPLs L
we have that:

E(signature(L)) = signature(E(L)).

Given a delta-oriented SPLS Z and a delta-oriented SPL L, we say that Z is an
interface of L (written Z � L) to mean that E(Z) � E(signature(L)).

Recently [14], we have presented an algorithm for checking the interface re-
lation between IF∆J SPLSs where the feature model is represented in propo-
sitional form. The algorithm encodes interface checking into a boolean formula
such that the formula is valid if and only of the interface relation holds. Then
a SAT solver can be used to check whether a propositional formula is valid by
checking whether its negation is unsatisfiable. Although this is a co-NP prob-
lem, similar translations into SAT constraints have been applied in practice for
several SPL analysis with good results [17, 34, 35, 25].

4.3 On Devising an Algorithm for Slicing Delta-oriented SPLSs

Given a set of features F0 and delta-oriented SPL L where the feature model
is represented in propositional form, manually writing a delta-oriented SPLS
Z that is a slice of signature(L) for F0 is a tedious and error-prone task. In
this section we illustrate the problem of devising a feasible algorithm for slicing
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delta-oriented SPLSs where the feature model is represented in propositional
form.

We first focus on slicing a feature model represented in propositional form
(in Section 4.3.1), then we consider slicing an IF∆J SPLS (in Section 4.3.2).

4.3.1 Slicing Feature Models in Propositional Form

Given a set of features X = {x1, ..., xn} (n ≥ 0) and a feature model in propo-
sitional representation (F , φ), the slicing algorithm slice is defined by:

sliceX((F , φ)) = (F ∩X, sliceBFF/X(φ))

where the algorithm sliceBF is defined by:

sliceBF ∅(φ) = φ
sliceBF {x1,...,xn}(φ) = sliceBF {x2,...,xn}(φ[x1 := true]) ∨ (φ[x1 := false])).

The following theorem states that the slicing algorithm slice is correct.

Theorem 2 (Correctness of the slice algorithm for feature models).
For all set of features X and for all feature models in propositional representation
(F , φ), we have that E(sliceX(F , φ))) = ΠX(E((F , φ))).

Proof. Straightforward by induction on the number of features in F \X. ut

By construction, the size of feature model sliceX((F , φ)) can grow as 2n,
where n is the number of variables in X. In order to avoid this exponential
growth, we modify the notion of propositional representation of feature model
(introduced in Section 4.1) by replacing the Boolean formula φ by an (existen-
tially) Quantified-Boolean formula σ defined by:

σ ::= ∃x.φ, where x may be empty, i.e., σ = φ.

Given a set of features X = {x1, ..., xn} (n ≥ 0) and a feature model in propo-
sitional representation (F , σ), the slicing algorithm sliceE is defined by:

sliceEX((F ,∃y.φ)) = (F∩X,∃w.φ)), where w are the elements of {y} ∪ (F \X).

The following theorem states that the slicing algorithm sliceE is correct.

Theorem 3 (Correctness of the sliceE algorithm for feature models).
For all set of features X and for all feature models in propositional representation
(F , σ), we have that E(sliceEX(F , σ))) = ΠX(E((F , σ))).

Proof. Straightforward by induction on the number of features in F \X. ut
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4.3.2 On the Problem of Slicing IF∆J SPLSs

We aim at devising an algorithm such that:

– given an IF∆J SPLS Z = ((F , σ),ABS,K) and a set of features X,
– returns an IF∆J SPLS Z′ = ((F ′, σ′),ABS′,K′) that is a slice of Z for X and

is such that:
1. (F ′, σ′) = sliceEX(F , σ),
2. the size of the artifact base ABS′ is linear in the size of ABS, and
3. the size of the configuration knowledge K′ is linear in the size of K.

Note that requirements 2 and 3 above rule out any algorithm that returns an
IF∆J SPLS where the artifact base and configuration knowledge are the straight-
forward encoding of the generation mapping GZ of Definition 11 (i.e., a delta for
each product, activated if and only if the product is selected).

We leave the investigating of such an algorithm for future work, and conclude
this section by an example.

Example 4 (On slicing an IF∆J SPLS). Consider the IF∆J SPLS Z = (M,ABS,K)
where: the feature modelM = (F , σ), with F = {f0, f1, f2} and σ = f0∧(f1∨f2),
has the four products in E(M) = {{f0}, {f0, f1}, {f0, f2}, {f0, f1, f2}}; the arti-
fact base signatureABS is

class C0 extends Object { Object z0 Object m0(Objectx0) }
delta d1 { adds class C1 extends Object {} modifies C0 {removes z0 } }
delta d2 { adds class C2 extends Object {} modifies C0 {removes m0 } } ;

and the configuration knowledge K comprises the activation map {d1 7→ f1, d2 7→
f2} and the flat application order (i.e., d1 and d2 are not comparable).

The slicing of Z w.r.t. the set of features X = {f2} is represented by the IF∆J
SPLS Z = (M′,ABS′,K′) where: the feature model M′ = (F ′, σ′), with F =
{f0, f1} and σ′ = f0∨(f1∧f2), has the two products in E(M′) = {{f0}, {f0, f1}};
the artifact base signatureABS′ is

class C0 extends Object { Object m0(Objectx0) }
delta d′1 { adds class C1 extends Object {} modifies C0 {removes m0 } }

and the configuration knowledge K′ comprises the activation map {d′1 7→ f1}
and the flat application order.

5 Related Work

Modern software systems often out-grow the scale of SPLs. They can be better
understood as Multi SPLs (MPLs): sets of interdependent SPLs that need to be
managed in a decentralized fashion by multiple teams and stakeholders [19]. The
notion of SPLS considered in this paper can be used to introduce a support for
MPL on top of a given approach for implementing SPL. For instance, in [14] we
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have exploited it to to define a formal model for delta-oriented MPLs. Previous
work [16] informally outlined an extension of delta-oriented programming to
implement MPLs, which does not enforce any boundaries between different SPLs
and therefore is not suitable for supporting compositional analyses. In contrast,
as illustrated in [14], SPLSs can be used to support compostional type-checking
of MPLs of IFJ programs.

Schröter et al. [32] advocated investigating interface constructs for supporting
compositional analyses of MPLs at different stages of the development process. In
particular, they informally introduced the notion of syntactical interfaces (which
generalizes feature model interfaces to provide a view of reusable programming
artifacts) and the notion of behavioral interface (which generalizes syntactical
interfaces to support formal verification). The notion of SPLS considered in this
paper is (according to terminology of [32]) a syntactical interface.

Schröter et al. [33] also proposed the notion of feature-context interfaces in
order to support preventing type errors while developing SPLs with the FOP ap-
proach. A feature-context interface provides an invariable API specifying classes
and members of the feature modules that are intended to be accessible in the
context of a given set of features. In contrast, an SPLS represents a variability-
aware API.

The notion of slice of an SPLS for a set of features introduced and formalized
in this paper lifts to SPLs the notion of slice of a feature model introduced in [1]
(see also [31]). We are not aware of any other proposal for lifting to SPLs the
notion of slice of a feature model.

6 Conclusions and Future Work

In future work we would like to investigate a efficient algorithm for slicing delta-
oriented SPLSs. In particular, we are planning to devise an algorithm for refac-
toring IF∆J SPLSs to a some normal form that is suitable for performing a slice.
A starting point for this investigation could be represented by the algorithms
for refactoring IF∆J SPLs presented in [?,?,13].

The Abstract Behavioural Specification (ABS) language [8] is a delta-oriented
modeling language has been successfully used in the context of industrial use
cases [21, 18, 2, 10]. In future work we would like to exploit the notions of SPLS
and slice for improving the ABS support for MPLs and to implement them as
part of of the ABS toolchain (http://abs-models.org/).

A Proof of Theorem 1

Recall that, although Object 6∈ dom(PS), class Object is used in every non-
empty program PS . Therefore, ≤:PS is a relation on domo(PS), where domo(PS)
is a shortening for dom(PS) ∪ {Object}.

Definition 12 (Subtyping path). Given a program signature PS and a class
C ∈ dom(PS), we denote path(C,PS) the restriction of ≤:PS to the supertypes
of C viz. the set {(C′, C′′) | C′≤:PSC

′′ and C≤:PSC
′}.
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We remark that path(C,PS) is an order relation that identifies (uniquely) a
linearly ordered sequence of classes, with C as bottom and Object as top. No
path can be empty, since it has to include at least the pair (Object, Object).

Definition 13 (fatInf operator on a set of program signatures). Let
PS be a (non empty) set of program signatures.

1. We write
⋂

PS dom(PS) to shorten
⋂

PS∈PS dom(PS). Note that Object is
never included in this intersection.

2. Let C ∈
⋂

PS dom(PS).
(a) pathPS(C) is the linear order relation

⋂
{path(C,PSi) | PSi ∈ PS}.

(b) path6⊥
PS

(C) is the order relation obtained by pathPS(C) removing C.

(c) mcs(C) ( minimum common superclass of C) is the bottom of path6⊥
PS

(C).

(d) mcfd(PS, C) is the (maximum) set of common field declarations, viz. the
set of all field declarations of the shape C∗ f∗ such that: for all PSi ∈ PS,
lookupPSi

(f∗, C) = C∗ f∗.

(e) mcmd(PS, C) is the (maximum) set of common method declarations,
viz. the set of all field declarations of the shape C∗ m∗(Cx x) such that:
for all PSi ∈ PS, lookupPSi

(m∗, C) = C∗ m∗(Cx x′) for some variable
names x′ (the type sequences have to match but, as usual, the names of
arguments do not matter).

3. We denote fatInf(PS) the in PS, viz. the program signature such that, for
all and only C ∈

⋂
PS dom(PS) includes all and only the declarations:

class C extends mcs(C) { mcmd(PS, C) mcfd(PS, C) } .

Lemma 1 (fatInf characterizes
∧

). For every (non empty) set of program
signatures PS, it holds that fatInf(PS) = fat(

∧
PS).

Proof. It is straightforward to see that fatInf (PS) is always defined and that
fatInf (PS) � PSi for all PSi ∈ PS (since it is build as a restriction of them).
Therefore fatInf (PS) is a lower bound for PS and we can conclude the proof
by showing that it is the greater between the lower bounds for PS, namely if
PS? � PSi for all PSi ∈ PS then PS? � fatInf (PS) has to hold. In accordance
with Definition 5, we have to prove that the following three conditions hold.

(i) If C ∈ dom(PS?) then it has to be C ∈ dom(PSi) for all PSi ∈ PS. Therefore,
C ∈ fatInf (PS) by construction.

(ii) Let C1, C2 ∈ dom(PS?). If C0 <:P? C1 then it has to be C0 <:Pi
C1 for all

PSi ∈ PS, viz. (C0, C1) ∈ pathPSi
(C0). Therefore, (C0, C1) ∈ path(PS)(C) by

construction.
(iii) Let C ∈ dom(PS?) and a be an attribute such that lookupPS?(a, C) is de-

fined. But PS? � PS implies that, for all PSi ∈ PS, lookupPSi
(a, C) is defined

and lookupPSi
(a, C) = lookupPS?(a, C). Since mcfd(PS, C) and mcmd(PS, C)

have been defined to grasp the maximum set of common attribute declara-
tions, the proof follows by construction. ut

Proof (of Theorem 1). Straightforward by Lemma 1. ut
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35. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6:1–
6:45 (2014). https://doi.org/10.1145/2580950

19


