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We demonstrate the use of classification methods that are well-suited for forensic

toxicology applications. The methods are based on penalized logistic regression, can

be employed when separation occurs in a two-class classification setting, and allow

for the calculation of likelihood ratios. A case study of this framework is demonstrated

on alcohol biomarker data for classifying chronic alcohol drinkers. The approach can

be extended to applications in the fields of analytical and forensic chemistry, where it

is a common feature to have a large number of biomarkers, and allows for flexibility

in model assumptions such as multivariate normality. While some penalized regression

methods have been introduced previously in forensic applications, our study is meant

to encourage practitioners to use these powerful methods more widely. As such, based

upon our proof-of-concept studies, we also introduce an R Shiny online tool with an

intuitive interface able to perform several classification methods. We anticipate that this

open-source and free-of-charge application will provide a powerful and dynamic tool to

infer the LR value in case of classification tasks.

Keywords: classification, likelihood ratio, logistic regression, separation, forensic science, Cllr

1. INTRODUCTION

A fundamental task for the forensic experts is that the results of the analyses, which have
been performed on the collected pieces of evidence, have to be expressed in a very clear and
straightforward way that can be easily shown in courtrooms and that can be immediately, where
possible, understood even by non-specialists. However, at the same time, the applied statistical
methodologies for data evaluation have to be rigorous and should not compromise the role that
the forensic expert plays in the administration of justice (Zadora, 2010).

The main aim of the forensic analysts is to evaluate the physicochemical data from the collected
evidence (E) in the framework of two independent, alternative, and mutually exclusive hypotheses
(or propositions), H1 and H2, in order to estimate the conditional probabilities (P) related to
the mentioned hypotheses [i.e., P(E|H1) and P(E|H1), which stand for the probability to observe
the results from E when H1 (or H2) is true]. The comparison between the described conditional
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probabilities is performed by their ratio, and it is known as
likelihood ratio (LR):

LR = P(E|H1)

P(E|H2)
(1)

The LR has been largely adopted in forensic sciences (and
courtrooms too) in recent years since it expresses the strength
of the observed evidence in favor of proposition H1 compared to
propositionH2 in a very straightforward way. It can be calculated
on both discrete and continuous data, and it is not an assignment
of a probability but rather a ratio of probabilities (or density
functions for continuous data) and takes values from 0 to +∞.
The value of LR equal to 1 represents the condition where the
probability of observing the collected evidence when H1 is true
is equal to the probability of E when H2 is true. In this case,
the LR is inconclusive since it provides no support to either of
the evaluated propositions. Conversely, the higher the value of
the LR, the stronger the support for H1; on the other hand, the
lower the value of the LR, the stronger the support for H2.

Furthermore, one of the most appreciated features of the LR is
that it can be immediately converted into a statement by using
well-known verbal scales (Evett et al., 2000). Nowadays, one
of the most used scales is the one provided by the European
Network of Forensic Sciences Institute (ENFSI) (European
Network of Forensic Science Institutes, 2016), which is as follows:
for 1 < LR 6 101, there is weak support for H1 rather than
the alternative H2, for 10

1 < LR 6 102 moderate support, for
102 < LR 6 103 moderately strong support, for 103 < LR 6 104

strong support, for 104 < LR 6 105 very strong support, and for
LR > 105 extremely strong support. The same approach is used
for LR values lower than 1.

Another relevant feature of applying the LR in the field of
forensics is that it overcomes the so-called “falling off a cliff”
problem related to the traditional approach of using cut-off
values in classification models (Gill et al., 2006; Pragst et al.,
2010; Zadora, 2010; Robertson et al., 2016). In particular, the
use of LR avoids the necessity of defining thresholds (such as
the largely adopted p-value = 0.05 for a significance level of
95%). As a matter of fact, the use of a cut-off such as p = 0.05
leads the forensic analyst to completely different (and opposite)
conclusions when values close to the defined threshold are
observed, such as the cases of p = 0.049 or p = 0.051. For the first
scenario, the propositionH1 can be rejected, while, for the second
scenario, H1 cannot be rejected. Furthermore, no conclusion can
be made about the alternative proposition H2 because H2 is not
taken into account for the calculation of the p-value. Moreover,
a very small difference in the calculated p-value produces a
completely different interpretation of the obtained results, thus
leading to possible severe consequences for the subjects under
investigation (Wasserstein and Lazar, 2016). This approach is
particularly inadvisable when dealing withmultivariate data since
small differences in the calculated probability values (such as, for
instance, p-values) could be ascribed to really small differences in
the performed analytical measurements. This problem does not
occur when the likelihood ratio approach is adopted since the
LR does not require the definition of a threshold. Moreover, the
degree of support to be delivered to a certain proposition rather

than its alternative can be easily related to the magnitude of the
LR through the expressions of the cited verbal equivalents.

For these reasons, LR approaches have been largely used in
many applications of forensic sciences (Aitken and Taroni, 2004)
starting from DNA profiling (Evett and Weir, 1998; Gill et al.,
2006) to other forensic fields such as the evaluation of fire debris
(Zadora et al., 2005), car paints (Martyna et al., 2015; Michalska
et al., 2015), glass fragments (Zadora and Ramos, 2010; Zadora
et al., 2014), speaker recognition (Ramos, 2007), and forensic
voice comparison with Gonzalez-Rodriguez et al. (2007) being
one of the earliest works to introduce LRs derived from logistic
regression in the latter field. Another investigated field for the
application of LR is the discrimination between chronic and
non-chronic alcohol drinkers (Alladio et al., 2017a,b, 2018).

According to the World Health Organization, excessive
alcohol consumption is a causal factor in more than 200
disease and injury conditions. Furthermore, the abuse of alcohol
severely influences the consumers’ lives, leading to different
legal, physical, and psychological consequences, especially when
dealing with behaviors that might cause road and work accidents.

In recent decades, great interest has been dedicated to
the identification of biomarkers capable of recognizing
individuals with alcohol-related problems, for both prevention
and monitoring purposes. The current approach, from a
toxicological point-of-view, aims to identify a person who falls
into the category of excessive alcohol consumer through the
analysis of indirect biomarkers of alcohol consumption (in
blood/serum samples) and, mainly, direct biomarkers (in hair
samples, with a length of 0–6 cm) (Kintz et al., 2015).

The most frequently analyzed indirect biomarkers, whose
concentration levels in blood are not directly related to
the alcohol consumption since they are not formed by
alcohol metabolic processes, are aspartate transferase (AST),
alanine transferase (ALT), gamma-glutamyl transferase (GGT),
mean corpuscular volume of the erythrocytes (MCV), and
carbohydrate-deficient-transferrin (CDT) (Pirro et al., 2013).
These biomarkers are less frequently evaluated nowadays since
they significantly disclose the harmful effects of alcohol on target
organs but provide unsatisfactory results in terms of sensitivity
and specificity. On the other hand, ethyl glucuronide (EtG) and
fatty acid ethyl esters (FAEEs) are the most widely evaluated
direct biomarkers of alcohol consumption in hair samples. In
particular, EtG is used as reference biomarker since it shows
admirable diagnostic sensitivity and specificity results, being
capable of assessing both chronic alcohol drinkers (with a cut-
off of 30 pg/mg) and teetotaller individuals (with a cut-off of
5 pg/mg). These values have been defined by the Society of
Hair Testings (SoHT) and accepted by the forensic community
(Society of Hair Testing, 2019).

On the other hand, the determination of FAEEs in hair
samples is performed to assist the decision process on chronic
alcohol abuse by adding a second biomarker that can be exploited
in case of doubtful circumstances (e.g., in case of EtG values close
to the 30 pg/mg cut-off). In particular, FAEEs are a family of more
than twenty compounds that are synthesized by non-oxidative
metabolic esterification processes of fatty acids following the
drinking of alcohol. Traditionally, four most present FAEEs were
quantified [i.e., ethyl myristate (E14:0), ethyl palmitate (E16:0),
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ethyl oleate (E18:0), and ethyl stearate (E18:1)] and their sum
was calculated. Moreover, recently, ethyl palmitate (E16:0) has
been proposed for alternative interpretation, instead of the sum
of the four FAEEs, and possible cut-off values for E16:0 have been
updated by the Society of Hair Testing (SoHT), i.e., 0.35 ng/mg
for 0–3 cm proximal hair segment and 0.45 ng/mg for 0–6 cm
proximal hair segment (Society of Hair Testing, 2019).

The dataset featured in this paper (described in section
2.8) includes samples of both direct and indirect biomarkers
of ethanol consumption, collected from two types of alcohol
drinkers: chronic and non-chronic. Given themultivariate nature
of the data, several multivariate data analysis methods have
been proposed to analyze this dataset: Linear Discriminant
Analysis (LDA) (Mai, 2013), Quadratic Discriminant Analysis
(QDA) (Qin, 2018), binary logistic regression (Murphy, 2012,
Chapter 8), as well as penalized versions of logistic regression.
The last class of methods, comprising of Firth generalized linear
model (Firth GLM) (Firth, 1993), Bayes generalized linear model
(Bayes GLM) (Gelman et al., 2008), and GLM-NET (Friedman
et al., 2001), have been included to deal with data separation,
which occurs when the class variable is perfectly separated by one
or more measurement variables. A description of these methods
is presented in section 2, while in section 3, we demonstrate how
to identify separation in a dataset and discuss the results of a
comparison study with the aforementioned methods.

Lastly, in section 3.2, we introduce an R Shiny app,
which has been originally developed to provide forensic
experts and physicians with a straightforward tool capable
of discriminating chronic alcohol drinkers from non-chronic
alcohol drinkers through the combination of multivariate data
analysis techniques and LR models (involving both uni- and
multivariate approaches) following the approaches and the
results reported in Alladio et al. (2017b). The R Shiny app
can be used with any classification datasets, from any area of
forensic science, and for clinical and toxicological purposes. All
the methods discussed in this paper are implemented and can
be used for obtaining LRs and class prediction. The app has
been tested on several well-known datasets that are commonly
used in machine learning for classification, such as iris (Dua and
Graff, 2019), glass (Dua and Graff, 2019), Pima diabetes (Dua
and Graff, 2019), and diamonds (Wickham, 2016), and these are
also available to users as part of the R Shiny app to demonstrate
its capabilities.

Although the ideas of using penalized (or regularized) logistic
regression and kernel density estimation have been previously
explored in the context of score-based forensic analysis in
applications such as glass (Morrison and Poh, 2018) and voice
comparison (Morrison, 2011a), to our knowledge, the particular
methods explored in this paper and the R Shiny tool we provide
are relatively novel to the forensic sciences.

2. MATERIALS AND METHODS

In this section, we describe logistic regression-based classification
methods and we introduce the ideas behind various penalized
logistic regression approaches, indicating how they can

extend existing methodology commonly used with forensic
data. Furthermore, we provide an overview of classification
performance measures used to assess the goodness of fit for
classification models, and we provide some ideas for how to
design a comparison study between several candidate models
using cross-validation. Lastly, we provide a description of
the alcohol biomarkers dataset (Alladio et al., 2017a) used to
illustrate these methods.

In statistics, classification methods tackle the problem of
determining the category, or classmembership, of an object based
on a set of explanatory variables, or features, describing it. The
methods covered in this paper are referred to as “supervised
learning,” meaning a set of observations is typically available
whose class membership is known. These observations form a
training set which is used by a statistical algorithm, or classifier,
to map the features of the object to its class throughmathematical
functions. Ultimately, the purpose of the classifier is to apply
the mathematical functions obtained using the training set to
determine the class of new objects, based on the same features
recorded in the training set. An obvious example of classification
is medical diagnostics, where a doctor has to assign a diagnostic
to a patient based on different variables: sex, age, blood pressure,
etc. In the context of monitoring chronic alcohol abuse, it is
of interest to perform classification into one of two categories:
chronic or non-chronic alcohol drinker.

2.1. Linear and Quadratic Discriminant
Analysis
Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) are two widely used methods
for classification, which, as suggested by their names, produce
a linear or quadratic decision boundary between classes.
These algorithms can be easily computed and have simple
mathematical formulations, are suitable for binary and multi-
class classification problems and have no additional parameters
that need to be tuned.

A discriminant function is a mathematical function that maps
each observation’s features directly to a specific class. In the case
of LDA, the algorithm estimates weights for each of the features
such that the estimated classification is a linear combination of
an observation’s features and the separation between class means
is maximized, while the spread within each class is minimized
(Bishop, 2006, Chapter 4).

It should be mentioned that LDA assumes normally
distributed (Gaussian) data, features that are statistically
independent, and identical covariance matrices for every class.
QDA is a more general algorithm for which the assumption of
identical covariance matrices is not necessary, and the result is,
in essence, a more flexible decision boundary. However, if the
distribution of the data is significantly non-Gaussian, then it is
very likely that neither LDA nor QDA will perform very well.

2.2. Logistic Regression
A logistic regression model is typically used to identify the
relationship between independent variables Xi and a response
or dependent variable Y that is binary, meaning it can take two
values: e.g., True or False, 1 or 0, chronic or non-chronic drinker,
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etc. For illustrative purposes and without loss of generality, we
assume the Y variable is labeled as positive (Category 1) or
negative (Category 2) for a dataset with N observations. The
mathematical form of a logistic regression model is described in
Equation (2):

logit(p) = log

(

p

1− p

)

= β0 + β1X1 + . . . + βkXk (2)

where β1, . . . ,βk are models parameters that need to be
estimated, k is the number of independent variables, and p is
the probability of success: P(Y = positive) = p. Once the
parameters have been estimated, the logistic regression model
equation allows us to calculate probabilities for each class of the
response variable (Equation 3), as well as the odds (Equation
4), which denotes the ratio of the probability of success to the
probability of failure.

The probability is expressed as a function of the predictors in
terms of the logistic equation:

p = exp (β0 + β1X1 + . . . + βkXk)

1+ exp (β0 + β1X1 + . . . + βkXk)
(3)

and the odds as

p

1− p
= exp (β0 + β1X1 + . . . + βkXk). (4)

The odds is a ratio of probabilities, and if it is greater than 1 (if
p > 0.5, then p/(1−p) > 1) we classify it as Category 1 (positive),
while if it is smaller than 1 (if p < 0.5, then p/(1 − p) < 1) we
classify it as Category 2 (negative). This can be compared with the
use of the LR for classification.

In the case of a classification problem with two mutually
exclusive and exhaustive categories, there is a parallel between p
and P(H1|E) and between 1 − p and P(H2|E) where H1, H2, and
E were defined in section 1. Writing the posterior odds as prior
odds times the likelihood ratio gives

P(H1|E)
P(H2|E)

= P(H1)

P(H2)
· P(E|H1)

P(E|H2)
(5)

providing a relationship between the likelihood ratio,
P(E|H1)

P(E|H2)
,

and the probability p in Equation (2). For training the logistic
regression models used in the remainder of this paper, the prior

odds
P(H1)

P(H2)
was assumed to take the value 1, in which case the LR

equals
p

1− p
. For different values of the prior odds, log

P(H1|E)
P(H2|E)

can be obtained from the model described in Equation (2)

assuming a fixed value of the prior log-odds log
P(H1)

P(H2)
. The value

of the log(LR) can then be calculated as log
P(H1|E)
P(H2|E)

− log
P(H1)

P(H2)
.

For logistic regression, estimation problems can arise when
dealing with a large number of variables relative to the number

of observations (N close to “k” scenario) or when perfect or
quasi-separation occurs (Heinze and Schemper, 2002; Gelman
et al., 2008). The latter scenario refers to situations when one
explanatory variable or a combination of explanatory variables
completely separate the classes in the dataset. Separation will
normally be flagged up by the algorithm implementation, but this
can also be observed by inspecting the estimated coefficients and
standard errors, which will typically be very large, or by looking
at the estimated LRs, which will typically be infinite or zero
and is obviously unrealistic. In a logistic regression model, the
standard errors associated with each coefficient give a measure of
the uncertainty about the coefficient estimate and can be used to
test whether the coefficients are significantly different from 0 or
to construct confidence intervals for each predictor added in the
model. One indication of separation in a logistic regressionmodel
is when the estimated standard errors are orders of magnitude
larger than the value of the coefficients.

One way to address this problem is to fit a penalized or
Bayesian logistic regressionmodel, for example, GLM-NET, Firth
GLM, or Bayes GLM, all of which are briefly described in rest of
this section.

2.3. GLM-NET
GLM-NET described in Friedman et al. (2010) and implemented
in R package glmnet (Hastie and Qian, 2014), comprises of
fast algorithms that estimate generalized linear models with
convex penalties, such as ℓ1 (the lasso), ℓ2 (ridge regression) and
mixtures of these two, generally known as elastic net penalties.

Ridge regression is a method commonly used when dealing
with a large number of explanatory variables, which will
inevitably be correlated. The ridge penalty allows many
predictors to be included in a model by shrinking the
corresponding coefficients of correlated variables toward each
other or shrinking less important variable coefficients toward 0.
It is important to note that all resulting regression coefficients
will be non-zero. On the other hand, lasso will pick one of the
correlated variables and ignore the rest, while the elastic-net
penalty mixes these two behaviors (regularizes but also excludes
variables) (Friedman et al., 2010).

Glmnet is a package that fits a generalized linear model
via penalized maximum likelihood. The algorithm is very fast,
using cyclical coordinate descent—it successively optimizes the
objective function for each parameter in turn while the others are
kept fixed until convergence is achieved. It can be used with a
variety of models: linear, logistic, and multinomial, Poisson, and
Cox regression models and can also accommodate multi-class
scenarios.

GLM-NET performs regularized logistic regression by
maximizing the following penalized log likelihood:

max
(β0,β)∈Rk+1

[

1

N

N
∑

i=1

[

Yi(β0 + XT
i β)− log

(

1+ e(β0+XT
i β)

)]

−λPα(β)
]

(6)
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where

Pα(β) = (1− α)
1

2
||β||2ℓ2 + α||β||ℓ1 (7)

=
k

∑

j=1

[

1

2
(1− α)β2

j + α|βj|
]

(8)

Pα is the elastic-net penalty containing the ridge and lasso
penalties as special cases when α = 0 and α = 1, respectively.
λ represents a tuning parameter that controls the overall strength
of the penalty and can be chosen using cross-validation within
the glmnet package.

2.4. Firth GLM
Firth GLM described in Heinze and Schemper (2002) and Firth
(1993), implemented in R package brglm2 (Kosmidis, 2020),
proposes a solution to the separation problem that involves
maximizing a log likelihood penalized by Jeffreys prior (Firth,
1993):

max
β∈Rk+1

N
∑

i=1

[

Yi log(pi)+ (1− Yi) log(1− pi)
]

+ 1

2
I(β) (9)

where I(β) denotes the Fisher information matrix evaluated at β .
This penalty effectively removes bias from parameter

estimates which can be quite serious in sparse or small datasets.
In the case of separated data, the profile penalized likelihood is
used to construct confidence intervals, see Heinze and Schemper
(2002) and Kosmidis et al. (2020) for a more in-depth discussion.

2.5. Bayes GLM
Bayes-GLM described in Gelman et al. (2008) and Chapter
16 of Gelman et al. (2013), implemented in R package arm
(Gelman et al., 2018), provides a fully Bayesian formulation
of a logistic regression model, using weakly informative priors
such as Student-t or Cauchy prior distributions for the
regression coefficients.

Point estimates and standard errors for the regression
coefficients are obtained using a pseudo-data approach, which
computes estimates by a modified iteratively weighted least
squares algorithm, using a prior-augmented design matrix, X,
vector of observations, and weights vector. Section 16.3 in
Gelman et al. (2013) provides an extensive illustration of the
Bayes-GLM approach.

According to the authors, the choice of weakly informative
priors provides regularization and stabilization to the algorithm
which are superior to other similar methods such as Firth logistic
regression, where the choice of prior (Jeffreys) does not ensure a
stable enough estimation.

2.6. Combining LRs
In addition to its use as a classification tool for a two-category
problem, as described in section 2.2, logistic regression can be
used to produce a weighted average of LRs (called “scores”)
obtained using different pieces of evidence (or variables). This
approach, sometimes referred to as logistic regression fusion, is

routinely used in forensic voice comparison and is described in
detail in Morrison (2013). This method is especially useful for
multivariate data when the number of variables is relatively large
compared to the number of observations.

In general, the fusion model can be written as follows:

logit(p) = log

(

p

1− p

)

= β∗
0 + β∗

1 s1 + . . . + β∗
k sk (10)

where β∗
0 ,β

∗
1 , . . . ,β

∗
k
, are the logistic regression coefficients that

have to be estimated, and
p

1−p is the LR of interest for the

practitioner (assuming prior odds of 1, as in section 2.2). In this
model s1, s2, . . . , sk are scores, typically obtained from different
data variables or measurements available in the dataset. These
scores can be derived as follows: first, we estimate the distribution
of both classes for each of the variables of interest, and then
we calculate the LR (ratio of the probabilities) for a specific
measurement x under each class distribution:

si = log(LR) = log
f (x|H1)

f (x|H2)
(11)

In Equation (11), the function f represents the density estimates
of each class, which is estimated from a training dataset, where
the class membership for each observation is known. Most
commonly, these two distributions are assumed to be Gaussian,

meaning f (x) = 1
σ
√
2π

exp (x−µ)2

−2σ 2 , however, this is not always

suitable. In such situations, kernel density estimation (KDE)
can be used specifically to deal with issues such as estimating
a multimodal distributions or an unusual behavior in the tails,
which the Gaussian distribution can often struggle with. In
Figure 1, we illustrate these two methods of density estimation
and how different the resulting log(LR) can be based on the
chosen method.

Intuitively, KDE estimates the underlying density function of
some samples x1, . . . , xn by placing a Gaussian distribution over
each data point, adding the contributions from each point, and
dividing by n to ensure the resulting function is normalized. The
Gaussian can be replaced by other non-negative functions, or
kernels, denoted K, in which case the resulting density estimate,

f̂ can be written as follows:

f (x) ≈ f̂ (x) = 1

nh

n
∑

i=1

K

(

x− xi

h

)

(12)

In Equation (12), h represents the bandwidth, a parameter
which determines how smooth or spiky the resulting density
estimation curve should be. In this paper, we use a Gaussian
kernel with a bandwidth parameter set according to Silverman’s
rule (Silverman, 1986, p. 48):

h = 0.9 ·min

(

σ̂ ,
IQR

1.34

)

· n−0.2 (13)

where σ̂ and IQR are the standard deviation and
interquartile range of the xi’s. The bandwidth parameter

Frontiers in Chemistry | www.frontiersin.org 5 October 2020 | Volume 8 | Article 738

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Biosa et al. Logistic Classification for Forensic Evidence

FIGURE 1 | A comparison of LRs using two different methods of density estimation: a Gaussian distribution and kernel density estimator. In (A), for an EtG value of

25, the Gaussian LR has a value of 2.11, indicating the class of an observation with this EtG value should be positive, while the KDE LR has a value of 0.95, indicating

that the observation provides similar support for membership of either class. (B) Shows the resulting log(LR) evaluated for observations with EtG values between 0

and 100 and illustrates how different the results can be depending on the choice of estimation for the underlying distribution of the data.

can also be chosen using other methods, such as
cross-validation, however this comes at an increased
computational cost. More discussion on kernel density
estimators and the choice of bandwidth can be found in
Bishop (2006, Chapter 2.5).

Once the scores are obtained from the variables of interest,
the next stage is to use the logistic regression fusion model in
Equation (10) to combine all the available pieces of evidence to
obtain a calibrated LR. Here, the estimated logistic regression
coefficients, β∗

1 , . . . ,β
∗
k

can be regarded as weights for each
score or variable included in the model, providing an extra
bonus of ease of interpretation. Since the fusion approach
involves a two-stage estimation procedure, to avoid overfitting
(obtaining overly optimistic estimates), we use two different
datasets at each of these stages, a training dataset to estimate
the class distribution for each explanatory variable, and a
validation dataset to estimate the logistic regression fusion
model coefficients.

In this paper, the fusion method is applied using each of
the penalized logistic regression models introduced previously:
GLM-NET, Firth GLM, and Bayes GLM, as these methods
are equipped to deal with correlated variables and separation
issues, both of which can happen the more variables are added
to a model.

TABLE 1 | An example of a confusion matrix. N+ is the number of true positives,

N̂+ is the number of estimated positives, N− is the number of true negatives, and

N̂− is the number of estimated negatives.

Truth

1 0
∑

Estimate
1 TP FP N̂+ = TP+ FP

0 FN TN N̂− = FN + TN

∑

N+ = TP+ FN N− = FP+ TN N = TP+ FP+ FN + TN

2.7. Classification Performance Measures
This section presents the classification measures used to assess
the performance of the methods presented in this paper.

The first type of measures rely on the initial calculation of
the confusion matrix—a table that allows the visualization of an
algorithm’s performance based on the numbers of observations
correctly and incorrectly classified for each class. An example
confusion matrix is provided in Table 1, based on the correctly
and incorrectly classified observations, denoted as follows:

• true positives (TP): outcomes where the model correctly
predicts a positive class.
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• true negatives (TN): outcomes where the model correctly
predicts a negative class.

• false positives (FP): outcomes where the model incorrectly
predicts a positive class.

• false negatives (FN): outcomes where the model incorrectly
predicts a negative class.

The classification for each observation is based on the choice of
a threshold for the probability estimated by a model. Changing
this threshold will change the values of TP, TN, FP, and FN
and, consequently, all the measures calculated based on these.
Throughout this paper, we use a threshold of 0.5 for the estimated
probabilities (corresponding to a threshold of 1 in terms of the
LR), meaning an observation with an estimated probability above
0.5 gets classified as a positive and an observation below 0.5 gets
classified as a negative.

Table 2 shows a list and definitions of the following
classification performance measures including those based on
the confusion matrix: precision, recall, specificity, accuracy,
error, and F1. Precision and recall are widely used to assess
the number of false positives and false negatives, respectively.
However, depending of the application, other measures might
be of interest, such as the proportion of observations correctly
classified (accuracy), the proportion of observations misclassified
(error), or the proportion of negatives that are correctly identified
(specificity). Often, it is difficult to compare two models with
low precision and high recall or vice versa. To make them
comparable, the F1 score, which is the harmonic mean of the two,
is often used in practice. Murphy (2012, p. 181) presents a more
in-depth discussion of classification measures.

Morrison (2011b) explains the downside of using measures
such as classification accuracy and error by pointing to the
fact that thresholding probabilities to assign class membership
to an object lose important information regarding the strength
of the evidence in favor of each class. By working directly
with the LRs corresponding to each class, one can preserve the
strength of evidence in favor of each proposition. As such, we
include another classification performance indicator based on
the log likelihood ratio cost, which was proposed in the forensic
sciences—the Cllr (Morrison, 2011b; Ramos et al., 2018). This
metric is implemented in the R package comparison (Lucy,
2013).

The formula for Cllr is as follows:

Cllr =
1

2





1

N1

N1
∑

i=1

log

(

1+ 1

LR1i

)

+ 1

N2

N2
∑

j=1

log
(

1+ LR2j
)





(14)

where N1 and N2 represent the number of positive (Category
1) and negative (Category 2) sample comparisons, respectively,
and LR1 and LR2 are the likelihood ratios derived from test pairs
known to be of positive and negative origin, respectively.

2.7.1. Cross-Validation

While in the previous section we described various classifiers
and presented some measures of tracking how good a classifier
is, in this section we describe how to design a comparison

TABLE 2 | Classification performance measures and corresponding formulae and

descriptions for metrics based on the confusion matrix and the Cllr , a log

likelihood ratio cost metric defined in Equation (14).

Measure Formula Description

Precision
TP

N̂+
Measures what proportion of the detected

values are actually positive. A model that

produces no false positives has a precision of

1.

Recall
TP

N+
Also called true positive rate or sensitivity. It

measures what proportion of the positives were

actually detected. A model that produces no

false negatives has a recall of 1.

Specificity
TN

N−
Also called true negative rate. Measures the

proportion of negatives that are correctly

identified by the model.

Accuracy
TN + TP

N
Rate of correctly classified observations—how

many observations were detected correctly out

of both classes combined. Best value is 1,

worst value is 0.

Error
FP+ FN

N
Rate of incorrectly classified observations

(classification error)—how many observations

(either positive or negative) were incorrectly

classified. Best value is 0, worst value is 1.

F1
2 · Recall · Precision
Recall + Precision

The harmonic mean of the precision and recall

measures, and it is often used in cases with

low prevalence by penalizing extreme values.

Best value is 1, worst value is 0.

Cllr see Equation (14) Log likelihood ratio cost. Lower values indicate

better performance.

study between multiple algorithms using cross-validation. Cross-
validation can be employed to avoid biased estimates and
overfitting issues due to training and testing a classifier on the
same dataset. In practice, the most common problems are either
the lack of future data (for which the label has to be predicted) or
small sample size datasets, which one would ideally use to their
fullest capacity to train a classifier (Murphy, 2012).

Cross-validation provides an answer to this problem by
partitioning data into a training set, which is used for fitting the
models, and a test set, which is used for predicting the class labels
and obtaining the performance measures (or prediction error,
or any sort of indicator of goodness-of-fit for the models). The
partitioning of the dataset is repeated in all possible ways, making
sure that the same observation is not included for testing and
training at the same time. Ultimately, the cross-validation goal is
to obtain an out-of-sample prediction error for each algorithm,
and this is done by averaging the classification error or measures
considered over all repetitions. More details and discussion about
cross-validation can be found in Venables and Ripley (2013),
Murphy (2012), and Gelman et al. (2013).

One of the downsides of cross-validation is that it can get
computationally expensive depending on the size of the dataset
and the number of models included in the comparison, and a few
variations of this procedure have been proposed to address this.
Commonly used cross-validation procedures include exhaustive
and non-exhaustive methods, based on whether they use all
possible ways to split the dataset into training and testing sets or
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not. It should be noted that, in the latter case, the average score
produced is an approximate cross-validation score.

Examples of commonly used cross-validation procedures
include:

• leave-p-out cross-validation: p observations are used as a
testing set and the remaining as the training set. This
procedure is repeated in all possible ways of choosing p
observations out of the total sample size, and, as expected,
becomes unfeasible for even moderately large datasets (there
are Cn

p ways to choose p observations from a dataset of size n).
• k-fold cross-validation: the dataset is partitioned into k subsets

of equal size, one of them being used for testing the algorithms,
while the other k − 1 being used for training. This is repeated
such that each fold, and thus each observation, is used once for
testing the models.

In this paper, we use a slightly different cross-validation
procedure, due to the fact that some methods investigated
(combining LRs using logistic regression fusion) involve multi-
step estimation procedure and require the estimation of
additional parameters. These parameters should ideally be
estimated using data that is neither part of the training, nor
testing sets—a further split, forming a validation set can be used
in this scenario.

2.8. Data
The alcohol biomarker dataset published in Alladio et al.
(2017a) presents concentration values of a series of direct
and indirect biomarkers of ethanol consumption from 125
individuals classified as either chronic (positive) of non-chronic
(negative) alcohol drinkers.

Indirect biomarkers, collected from blood, are as follows:
aspartate transferase (AST), alanine transferase (ALT), gamma-
glutamyl transferase (GGT), mean corpuscular volume of
the erythrocytes (MCV), and carbohydrate-deficient-transferrin
(CDT).

Direct biomarkers, collected from hair samples, are the
following: ethyl glucuronide (EtG; pg/mg) and the sum of the
concentrations of four Fatty Acid Ethyl Esters (FAEEs), mainly
ethyl myristate (E14:0), ethyl palmitate (E16:0), ethyl stearate
(E18:1), and ethyl oleate (E18:0). Bodymass index (BMI) was also
collected as a potential factor.

This dataset is displayed in Figure 2 in the form of bivariate
scatterplots of these eight variables, where the points are
colored according to the alcohol drinking chronic status. Not
in particular how in the scatterplot of FAEEs and EtG perfect
separation of the positive and negative classes is achieved. While
this kind of pattern is often what is needed to achieve a good
classification model, this also indicates that a logistic regression
model will most likely experience estimation problems and
will be unable to provide reliable LR estimates, as discussed
in section 2.2.

3. RESULTS

In this section we present a comparison of the methods
introduced in section 2, using the alcohol biomarkers dataset
presented in section 2.8.

Our goal is to demonstrate how separation can be identified
and to present alternatives that can be used in practice. These
alternatives are penalized logistic regression models, presented
in section 2, and can be used both in a classification scenario,
using the variables directly, or in a fusion scenario, using the
scores of the variables. Lastly, we demonstrate how to run
a comparison study when various classification or LR-based
methods are available.

3.1. Case Study: Alcohol Biomarkers
Dataset
In section 2.8, we observe that separation is occurring in the
alcohol biomarkers dataset just through visual inspection of plots.
However, it is important to know that separation can be more
difficult to identify visually when the dataset has a large number
of variables and a linear combination of some variables perfectly
separates the categories in the data. In this scenario, separation
can be detected by inspecting the model estimates for infinite
values or any unusual numbers.

For example, a first attempt at fitting a logistic regression
model for the alcohol biomarkers dataset fails when using the
glm function in R. This is due to the unusually large standard
errors, which can be seen in Table 3.

In contrast, the results from penalized logistic regression
models shown in Table 4 indicate that more sensible
coefficient estimates and standard errors can be obtained
using these methods.

The three logistic regression methods discussed in this
paper—Firth GLM, Bayes GLM, and GLM-NET—can be used
both as classification methods, by using the explanatory variables
directly, or within a fusion model (as discussed in section 2.6),
where the goal is to combine LRs or scores from different sources.

The rest of this section contains results of a comparison
study between the different LR based and classification methods
presented in section 2.

As discussed in section 2.7.1, cross-validation should be
employed when carrying out a comparison study or when
assessing the prediction performance of a model, as this can lead
to overly optimistic performance estimates.

For the alcohol biomarkers dataset, which comprises of 125
observations, the dataset is randomly split such that 50% of
observations are assigned to the training set, 40% to the validation
set and 10% to the testing set. For classification methods, which
do not require a multi-step estimation procedure (which happens
for LR fusion methods), both the training and validation sets are
used to train the classifier, thus ensuring that all the data not in
the testing set is used in the fitting procedure to train the model.
The split and data allocation is repeated ncv = 50 times, and
then averages of the performance measures listed in Table 2 are
computed for each algorithm. It should be noted that the results
provided using this method are approximate cross-validation
scores (since we do not calculate all possible ways to allocate the
data), and, due to the Monte Carlo nature of the procedure, the
results will be different when the analysis is repeated (unless the
random seed generator is saved in advance).

The results in Table 5 present cross-validation averages of
the various classification performance metrics introduced in
section 2.7. On average, all the methods have an accuracy of
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FIGURE 2 | Alcohol biomarkers dataset, with the color indicating the drinking status of the individuals: red is Negative (not chronic) and blue is Positive (chronic). The

upper diagonal panels display the correlation of variables for the whole data but also separately for each class. Diagonal panels show densities of the data by class,

while lower diagonal panels show bivariate scatterplots with points colored according to drinking status.

TABLE 3 | Logistic regression model coefficients and standard errors, estimated for the alcohol biomarkers dataset, using a logistic regression model implemented in the

glm function in R.

Intercept FAEEs EtG AST ALT GGT MCV CDT BMI

Coefficient −80.353 30.792 2.654 −0.127 −0.197 0.210 0.055 0.246 −0.605

Std. error 2052282.3 75446.6 1899.5 3436.1 2338 1322 30217.2 62386.2 30617.7

Notice the extremely large standard errors which make it impossible to make further inferences using this model in practice. This model output is to be expected in the presence of

separation.

over 85%, indicating a high probability that individuals will be
correctly classified as chronic or non-chronic alcohol drinkers,
when the decision-making is based on a threshold of 0.5 for
the predicted probability. Figure 3 shows boxplots of all the
classification metrics, which gives us an idea of how much
variability in the estimates was observed in over the 50 cross-
validation datasets. These results indicate that fusion methods
based on the Firth GLM model implementation have a larger
variability compared to the rest, indicating this method is not
as reliable in practice. We experienced some problems with the
convergence of the algorithm as implemented in the brglm2
package (Kosmidis, 2020) in four out of the total of 50 dataset in

the cross-validation scheme; however, the other implementation
of Firth GLM in the R package logistf (Heinze and Ploner,
2018) performed even worse, with more than half of the models
returning convergence warnings.

The best classification performance, based on the average
Cllr, accuracy, and precision is achieved by the fusion GLM-
NET model using kernel density estimation for the scores
(see Table 5). Figure 3 shows boxplots of all the classification
metrics, which gives us an idea of how much variability
in the estimates was observed over the 50 cross-validation
datasets. These results indicate that fusion methods based on
the Firth GLM model implementation have a larger variability
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TABLE 4 | Coefficients and standard errors, estimated for the alcohol biomarkers dataset, using penalized/Bayesian logistic regression models: Firth GLM ran using the

glm function in the R package brglm2, Bayes GLM ran using the bayesglm function in the R package arm and GLM-NET ran using the glmnet function in the R

package glmnet (standard errors are not provided by default in the glmnet package; however, they can be estimated using bootstrapping; the dots indicate variables

that have been dropped from the model).

Intercept FAEEs EtG AST ALT GGT MCV CDT BMI

Firth

Coefficient 0.171 3.053 0.185 0.118 0.014 −0.020 −0.057 −1.087 −0.162

Std. error 9.015 1.365 0.063 0.087 0.028 0.021 0.076 0.844 0.240

Bayes GLM

Coefficient −10.581 3.129 0.279 0.010 −0.003 0.004 0.004 0.434 −0.032

Std. error 12.200 1.441 0.101 0.115 0.045 0.027 0.114 1.605 0.22

GLM-NET

Coefficient −11.191 4.25 0.298 . . . . . .

These methods provide sensible model coefficients and standard errors making them the preferred option for further inferences such as obtaining LRs or prediction for new data.

TABLE 5 | Classification performance measures for the alcohol biomarkers dataset using penalized Gaussian LR methods, penalized kernel density estimate LR methods

and classification methods.

Gaussian LR Kernel density estimate LR Classification

Firth GLM-NET Bayes GLM Firth GLM-NET Bayes GLM LDA QDA Firth

Precision 0.712 0.980 1 0.838 1 0.990 1 0.914 0.990

Recall 0.595 0.897 0.934 0.839 0.948 0.934 0.852 0.978 0.920

Specificity 0.934 0.996 1 0.936 1 0.999 1 0.967 0.998

Accuracy 0.857 0.975 0.987 0.917 0.993 0.989 0.966 0.970 0.981

F1 0.763 0.972 0.984 0.839 0.993 0.977 0.943 0.934 0.959

Error 0.143 0.025 0.013 0.083 0.007 0.011 0.034 0.030 0.019

Cllr 1.790 0.293 0.271 0.382 0.080 0.098 0.300 0.580 0.244

Results consist of averages obtained from cross-validation using ncv = 50 datasets and a classification threshold value of 0.5 for the probability (corresponding to 1 for the LR) for

obtaining the confusion matrix. Based on the best values across all performance measures (shown as bold values), the best performing method is GLM-NET using KDE estimation.

compared to the rest, indicating this method is not as reliable
in practice.

GLM-NET with KDE LR estimation has an average precision
and specificity rate of 100% meaning no non-chronic individuals
get labeled as chronic, when the decision-making is based on
a threshold of 0.5 for the predicted probability. Furthermore,
the average recall rate is 94.8% which means a chronic
individual has, on average, around 5.2% probability to get
misclassified as a non-chronic alcohol drinker, when that same
probability threshold of 0.5 (equivalent to an LR threshold of 1)
is used.

The results for Bayes GLM are very similar to those obtained
by GLM-NET, for both Gaussian and KDE LR estimation, while
Firth seems to be less reliable—the average Cllr is an order
of magnitude higher for both of these categories. However,
using Firth GLM as a classification algorithm is more stable,
with comparable results for precision, recall, accuracy, etc.
Interestingly, although the classification methods have a similar
performance in terms of metrics based on the confusion
matrix, their corresponding Cllr values are considerably higher
than the best LR methods (GLM-NET and Bayes-GLM using
KDE). This suggests that when an observation is misclassified,

the LR from these methods gives strong support to the
wrong proposition. The Cllr thus highlights something that
would not be obvious by looking at misclassification error
rates alone.

3.2. Shiny App
Shiny (Chang et al., 2019) is a package from R software
environment (R Core Team, 2019) that allows us to create specific
and dynamic interactive web apps. The idea to use R Shiny
for developing an open-source tool to perform data analysis
came from the necessity to allow analysts, physicians, forensic
experts, but also practitioners and laymen in the forensic sciences
fields to test, on their own data, several models and statistical
approaches aimed to perform robust and comprehensive
data evaluations.

We developed an R Shiny app to help practitioners explore
the various classification methods discussed in this paper and
hopefully apply these well-known algorithms in the statistics and
machine learning community to their own datasets.

The app includes functionality for data exploration,
classification, and LR-based methods using penalized logistic
regression models discussed in this paper.
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FIGURE 3 | Results of the comparison study between different LR-based and multivariate classification methods. Each figure shows boxplots of different comparison

metrics obtained using cross-validation from ncv = 50 datasets: precision (A), recall (B), specificity (C), accuracy (D), F1 (E), classification error (F), and Cllr (G) (as

defined in Table 2). LR methods using a Gaussian density estimation are indicated with suffix “-G,” while LR methods using KDE are indicated with suffix “-K.” LDA,

QDA, and Firth GLM have been included for comparison as classification methods.

Here are some of the R Shiny app capabilities in more detail:

• data exploration through numerical and visual summaries, see
Figure 4.

• fitting classification methods for bivariate and multiclass
datasets, such as LDA, QDA, logistic regression, Firth
GLM, and multinomial logistic regression, model summaries,
classification performance measures and visualization plots,
see Figure 5.

• fitting LR combination methods using penalized logistic
regression models, such as GLM-NET, Firth or Bayes GLM,
and LR estimation based on a Gaussian distribution or KDE,
see Figure 6 (top).

• method comparison using cross-validation based on metrics
discussed in this paper, see Figure 6 (middle).

• the user can explore and gain an understanding of these
methods using in-built datasets which are routinely used in the
machine learning community for classification and prediction.
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FIGURE 4 | R Shiny app: “Data” tab screenshots, showing (A) numerical summaries for variables in the alcohol biomarkers dataset (B) exploratory plots.
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FIGURE 5 | R Shiny app: “Classification” tab screenshots, showing (A) confusion matrix and model performance measures: sensitivity, precision, recall, etc. for the

alcohol biomarkers dataset (B) prediction table, including the predicted class and LR for each observation, and plot showing the training and predicted data.

• uploading an external dataset to run the classification or LR
combination methods, see Figure 6 (bottom).

• prediction capabilities for external data that can be uploaded
into the app, see Figure 5 (bottom).

Additional datasets available within the app are:

Iris (Dua and Graff, 2019) Contains data from three species
of iris: setosa, versicolor, and virginica. There are four
measurements collected that have been included in this
dataset: the sepal length, sepal width, petal length, and petal
width in cm. The number of observations in each class is
balanced (50 observations per class, 150 in total). It is a multi-
class dataset with 150 observations, four explanatory variables,
and one output variable.
Glass (Dua and Graff, 2019) It contains data representing
seven types of glass: building windows (float processed),

building windows (non-float processed), vehicle windows
(float processed), vehicle windows (non-float processed),
containers, tableware, and headlamps. There are nine
explanatory variables: refractive index, along with the
chemical composition measured as weight percent in
corresponding oxide, Sodium, Magnesium, Aluminum,
Silicon, Potassium, Calcium, Barium, and Iron. The dataset is
imbalanced, meaning that the 214 total observations are not
distributed equally across the seven classes.
Diabetes (Dua and Graff, 2019) This dataset contains
measurements of 768 females over 21 years old of Pima
Indian heritage, collected with the goal of predicting whether
a patient has diabetes (this represents the class variable). The
variables collected are: the number of times pregnant, plasma
glucose concentration a 2 h in an oral glucose tolerance
test, diastolic blood pressure, triceps skin fold thickness, 2-h
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FIGURE 6 | R Shiny app: “Likelihood ratio” tab screenshots, showing in (A) model comparison based on LR combination methods (Firth and GLM-NET) and regular

classification methods such as LDA and QDA, in (B) summary of performance measures for method comparison, in (C) prediction table based on the Bayes GLM

method with scores estimated using KDE, including the predicted class and LR for each observation in the uploaded dataset.
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serum insulin, bodymass index, age, and the diabetes pedigree
function.
Diamonds (Wickham, 2016) Contains 10 variables recorded
for different types of diamonds: price, carat, length, width,
depth, total depth percentage, and the width of the top of
the diamond relative to the widest point. There are three
categorical variables in this dataset describing the quality of
the cut (Fair, Good, Very Good, Premium, and Ideal), the
diamond color (from J–worst to D–best), and the clarity (I1–
worst, SI2, SI1, VS2, VS1, VVS2, VVS1, and IF–best). There
are 53,940 observations in this dataset.

The Shiny app is free to use and can be found at
the following link: https://dianagiurghita.shinyapps.io/
ForensicClassification/

4. DISCUSSION

LR-based methods, such as logistic regression fusion (Morrison,
2011b, 2013) and classification methods such as LDA and QDA
are attractive to forensic experts because they allow them to carry
out a rigorous, sound statistical analysis. Furthermore, these
methods allow experts to present to the courtroom a likelihood
ratio, which can easily be put into a statement to convey the
strength of the evidence obtained from their analysis for various
hypotheses of interest in a case.

In this paper, we present a framework for classification based
on penalized logistic regression methods: Firth GLM, Bayes
GLM, and GLM-NET. These algorithms are widely known and
used in the statistics and machine learning communities as
algorithms that can accommodate a large number of explanatory
variables, sparse datasets, and correlated variables and can deal
with separation or quasi-separation in the data; however, they
seem to be less known outside these circles. These methods
should be regarded as an extension to logistic regression and
logistic regression fusion since they accomplish the same role—
they perform classification, prediction, and return LRs—but
they have built-in mechanisms to deal with some common
estimation problems.

Another extension we provide in this paper is in the context
of fusion of LRs: to this end, we present kernel density estimation
as an alternative to the widely used Gaussian distribution
approximation. This is suitable in situations when the underlying
data is multi-modal or not particularly symmetric or bell-shaped.

We demonstrate the use of these penalized logistic regression
algorithms on an alcohol biomarkers dataset which includes
direct and indirect biomarkers for the identification of chronic
alcohol drinkers. These two categories of alcohol drinkers
(chronic and non-chronic) can be perfectly separated by two
variables in the dataset, and we indicate how to recognize that
estimation fails in such scenarios using a logistic regression
model. Furthermore, we present a comparison study using
the penalized logistic regression model framework proposed in
section 2. The best model based on Cllr, accuracy and precision
is GLM-NET using KDE estimation for LRs, with Bayes-GLM
providing similar performance. We find that models based on
Firth GLM are less reliable and this can be due to a mixture of
factors, including the software implementation being unstable
and the choice of penalty involving a prior that is too weak (as
pointed out in Gelman et al., 2008).

Lastly, we hope to encourage practitioners to learnmore about
these methods and apply them when necessary and, to this end,
we have built a user-friendly R Shiny app that is freely available
and very comprehensive. The app includes all the methods
presented in this paper and has in-built datasets that allow users
to explore and get a better understanding of penalized logistic
regression models.
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