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Abstract The adult mammalian brain is mainly composed of mature neurons. A limited amount

of stem cell-driven neurogenesis persists in postnatal life and is reduced in large-brained species.

Another source of immature neurons in adult brains is cortical layer II. These cortical immature

neurons (cINs) retain developmentally undifferentiated states in adulthood, though they are

generated before birth. Here, the occurrence, distribution and cellular features of cINs were

systematically studied in 12 diverse mammalian species spanning from small-lissencephalic to large-

gyrencephalic brains. In spite of well-preserved morphological and molecular features, the

distribution of cINs was highly heterogeneous, particularly in neocortex. While virtually absent in

rodents, they are present in the entire neocortex of many other species and their linear density in

cortical layer II generally increased with brain size. These findings suggest an evolutionary

developmental mechanism for plasticity that varies among mammalian species, granting a reservoir

of young cells for the cerebral cortex.

Introduction
Structural changes occurring in the adult brain are important for physiological plasticity (adaptation

to changing environment), protection against age-related dysfunction (e.g., dementia), and possibly

brain repair (Martino et al., 2011; Bond et al., 2015; Bao and Song, 2018). Brain structural plastic-

ity consists of synaptic plasticity (synapse formation/elimination; Forrest et al., 2018) and genesis of

new neurons driven by neural stem cells (Aimone et al., 2014; Lim and Alvarez-Buylla, 2016). The

latter process, known as adult neurogenesis, is widely present in the brain of non-mammalian verte-

brates (including most of the telencephalon; Ganz and Brand, 2016) and becomes spatially

restricted to a few, subcortical neurogenic niches in mammals (Bond et al., 2015; Lim and Alvarez-

Buylla, 2016; Aimone et al., 2014; Feliciano et al., 2015). Adult neurogenesis is substantially

absent in the neocortex, with only a very small amount of postnatal addition of interneurons

described in mice (Dayer et al., 2005). The highly expanded neocortex of large-brained mammals is

located far from the neurogenic sites. Additionally, the mammalian neocortex requires substantial
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structural stability, which is thought to be related to the retention of long-term memories

(Parolisi et al., 2018; Koketsu et al., 2003).

Recently, attention has been focused on a different population of cortical cells that might also be

involved in plasticity, the ‘immature’ neurons (cINs; Gómez-Climent et al., 2008; Piumatti et al.,

2018; Rotheneichner et al., 2018; Benedetti et al., 2020), which are generated prenatally, but con-

tinue to express typical markers of immaturity during adulthood, including doublecortin (DCX;

Gómez-Climent et al., 2008; Luzzati et al., 2009) and ‘polysialylated’ or ‘embryonic’ Neural Cell

Adhesion Molecule (PSA-NCAM; Seki and Arai, 1991). The cINs can progressively mature through

the lifespan, ultimately losing the markers for immaturity (Rotheneichner et al., 2018;

Benedetti et al., 2020). They are considered as a potential reservoir of young, plastic neuronal phe-

notypes (Piumatti et al., 2018; Bonfanti and Nacher, 2012; La Rosa et al., 2019), which might rep-

resent a form of slow, delayed neurogenesis (‘neurogenesis without division’) if ultimately integrated

into circuits (Rotheneichner et al., 2018; Benedetti et al., 2020; König et al., 2016). These imma-

ture cells were initially discovered in cortical layer II of the mouse and rat piriform cortex (reviewed

in Bonfanti and Nacher, 2012). While in rodents they are confined to the paleocortex (three-layered

allocortex), some mammals also host them in the neocortex (six-/five-layered isocortex;

Luzzati et al., 2009; Zhang et al., 2009; Cai et al., 2009). Current knowledge on this cell popula-

tion is fragmentary, due to the complexity of systematic studies involving large-sized and wild animal

species (Bonfanti and Nacher, 2012; La Rosa et al., 2019). The recent qualitative observation that

cINs are widespread in the cerebral cortex of sheep, a mammal endowed with a relatively large and

gyrencephalic brain (Piumatti et al., 2018), invites the hypothesis that they might be important

more generally in mammalian species with larger brain sizes than rodents’ (Piumatti et al., 2018;

Palazzo et al., 2018). To test this idea, here we systematically studied the occurrence, anatomical

eLife digest To acquire new skills or recover after injuries, the mammalian brain relies on

plasticity, the ability for the brain to change its architecture and its connections during the lifetime of

an animal.

Creating new nerve cells is one way to achieve plasticity, but this process is rarer in humans than

it is in mammals with smaller brains. In particular, it is absent in the human cortex: this region is

enlarged in species with large brains, where it carries out complex tasks such as learning and

memory. Producing new cells in the cortex would threaten the stability of the structures that retain

long-term memories.

Another route to plasticity is to reshape the connections between existing, mature nerve cells.

This process takes place in the human brain during childhood and adolescence, as some connections

are strengthened and others pruned away.

An alternative mechanism relies on keeping some nerve cells in an immature, ‘adolescent’ state.

When needed, these nerve cells emerge from their state of arrested development and ‘grow up’,

connecting with the appropriate brain circuits. This mechanism does not involve producing new

nerve cells, and so it would be suitable to maintain plasticity in the cortex. Consistent with this idea,

in mice some dormant nerve cells are present in a small, primitive part of the cortex.

La Rosa et al. therefore wanted to determine if the location and number of immature cells in the

cortex differed between mammals, and if so, whether these differences depended on brain size. The

study spanned 12 mammal species, from small-brained species like mice to larger-brained animals

including sheep and non-human primates.

Microscopy imaging was used to identify immature nerve cells in brain samples, which revealed

that the cortex in larger-brained species contained more adolescent cells than its mouse

counterpart. The difference was greatest in a region called the neocortex, which has evolved most

recently. This area is most pronounced in primates – especially humans – where it carries out high-

level cognitive tasks.

These results identify immature nerve cells as a potential mechanism for plasticity in the cortex.

La Rosa et al. hope that the work will inspire searches for similar reservoirs of young cells in humans,

which could perhaps lead to new treatments for brain disorders like dementia.

La Rosa et al. eLife 2020;9:e55456. DOI: https://doi.org/10.7554/eLife.55456 2 of 21

Research article Neuroscience

https://doi.org/10.7554/eLife.55456


distribution, morphology, protein expression profile, maturity/immaturity state, and density (linear

density: number of DCX+ cells/mm of cortical layer II) of cINs in the cerebral cortex of 80 brains

across a phylogenetic diversity of eutherian mammals (spanning three of the four mammalian super-

orders; Nishihara et al., 2009) which are widely different in their neuroanatomy (brain size, gyrence-

phaly, encephalization; Figure 1—figure supplement 1 and Supplementary file 2) and other life

history and socioecological features (lifespan, habitat, food habit).

Results
To analyse cINs in a systematic and comparable way across mammals with different neuroanatomies

and brain sizes, we identified homologous brain structures to define four correspondent, anterior-

posterior levels in each species (L1-L4; see Figure 1D and Methods). Structural plasticity is an age-

dependent process, usually decreasing over the lifespan (Ben Abdallah et al., 2010; Varea et al.,

2009). However, it is challenging to identify perfectly equivalent maturational states across a phylo-

genetically diverse sample of species (Snyder, 2019; Workman et al., 2013). There is conflicting

information about the lifespan of different species (considering average lifespan, maximum longevity

and relative age are various options; Justice et al., 2016), and it is difficult to precisely match a spe-

cific age in one species to a ‘corresponding’ age in another species (Snyder, 2019; Workman et al.,

2013). We used the average lifespan (data available in Animal Diversity Web; Myers et al., 2019,

University of Michigan); the species-typical lifespans have been split into prepuberal and adult

stages, the latter further divided into three stages: young-adult, middle age and aged (Figure 1C),

by adapting the classification of the American Veterinary Medical Association for six life stages in

dogs (Bartges et al., 2012). The main goal of our study was to investigate cINs in adults; prepuberal

stages were only considered to explore the age-related decline around puberty, as previously

described for adult neurogenesis (Ben Abdallah et al., 2010).

Characterization of DCX+ cortical neurons across mammals
Though postmortem interval (PMI; the time between death and fixation of the brain), fixation proce-

dure and other conditions can influence the detection of DCX+ cells in brain tissues, as described

for neurogenesis in the hippocampus (Chawana et al., 2020; Kempermann et al., 2018), no sub-

stantial variation was observed in our specimens in the quality and intensity of DCX staining of cINs

(Figures 2 and 3), regardless of slight differences in the fixation procedures across specimens in the

sample (Supplementary file 1). The PMI length, considered as one of the main limits to brain tissue

quality (Moreno-Jiménez et al., 2019), was generally very short (between a few minutes and 1 hr in

all specimens analysed here, apart from chimpanzee, which was less than 14 hr; Supplementary file

1). In order to confirm that we were localizing the cINs as they have been described previously in

rodents and sheep (Gómez-Climent et al., 2008; Rubio et al., 2016; Piumatti et al., 2018;

reviewed in Bonfanti and Nacher, 2012; König et al., 2016) in all species studied, unbiased by dif-

ferences in fixation procedure, we considered multiple features of this neuronal population, such as:

i) the morphology of the DCX+ cells (type 1 and type 2 cells, based on cell soma size and dendritic

arborisation); ii) the staining of other markers (PSA-NCAM, NeuN); iii) the possible co-expression

with markers for cell proliferation. In addition, we checked for the occurrence of staining for all

markers in other anatomical regions of the same animals where DCX expression is known to be at a

high level: the SVZ and hippocampal neurogenic zones (Figure 3A), and the piriform cortex (Fig-

ure 2—figure supplement 1).

The anatomical distribution of the DCX+ neurons was investigated in both paleo- and neocortex

(Figure 2B). DCX expression was consistently found in cells located in the upper part of layer II of

the paleocortex, in all the species considered, at all ages evaluated (Figure 2—figure supplement

1). In rodents (mouse and naked mole rat), only occasional DCX+ neurons were detectable in layer II

of the neocortex. In other small-brained, lissencephalic species (sengi and bats) they were also found

in the lateral part of the neocortex, with variable distribution along the brain dorsal-ventral axis. In

all other mammals in our study, DCX+ neurons were observed throughout the entire neocortex

(Figure 2B). Spatial distributions were rather similar in the different anterior-posterior brain levels

(Figure 4—figure supplement 1A).

The morphology of the layer II DCX+ cells fell into the two main types in all mammals investi-

gated, as reported previously (type 1, small cell soma, bipolar; type 2, large cell soma with ramified
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Figure 1. Sample of species, ages, and comparable brain regions (coronal levels) of the mammals used in this study (Supplementary file 1). (A, C)

Mammalian species and orders (scientific name, common name – used hereafter – and abbreviation) with special reference to their brain size and

lifespan (C, top). (B) Color code (see also Figure 4). (C, bottom), Different ages considered for each species; all groups are composed of four

individuals (apart from different specification; Supplementary file 1). (D) Four anterior-posterior brain levels, identified by comparable neuroanatomy

based on histology (example of a cat brain section in E), and correspondent mini-atlases for each animal species; representative sections within the

thickness of each level are shown. (F) Paleocortex-neocortex transition (arrowheads), identified histologically as a shift from three to six cortical layers.

Scale bars: E, 500 mm; F, 50 mm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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dendrites; Figure 2D,E; Piumatti et al., 2018; Bonfanti and Nacher, 2012; König et al., 2016).

The cell soma size range was 2–9 mm in diameter for type 1 cells, and 7–17 mm for type 2 cells

(ranges for each species in Figure 2E).

Since type 2 cells are known to be less immature than type 1 (Piumatti et al., 2018;

Rotheneichner et al., 2018), each was counted separately (Figure 2D). In all mammals considered,

type 1 cells were more abundant than type 2 cells, the latter representing 3–16% of the total DCX+

cells (apart from rodents, Figure 2E). Among rodents, mice showed the highest percentage of type

2 cells (around 40%) and naked mole rats the lowest (1–4%) (Figure 2E).

On the whole, morphology and cell type proportions of the layer II DCX+ neurons were rather

constant in the different species and ages studied, whereas their anatomical distribution in the neo-

cortex was variable across phylogeny.

Cell proliferation and degree of immaturity/maturity
We examined staining for markers of cell proliferation (Ki-67 antigen; PCNA in bats) in adult cerebral

cortex samples from each brain level, with particular reference to layer II and DCX+ neurons. In rab-

bit and sheep, bromodeoxyuridine (BrdU) was injected in adult animals to determine whether DCX+

cells could have been generated in adulthood. The periventricular (SVZ) and hippocampal (SGZ) neu-

rogenic zones were used as internal, positive controls (Figure 3A). No DCX/Ki-67 or DCX/BrdU dou-

ble-labelled cells were ever observed in the cortex of any of the species investigated (Figure 3A).

Only rare Ki-67, PCNA or BrdU immunoreactive nuclei were detectable in the cortex (with an aver-

age number of proliferating cells from 0 to 5 cells for the cortical area considered per cryostat sec-

tion analysed), never in association with DCX+ cells (Figure 3A and Figure 3—figure supplement

1). These proliferating nuclei were identified as glial cells in double staining carried out for astrocytic

and oligodendrocytic glial markers (Figure 3A; Selinfreund et al., 1991; Boda et al., 2015).

Two additional markers were used in association with DCX to assess the neuronal maturational

stage of the cINs in mouse, cat, rabbit, and marmoset (Figure 3B; Piumatti et al., 2018): PSA-

NCAM, a low-adhesive form of N-CAM widely present in neurons during the development of the

nervous system (Bonfanti, 2006) and expressed by cells retaining plasticity during adulthood

(Hoffman et al., 1982; Bonfanti et al., 1992; Bonfanti and Nacher, 2012); NeuN, an RNA-binding

protein expressed by postmitotic neurons that start differentiation (Mullen et al., 1992), which can

identify most types of mature neurons with some exceptions (Gusel’nikova and Korzhevskiy,

2015), and is expressed in type 2 cINs (Piumatti et al., 2018; referred to as ‘complex cells’ in

Rotheneichner et al., 2018).

Across the mammalian species in our sample, only 17–18% of the DCX+ cells co-expressed

NeuN, with the NeuN+/DCX+ neurons (Figure 3C) mostly characterized by the type 2 cell morphol-

ogy, in accord with previous observation in mouse and sheep (Piumatti et al., 2018;

Rotheneichner et al., 2018). About 14–39% of the DCX+ cells were immunoreactive for PSA-NCAM

(with no particular relation with cell morphology; Figure 3C).

Quantitative analysis of cortical layer II DCX+ cells across mammals
We assessed the numbers of DCX+ cells per mm of layer II perimeter (linear density: calculated in

the cerebral cortex, in paleocortex and neocortex; Figure 4—figure supplement 1B), at the four

brain levels (L1–L4) at the ages shown in Figure 1C (total number of brains analysed = 80). Linear

density was measured since cINs are arranged in a monolayer-like row within cortical layer II (hosting

all DCX+ cells of the cortex). Such density, calculated on the real cortical layer II length measured in

entire brain coronal sections (highly varying in different species and ages), represents a comparable

value, allowing inferences across different mammals. The total count of DCX+ cells was performed in

each coronal section (total number of sections = 960) from both paleocortex and neocortex, in

order: i) to establish in each species, the exact anatomical location of the cINs in the cortex (consid-

ering two extremes, in chimpanzees, a total of 1774.25 cm of cortical layer II were evaluated with an

average of 18.88 cm for each cryostat section, while in mice, 167.14 cm of cortical layer II were

Figure 1 continued

Figure supplement 1. Summary of the qualitative and quantitative analyses performed in this study.
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Figure 2. Occurrence, regional distribution and cell types of layer II DCX+ cells in the mammalian cerebral cortex. (A) Representative images of the

DCX+ neurons in neocortex. Scale bar: 50 mm. (B) Extension of cINs (DCX+ cells) in the cortical layer II (black line); arrowheads: paleocortex-neocortex

transition. (C,D) Cell types and morphology of cINs; (C) representative examples of type 1/type 2 cortical DCX+ neurons in different mammalian

species; scale bars: 20 mm; (D) Counting of type 1 and type 2 cells (pie charts showing the percentages in E, bottom). (E, top) Cell soma diameters

(expressed as min/max range) of the DCX+ cortical cells in each species.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Representative images of DCX+ neurons in the paleocortex of different mammal species.
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Figure 3. Detection of markers for cell division and neuronal maturity/immaturity in cortical layer II of adult mammals. (A) Cell proliferation visualized in

neurogenic subventricular zone (SVZ) and subgranular zone (SGZ), here used as an internal control, with nuclear markers of local cell proliferation. None

of these markers were detectable in association with DCX+ immature neurons in the cortical layer II; some isolated Ki-67+ nuclei occasionally present in

cortex do not co-label with DCX, likely corresponding to glial cells (see double staining with S-100b, top right, and Olig2, bottom right). (B)

Subpopulations of DCX+ immature neurons in the cortical layer II co-express NeuN (mostly type 2 cells) and PSA-NCAM (both cell types); red arrows,

single-stained DCX+ cells; white arrows, single-stained PSA-NCAM+ cells; yellow arrows, double-stained cells. (C) Percentage of NeuN+ and PSA-

NCAM+ cells among the DCX+ cells. Scale bars: 25 mm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page
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evaluated with an average of 0.86 cm for each cryostat section; ii) to identify each cell as belonging

to either type 1 or type 2 morphology (total number of cells counted = 414.008; Figure 2D and Fig-

ure 1—figure supplement 1). The number of layer II cortical DCX+ cells was investigated in all spe-

cies for which a brain hemisphere was available from 4 individuals (n = 10 species; qualitative

analysis only was performed on two additional species: sengis and horses).

By comparing pre-puberal specimens to adult ones, in rodents a dramatic decrease in the linear

density was found (nonparametric Mann Whitney test, p<0.01; data referred to cerebral cortex;

Figure 4A). In rabbit, a slight age-related decrease was observed (nonparametric Mann Whitney

test, p<0.05), whereas in sheep no significant differences were detectable between the two age

groups. These data suggest that maturation of the cINs, while rapidly occurring at young ages in

rodents (thus eroding the reservoir of immature cells), progressively slows in a larger brained mam-

mal, the sheep, leaving a greater remaining population of immature neurons in the adult. To define

the abundance of this cINs reservoir, we quantified the cortical layer II DCX+ cells in adult specimens

from a diverse group of species (pooled across three stages: young-adult, middle age and aged;

Figure 1C). A high degree of interspecific variability in the density of cINs was found in cerebral cor-

tex, with notable differences between paleocortex and neocortex (Figure 4B). When data were

organized in two groups (Figure 1C and Supplementary file 2), to compare small (brain size range

0,5 to 12 g) to large brains (brain size range 30 to 384 g; which also have more neocortical surface;

Supplementary file 3), a significant higher density was observed in the latter group with respect to

the former (nonparametric Mann Whitney test, p<0.0001; Figure 4—figure supplement 2A). When

considering the neocortex and paleocortex separately, the same trend in DCX+ cell linear densities

was observed (see Figure 4C,D and Figure 4—figure supplement 2B,C). The linear density in pale-

ocortex was higher than in neocortex for all species (a significant correlation in densities from paleo

and neocortex was present - nonparametric Spearman correlation, p<0.001; Figure 4—figure sup-

plement 3); variation among species is more evident in neocortex (median linear density in neocor-

tex in cat is 17.58 cells/mm and in mouse 0, while in paleocortex in cat is 58.41 cells/mm and in

mouse 1.18 cells/mm; Figure 4C and Figure 4—figure supplement 2B).

To investigate if the occurrence of cINs might be linked to other species-specific factors, the lin-

ear density of DCX+ cells in cerebral cortex was correlated with encephalization quotient and life-

span, but no correlations were found (not shown). To investigate variance in density of DCX+

neurons in relation to brain weight, neocortical surface area, layer II perimeter, brain length, we per-

formed a Principal Component Analysis (PCA). The first principal component explained 78% of the

variance and the second principal component explained 19% of the variance. In particular, measures

of brain size contributed more to the loading of the first component, whereas density of DCX+ neu-

rons loaded most on the second component, showing that species grouped according to these bio-

logical features (Figure 5B and Discussion). To determine the scaling relationships in our datasets,

phylogenetic generalized least squares (PGLS) regression analysis was performed. There was a signif-

icant relationship between linear density of DCX+ neurons and species mean brain weight (adjusted

r2 = 0.618, p=0.02), with a moderate phylogenetic signal (Pagel’s lambda = 0.24) (Figure 5D).

There was also a significant relationship between DCX+ neuron density and layer II perimeter as

measured from the same brains in our sample (adjusted r2 = 0.595, p=0.03, Pagel’s lambda = 0.00).

The relationship between DCX+ neuron density and gyrification index approached significance

(adjusted r2 = 0.328, p=0.10, Pagel’s lambda = 0.00; Figure 5—figure supplement 1).

Finally, to determine whether the distribution of DCX+ immature neurons in cortical layer II might

be heterogeneous through the anterior-posterior extension of the brain, the neocortical linear densi-

ties obtained in the four coronal levels (L1-L4) were compared in each species. Two-way ANOVA

with Bonferroni post-hoc tests found no significant differences among brain levels in any species,

except for cats (lower cell density in L4: L1 vs L4: p<0.001; L2 vs L4: p<0.001; L3 vs L4: p<0.01;

Figure 4E). In a heatmap analysis, animals belonging to the same orders (chimpanzee and marmo-

set, fox and cat, mouse and NMR) were clustered together (Figure 4F).

Figure 3 continued

Figure supplement 1. Quantification of proliferating cells in upper neocortical layers (I, II, III) in mouse, NMR, marmoset, rabbit, sheep and cat

considering Ki-67+ cells/mm2 (PCNA+ cells/mm2 and BrdU+ cells/mm2 were considered in SC bat and rabbit, respectively).
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Discussion
We systematically explored phylogenetic patterns in the cIN population of mammalian brains. Our

results indicate that, in contrast to the rodents examined, there is a trend for larger, more gyrence-

phalic brains to contain higher densities of these cells across the entire neocortical mantle. The sub-

stantial homogeneity of features found for the cIN population in each species, including its

occurrence in the paleocortex of all species, the type 1 and type 2 cell morphologies and their rela-

tive percentages, the staining of additional markers for immaturity (including PSA-NCAM, a very

fragile antigen as consisting of a carbohydrate exposed on the extracellular portion of N-CAM; Bon-

fanti, 2006) and cell proliferation, and the consistency of results after checking for markers within

the internal controls (see Results, summary in Figure 5A, left, and discussion of cell densities below),

Figure 4. Quantification of DCX+ cINs density in the mammalian cortex. (A) Linear density and statistical analysis of DCX+ cells in the cerebral cortex of

four mammalian species at different ages (see color code in Figure 1B); a sharp drop between prepuberal and adult ages is detectable in rodents but

not in sheep. (B–D) DCX+ cell linear densities and statistical analysis referred to the total extension of the cerebral cortex (B) and to the neocortex (C) of

10 mammalian species (adult specimens considered – see color code in Figure 1B); a high heterogeneity is detectable from mice to cat, even more

evident when grouping small, lissencephalic and large, gyrencephalic mammals (D). (E) No main differences are detectable in the distribution/amount

of cINs among different anterior-posterior brain levels (except for cat); (F) heatmap of the distribution of linear density in different brain levels (L1-L4;

neocortex).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Quantification of DCX+ cells (linear densities in the cortical layer II).

Figure supplement 2. Quantification of DCX+ cINs density in the mammalian cortex.

Figure supplement 3. Correlation study between DCX+ cell density in paleo- and neo-cortex.
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confirm that the remarkable differences found in the anatomical distribution and amount (linear den-

sity) of this neuronal population are real interspecies differences, linked to phylogenetic variation

rather than technical issues.

Figure 5. General features of cortical immature neurons are highly preserved in mammals whereas their amount is greater in large-brained species. (A)

Some aspects, including morphology, cell types, degree of immaturity and non-proliferative activity (left), appear quite constant across the mammalian

species, whereas their extension in the neocortex (middle) and their overall amount (right) vary remarkably, increasing from small, lissencephalic to

large, gyrencephalic brains. On the right, the estimation of total number of cINs in mouse and chimpanzee calculated by multiplying the median

number of DCX+ cells in the neocortical layer II for the number of cryostat sections cut from the entire hemispheres; Supplementary file 4). (B)

Principal Component Analysis (PCA; the different species are arranged according their orders; see text). The animal species are identified by different

colours and abbreviations: CYA for Cat Young-Adult, CMA for Cat Middle Age, SYA for Sheep Young-Adult, SMA for Sheep Middle Age, PYA for

Primates Young-Adult Chimpanzee, PS for Primate (Senior) aged Chimpanzee. (C) Map of character evolution on the phylogenetic tree illustrating the

independent emergence of neocortical DCX+ neuron densities in the mammalian species considered. (D) PGLS regression showing that linear density

of neocortical DCX+ neurons covaries significantly with brain weight and layer II perimeter.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. PGLS regression analysis between layer II DCX+ neuron density and gyrification index.
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Large-brained mammals possess a far larger reservoir of cINs in their
neocortex
The linear density found in large-brained mammals (chimpanzee, fox, sheep, cat) was as much as

one order of magnitude higher in comparison to the species with small, lissencephalic brains (with

the only exception of rabbits, which are known to display unexplained high levels of structural plas-

ticity; Luzzati et al., 2003; Luzzati et al., 2006; Ponti et al., 2008). Such an increase is far more evi-

dent in the neocortex: if considering an estimation of the absolute number of cINs, a nearly 2

million-fold difference emerges between mouse and chimpanzee (Figure 5A, right, and

Supplementary file 4). The residual variance in these relationships may be due to differences in vari-

ous factors that we were not able to control in the sample, such as rearing history or lifestyle of the

animals (e.g., captivity or wild). Our current results, nevertheless, demonstrate that mammals show

considerable variability in numbers of cINs across their cerebral cortices and that densities tend to

generally be associated with brain size. The finding of a greater immature neuron population present

in the neocortex of some large-brained mammals reveals a reservoir of undifferentiated cells in an

expanded brain region characterized by higher computational capacities (Roth and Dicke, 2005;

Roth, 2015; Zilles et al., 2013). The occurrence of more inter-individual variations in large-brained,

gyrencephalic mammals suggests that having a greater reservoir of cINs might favor the possibility

of their modulation through life. Future studies focused on single species involving groups of animals

kept in different, highly controlled, environmental conditions for long periods of time are required

to reveal if external factors can modulate the population (reservoir) of cINs in individuals.

No correlations emerged by considering lifespan or categorical aspects of ecological specializa-

tions, such as habitat or dietary preferences. Considering parameters linked to brain size and allome-

tric scaling, PCA confirmed that species tend to be clustered along two main axes of variance that

separate on the basis of brain size measures and cIN density, respectively (Figure 5B). In addition,

PGLS regression analysis indicates that linear density of DCX+ neurons covaried with brain weight,

layer II perimeter, and gyrification index (Figure 5D). The fact that cINs appear to increase signifi-

cantly in association with mammalian brain size among phylogenetically divergent taxa such as pri-

mates, artiodactyls, and carnivores suggests the independent evolution of this phenotype.

The general features and intracortical distribution of cINs are quite
constant in all species
Aside from their cortical distribution (in terms of anatomical distribution within the entire neocortex

of each species) and density, other features of the cINs investigated here (morphology, occurrence

and relative amount of cell types, degree of maturity/immaturity, non-proliferative state) were sub-

stantially similar regardless of the species considered (Figure 5A, left). Even the spatial distribution

within the cortex (considering the anterior-posterior brain levels in the neocortex of each species);

Figure 5A, left), showed no substantial variation, thus indicating that there is not likely a strong link

between occurrence of cINs and specific functional cortical areas. In a heatmap analysis cats were

the only species to show minor differences among anatomical levels that we sampled in the brain,

the disparity being limited to a drop in cell density in the occipital region (Figure 4E,F). Finally, no

substantial differences in cIN density and distribution were found by comparing species with five-lay-

ered (e.g., sheep, which lacks layer IV and is generally accompanied by expansion of layers II and III;

Cozzi et al., 2017), and six-layered cortex (the remaining species). Accordingly, supragranular layer

II (but not layer IV) persists through the evolution of the mammalian brain independently of the orga-

nization of the cortex in five or six layers (Cozzi et al., 2017).

On the whole, the analyses carried out in the present study indicate that cINs are a cell popula-

tion with a set of phylogenetically conserved features independent from cortical anatomy and its

functional specializations, yet, with increased distribution in mammals with enlarged neocortices.

Our results strongly suggests that this trait and the mechanisms and processes that are underpinning

it has evolved independently several times in mammals (with convergent gains and losses). Our sam-

pling regime encompassed both large and small brained species in three of the four eutherian mam-

mal superorders: Laurasiatheria, Euarchonoglires and Afrotheria, thought to have initially diverged in

the Cretaceous Period (Nishihara et al., 2009). As such, it would be of great interest to establish

whether common pathways have been selected to produce the phenotypes we observe.
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Implications for cortical structural plasticity
Whether and how the abundance of cINs in large-brained mammals could be linked to cortical func-

tion and higher-order cognitive abilities merits further investigation. The complex relationship

between expansion of the brain and the increase of computational capabilities remains to be under-

stood (Healy and Rowe, 2007). Nevertheless, the overall phylogenetic distribution of cINs suggests

reconsideration of the mechanisms of plasticity in large-brained mammals. The mammalian brain has

low capacity for cell renewal, with most neurons being lifelong, mature elements. The exception rep-

resented by adult stem cell niche-depending neurogenesis is spatially restricted (Bond et al., 2015;

Bao and Song, 2018; Forrest et al., 2018; Lim and Alvarez-Buylla, 2016), does not serve the neo-

cortex and is thought to be reduced in large-brained species (Sanai et al., 2011; Paredes et al.,

2016), the issue being still debated for the hippocampus (Kempermann et al., 2018; Petrik and

Encinas, 2019). The cINs, as a special type of undifferentiated cells generated before birth but

retaining molecular profiles of immaturity (Bonfanti and Nacher, 2012; König et al., 2016), share

features with very young, highly plastic neurons which are still capable of remarkable structural

changes (i.e. newborn neurons; Bonfanti and Nacher, 2012; Brown et al., 2003). We suggest that

cINs may serve as an important reservoir of undifferentiated cells in large-brained mammals. The rel-

ative occurrence of elements showing higher or lesser degrees of immaturity on the basis of their

morphology and cell marker expression (as previously described by Piumatti et al., 2018;

Rotheneichner et al., 2018; Benedetti et al., 2020), further supports this view: type 2 cells (the less

immature elements; Piumatti et al., 2018; Rotheneichner et al., 2018) were abundant in mice (ani-

mals with short lifespan and fast metabolism), whereas type 1 were more prevalent in naked mole

rats (neotenic mammals retaining features of immaturity for their extended lifespan; Penz et al.,

2015); all other species retain substantial amount of type 1 cells even at advanced ages. Type 1 cells,

as highly immature neurons (Piumatti et al., 2018; Rotheneichner et al., 2018; Benedetti et al.,

2020), might retain a phenotype that permits a form of plasticity in large expanded (relatively ‘sta-

ble’) neocortices in terms of disposable undifferentiated cells. In that sense, cINs should not be con-

sidered as an alternative to canonical neurogenesis, rather a parallel form of plasticity providing

undifferentiated neurons, in the absence of cell division, in a region of the mammalian brain of

utmost importance for cognition, not endowed with much capacity for neurogenesis in adulthood.

According to a recent theory on the origin of the neocortex (Aboitiz and Montiel, 2015), neurogen-

esis persists in evolutionary ‘old parts’ of the mammalian brain linked to olfaction (archicortex: olfac-

tory bulb and hippocampus), which were of paramount importance in ancient mammals. These

systems were subsequently replaced/integrated by the expansion of the isocortex as a ‘multimodal

interface’ for behavioral navigation based on other sensory modalities (vision and audition) recruited

into the expanding neocortex and contributing to multimodal association networks (Aboitiz and

Montiel, 2015). As a result, larger mammalian brains are more composed of cortex, ranging from

under 20% in relative volume in rodents to over 80% in humans (Hofman, 1989). In this evolutionary

context, the cINs might represent an option for providing a reservoir of undifferentiated neurons in

a brain structure not served by adult neurogenesis.

It is poorly understood why these cells are restricted to layer II. Superficial layers (II and III) are

involved in integrating corticocortical information and in associative learning, with respect to deep

cortical layers mainly linked to subcortical structures. Accordingly, the proportion of cortex they

occupy is largest in primate species and smallest in rodents, indicating difference in importance

devoted to corticocortical connectivity across mammals (Hutsler et al., 2005). In addition, neocorti-

cal histological organization develops in a sequence with pyramidal neurons of the deepest layers

generated first and neurons exiting the stem cell pool later migrating to the more superficial layers

(McConnell, 1995), a feature possibly linked to an extended maturational time of large brains.

Finally, under the profile of their evolutionary origin, upper layers of the neocortex are thought to

come through co-option of the olfactory cortex (Luzzati, 2015). On these bases, superficial layers

might be more suitable to retain a reservoir of undifferentiated, plastic cells with respect to lower

layers more specialized to host extracortical projection neurons.

In conclusion, during evolution, the expanded neocortices of large-brained species might have

adopted cINs as a reservoir of young cells compatible with their substantial stability and reduced

capacity for neurogenesis, independent from singular functional specializations. The persistence of a

significant population of immature cells could be part of a neocortical architecture shared by
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phylogenetically divergent species as a developmental correlate of brain enlargement. The immature

neuron population revealed here might represent one of the anatomical substrates of the so called

‘brain reserve’ or ‘cognitive reserve’ which is thought to allow the maintenance of efficient cognitive

functions throughout life and to exert a protective effect against aging (Stern, 2017; La Rosa et al.,

2019). Accordingly, the cIN population might be also important in the progressive maturation of

cortical circuitries during postnatal and young ages. The occurrence and distribution of cINs in

humans, as well as their possible modulation by physiological and/or environmental conditions in ani-

mal models or postmortem human brain tissue, are worthwhile of further investigation. The preva-

lent occurrence of such a reservoir in neocortices of large-brained mammals will represent a great

challenge for future studies.

Materials and methods

Brain sample
Brains used in this study were collected from various institutions and tissue banks, all provided by

the necessary authorizations (see below and Supplementary file 1). All experiments were conducted

in accordance with current EU and Italian laws.

Four prepuberal, four young adult, four middle age and four aged mice were analysed. Perfusion

was performed under anesthesia (i.p. injection of a mixture of ketamine, 100 mg/kg, Ketavet,

Bayern, Leverkusen, Germany; xylazine, 5 mg/kg; Rompun, Bayer, Milan, Italy; authorization of the

Italian Ministry of Health and the Bioethical Committee of the University of Turin; code 1112/2016-

PR - courtesy of Annalisa Buffo) and brains were postfixed for 4 hr.

Four prepuberal naked mole rat brains were extracted a few minutes following euthanasia in

accordance with Schedule 1 of the Animals (Scientific Procedures) Act 1986, and fixed by immersion,

while four young-adult and four middle age specimens were perfused. All brains were postfixed

overnight.

Four prepuberal and four young-adult female rabbits were used. Rabbits received one daily injec-

tion of BrdU (Sigma; 40 mg/Kg) for 5 consecutive days and then were killed 10 days after the last

injection. Animals were deeply anesthetized (ketamine 100 mg/kg - Ketavet, -and xylazine 33 mg/

kg body weight - Rompun) and perfused with fixative (Italian Ministry of Health, authorization n. 66/

99-A). Tissues were postfixed for 6 hr.

WE bats were captured in Nairobi, Kenya, and SC bats were captured in Kampala, Uganda. Per-

mits and licenses were granted by the National Museums of Kenya and the Uganda National Council

of Science and Technology (No. 024/07/1). Animals were trapped during night and kept in cages for

1–3 days before perfusion. They were deeply anaesthetized with sodium pentobarbital (Nembutal,

60 mg/ml; 50 mg/kg) and perfused. Brains were removed and postfixed for 2–18 days. The actual

ages of the animals are not known, but they were aged as adults on the basis of the following crite-

ria: the closure of the femoral and humeral epiphyseal plate, the body weight, the forearm length

and sexual maturity (evidence of lactation or pregnancy in female and testis size in male;

Gatome et al., 2010).

Eastern rock sengis were caught in Sherman life traps at the Goro Game Reserve, Limpopo Prov-

ince, South Africa (Permit 0089-CPM-401–00004, CITES and Permit Management Office, Depart-

ment of Environ- mental Affairs, Limpopo Province). Tissues were harvested from animals euthanized

under projects in accord with the ethics guide-lines of South Africa (University of Pretoria Clearance

EC028-07) and the guidelines of the American Society of Mammalogists. Animals were trapped dur-

ing night and, the next day, they were deeply anesthetized with pentobarbital (50 mg/kg), perfused

and post-fixed for 24 hr (Slomianka et al., 2013).

Marmoset brains were extracted 1 hr after death and post-fixed for 3 months. The exact ages of

the animals are unknown; they were aged as adults by experienced veterinarians, as described for

bats.

The foxes were euthanized with 5% sodium-thiopental, decapitated and perfused with fixative.

Brains were dissected and postfixed in changes of fixative for 3–7 days. Experiments were con-

ducted following the international guiding principles for biomedical research involving animals devel-

oped by the Council for International Organizations of Medical Sciences (CIOMS) and were also in

compliance with the laws, regulations, and policies of the ‘Animal welfare assurance for humane care
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and use of laboratory animals,’ permit number A5761-01 approved by the Office of Laboratory Ani-

mal Welfare (OLAW) of the National Institutes of Health, USA (Huang et al., 2015).

Four prepuberal and four young-adult sheep were perfused. The brains were dissected out, cut

into blocks and post-fixed in the same fixative for 48 hr. Two years old animals received four intrave-

nous injections of BrdU (1 injection/day, 20 mg/Kg in 0.9% saline; Sigma-Aldrich, France;

Piumatti et al., 2018; Brus et al., 2013). Three different survival times were analyzed: 1, 2 and 4

months (maturation time for neuroblasts in sheep is 1–4 months; Brus et al., 2013). Four middle age

animal brains were collected 20 min after death, fixed and kept in fixative for 1 month.

Four young-adult and four middle age cats, and two adult horse brains were extracted post-mor-

tem (the PMI was less than 1 hr for cats and between 2 and 20 min for horses), fixed and kept in the

fixative solution for a 1 month (cat) and 3 months (horse).

Four young-adult and four aged chimpanzee brains from the National Chimpanzee Brain

Resource (www.chimpanzeebrain.org) were used. Within 14 hr of each subject’s death (body refrig-

erated soon after death), the brain was removed, immersed in 10% formalin and fixed for 10–14

days. The specimens were collected post-mortem from zoos and primate research centers, main-

tained in accordance with each institution’s animal care guidelines (Schenker et al., 2010).

Tissue processing for histology and immunohistochemistry
The whole brain hemispheres were cut into coronal slabs (1–2 cm thick). The slabs were washed in a

phosphate buffer (PB) 0.1 M solution, pH 7.4, for 24–72 hr (on the basis of brain size) and then cryo-

protected in sucrose solutions of gradually increasing concentration up to 30% in PB 0.1 M. Then

they were frozen by immersion in liquid nitrogen-chilled isopentane at �80˚C. Before sectioning,

they were kept at �20˚C for at least 5 hr (time depending on the basis of brain size) and then cut

into 40 mm thick coronal sections using a cryostat or a sliding microtome. Free-floating sections were

then collected and stored in cryoprotectant solution at �20˚C until staining.

Sections were used for histological staining procedures and immunocytochemistry. Histological

analyses were performed on Toluidine blue - or cresyl violet - stained sections. For 3,3’-diaminoben-

zidine (DAB) immunohistochemistry, sections were rinsed in PBS 0.01 M, pH 7.4. Antigen retrieval

was performed using citric acid at 90˚C for 5 min. After further washing in PBS 0.01 M, pH 7.4, the

sections were immersed in appropriate blocking solution (1–3% Bovine Serum Albumin, 2% Normal

Horse Serum, 0,2–2%Triton X-100 in 0.01 M PBS, pH 7.4) for 90 min at RT. Following, sections were

incubated with primary antibodies (see below) for 48 hr at 4˚C. After washing in PBS 0.01 M, pH 7.4,

sections were incubated for 2 hr at RT with secondary antibodies (Anti-goat, made in horse, 1:250 -

BA-9500; Anti-goat made in rabbit, 1:250 – BA-5000; Anti-rabbit, made in horse, 1:250 – BA-1100;

Anti-mouse made in horse, 1:250 – BA-2001; Vector Laboratories, Burlingame, CA 94010). Then, sec-

tions were washed with PBS 0.01 M, pH 7.4 and incubated in avidin–biotin–peroxidase complex

(Vectastain ABC Elite kit; Vector Laboratories, Burlingame, CA 94010) for 1 hr at RT. The reaction

was detected with DAB, as chromogen, in TRIS-HCl 50 mM, pH 7.6, containing 0.025% hydrogen

peroxide for few minutes and then washed in PBS 0.01 M, pH 7.4. Sections were counterstained

with Cresyl violet, mounted with DPX Mountant (Sigma-Aldrich, 06522) and coverslipped.

For immunofluorescence staining, sections were rinsed in PBS 0.01 M, pH 7.4. Antigen retrieval

was performed using citric acid at 90˚C for 20 min. After further washes in PBS 0.01 M, pH 7.4, sec-

tions were immersed in appropriate blocking solution (1–3% Bovine Serum Albumin, 2% Normal

Donkey Serum, 1–2% Triton X-100 in 0.01M PBS, pH 7.4) for 90 min at RT. Then the sections were

incubated for 48 hr at 4˚C with primary antibodies (see below), and subsequently with appropriate

solutions of secondary antibodies for 4 hr at RT: Alexa 488-conjugated anti-mouse (1:400; Jackson

ImmunoResearch, West Grove, PA - 715-545-150), Alexa 488-conjugated anti-rat (1:400; Jackson

ImmunoResearch, West Grove, PA - 712-546-153), Alexa 488-conjugated anti-rabbit (1:400; Jackson

ImmunoResearch, West Grove, PA - 711-545-152), Cyanine 3 (Cy3)-conjugated anti-goat (1:400;

Jackson ImmunoResearch, West Grove, PA - 705-165-147), Alexa 647-conjugated anti-mouse (1:400;

Jackson ImmunoResearch, West Grove, PA - 715-605-151). Immunostained sections were counter-

stained with 4’,6-diamidino-2-phenylindole (DAPI, 1:1000, KPL, Gaithersburg, Maryland USA) and

mounted with MOWIOL 4–88 (Calbiochem, Lajolla,CA).

Primary antibodies and dilutions used for this study: goat anti-DCX (1:500–3500, Santa Cruz Bio-

technology, Santa Cruz, CA - sc-8066), mouse anti-Ki-67 (1:500–1000, BD Pharmigen - 550609), rab-

bit anti-Ki-67 (1:600–1000, Leica-Novocastra - NCLKi67p), rat anti-BrdU (1:300, AbDSerotec,
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Kidlington, UK - OBT0030), mouse anti-PCNA (1:30000, Delta Biolabs, Gilroy, Calif - DB095), mouse

anti-PSA-NCAM (1:1400, Millipore, Bellerica, MA - MAB5324), mouse anti-NeuN (1:300, Millipore,

Bellerica, MA - MAB377), rabbit anti-S100b (1:5000, Swant, Swiss Antibodies, CH - 37A); rabbit anti-

Olig2 (1:1000, Millipore, Bellerica, MA - AB9610).

Comparable neuroanatomy
The mammalian brains included in the current study differ in terms of brain size, gyrencephaly and

overall neuroanatomical organization. In order to perform comparable analyses, four correspondent

anterior-posterior, coronal brain levels (L1-L4) were designated (Figure 2B). To find the neuroana-

tomical landmarks of these brain levels in each species, the entire hemispheres were cut into 40 mm

thick coronal sections. Then the corresponding levels were defined as coronal (thick) slices involving

the same main brain structures: L1, from anterior opening of the lateral ventricle (or shift from lateral

to olfactory ventricle in rabbit and sheep) to L2; L2, from anterior starting of internal capsule to L3;

L3, from anterior starting of the claustrum and/or amygdala to L4; L4, from posterior closing of the

lateral ventricle to an extension equivalent to that of L2 (same number of 40 mm thick serial

sections).

For species in which neuroanatomy was previously described, existing atlases were used as a ref-

erence (mouse: Allen Institute for Brain Science; marmoset, chimpanzee, rabbit, fox, cat: Compara-

tive Mammalian Brain Collections; sheep: Michigan State University) then matching the brain levels

on our specimens; for the remaining species the procedure was performed by using our histologic

specimens (example given in Figure 2E). The paleocortex-neocortex (allocortex-isocortex) transition

was easily identifiable on the cresyl violet-stained sections (Figure 2F).

Image acquisition, processing and data analysis
Images were collected using a Nikon Eclipse 90i microscope (Nikon, Melville, NY) connected to a

color CCD Camera, a Leica TCS SP5, Leica Microsystems, Wetzlar, Germany and a Nikon Eclipse 90i

confocal microscope (Nikon, Melville, NY). Quantitative analyses were performed using Neurolucida

software (MicroBrightfield, Colchester, VT) on DCX-DAB stained sections. The linear density of DCX

+ cells present in layer II of the cerebral cortex was evaluated in 4 individuals of 10 species (in each

brain level, three sections were considered – one in the anterior, one in the central and one in the

posterior part). In each section, the total perimeter of cortical layer II was traced and all DCX+ cells

along its length were counted (linear density = number of cells/mm). In addition to the linear density

for the cortex, also separate densities for neocortex and paleocortex were evaluated. In the same

sections, the morphology of cINs was evaluated and the number of type 1 and type 2 cells was

counted using different markers selected from the ‘markers toolbar’ in Neurolucida software.

The cell soma size (diameter) was obtained by evaluating the width orthogonal to main axis, mea-

sured in about 100 cells for each animal species using the Neurolucida ‘measure line’ tool.

In cat, sheep, rabbit, marmoset, NMR and mouse, the number of Ki-67+ nuclei (PCNA in SC bat)

and the number of Ki67+/DCX+ double-stained cells were counted in an area corresponding to the

neocortical upper layers (I, II, III; Ki-67+ cells/mm2). For each specimen, a cryostat section from each

of the 4 brain levels was selected and, in each of them, three microscopic fields (40x magnification; 1

dorsal, 1 lateral, 1 medial along neocortical extension) were analyzed. In rabbits, the same analysis

was also performed for BrdU+ nuclei and BrdU+/DCX+ double-stained cells.

The percentage of NeuN+/DCX+ and PSA-NCAM/DCX+ double-stained cells was calculated in

cat, rabbit, marmoset and mouse by analyzing eight microscopic fields (40x magnification; 2 dorsal,

2 lateral, 2 ventral; 2 medial in the cortical perimeter) from a central section in each of the four levels

for each specimen.

All images were processed using Adobe Photoshop CS4 (Adobe Systems, San Jose, CA) and

ImageJ version 1.50b (Wayne Rasband, Research Services Branch, National Institute of Mental

Health, Bethesda, Maryland, USA). Adjustments to color, contrast, and brightness were made.

Statistical analysis
All graphs and statistical analyses were performed using GraphPad Prism Software (San Diego Cali-

fornia, USA) using different nonparametric tests: Mann-Whitney test, Kruskal-Wallis test with Dunn’s

multiple comparison post test, Two-way ANOVA with Bonferroni post-hoc test and Spearman
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correlation coefficient r. p<0.05 was considered as statistically significant. Median was used as a cen-

tral measure. Free software environment R was used to calculate and draw heatmaps and perform

PCA. In particular for the heatmap, in order to highlight similarities and differences in the linear den-

sities distributions of INs among the four neocortical layers across species, density values were trans-

formed by subtracting the mean value of each species, and pheatmap package (Kolde, 2019) was

used with correlation as parameter value for row clustering distance and column as parameter value

for scale function argument and PCA was calculated by prcomp package (Vq, 2011) with center and

scale parameters set to TRUE.

The species median DCX+ neuron densities (neocortex) were used to perform an ancestral char-

acter state reconstruction of trait evolution mapped onto the phylogeny. This was implemented in

Mesquite software, using a parsimony model. To determine the scaling relationships in our dataset

we employed PGLS regression with a likelihood-fitted lambda transformation. The species median

DCX+ neuron linear densities (neocortex) as the main variable of interest were used in these analy-

ses. The PGLS was run against three different predictors - brain weight, layer II perimeter, and gyrifi-

cation index. All data were log transformed prior to PGLS to fit power functions to linear regression,

as is standard procedure. A phylogenetic tree of the species in the sample was downloaded from

the TimeTree database (Kumar et al., 2017). All regression plots are on a log scale and show the

95% confidence intervals.
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Office, Department of Environmental Affairs, Limpopo Province (permit 0089-CPM-401-00004);

ethics guidelines of South Africa (University of Pretoria Clearance EC028-07) Marmosets: Animal han-

dling and tissue collection was conducted according to the Animal Welfare Act (AniWA) of the Fed-

eral food safety and veterinary office, Switzerland. Foxes: Council for International Organizations of

Medical Sciences (CIOMS), also in compliance with the laws, regulations, and policies of the "Animal

welfare assurance for humane care and use of laboratory animals," permit number A5761-01

approved by the Office of Laboratory Animal Welfare (OLAW) of the National Institutes of Health,

USA. Sheep: Animal care and experimental treatments complied with the guidelines of the French

Ministry of Agriculture for animal experimentation and European regulations on animal experimenta-

tion (86/609/EEC) and were performed in accordance with the local animal regulation (authorization

No. 006352 of the French Ministry of Agriculture in accordance with EEC directive). Ewes were killed

by a licensed butcher in an official slaughterhouse (authorization No. A37801). Aged sheep and

horses: the brains were collected at a local slaughterhouse. Slaughtering of horses and other species

raised for meat and/or milk production are treated according to the European Community Council

directive (86/609/EEC) concerning animal welfare during the commercial slaughtering process, and

constantly monitored under mandatory official veterinary medical care. Cats: The brains of the cats

were removed during routine diagnostic post-mortem and therefore no ethical permission is

required. Chimpanzee: all experimental procedures with postmortem chimpanzee tissue were car-

ried out according to the National Institutes of Health guidelines for animal research and were

approved by the Institutional Animal Care and Use Committee at the George Washington University

(IACUC A117).

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.55456.sa1

Author response https://doi.org/10.7554/eLife.55456.sa2

Additional files

Supplementary files
. Supplementary file 1. Animals used in this study.

. Supplementary file 2. Main information on the animal species considered in this study. Species

with lissencephalic, small-brains are shown in regular font and species with gyrencephalic, large-

brains are shown in italics.

. Supplementary file 3. Estimation of the neocortex surface area (calculated by using the median

length of the layer II perimeter multiplied for 40 mm - thickness of sections - for the number of sec-

tions of the entire hemisphere).

. Supplementary file 4. Estimation of the total number of DCX+ cells in layer II of the neocortex (cal-

culated by multiplying the median number of DCX+ cells per section for the number of sections).
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Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

For information regarding ages and socio-ecological data we used the Animal Diversity Web: Myers

P, Espinosa R, Parr CS, Jones T, Hammond GS, Dewey TA. 2019. The Animal Diversity Web. Avail-

able at: https://animaldiversity.org. Animal Diversity Web. This is also cited in the Reference list of

the manuscript.
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