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Abstract: The development of new strategies for spatially controllable immobilization has encouraged
the preparation of novel catalysts based on the organic-inorganic hybrid concept. In the present
paper, a Cu-based multi-structured silica catalyst has been prepared and fully characterized.
The inclusion of Cu(II) in β-cyclodextrins has been exploited with the double aim to stabilize
the metal and to act as a source of Cu(I) catalytic sites. Multi-technique characterization by infrared,
UV-visible, electron microscopy and X-ray absorption spectroscopies of the fresh and exhaust catalysts
provided information on the local structure, redox properties and stability of the investigated hybrid
systems. The catalytic system showed that copper nanospecies were dispersed on the support and
hardly affected by the catalytic tests, confirming the stabilizing effect of β-CD, and likely of the
N1-(3-Trimethoxysilylpropyl) diethylenetriamine spacer, as deduced by X-ray absorption spectroscopy
analysis. Overall, we demonstrate a feasible approach to efficiently anchor Cu(II) species and to obtain
a reusable single-site hybrid catalyst well suited for Cu(I)-catalyzed alkyne-azide cycloaddition.

Keywords: copper-catalysis; silica; β-cyclodextrin; organic-inorganic hybrid material;
green chemistry; diffuse reflectance UV-visible; X-ray absorption spectroscopy; infrared spectroscopy

1. Introduction

The demand for functional materials, that consist of both inorganic and organic components, is due
to their potential use as platforms for different applications [1]. The modification of the composition
on the molecular scale of hybrid materials makes them tuneable for the design of smart materials [2,3],
that can be used in catalysis [4], biochemistry [5], photochemistry [6,7] and optoelectronics [8,9]. In order
to prepare organic-inorganic hybrid systems, an efficient surface modification of the inorganic part is
required [10] and different synthetic strategies can be followed. The most used grafting procedure is
represented by physical absorption (van der Waals forces, electrostatic and hydrogen bond interactions).
However, several problems, such as inhomogeneous dispersions of the organic layer, can be observed
when weak physical interactions are present between the organic and the inorganic portions [11].
A selective covalent grafting between the organic and the inorganic components represents a valuable
alternative [11,12], preserving the structure, morphology and porosity of the supporting material [13].
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Covalent bonds generate atomic scale connections with a good control of functional groups density on
the material surface [14].

Most explored inorganic supports are mesoporous materials [15–18], polymers [19,20],
nanostructured supports [21,22], metal organic frameworks (MOF) [23], etc. [24]. Surface exposed
nucleophilic or electrophilic functions, vacant coordination sites and unsaturated functional groups can
be used as active sites for specific derivatizations [13,25]. According to the type of derivatizing agent,
the inorganic core can be grafted with three different types of molecules: small organic molecules [26],
polymeric layer [27] and oligomeric molecules [28].

Hybrid nanostructures for catalytic applications have been studied and synthesized since the
1990s and still represent a big challenge for the scientific community, merging the heterogeneous
and homogeneous worlds [29]. Solid supported catalysts show some advantages with respect to
their homogeneous counterparts, but also some disadvantages. Their insolubility allows the product
recovery, but the active catalytic species can be leached with the decrease in activity upon recycling.
On the other hand, chemical modification by ligand grafting on the surface can enhance and tune
the catalytic activity of supported metal sites [30]. The key role of the ligand is well recognized
since it can impose stereo electronic effects, modify the electronic structure of metal, and interfere
with the metal/solvent boundaries [31]. An important synthetic strategy entails the insertion of an
organic flexible spacer between the ligand and the inorganic support to increase the accessibility and
the stability of metallic sites [32]. Multidentate N-donor ligands have been largely employed in the
preparation of organic-inorganic hybrid catalysts due to their versatile coordination modes [33,34].
So far, the vast majority of these approaches relied on the use of “innocent” ligands (i.e., not involved
in any redox-activity); therefore, the metal oxidation state is assigned without complication [35].
Literature research in organic-inorganic hybrid systems for catalysis indeed revealed that in general
not-innocent ligands have not received much attention to date [36].

β-Cyclodextrins (β-CDs) can be used as carriers and stabilizers when grafted on the external surface
of inorganic supports [37]. Thanks to their ability to host and stabilize metal ions and salts [38–40],
CDs are widely exploited for the preparation of heterogeneous catalysts [21,41–44]. They can be
employed for the spatial control of the catalyst as a result of a chemical confinement of the metallorganic
species [45]. β-CDs can be directly bound on the external surface of the inorganic support [46], or they
can be bound to the inorganic surface with the interposition of organic spacers [32,47,48]. Interestingly,
CDs have been efficiently employed for coordinating Cu(II) in a sandwich-type coordinative inclusion
complex [49] and the Cu(II)-CD complex has been already employed to perform click azide-alkyne
cycloadditions [50], C-C coupling of aryl boronic acids [51] and synthesis of oxazolidinones [52].
Interestingly, the click azide-alkyne cycloaddition is known to be catalysed by Cu(I), which should be
produced in situ from the CD-Cu(II) complexes [53,54].

Herein, on the basis of our previous experience [54], we compare different covalently grafted
silica-β-CD hybrid catalysts. The work is aimed to investigate the influence of different flexible
amino-bearing spacers on the catalytic activity and efficiency of silica-CD-Cu(II) derivatives in click
azide-alkyne cycloaddition. Complementary characterization techniques (infrared, X-ray absorption
spectroscopy, TEM, UV-Vis in diffuse reflectance) were used to obtain detailed information on the surface
functionalization of the silica support, on the oxidation state, local environment and aggregation of the
encapsulated/anchored Cu species, focusing on the stability and recyclability of the prepared materials.

2. Results and Discussion

2.1. Preparation and Characterization of Silica-β-CD Derivatives

With the aim to study the influence of amino-bearing ligands in organic-inorganic silica-based
Cu(II) catalysts, six different systems were synthesised and compared (Figure 1). β-CD was directly
bound to the silica (Si-NH-CD), it was grafted through a diethylenetriamine spacer (Si-DETA-CD)
or it was grafted through different monoamino, diamino and triamino alkoxy silyl spacers to obtain
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Si-MonoAm-CD, Si-DiAm-CD and Si-TriAm-CD, respectively. The strategy focused on the use of
flexible amino spacers and for sake of comparison the amino-CD was directly bound on the silica
surface, and an amino alcohol spacer (Si-Gly-CD) was also studied.
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Figure 1. Structures of prepared silica-β-CD derivatives.

On the basis of our experience [54], as depicted in Scheme 1, the external surface of the inorganic
material (precipitated silica SIPERNAT 320—Evonik) was grafted with a thin organic layer thanks to the
beneficial effects of ultrasound (US) irradiation that maximize the grafting loading. 6I-tosyl β-CD was
the key intermediate for obtaining β-CD grafted silica (Scheme 1, procedure a), through nucleophilic
substitution of the amino group. Efficient grafting of β-CD was achieved in 4 h at 100 ◦C in a combined
microwave (MW)–US reactor. In the same way, 6I amino-6I-deoxy-β-CD was reacted with Si-Gly to
obtain Si-Gly-CD (Scheme 1, procedure b), or it was directly bound to silica, previously converted to
silica chloride (Scheme 1, procedure c). When DETA spacer was used, silica was previously converted
to silica chloride, using thionyl chloride, followed by nucleophilic substitution with DETA and 6I-tosyl
β-CD (Scheme 1, procedure d).
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Scheme 1. Synthetic scheme for the preparation of silica β-CD derivatives. Reaction conditions of
procedure (a): amino grafted silica was reacted with 6I-tosyl β-CD in DMF; procedure (b): Si-Gly was
reacted with 6I amino-6I-deoxy-β-CD; procedure (c): silica was firstly functionalized with SOCl2 and
progressively grafted with 6I amino-6I-deoxy-β-CD; procedure (d): silica was firstly functionalized
with SOCl2, progressively grafted with diethylenetriamine and 6I-tosyl β-CD.
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The loading and the identity of the synthesised silica derivatives were confirmed by
thermogravimetric analysis (TGA) and infrared spectroscopy. From the percentage weight loss
in the TGA curve, the amount of silyl amino portion and β-CD on silica surface was estimated.
To exclude loss of adsorbed solvent molecules, the selected temperature range was from 150 ◦C to
800 ◦C. Furthermore, the loss of UV absorbance of phenolphthalein (Php) when included in the β-CD
cavity was exploited to quantify grafted β-CD with unchanged inclusive properties [55]. UV spectra
of not included Php in 10.5 water solution after treatment with a weighted amount of β-CD-silica
derivatives were recorded at 553 nm and the amount of grafted β-CD was measured via interpolation
from the standard curve. As shown in Figure 2, TGA analyses of Si-Gly, Si-MonoAm, Si-DiAm
and Si-TriAm showed a high degree of derivatisation, from 6 to 12 w/w %, as reported in Table 1
(entries 2–5). The first derivative peak temperature was detected at 406 ◦C in Si-TriAm, 486 ◦C in
Si-Gly, 495 ◦C in Si-MonoAm and 314 ◦C in Si-DiAm, and profiles were consistent in all samples.
When Si-MonoAm-CD, Si-DiAm-CD and Si-TriAm-CD were analysed, 3.82% w/w, 7.66% w/w and
7.7% w/w of β-CD derivatisation were observed by TGA (34; 67, 68 µmol/g, respectively). The Php
titration showed that from 1.28% to 3.60% w/w of CD is available for making inclusion complexes (11 to
32 µmol/g). (Table 1, entry 7–9). In Si-Gly-CD, 6.08% w/w (54 µmol/g) of derivatisation was afforded by
TGA and 1.04% w/w (9 µmol/g) was registered by Php titration (Table 1, entry 10). As shown in Figure 2,
the TGA profile of Si-MonoAm-CD indicates that two degradation peaks, approximately at 360 ◦C
and 519 ◦C, are visible, as well as in Si-Gly-CD (347 ◦C and 572 ◦C). When CD is grafted to Si-DiAm,
two degradation steps are visible and are at 298 ◦C and 413 ◦C, as well as in Si-TriAm (339 ◦C and
584 ◦C). TGA profile of Si-DETA derivative shows a lower thermal stability if compared to the other
chemically modified silica (Si-Gly, Si-MonoAm, Si-DiAm and Si-TriAm). In agreement with previous
results, Si-DETA showed a certain instability when reacted with β-CD (see FT-IR description in ref
53) and herein we can confirm by thermogravimetric analysis that the use of condensation reaction
between silanol groups of the silica surface and alkoxy silane generates more stable amine-bearing
silica materials (see Supplementary Materials). To avoid the risk of chemical degradation of the solid
supported catalyst, Si-DETA was discarded.

Si-Gly-CD, Si-MonoAm-CD, Si-DiAm-CD and Si-TriAm-CD (Table 1, entries 7–10) were loaded
with Cu(II). CuSO4 was chosen as a Cu(II) source and it was loaded on silica-support-β CD derivative
in alkaline solution, obtaining blue colored catalyst.
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Figure 2. TGA profiles of organic inorganic silica derivatives. On the left: (a) silica, (b) Si-Gly,
(c) Si-MonoAm, (d) Si-TriAm, (e) Si-DiAm, (f) Si-DETA (Table 1, entry 1–5). On the right: (a) silica,
(b) Si-Gly-CD, (c) Si-MonoAm-CD, (d) Si-TriAm-CD, (e) Si-DiAm-CD, (f) Si-NHCD (Table 1, entry 6–10).
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Table 1. Synthesis of grafted silica.

Entry Product Linker Loading [w/w%] Loading [µmol/g]

1 Si-DETA -NH(CH2)2NH(CH2)2NH2 15.3 (a) 1.5 × 103 (a)

2 Si-MonoAm -(CH2)3NH2 9.19 (a) 513 (a)

3 Si-DiAm -(CH2)3NH(CH2)2NH2 12.1 (a) 543 (a)

4 Si-TriAm -(CH2)3NH(CH2)2NH(CH2)2NH2 10.36 (a) 390 (a)

5 Si-Gly -(CH2)3OCH2CHOCH2 6.13 (a) 259 (a)

6 Si-NH-CD -NH-βCD 7.12 (b)–0.68 (c) 62 (b)-6 (c)

7 Si-MonoAm-CD -(CH2)3NH-βCD 3.82 (b)–1.28 (c) 34 (b)–11.3 (c)

8 Si-DiAm-CD -(CH2)3NH(CH2)2NH-βCD 7.66 (b)–2.09 (c) 67 (b)-18.4 (c)

9 Si-TriAm-CD -(CH2)3NH(CH2)2NH(CH2)2NH-βCD 7.7 (b)–3.60 (c) 68 (b)–32 (c)

10 Si-Gly-CD -(CH2)3OCH2CHOHCH2-βCD 6.08 (b)–1.04 (c) 54 (b)–9.2 (c)

Preparation of Si-Gly, Si-MonoAm, Si-DiAm, Si-TriAm: silica powder (0.100 g), toluene (1 mL), mono and poly amino
alkoxy silane derivatives (0.040 mL), US (80 kHz, 2 h). Preparation of Si-MonoAm-CD, Si-DiAm-CD, Si-TriAm-CD:
Si-MonoAm, Si-DiAm or Si-TriAm (1 g), DMF (15 mL), 6I-tosyl-β-CD (1 g), MW/US (100 ◦C, 4 h). Preparation of
Si-Gly-CD: Si-Gly (1 g), DMF (15 mL), 6I amino-6I-deoxy-β-CD (1 g), MW/US (100 ◦C, 4 h) (a) measured by TGA;
(b) β-CD grafting measured by TGA; (c) β-CD grafting measured by PhP titration.

The prepared materials were characterized by infrared and diffuse reflectance (DR) UV-Vis
spectroscopies, to assess the molecular structure of the final products (Figure 3). The infrared spectra
of the four samples show the fingerprint modes of CD between 1500 and 1250 cm−1 (δCH and δOH
bending modes) with variable intensity and shape (Figure 3, left hand panel). The intense peak at
1664 cm−1, labeled with a star in the Figure, can be ascribed to the presence of residual DMF solvent.
The effective bonding of the functional groups is furthermore proven by the intense CH/CH2 stretching
modes (νCH/CH2) at 2928 and 2856 cm−1. These are superimposed to the broad absorption related to
hydrogen bonded -OH and -NH groups, including OH groups from the CD rings and Si-OH groups
from the silica surface [54,56]. Both Si-DiAm-CD-Cu and Si-TriAm-CD show a component around
1596 cm−1, typical of the bending mode of primary amines (δNH2), which would indicate an incomplete
reaction of the amino groups with CDs.Catalysts 2020, 10, x FOR PEER REVIEW 6 of 16 
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Figure 3. Infrared (A) and diffuse reflectance UV-Vis (B) spectra of (a) Si-Gly-CD-Cu;
(b) Si-MonoAm-CD-Cu; (c) Si-DiAm-CD-Cu; (d) Si-TriAm-CD-Cu. Before infrared measurements
samples were outgassed at 80 ◦C to remove adsorbed water and impurities. The peak labeled with *
can be related to DMF residual solvent.

Weak overtone modes of the νCH and νNH vibrations (ν0–2) can be also appreciated in the
low energy region of the corresponding DR UV-Vis spectra (Figure 3, right), which are reported
in reflectance mode (negative peaks), to avoid artefacts related to the Kubelka–Munk conversion.
Apart from sample Si-Gly-CD-Cu, which shows relatively weak peaks in the whole spectral range, the
three samples functionalized with amino groups very clearly show the typical d-d transition of Cu(II)
ions around 700 nm, though with some difference in the band width and position. In agreement with
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previous reports, this can be used as a fingerprint of Cu(II) ions stabilized in the cavity. These could be
hexacoordinated, as a result of coordination by H2O, OH/O− CD groups or extra-ligands [38] or have
lower coordination, in square planar geometry [57].

2.2. Catalytic Activity of Organic-Inorganic Silica-Supported β-CD-Cu(II)

Based on the catalytic activity of silica-supported β-CD-Cu(II) previously studied [54], as-prepared
systems were tested in alkyne-azide cycloaddition (CuAAC). The interaction between β-CD and
Cu ions could implicate the reduction of Cu(II) to Cu(I), as proved afterwards by X-ray absorption
spectroscopy (XAS, see Section 2.3). CuAAC were conducted in the absence of reducing agents and the
copper amount was assumed to be the same as measured by inductively coupled plasma (ICP) on the
Si-DiAm-CD-Cu (15.5 mg/g). The reaction between benzyl azide and phenyl acetylene was chosen as
model reaction (Scheme 2). The most active silica catalyst was proven to be Si-TriAm-CD-Cu (Table 2,
entries 6–8). It reacts efficiently not only with the model reaction but also with the more demanding
synthesis of dimer in the presence of diazide or dialkynyl derivatives, as shown in Table 3 (entries 5–6).
As depicted in Table 2, we can assume that the amino-bearing spacer can stabilize Cu(II) species and it
allows Cu ions to be more accessible.

To demonstrate the reaction applicability on different types of reagents, the most active
Si-TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions
were observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification
and interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3,
entries 5–6).
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Scheme 2. Model reaction for CuAAC of Si-Linker-CD-Cu.

Table 2. Panel test of CuAAC reaction.

Entry Catalyst Cu mol.% Yield [%] (a)

1 Si-NHCD-Cu 4 5 (b)

2 Si-DiAm-CD-Cu 4 >99 (b)

3 Si-DiAm-CD-Cu 2 65 (b)

4 Si-Gly-CD-Cu 4 45
5 Si-MonoAm-CD-Cu 4 4
6 Si-TriAm-CD-Cu 4 >99
7 Si-TriAm-CD-Cu 2 >99
8 Si-TriAm-CD-Cu 1 85

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 µL), 85 ◦C, 1 h.
(a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests conducted and reported in our
previous work [54].
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Table 3. Cu-supported catalysed CuAAC.

Entry Alkyne Azide Product Yield [%] (a)

1

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

99

2

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

99 (b)

3

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

99 (b)

4

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

99 (b)

5

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

99 (c)

6

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

Catalysts 2020, 10, x FOR PEER REVIEW 7 of 16 

 

Reaction conditions: benzyl azide (0.0676 mmol, 1 eq), phenylacetylene (1 eq), H2O:tBuOH (1:1; 500 
μL), 85 °C, 1 h. (a) Yields determined by gas chromatography–mass spectrometry (GC-MS); (b) Tests 
conducted and reported in our previous work [54]. 

To demonstrate the reaction applicability on different types of reagents, the most active Si-
TriAm-CD-Cu was tested on a small set of alkyne and azide derivatives and full conversions were 
observed with 4 or 8.7 mol.% of catalyst. The products were isolated without purification and 
interestingly, the catalyst was observed to be suitable for dimer synthesis in high yield (Table 3, 
entries 5–6).  

Table 3. Cu-supported catalysed CuAAC. 

Entry Alkyne Azide Product Yield [%] (a) 

1 

  

 

99 

2 
 

 
 

99 (b) 

3 
  

 

99 (b) 

4 

 
 

 

99 (b) 

5 

 
 

 

99 (c) 

6 
 

 
 

99 (d) 

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 
eq), H2O (250 μL), tBuOH (250 μL), catalyst (4 mol.%), 85 °C, 1 h; (b) catalyst (8.7 mol.%), reaction time 
5 h; (c) terminal alkyne (2 eq), catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), 
reaction time 5 h. 

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu 
catalysts was performed on a CuAAC model reaction. The following reaction conditions were used: 
reaction temperature of 85 °C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 
mol.%. The catalysts were recovered by filtering the reaction mixture and washing with water, 

99 (d)

(a) Yields determined by GC-MS. Reaction conditions: azide (0.0676 mmol, 1 eq), terminal alkyne (1 eq), H2O (250 µL),
tBuOH (250 µL), catalyst (4 mol.%), 85 ◦C, 1 h; (b) catalyst (8.7 mol.%), reaction time 5 h; (c) terminal alkyne (2 eq),
catalyst (8.7 mol.%), reaction time 5 h; (d) azide (2 eq), catalyst (8.7 mol.%), reaction time 5 h.



Catalysts 2020, 10, 1118 8 of 16

A study on the recoverability and recyclability of Si-DiAm-CD-Cu and Si-TriAm-CD-Cu catalysts
was performed on a CuAAC model reaction. The following reaction conditions were used: reaction
temperature of 85 ◦C; H2O/tBuOH ratio of 1:1; reaction time of 1 h; amount of catalyst 4 mol.%.
The catalysts were recovered by filtering the reaction mixture and washing with water, methanol and
chloroform. After drying, they were reused in the reaction. Figure 4 displays the performance of the
reused catalysts. After four cycles, the reaction yield using Si-TriAm-CD-Cu was 44%. The recovery
of the catalyst indicates its good structural stability and high reactive activity. If compared to
Si-DiAm-CD-Cu catalyst, it shows higher stability. The reaction yield of Si-DiAm-CD-Cu was 78% in
the second reuse, and 30% in the third cycle.
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Figure 4. Recyclability of Si-TriAm-CD-Cu, compared to Si-DiAm-CD-Cu, in the CuAAC model reaction.

2.3. Characterization of Aged Si-TriAm-CD-Cu Catalyst

Sample Si-TriAm-CD-Cu was further characterized after the catalytic tests by infrared, DR UV-Vis
and XAS spectroscopies. The infrared spectrum measured on the sample recovered after catalytic tests
is indistinguishable from that of the as-prepared material, indicating the stability of the grafted groups
(Figure 5, left panel). Some differences can instead be observed in the the DR UV-Vis spectra (Figure 5,
right panel), particularly in the intensity of the Cu(II) band. The comparison is not quantitative,
since the exhaust sample (five time reused catalyst) was measured after dilution in Teflon, due to the
small amount recovered from the catalytic tests. The reported spectrum is indeed roughly normalized
with respect to the overtone/combination modes in the near infrared (NIR) region (ν + δ of H2O and
OH). Notwithstanding these limitations, the results are in agreement with a decrease in the amount of
Cu(II) in the catalyst, which can be tentatively related to a partial reduction to Cu(I), which is silent in
the UV-Vis d-d region being a closed shell d10 ion. This hypothesis was further investigated by XAS
(see below).

To obtain more insight on the oxidation state and local coordination environment of the Cu
centers in Si-TriAm-CD-Cu, we characterized the as-prepared vs. exhaust catalyst by Cu K-edge
XAS. The technique, combining element-selective response with simultaneous sensitivity to local
electronic and structural properties of Cu-species [58,59], is complementary to the IR and UV-Vis
results discussed before.

Figure 6 reports the obtained results for Si-TriAm-CD-Cu, in both the X-ray absorption near edge
structure (XANES) and the extended X-ray absorption fine structure (EXAFS) regions (Figure 6a,b,
respectively). The XAS spectra of the as-prepared and exhaust catalyst are compared to the ones
obtained for selected model compounds, including Cu(II) and Cu(I) oxides. A Cu(II) complex with
mixed N/O ligation is also considered, characterized as [CuII(NH3)3(NO3)]+ in a previous study [60],
where Cu(II) is coordinated in a pseudo-square planar fashion to three N(NH3) and to one O(NO3) atom.

XAS reveals that as-prepared Si-TriAm-CD-Cu exclusively contains Cu(II) species, based on the
absorption edge position, as well as on the presence of a characteristic rising-edge peak at ca. 8986 eV.
Indeed, this XANES feature, observed for both CuIIO and [CuII(NH3)3(NO3)]+ model compounds is
assigned to three/four-fold coordinated CuII metal centers [59,61]. The XANES line shape observed



Catalysts 2020, 10, 1118 9 of 16

for Si-TriAm-CD-Cu in correspondence of the intense resonance at ca. 8995 eV (“white-line” peak
region) resembles the one observed in the [CuII(NH3)3(NO3)]+, pointing to a possible mixed ligation
to both O (e.g., from OH groups), and N atoms (most likely from the N1-(3-Trimethoxysilylpropyl)
diethylenetriamine spacer) of Cu-species in the as-prepared catalyst. EXAFS spectra also indicate
for Si-TriAm-CD-Cu a ligand environment similar to the one in CuII(NH3)3(NO3)]+, resulting in
almost overlapped first-shell peaks. Notably, the first-shell intensity is, in these cases, intermediate
between the one detected for CuI

2O (two O neighbors) and CuIIO (four O neighbors in ideal
square planar coordination). This observation is consistent with the presence in Si-TriAm-CD-Cu of
four-fold-coordinated Cu(II) sites with both N- and O-containing ligands. Comparing the EXAFS of
Si-TriAm-CD-Cu with the ones of bulk Cu-oxides at higher R-values, it clearly emerges that no trace of
high-intensity Cu-Cu scattering contributions compatible with large oxidic or metallic aggregates is
detected, while a well-defined second-shell peak is observed. This is consistent with the presence of
highly dispersed Cu-species, in the form of monomers or very small clusters.
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Figure 5. Infrared (A) and diffuse reflectance UV-Vis (B) spectra of (a) Si-TriAm-CD-Cu;
(b) Si-TriAm-CD-Cu-exhaust. Before infrared measurements samples were outgassed at 80 ◦C to
remove adsorbed water and impurities. Sample Si-TriAm-CD-Cu-exhaust was diluted in Teflon for
Diffuse-Reflectance (DR) UV-Vis measurement. The corresponding curve was arbitrarily normalized to
the intensity of the overtone/combination modes of the support (X 2.5). The peak labeled with * can be
related to DMF residual solvent.
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2O, and [CuII(NH3)3(NO3)]+, reported as thin dashed lines.

In line with the UV-Vis results, XAS analysis of exhaust Si-TriAm-CD-Cu unambiguously indicates
the formation of a small fraction of Cu(I). Indeed, we observe the appearance of an additional rising-edge
peak at ca. 8982 eV, occurring at the same energy position as seen in CuI

2O and representing a fingerprint
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of Cu(I) species [59,61,62]. On the other hand, the EXAFS signals of the two samples are very similar,
apart from small differences in correspondence of the second shell peak around 2.5 Å, which are not
compatible with the formation of large metal or oxidic aggregates (compare with grey and red dashed
lines in Figure 6b). This indicates that, besides the change in the oxidation state of a fraction of the
copper, the average local environment and agglomeration of the metal centers is not sensibly affected
by catalysis. This an important observation, confirming on one hand the stabilizing effect of the amino
spacer and CD on the copper catalytic centers, and on the other hand the formation of catalytically
active Cu(I) ions during the reaction.

The high dispersion of Cu on the silica functionalized material is further confirmed by Transmission
Electron Microscopy (TEM). The sample is characterized by aggregates of silica nanoparticles with sizes
of around 10–15 nm, which are not affected in size, morphology and aggregation by the catalytic tests
(Figure 7a, referring to the two times reused catalyst). Higher magnification images of Si-TriAm-CD-Cu
(as prepared and two times reused catalyst, Figure 7b,c, respectively) suggest the presence of very small
(a few nanometers) Cu nanoparticles, which can be seen as dark spots in both materials. The particle size
is too small to give electron diffraction, which would give more detailed information on their structure.
No diffraction spots could be observed by selected area electron diffraction (SAED) on different portions
of the samples. Putting together this piece of information with EXAFS data, which exclude the presence
of a significant fraction (≥10%) of large aggregates, we can ascertain the high dispersion of the Cu
species. Obviously, this is only a qualitative observation, and more specific measurement (such as N2O
chemisorption) would be necessary for a quantitative analysis of copper dispersion, which is outside
the scope of this work.

ICP analysis was also performed on the freshly prepared and exhaust catalyst. The data
demonstrated a copper quantity of 14.9 mg/g and 14.1 mg/g, respectively, showing 5% leaching.
What is relevant, is that copper species (β-CD-Cu and Cu NPs) are highly dispersed on the support
and hardly affected by the catalytic tests, confirming the stabilizing effect of β-CD, and likely of the
N1-(3-Trimethoxysilylpropyl) diethylenetriamine spacer, as suggested by XAS data.

Catalysts 2020, 10, x FOR PEER REVIEW 10 of 16 

 

samples are very similar, apart from small differences in correspondence of the second shell peak 
around 2.5 Å, which are not compatible with the formation of large metal or oxidic aggregates 
(compare with grey and red dashed lines in Figure 6b). This indicates that, besides the change in the 
oxidation state of a fraction of the copper, the average local environment and agglomeration of the 
metal centers is not sensibly affected by catalysis. This an important observation, confirming on one 
hand the stabilizing effect of the amino spacer and CD on the copper catalytic centers, and on the 
other hand the formation of catalytically active Cu(I) ions during the reaction.  

The high dispersion of Cu on the silica functionalized material is further confirmed by 
Transmission Electron Microscopy (TEM). The sample is characterized by aggregates of silica 
nanoparticles with sizes of around 10–15 nm, which are not affected in size, morphology and 
aggregation by the catalytic tests (Figure 7a, referring to the two times reused catalyst). Higher 
magnification images of Si-TriAm-CD-Cu (as prepared and two times reused catalyst, Figure 7b,c, 
respectively) suggest the presence of very small (a few nanometers) Cu nanoparticles, which can be 
seen as dark spots in both materials. The particle size is too small to give electron diffraction, which 
would give more detailed information on their structure. No diffraction spots could be observed by 
selected area electron diffraction (SAED) on different portions of the samples. Putting together this 
piece of information with EXAFS data, which exclude the presence of a significant fraction (≥10%) of 
large aggregates, we can ascertain the high dispersion of the Cu species. Obviously, this is only a 
qualitative observation, and more specific measurement (such as N2O chemisorption) would be 
necessary for a quantitative analysis of copper dispersion, which is outside the scope of this work. 

ICP analysis was also performed on the freshly prepared and exhaust catalyst. The data 
demonstrated a copper quantity of 14.9 mg/g and 14.1 mg/g, respectively, showing 5% leaching. What 
is relevant, is that copper species (β-CD-Cu and Cu NPs) are highly dispersed on the support and 
hardly affected by the catalytic tests, confirming the stabilizing effect of β-CD, and likely of the N1-
(3-Trimethoxysilylpropyl) diethylenetriamine spacer, as suggested by XAS data.  

 
Figure 7. TEM images of Si-TriAm-CD-Cu-two times reused (a,b) Si-TriAm-CD-Cu (c). 

  

Figure 7. TEM images of Si-TriAm-CD-Cu-two times reused (a,b) Si-TriAm-CD-Cu (c).



Catalysts 2020, 10, 1118 11 of 16

3. Materials and Methods

3.1. Materials

The US bath was supplied by Weber Ultrasonics AG (Karlsbad, Germany). The combined
system MW/US was designed in our laboratory and a sonic horn (made of Pyrex®) was inserted
inside a MW cavity (Milestone s.r.l., RotoShynth reactor). TGA were performed with a TGA 4000
(Perkin Elmer, Waltham, MA, USA); operating conditions: 10−20 mg of sample, rate 10 ◦C min−1 from
50 ◦C to 800 ◦C, argon atmosphere. UV spectra were measured on a dual-beam spectrophotometer
(Agilent Technologies Cary 60, G6860AA, Santa Clara, CA, USA) using a 1 cm path length cuvette.
A GC Agilent 6890 (Agilent Technologies, Santa Clara, CA, USA), fitted with a mass detector Agilent
Network 5973, was used for GC-MS analyses. A MALDI-TOF mass spectra (Bruker Ultraflex TOF mass
spectrometer, Milan, Italy) was used to determine HRMS. The cations were determined with a Perkin
Elmer Optima 7000 (Perkin Elmer, Waltham, MA, USA) inductively coupled plasma-optical emission
spectrometer (ICP-OES). Jeol ECZ-R at 25 ◦C, 600 MHz and 75 MHz for 1H and 13C, respectively,
was used to record NMR spectra.

3.2. Catalyst Preparation

Si-NHCD, Si-DETA, Si-DETA-CD, Si-DiAm, Si-DiAm-CD were prepared following the reaction
procedures reported in the literature [54].

3.2.1. General Preparation of Alkoxy Silyl-Silica Derivatives (Si-Gly, Si-MonoAm, Si-TriAm)

Alkoxy silyl alkyl compound (0.040 mL) was dissolved in toluene (1 mL) and silica (0.100 g) was
added. The mixture was sonicated 2 h in US bath (Power 200 W, Frequency 80 kHz). The product was
filtered and washed with toluene and chloroform. Finally, it was dried under vacuum for 12 h (detailed
information for alkoxy silyl-silica derivatives preparation are reported in Supplementary Materials).

3.2.2. General Preparation of Silica-β-CD Hybrid Systems (Si-Gly-CD, Si-MonoAm-CD, Si-TriAm-CD)

First, 6I-derivatized-β-CD (1 g) was dissolved in DMF (15 mL). Then, alkoxy silyl-silica derivative
(1 g) was added. The suspension was irradiated under MW and US combined irradiation at 100 ◦C for
4 h (MW power 20 W, US power 35 W). The product was filtered and washed with water, methanol
and chloroform. Finally, it was dried under vacuum for 12 h (detailed information for silica-β-CD
hybrid systems preparation are reported in Supplementary Materials.

3.2.3. β-CD-Cu(II) Complexation

The silica-β-CD hybrid system (0.100 g) was dispersed in NaOH 0.5 M (0.675 mL). CuSO4 0.08 M
(0.719 mL) was added dropwise, during US sonication. The suspension was immediately filtered and
washed with water and methanol. Finally, the solid was dried under vacuum for 12 h.

3.3. Click Chemistry Reaction

Azide (0.0676 mmol, 1 eq) and terminal alkyne (1 eq) were dissolved in H2O: tBuOH (0.500 µL,
1:1). Silica-β-CD-Cu(II) catalyst (2, 4 or 8.7 mol.%, see Table 2, entries 6–8; Table 3, entries 1–6) was
added. The reaction was stirred at 85 ◦C, for 1 or 5 h. The mixture was filtered, washed with methanol
and chloroform. The solvent was removed under vacuum. 1H NMR and GC-MS were recorded to
confirm triazole structure.

3.4. Catalysts Characterization

Infrared spectra were recorded on a BRUKER FTIR-66 spectrophotometer with a resolution of
2 cm−1, using a MCT detector. Measurements were carried out using a home-made cell allowing in situ
thermal treatment and room temperature measurement. Thin self-supporting pellets for transmission
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measurements (around 10 mg/cm2) were prepared with a hydraulic press. Before the measurements,
the samples were outgassed at 80 ◦C for 2 h in the same cell used for the measurements.

Diffuse reflectance UV-Vis-NIR spectra were recorded in the 200–2500 nm range at 1 nm resolution
on a Cary 5000 UV-Vis-NIR spectrophotometer (Agilent) equipped with a diffuse reflectance attachment
with an integrating sphere coated by BaSO4. Prior to each measurement, a baseline spectrum
was collected by using Teflon as a reference. All samples were measured as such, expected for
Si-TriAm-CD-Cu-exhaust, which was diluted in Teflon. Spectra are reported as relative reflectance
(R%), defined as:

R% = Rsample/Rreference × 100

Cu K-edge XAS measurements were performed at the B18 beamline [63] of the Diamond Light
Source (UK). XAS spectra were collected in transmission mode, by means of a fixed-exit double crystal
water-cooled Si(111) monochromator and Pt-coated mirrors. We employed ionization chambers filled
with different mixtures of He and Ar to measure the incident (I0) and transmitted (I1,2) X-ray intensities.
A third ionization chamber (I2) was employed to simultaneously measure the XANES spectrum of a
Cu metal foil, for the sake of energy calibration [58]. Si-TriAm-CD-Cu, in its as-prepared and exhaust
state, was measured at RT in air, in the form of a self-supporting pellet, with optimized weight for
transmission-mode XAS. The CuIIO and CuI

2O model compounds were also measured in the form
of self-supporting pellets, with optimized weights. Reported XAS spectra for [CuII(NH3)3(NO3)]+

are instead reproduced from ref. [60] to which the reader is referred for additional details on data
acquisition and interpretation. The reported XAS spectra were collected on the B18 beamline in
Quick-EXAFS mode, scanning the incident X-ray energy in the 8800–9783 eV range with a constant
energy step of 0.3 eV. Data acquisition time was 3 min/scan. For each pelletized sample, we collected
five consecutive Quick-EXAFS scans, subsequently averaged to enhance data quality after checking for
signal reproducibility. We normalized to unity edge jump and aligned in energy all the XAS spectra
using the Athena software from the Demeter package [64]. The Athena program was also employed to
extract the χ(k) EXAFS. Fourier-transform (FT) EXAFS spectra were calculated by transforming the
k2χ(k) functions in the (2.4–12.0) Å−1 range.

4. Conclusions

In conclusion, the study evidenced the synergistic activity of silica, β-CD and of a polyamino
spacer in obtaining spatially isolated and well-characterized active catalytic sites. The Cu(II)/β-CD
complex was proven to act as an efficient source of Cu(I) species and multidentate N-donor ligands
showed to activate and stabilize the catalytic species. A deep level of understanding was achieved
by the combination of IR, DR UV-Vis, XAS and TEM analysis on the fresh and the exhaust catalyst.
The applied characterization methods consistently demonstrated: (i) the successful incorporation
and stability of the grafted functionalities; (ii) the exclusive presence of Cu(II) in the fresh catalysts,
most likely occurring in a O/N mixed-ligand environment; (iii) the formation of few Cu(I) species in the
catalyst after usage without substantial perturbations in the Cu local coordination environment and
aggregation state. Complementary insights by TEM, in agreement with EXAFS results, confirmed that
Cu remains highly dispersed on the support after the catalytic tests. The novel Cu-supported hybrid
heterogeneous catalysts showed excellent performances in click reactions for the synthesis of small
molecules and dimers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/10/1118/s1.
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