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Abstract
The enduring replication crisis in many scientific disciplines casts doubt on the abil-
ity of science to estimate effect sizes accurately, and in a wider sense, to self-correct 
its findings and to produce reliable knowledge. We investigate the merits of a par-
ticular countermeasure—replacing null hypothesis significance testing (NHST) with 
Bayesian inference—in the context of the meta-analytic aggregation of effect sizes. 
In particular, we elaborate on the advantages of this Bayesian reform proposal under 
conditions of publication bias and other methodological imperfections that are typi-
cal of experimental research in the behavioral sciences. Moving to Bayesian statis-
tics would not solve the replication crisis single-handedly. However, the move would 
eliminate important sources of effect size overestimation for the conditions we study.

Keywords Statistical inference · Replication crisis · Self-corrective thesis · Bayesian 
statistics · Null hypothesis significance testing (NHST) · Statistical reform

1 Introduction

In recent years, several scientific disciplines have been facing a replication crisis: 
researchers fail to reproduce the results of previous experiments when copying the 
original experimental design. By investigating replication rates for the main reported 
effect in a representative sample of published papers, scientists have tried to assess 
the seriousness of the crisis in a systematic way. The outcome of these studies is 
sobering: the number of statistically significant findings and the observed effect 
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sizes are often much lower than the theoretical expectation (for the fields of psychol-
ogy, experimental economics and cancer biology, respectively: Open Science Col-
laboration 2015; Camerer et al. 2016; Nosek and Errington 2017). While the appro-
priate interpretation of replication failures is debatable (e.g., Maxwell et al. 2015), 
there is a shared sentiment that science is not as reliable as it is supposed to be and 
that something needs to change.

There are several causes of low replicability and hence a wide range of possible 
reforms to address the crisis. We identify three types of reforms that can be regarded 
as complementary rather than mutually exclusive. First, social reforms, which are 
inspired by the prevalence of questionable research practices (“QRPs”: Simmons 
et al. 2011) and more generally, the adverse effects of social and structural factors 
in science (Bakker et al. 2012; Nuijten et al. 2016; Romero 2017). Social reforms 
include educating researchers about statistical cognition and methodology (Schmidt 
1996; Lakens 2019), but also creating greater incentives for replication work—for 
example by publishing and co-citing replications alongside original studies (Koole 
and Lakens 2012) or establishing a separate reward system for confirmatory research 
(Romero 2018). Second, there are methodological reforms such as pre-registering 
studies and their data analysis plan (Quintana 2015), sharing experimental data 
for “successful” as well as “failed” studies (van  Assen et  al. 2014; Munafò et  al. 
2017) and promoting multi-site experiments (Klein et al. 2014). By “front-staging” 
important decisions about experimental design and data analysis, these reforms 
address various forms of post-hoc bias (e.g., selective reporting, adding covariates) 
and increase the transparency and reliability of published research (see also Freese 
and Peterson 2018). Third, numerous authors identify “classical” statistical infer-
ence based on Null Hypothesis Significance Testing (NHST) as a major cause of 
the replication crisis (Cohen 1994; Goodman 1999a; Ioannidis 2005; Ziliak and 
McCloskey 2008) and suggest statistical reforms. Some of them remain within the 
frequentist paradigm and promote novel tools for hypothesis testing (Lakens et al. 
2018b) or focus on effect sizes and confidence intervals instead of p-values (Fidler 
2005; Cumming 2012, 2014). Others are more radical and propose to replace NHST 
by Bayesian inference (Goodman 1999b; Rouder et al. 2009; Lee and Wagenmak-
ers 2014), likelihood-based inference (Royall 1997), or even purely descriptive data 
summaries (Trafimow and Marks 2015).

While science most likely needs a combination of these reforms to improve (e.g., 
Ioannidis 2005; Romero 2019), we study in this paper the case for statistical reform, 
and its interaction with various limitations in scientific research (e.g., insufficient 
sample size, selective reporting of results). In other words, we ask whether the rep-
licability of published research would change if we replaced the conventional NHST 
method by Bayesian inference.

To address this question, we conduct a systematic computer simulation study 
that investigates the self-corrective nature of science in the context of statisti-
cal inference. A strong version of the self-corrective thesis (SCT, Laudan 1981) 
asserts that scientific method guarantees convergence to true theories in the long 
run: by staying on the path of scientific method, errors in published research will 
eventually be discovered, corrected and wed out (see also Peirce 1931; Mayo 
1996). SCT can be operationalized in the context of statistical inference and the 
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replication crisis in the sense that sequential replications of an experiment will 
eventually “reveal the truth” (Romero 2016). 

SCT*  Given a series of exact replications of an experiment, the meta-analytical 
aggregation of their effect sizes will converge on the true effect size as the 
length of the series of replications increases.

Arguably, validating SCT* in the precisely defined context of exact replications 
(i.e., experiments that copy the original design) would be a minimal condition for 
any of the more far-reaching claims that science eventually corrects errors and 
converges to the truth. Conversely, if SCT* fails—and the replication crisis pro-
vides some preliminary evidence that we should not take SCT* for granted—then 
claims to the general truth of SCT, and to science as a reliable source of knowl-
edge, are highly implausible.

The truth or falsity of SCT* strongly depends on the conditions in which 
experimental research operates—in particular on the prevalent kind of publica-
tion bias, that is, the bias in the process of publishing scientific evidence and 
disseminating it to the scientific community. Since different statistical frame-
works (e.g., NHST and Bayesian inference) classify the same set of experimental 
results in different qualitative categories, e.g., “strong evidence for the hypoth-
esis”, “moderate evidence”, “inconclusive evidence”, etc., the dominant statisti-
cal framework will affect the form and extent of publication bias. This affects, in 
turn, the accuracy of the meta-analytic effect size estimates and the validity of 
SCT*.

Our paper studies the validity of SCT* in both statistical frameworks under 
various conditions that relate to the social dimension of science: in particular, 
the conventions and biases that affect experimental design and data reporting. We 
model publication bias in NHST as suppressing (a large percentage of) statisti-
cally non-significant results, and in Bayesian inference, as suppressing inconclu-
sive evidence—that is, outcomes that yield Bayes factors in the interval ( 1

3
;3) . 

Then, under various imperfections that are typical of scientific practice, Bayes-
ian inference yields more accurate effect size estimates than NHST, sometimes 
significantly so. This makes the long-run estimation of unknown effects more 
reliable. The results do not imply that Bayesian inference also outperforms other 
forms of frequentist inference, such as equivalence testing (Lakens et al. 2018b) 
or pure estimation-based inference (Cumming 2012, 2014)—they just highlight 
its advantages with respect to the traditional, and still widely endorsed, method 
of NHST.

The paper is structured as follows: Sect. 2 briefly explains the two competing 
statistical paradigms—frequentist inference with NHST and Bayesian inference. 
Section 3 describes the simulation model and the statistical and social factors it 
includes. Sections  4–6 present the results of multiple simulation scenarios that 
allow us to evaluate and contrast NHST and Bayesian inference in a variety of 
practically important circumstances. Finally, Sect. 7 discusses the general impli-
cations of the study and suggests projects for further research.
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2  NHST and Bayesian inference

Suppose we would like to measure the efficacy of an experimental intervention—for 
example, whether on-site classes lead to higher student performance than remote 
teaching. In frequentist statistics, the predominant technique for addressing such a 
question is Null Hypothesis Significance Testing (NHST). At the basis stands a 
default or null hypothesis H0 about an unknown parameter of interest. Typically, 
this hypothesis makes a precise statement about this parameter (e.g., � = 0 ), or it 
claims that the parameter has the same value in two different experimental groups 
(e.g., �1 = �2 ). For example, the null hypothesis may claim that classroom and 
remote teaching do not differ in their effect on student grades. Opposed to the null 
hypothesis is the alternative hypothesis H1 which corresponds, in most practical 
applications, to the logical negation of the null hypothesis (e.g., � ≠ 0 or �1 ≠ �2 ). 
To test such hypotheses against each other, researchers conduct a two-sided hypoth-
esis test: an experimental design where large deviations in either direction from 
the “null value” count as evidence against the null hypothesis, and in favor of the 
alternative.1

Suppose that the data in both experimental conditions (e.g., student grades for 
on-site and remote teaching) are Normally distributed with unknown variance. 
Then it is common to analyze them by a t-statistic, that is, a standardized difference 
between the sample mean in both groups. This statistic measures the divergence of 
the data from the null hypothesis H0 ∶ �1 = �2 . If the value of t diverges largely 
from zero—and more precisely, if it falls into the most extreme 5% of the distri-
bution—, we reject the null hypothesis and call the result “statistically significant” 
at the 5% level ( p < .05 ). In the above example, such a result means evidence for 
the alternative hypothesis that classroom and remote teaching differ in their effect 
on student grades. Otherwise we state a “non-significant result” or a “non-effect” 
( p > .05 ). Similarly, a result in the 1%-tail of the distribution of the t-statistic is 
called “highly significant” ( p < .01).

The implicit logic of NHST—to “reject” the null hypothesis and to declare a 
result statistically significant evidence if it deviates largely from the null value—has 
been criticized for a long time in philosophy, statistics and beyond. Critics claim, for 
example, that it conflates statistical and scientific significance, uses a highly coun-
terintuitive and frequently misinterpreted measure of evidence (p-values) and makes 
it impossible to express support for the null hypothesis (e.g., Edwards et al. 1963; 
Hacking 1965; Spielman 1974; Ziliak and McCloskey 2008).

The shortcomings of NHST have motivated the pursuit of alternative models of 
statistical inference. The most prominent of them is Bayesian inference: probabil-
ities express subjective degrees of belief in a scientific hypothesis (Bernardo and 
Smith 1994; Howson and Urbach 2006). p(H) quantifies prior degree of belief in 
hypothesis H whereas p(H|D), the conditional probability of H given D, quantifies 
posterior degree of belief in H—that is, the degree of belief in H after learning data 

1 One-sided, that is, directional, tests also exist, but they are used much less frequently than two-sided 
tests. For a discussion of their use in the context of behavioral research, see Wagenmakers et al. (2011).
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D. While the posterior probability p(H|D) serves as a basis for inference and deci-
sion-making, the evidential import of a dataset D on two competing hypotheses is 
standardly described by the Bayes factor

The Bayes factor is defined as the ratio between posterior and prior odds of H1 over 
H0 (Kass and Raftery 1995). Equivalently, it can be interpreted as the likelihood 
ratio of H1 and H0 with respect to data D—that is, as a measure of how much the 
data discriminate between the two hypotheses, and which hypothesis explains them 
better. Bayes factors BF10 > 1 favor the alternative hypothesis H1 , and Bayes factors 
in the range 0 < BF10 < 1 favor the null hypothesis H0 . Finally, note that the Bayes 
factors for the null and the alternative are each other’s inverse: BF01 = 1∕BF10.

In this paper, we shall not enter into the foundational debate between Bayesians 
and frequentists (for surveys of arguments, see, e.g., Romeijn 2014; Sprenger 2006; 
Mayo 2018; van Dongen et  al. 2019). We just note that while Bayesian inference 
avoids the typical problems of frequentist inference with NHST, it is not exempt 
from limitations. These include misinterpretation of Bayes factors, mindless use of 
“objective” or “default” priors (e.g., exclusive reliance on fat-tailed Cauchy priors 
in statistical packages), bias in favor of the null hypothesis, and potential mismatch 
between inference with Bayes factors and estimation based on the posterior distribu-
tion (e.g., Sprenger 2013; Kruschke 2018; Lakens et  al. 2018a; Mayo 2018; Ten-
deiro and Kiers 2019).

3  Model description and simulation design

Romero (2016) presents a simulation model to study whether SCT* holds when 
relaxing ideal, utopian conditions for scientific inquiry in the context of frequen-
tist statistics. This paper follows Romero’s simulation model, but we add the choice 
of the statistical framework (i.e., Bayesian vs.  frequentist/NHST inference) as an 
exogenous variable to study how the validity of SCT* is affected by the statistical 
framework.

To examine the self-corrective abilities of Bayesian and frequentist inference, we 
first need to agree on a statistical model. In the behavioral sciences—arguably the 
disciplines hit most by the replication crisis—, many experiments collect data on a 
continuous scale and measure how the sample means X1 and X2 differ across two 
independent experimental conditions (e.g., treatment and control group). The means 
in each condition are assumed to follow a Normal distribution N(�1,2, �

2) , and the 
true effect size is described by the standardized difference of the unknown means: 
� = (�1 − �2)∕� . Conventionally, a � around 0.2 is considered small, around 0.5 is 
considered medium, and around 0.8 is considered large. For both Bayesians and fre-
quentists, the natural null hypothesis is H0 ∶ � = 0 , stating equal means in both 
groups. Frequentists leave the alternative hypothesis H1 ∶ � ≠ 0 unspecified whereas 

BF10(D) ∶=
p(H1|D)∕p(H0|D)

p(H1)∕p(H0)
=

p(D|H1)

p(D|H0)
.
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Bayesians put a diffuse prior over the various values of � , typically a Cauchy distri-
bution such as H1 ∶ � ∼ Cauchy(0,

1√
2
) (Rouder et al. 2009).

The value of � can be adequately estimated by Cohen’s d, which summarizes 
observed effect size by means of the standardized difference in sample means: 

where SP denotes the pooled standard deviation of the data.2
Using the statistics software R, we randomly generate Normally distributed data 

for two independent groups. We study two conditions, one where the null hypothesis 
is (clearly) false and one where it is literally true. As a representative of a posi-
tive effect, we choose � = 0.41 , in agreement with meta-studies that consider this 
value typical of effect sizes in behavioral research (Richard et al. 2003; Fraley and 
Vazire 2014). The data are randomly generated with standard deviation � = 1 in 
each group. For the first group, the mean is zero while for the second, the mean 
corresponds to the hypothesized effect size (either � = 0 or � = 0.41 ). The sample 
size of each group is set to N = 156 since this corresponds to a statistical power 
of 95% (=5% type II error rate) for a true effect of � = 0.41 . We then compute the 
observed effect size and repeat this procedure to simulate multiple replications of a 
single experiment. At the same time, we simulate a cumulative meta-analysis of the 

Cohen’s d =
X1 − X2

SP

Fig. 1  Observed effect sizes with 95% confidence intervals in the exact replication of an experiment (left 
figure), and the corresponding aggregated effect size estimates (right figure). Data generated under the 
assumption � = 0.41

2 SP is defined as SP =

√
(N1−1)S

2

1
+(N2−1)S

2

2

N
1
+N

2
−2

 where N
1
 and N

2
 are the sample sizes for both conditions, and 

S2
1
 and S2

2
 denote the corrected within-sample variance.
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effect size estimates. Figure 1 shows the observed effect sizes from 10 replications 
and how they are aggregated into an overall meta-analytic estimate.3,4

We expect that frequentist and Bayesian inference both validate SCT* under ideal 
conditions where various biases and imperfections are absent. The big question is 
whether Bayesian statistics improves upon NHST when we move to more realistic 
scenarios. In particular: Are the experiments sufficiently powered to detect an effect? 
Are the researchers biased in a particular direction? Are non-significant results sys-
tematically dismissed? The available evidence on published research suggests that 
the answers to these questions should not always be yes, leaving open whether SCT* 
will still hold in those cases. We model the relevant factors as binary variables, con-
trasting an ideal or utopian condition to a less perfect (and more realistic) condition. 
Let’s look at them in more detail.

3.1  Variable 1: sufficient versus limited resources

NHST is justified by its favorable long-run properties, spelled out in terms of error 
control: a true null hypothesis is rarely “rejected” by NHST and a true alterna-
tive hypothesis typically yields a statistically significant result. To achieve these 
favorable properties, experiments require an adequate sample size. Due to lack of 
resources and other practical limitations (e.g., availability of participants/patients, 
costs of trial, time pressure to finish experiments), the sample size is often too small 
to bound error rates at low levels. Since the type I error level—that is, the rate of 
rejecting the null hypothesis when it is true—is conventionally fixed at 5%, this 
means that the power of a test is frequently low and can even fall below 50% (e.g., 
Ioannidis 2005).

In our simulation study, we compare two cases: first, a condition where the type 
I error rate in a two-sample t-test is bound at the 5% level and power relative to 
� = 0.41 equals 95%. This condition of sufficient resources corresponds to a sample 
size of N = 156. It is contrasted to a condition of limited resources that is typical 
of many experiments in behavioral research. In that condition, both experimental 
groups have sample size N = 36, resulting in a power of only 40%.

The Bayesian analogue to power analysis is to control the probability of mis-
leading evidence (Royall 2000; Schönbrodt and Wagenmakers 2018), and to design 
an experiment such that the Bayes factor will, with high probability, state evidence 

3 The details of the aggregation procedure are as follows (again, we follow Romero 2016): We assume 
that effect size is fixed across experiments, or in other words, that all single experiments are measuring 
the same effect size. Then, the aggregated effect size D after M experiments is given by D =

ΣM
i=1

widi

ΣM
i=1

wi

 . 
Here di denotes the effect size observed in experiment i, and wi = 1∕vi denotes the inverse of the variance 
of observed effect size, approximated by vi ∶=

2

N
+

d2
i

2N2
 for sample size N. The variance of D, which is 

necessary to calculate the associated confidence intervals, is given by vD =
1

Σwi

 (Cumming 2012, 210–
213; Borenstein et al. 2009, 63–67).
4 It would also be possible—and might be an interesting direction for future research—to use Bayesian 
methods for aggregating the individual estimates. However, that would require making potentially sub-
stantive assumptions (e.g., the prior distribution of effect size) that would make a fair comparison of the 
statistical frameworks difficult. We prefer to model the aggregation procedure as framework independent.
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for H1 when it is true, and mutatis mutandis for H0 . For the parameters in our study, 
such a “Bayes factor design analysis” yields the sample size N = 190. To ensure 
a level playing field between both approaches, we use the same values (N  =  156 
and N = 36) for the frequentist and Bayesian scenarios. The simulation results for 
N = 190 instead of N = 156 in the sufficient resources condition are also qualita-
tively identical.

3.2  Variable 2: direction bias

Scientists sometimes conduct their research in a way that is shaped by selective 
perception and biased expectations. For example, feminist critiques of primatologi-
cal research have pointed out that evidence on the mating behavior of monkeys and 
apes was often neglected when it contradicted scientists’ theoretical expectations 
(e.g., polyandrous behavior of females: Hrdy 1986; Hubbard 1990). More generally, 
researchers often exhibit confirmation bias (e.g., MacCoun 1998; Douglas 2009): 
their perception of empirical findings is shaped by the research program to which 
they are committed. There is also specific evidence that results are more likely to 
be published if they agree with previously found effects and exhibit positive mag-
nitude (Hopewell et al. 2009; Lee et al. 2013). Effects that contradict one’s theoreti-
cal expectations and have a negative magnitude may either be suppressed as an act 
of self-censuring or be discarded in the peer-review process. Such direction bias 
is obviously detrimental to the impartiality and objectivity of scientific research, 
and we expect that it affects the accuracy of meta-analytic effect estimation and the 
validity of SCT*, too.

We model direction bias by a variable that can have two values: either all results 
are published, regardless of whether the effect is positive or negative (=no direction 
bias), or all results with negative effect size magnitude are suppressed (=direc-
tion bias present).

3.3  Variable 3: suppressing inconclusive evidence

Statistically non-significant outcomes of NHST ( p > .05 ) are in practice often fil-
tered out and end up in the proverbial file drawer (Rosenthal 1979; Ioannidis 2005; 
Fanelli 2010). An epistemic explanation for this is that non-significant outcomes are 
ambiguous between supporting the null hypothesis and the study not having enough 
statistical power to find an effect. Due to this ambiguity, they are hard to package 
into a clear narrative and published much less frequently. In our model, we distin-
guish between a non-ideal condition where only results significant at the 5% level 
are published and an ideal condition where all results are published, also non-
significant ones (i.e., results with a p-value exceeding .05). This dichotomous pic-
ture (which we relax when we extend the model) is in line with scientometric evi-
dence for the increasing prevalence of statistically significant over non-significant 
findings (Fanelli 2012). The choice of 5% as a cutoff level is a well-entrenched con-
vention in the behavioral sciences; that said, also “marginally significant” p-values 
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(i.e., .05 ≤ p < .10 ) are often reported in economics and the biomedical sciences 
(De Winter and Dodou 2015; Lakens 2015; Bruns et al. 2019).

For the Bayesian, the inconclusiveness of findings is spelled out by means of the 
Bayes factor instead of the p-value. When the Bayes factor is close to 1, the evidence 
is inconclusive: the null hypothesis and the alternative are equally likely to explain 
the observed data. We set up the two conditions analogously to the frequentist case: 
in the ideal condition, all observed Bayes factors enter the meta-analysis, regard-
less of their value, whereas the non-ideal condition excludes all Bayes factors 
reporting weak evidence, that is, those values where neither the null hypothesis nor 
the alternative are clearly favored by the data.

Specifically, we use the range 1
3
< BF10 < 3 for denoting inconclusive or weak 

evidence. This range is appropriate for two reasons. First, the qualitative mean-
ing of the p < .05 significance threshold corresponds to the Bayesian threshold 
1

3
< BF10 < 3 . Frequentists consider p-values between .05 and .10 as weak or anec-

dotal evidence, as witnessed by formulations such as “marginally significant” and 
“trend”. Similarly, Bayesian researchers use a scale where the interval 1–3 corre-
sponds to anecdotal or weak evidence for H1 , 3–10 to moderate evidence, 10–30 to 
strong evidence, and so on (Jeffreys 1961; Lee and Wagenmakers 2014). Reversely 
for the ranges 1/3 to 1, 1/10 to 1/3, and so on. Second, Bayesian re-analysis of data 
with an observed significance level of p ≈ .05 often corresponds to a Bayes factor 
around BF10 = 3.5 Wider ranges for inconclusive evidence, such as 1

6
< BF10 < 6 

(Schönbrodt and Wagenmakers 2018), are possible, but such proposals do not cor-
respond to an interpretation of Bayes factors anchored in existing conventions.

To date, there has not yet been a systematic study of evidence filtering in Bayes-
ian statistics. Hence, it is an open question whether in practice researchers would 
publish evidence for the null hypothesis when they have the necessary statistical 
tools to express it, e.g., Bayes factors. We return to this question in the discussion 
section.

4  Results: the baseline condition

Our simulations compare the performance of NHST and Bayesian inference in two 
types of situations: the baseline conditions and extensions of the model. The base-
line conditions, numbered S1–S16, take the three variables described in Sect. 3 and 
the true effect size as independent variables. Table 1 explains which scenario cor-
responds to which combination of values of these variables. The model extensions 
explore a wider range of situations: we examine conditions where some, but not all 
negative results are published, and we contrast Bayesian and frequentist inference 

5 For example, Benjamin et al. (2018) compare Bayesian and frequentist analysis for testing the mean 
of a Normal distribution with known variance. They define the prior over the alternative H

1
 according to 

various constraints on experimental designs (75% power, uniformly most powerful Bayesian test, upper 
bounds on the Bayes factor, etc.). For all their designs, the Bayes factor corresponding to p = .05 falls 
into the interval [2.5; 3.4].
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for a wider range of effect sizes (e.g., small effects such as � ≈ 0.2 or large effects 
such as � ≈ 1).

As revealed by Fig.  2, there is no difference between Bayesian and frequentist 
inference as long as “negative results” (i.e., results with inconclusive evidence) are 
published. This is to be expected since the difference between Bayesian and frequen-
tist analysis in our study consists in the way inconclusive evidence is explicated and 
filtered. Thus both frameworks yield the same result in S1–S8: when the alternative 
hypothesis is true, meta-analytic estimates are accurate (scenarios S1–S4); when the 
null hypothesis is true, both frameworks are vulnerable to direction bias (scenarios 
S7–S8). Indeed, when the alternative hypothesis is true, few experiments will yield 
estimates with a negative magnitude and the presence of direction bias will not com-
promise the meta-analytic aggregation substantively.

Figure 3 shows the results of scenarios S9–S16 where a file drawer effect is oper-
ating and inconclusive, “non-significant” evidence is suppressed. To recall, this 
means that data from experiments with p ≥ .05 or with a Bayes factor in the range 

Table 1  The 16 possible simulation scenarios

� = 0.41 � = 0 � = 0.41 � = 0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

Sufficient ReSouRceS ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗
no diRection biaS ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗
inconcluSive evi-

dence iS publiShed

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Fig. 2  Meta-analytic effect size estimates for Bayesian inference (dark bars) and frequentist inference 
(light bars) in conditions S1–S8 after 25 reported experiments. Upper graph: scenarios S1–S4 where 
� = 0.41 , lower graph: scenarios S5–S8 where � = 0 . All inconclusive evidence is published. The dashed 
line represents the true effect size, the error bars show one standard deviation
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3
< BF10 < 3 do not enter the meta-analysis. In some of these scenarios, especially 

when the null hypothesis is true and direction bias is present, the frequentist exces-
sively overestimates the actual effect size (e.g., d ≈ 0.25 in S15 and d ≈ 0.55 in S16 
while in reality, � = 0 ). The reason is that the frequentist conception of “significant 
evidence” filters out evidence for the null hypothesis and acts as an amplifier of 
direction bias: only statistically significant effect sizes with positive magnitude enter 
the meta-analysis (e.g., d ≥ 0.47 in S16). By contrast, the Bayesian also reports evi-
dence that speaks strongly for the null hypothesis (i.e., d ≈ 0 ) and obtains just a 
weak positive meta-analytic effect.

A similar diagnosis applies when the alternative hypothesis is true, regardless of 
direction bias. Consider scenarios S10 and S12. Due to the limited resources and the 
implied small sample size, only large effects meet the frequentist threshold p < .05 , 
leading to a substantial overestimation of the actual effect ( d ≈ 0.65 in both sce-
narios, instead of the true � = 0.41 ). The overestimation in the Bayesian case, by 
contrast, is negligible for S10 and moderate for S12 ( d ≈ 0.5).

Thus, Bayesian inference performs considerably better when inconclusive evi-
dence is not published, as it often happens in empirical research. There is thus a 
(partial) case for statistical reform: Bayesian analysis of experiments leads to more 
accurate meta-analytic effect size estimates when the experimental conditions are 
non-ideal and inconclusive evidence is suppressed.6

Fig. 3  Meta-analytic effect size estimates for Bayesian inference (dark bars) and frequentist inference 
(light bars) in conditions S9–S16 after 25 reported experiments. Left graph: scenarios S9–S12 where 
� = 0.41 , right graph: scenarios S13–S16 where � = 0 . All inconclusive evidence is suppressed. The 
dashed line represents the true effect size, the error bars show one standard deviation

6 Note that these conclusions are sensitive to choice of the threshold 1
K
< BF

10
< K in the exclusion of 

inconclusive evidence. If the threshold is made more stringent, e.g., K = 6 instead of our K = 3 , there are 
also some scenarios where the frequentist analysis performs better. However, we have argued in Sect. 3 
that such a comparison would not be appropriate since the evidence thresholds of both frameworks 
should match each other, and K = 6 should be compared to a more severe frequentist conception of evi-
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The next two sections present two extensions that model other practically relevant 
situations.

5  Extension 1: the probabilistic file drawer effect

The preceding simulations have modeled the file drawer effect as the exclusion of 
all non-significant p-values. In practice, it will depend a lot on the context whether 
inconclusive evidence is published or not. Bakker et al. (2012) report studies accord-
ing to which the percentage of unpublished research in psychology may be greater 
than 50%. Especially in conceptual replications and other follow-up studies it is 
plausible that evidence contradicting the original result may be discarded (e.g., by 
finding fault with oneself and repeating the experiment with a slightly different 
design or test population). Then, disciplines with an influential private sector such 
as medicine may be especially susceptible to bias in favor of significant evidence: as 
indicated by the effect size gap between industry-funded and publicly funded stud-
ies, sponsors are often disinterested in publishing research on an apparently ineffec-
tive drug (Wilholt 2009; Lexchin 2012).

By contrast, there is an increasing number of prestigious journals that accepts 
submissions according to the “registered reports” model: before starting to collect 
the data, the researcher submits a study proposal that is accepted or rejected based 
on the study’s theoretical interest and the experimental design.7 This means that the 
paper will be published regardless of whether the results are statistically significant 
or not. Moreover, in large-scale replication projects such as Open Science Collabo-
ration (2015) or Camerer et al. (2016) that examine the reproducibility of previous 
research, the evidence is published regardless of direction or size of the effect.

Taking all this together, we can expect that some proportion of statistically 
inconclusive studies will make it into print, or be made publicly available, while 
a substantial part of them will remain in the file drawer. We extend the results of 
the model analytically to investigate how the performance of frequentist and Bayes-
ian inference depends on the proportion of inconclusive evidence that is actually 
published.

Like in the baseline condition, we model the suppression of inconclusive evi-
dence as not reporting non-significant results, i.e., p > .05 and Bayes factors with 
weak, anecdotal evidence ( 1

3
< BF10 < 3 ). Figure 4 plots effect size overestimation 

in both frameworks as a function of the probability of publishing studies with incon-
clusive evidence.

For the frequentist, estimates get more accurate when more statistically non-sig-
nificant studies are published. Notably, when direction bias is present, publishing 

Footnote 6 (continued)
dence. Moreover, the dependence of performance on the scenario implies that we cannot give a general 
answer to the question of which Bayesian cutoff criterion performs as well as p = .05.
7 Some of the better known journals who offer this publication model are Nature Human Behaviour, 
Cortex, European Journal of Personality and the British Medical Journal Open Science.
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just a small proportion of those studies is already an efficient antidote to large over-
estimation. This is actually logical: when direction bias is present and statistically 
non-significant results are suppressed, only studies with extreme effects are pub-
lished and including some non-significant results will already be a huge step toward 
more realistic estimates.

The accuracy of the Bayesian estimates, however, does not depend much on the 
probability of publishing inconclusive studies—the overestimation is more or less 
invariant under the strength of the file drawer effect. Indeed, the Bayesian estimates 
are already accurate when all inconclusive evidence is suppressed. Using Bayesian 
inference instead of NHST may act as a safeguard against effect size overestimation 
in conditions where the extent of publication bias is unclear and potentially large. 
As soon as 20–30% of statistically non-significant results are published, however, 
frequentist estimates become similarly accurate.

6  Extension 2: a wider range of effect sizes

While � = 0.41 may be a good long-term average for the effect size of true alterna-
tive hypotheses in behavioral research, true effect sizes will typically spread over a 
wide range, ranging from small and barely observable effects ( � ≈ 0.1 ) to very large 
and striking effects (e.g., � ≈ 1 ). This also depends on the specific scientific disci-
pline and the available means for filtering noise and controlling for confounders. 
To increase the generality of our findings, we examine a wider range of true effect 
sizes. We focus on those conditions where Bayesians and frequentists reach different 
conclusions—that is, scenarios S9–S16 where inconclusive evidence is suppressed. 
Figures  5 and  6 show for both frameworks how the difference between estimated 
and true effect size varies as a function of the true effect size.

Fig. 4  Difference between estimated and true effect size as a function of the probability of suppressing 
inconclusive evidence, that is, the prevalence of the file drawer effect. Left graph = frequentist analysis, 
right graph = Bayesian analysis
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When direction bias is present (Fig. 5), the Bayesian estimate comes closer to the 
true effect. Frequentists largely overestimate small effects due to the combination of 
direction bias and suppressing inconclusive evidence, but they estimate large effects 
accurately. This is to be expected since with increasing effect size, almost every-
thing will be significant and fewer results will be suppressed. In these cases, the 
file drawer effect does not compromise the accuracy of the meta-analytic estimation 
procedure.

Turning to the case of no direction bias, shown in Fig. 6, two observations are 
striking. First, the frequentist graph ceases to be monotonically decreasing: small 

Fig. 5  Difference between estimated and true effect size as a function of the true effect size (measured 
by standardized means difference), for scenarios with direction bias and suppression of inconclusive evi-
dence. Triangles = frequentist case, circles = Bayesian case, with linear interpolation

Fig. 6  Difference between estimated and true effect size as a function of the true effect size (measured by 
standardized means difference), for scenarios with suppression of inconclusive evidence and no direction 
bias. Triangles = frequentist case, circles = Bayesian case, with linear interpolation
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effects are substantially overestimated while null effects are estimated accurately. 
This is because, in the case of N = 36, all results inside the range d ∈ [−0.47;0.47] 
yield a p-value higher than .05 and do not enter the meta-analysis. For a true small 
positive effect, we will therefore observe many more (large) positive than negative 
effects and obtain a heavily biased meta-analytic estimate. For a true null effect, 
however, positive and negative magnitude effects are equally likely to be pub-
lished and the aggregated estimate will be accurate.8 Similarly, when effects are big 
enough, few results will remain unpublished and the meta-analytic estimate will 
converge to the true effect size. The left graph in Fig. 7 visualizes these explana-
tions by plotting the probability density function of d, and the range of suppressed 
observations.

Second, the Bayesian underestimates some small effects. This phenomenon is 
due to a superposition of two effects. Unlike the frequentist, the Bayesian publishes 
large effects in both directions and observed effects close to the null value d ≈ 0 . 
Intermediate effect size estimates from single studies are not published and left 
out of the meta-analysis—see Fig. 7. For small positive effects such as � = 0.1 or 
� = 0.2 , the Bayesian is more likely to obtain results that favor the null hypothesis 
with BF10 <

1

3
 , than results that favor the alternative with BF10 > 3 . However, for 

these scenarios, the underestimation does not affect the qualitative interpretation of 
the effect size in question.

Fig. 7  Probability density functions for the standardized sample mean in a single experiment for N = 36 
and different values of the real effect size. Full line: � = 0.15 , dashed line: � = 0.41 , dotted line: � = 0 . 
The suppressed regions (i.e., observations that do not enter the meta-analysis because p > .05 or 
1

3
< BF

10
< 3 ) are shaded in dark. Left graph: frequentist case, right graph: Bayesian case

8 Note that such a canceling-out effect may not be realistic to obtain in practice since most replications 
will be suppressed. The meta-analytic effect will be unbiased, but with a very large variance and there-
fore typically be inaccurate.
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All in all, omitting weak evidence in favor of either hypothesis leads to more 
accurate meta-analytic estimates than omitting statistically non-significant results. 
These observations are especially salient for small effects. SCT*—the thesis about 
the self-corrective nature of science in sequential replications of an experiment—
therefore holds for a wider range of possible effect sizes when replacing NHST with 
Bayesian inference.

Our findings also agree with the distribution of effect sizes in the OSC replica-
tion project for behavioral research (Open Science Collaboration 2015): replications 
of experiments with large observed effects usually confirm the original diagnosis, 
while moderate effects often turn out to be small or inexistent in the replication.9 
While a more detailed and substantive analysis would require assumptions about 
the prevalence of direction bias and suppressing inconclusive evidence in empirical 
research, our findings are, at first sight, consistent with patterns observed in recent 
replication research.

7  Discussion

Numerous areas of science are struck by a replication crisis—a failure to reproduce 
past landmark results. Such failures diminish the reliability of experimental work 
in the affected disciplines and the epistemic authority of the scientists that work in 
them. There is a plethora of complementary reform proposals to leave this state of 
crisis behind. Three principled strategies can be distinguished. The first strategy, 
called statistical reform, blames statistical procedures, in particular in the continued 
use of null hypothesis significance testing (NHST). Were NHST to be abandoned 
and to be replaced by Bayesian inference, scientific findings would be more repli-
cable. The opposed strategy, called social reform, contends that the current social 
structure of science, in particular career incentives which reward novel and spec-
tacular findings, has been the main culprit in bringing about the replication crisis. 
Between these extremes is a wide range of proposals for methodological reform that 
combines elements of social interaction and statistical method techniques (multi-site 
experiments, data-sharing, compulsory preregistration, etc.).

In this paper, we have explored the scope of statistical reform proposals by con-
trasting Bayesian and frequentist inference with respect to a specific thesis about the 
self-corrective nature of science, SCT*: convergence to the true effect in a sequen-
tial replication of experiments. Validating SCT* is arguably a minimal adequacy 
condition for any statistical reform proposal that addresses the replication crisis. Our 
model focuses on a common experimental design—two independent samples with 
normally distributed data—and compares NHST and Bayesian inference in differ-
ent conditions: an ideal scenario where resources are sufficient and all results are 
published, as well as less ideal (and more realistic) conditions, where experiments 
are underpowered and/or various biases affect the publication of a research finding.

9 This observation has to be taken with a grain of salt since the OSC replication uses standardized cor-
relation coefficients instead of standardized mean differences.
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Our results support a partially favorable verdict on the efficacy of statistical 
reform. When a substantial proportion of studies with inconclusive evidence are 
published, both Bayesian inference and frequentist inference with NHST lead to 
quite accurate meta-analytic estimates and validate SCT*. However, when incon-
clusive evidence is not published, but strong evidence for a null effect is, Bayesian 
inference leads to more accurate estimates. In these conditions, which are unfor-
tunately characteristic of scientific practice, statistical reform in favor of Bayesian 
inference will improve the reproducibility of published studies, validate SCT* and 
make experimental research more reliable.

The advantage of Bayesian statistics is particularly evident for small effect sizes 
( � ≈ 0.2 ), which the frequentist often misidentifies as moderate or relatively large 
effects. This finding is in line with observations that small effects are at particular 
risk of being overestimated systematically (Ioannidis 2008). This holds for experi-
mental research (e.g., Open Science Collaboration 2015), but perhaps even more so 
for observational research. Especially in the context of regression analysis, slight 
biases due to non-inclusion of relevant variables are almost inevitable and they 
inflate effect size estimates and observed significance substantially (Bruns and Ioan-
nidis 2016; Ioannidis et al. 2017).

Finally, we turn to the limitations of our study. First, our results do not prove 
that moving to Bayesian statistics is the best statistical reform: alternative frame-
works within the frequentist paradigm (e.g., Cumming 2012; Lakens et al. 2018b; 
Mayo 2018) could improve matters, too. Assessing and comparing such proposals is 
beyond the scope of this paper.

Second, the claim in favor of Bayesian statistics depends crucially on the assump-
tion that researchers would publish evidence for the null hypothesis when the sta-
tistical framework supports such a conclusion (compare Sect. 3). One could object 
to this assumption by saying that such studies would just count as “failed” and that 
the evidence would nonetheless be suppressed (e.g., think of a clinical trial show-
ing that a particular medical drug does not cure the target disease). Such situations 
certainly occur, but on the other hand, the null hypothesis does often play a major 
role in scientific inference and hypothesis testing: it is simple, has higher predic-
tive value and can express important theoretical relations such as additivity of fac-
tors, chance effects and absence of a causal connection (e.g., Gallistel 2009; Morey 
and Rouder 2011; Sprenger and Hartmann 2019, ch. 9). In such circumstances, evi-
dence for the null is of major theoretical interest. Moreover, evidence for a point null 
hypothesis is often the target of medical research that assesses the equivalence of 
two treatments, i.e., those aiming at establishing “theoretical equipoise” (Freedman 
1987). Such research is greatly facilitated by a statistical framework that allows for 
a straightforward quantification of evidence for the null hypothesis. We therefore 
conjecture that statistical frameworks where evidence for the null can be expressed 
on the same scale as evidence for the alternative would lead to more “null” results 
being reported. Being able to state strong evidence against the targeted alternative 
hypothesis (e.g., that a specific intervention works) will also make the allocation of 
future resources easier compared to just stating “failure to reject the null”.

Third, statistical reform does not cure all the problems of scientific inference. We 
have not discussed here which concrete steps for social reform (e.g., changing incentive 
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structures and funding allocation schemes) would be most effective in complementing 
statistical reforms. The interplay of reform proposals on different levels is a fascinating 
topic for future research in the social epistemology of science. At this point, we can just 
observe that the file drawer effect seems to be particularly detrimental to reliable effect 
size aggregation, and that proposals for social and methodological reform should try to 
combat it. Compulsory pre-registration of experiments is a natural approach, but study-
ing the efficacy of that strategy has to be left to future work.

Increasing the reliability of published research remains a complex and challeng-
ing task, involving reform of the scientific enterprise on various levels. What we have 
shown in this paper is that the choice of the statistical framework plays an important 
role in this process. Under the imperfect conditions where experimental research oper-
ates, adopting Bayesian principles for designing and analyzing experiments leads to 
more accurate effect size estimates compared to NHST, without incurring major draw-
backs. Regardless of whether or not one likes Bayesian inference, it would be desirable 
to evaluate the model empirically—for example, by imposing the use of Bayesian sta-
tistics on an entire subdiscipline and then measuring how publication bias and replica-
bility rates change. Such a project would not be easy to implement, but yield valuable 
insights about the mechanisms underlying the replication crisis.
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