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Abstract

Observational learning is typically examined when agents have precise information about their position in 
the sequence of play. We present a model in which agents are uncertain about their positions. Agents sample 
the decisions of past individuals and receive a private signal about the state of the world. We show that social 
learning is robust to position uncertainty. Under any sampling rule satisfying a stationarity assumption, 
learning is complete if signal strength is unbounded. In cases with bounded signal strength, we provide a 
lower bound on information aggregation: individuals do at least as well as an agent with the strongest signal 
realizations would do in isolation. Finally, we show in a simple environment that position uncertainty slows 
down learning but not to a great extent.
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1. Introduction

In a wide range of economic situations, agents possess private information regarding some 
shared uncertainty. These include choosing between competing technologies, deciding whether 
to invest in a new business, deciding whether to eat at a new restaurant in town, or selecting 
which new novel to read.

If actions are observable but private information is not, one agent’s behavior provides useful 
information to others. Consider the example of choosing between two smartphones recently re-
leased to the market. One is inherently better for all individuals, but agents do not know which.1

Individuals form a personal impression about the quality of each device based on information 
they receive privately. They also observe the choices of others, which partly reveal the private 
information of those agents.

An important characteristic of this environment has usually been overlooked: when choosing 
between competing alternatives, an agent may not know how many individuals have faced the 
same decision before him. Moreover, when an agent observes someone else’s decision, he also 
may not know when that decision was made. For example, even when individuals know when the 
competing smartphones were released, they may be unaware of exactly how many individuals 
have already chosen between the devices. In addition, when an agent observes someone else 
with a smartphone on the bus, he does not know whether the person using the device bought 
it that morning or on the day it was released. We study settings with position uncertainty, and 
ask whether individuals eventually learn and choose the superior technology by observing the 
behavior of others.

We take as our starting point the basic setup in the literature on social learning (Banerjee 
[2] and Bikhchandani et al. [4]) and introduce position uncertainty. In our setting, agents, ex-
ogenously ordered in a sequence, make a once-and-for-all decision between two competing 
technologies. The payoff from this decision is identical to all, but unknown. Agents receive a 
noisy private signal about the quality of each technology. We study cases of both bounded and 
unbounded signal strength. We depart from the literature by assuming that agents may not know 
1) their position in the sequence or 2) the position of those they observe. We refer to both phe-
nomena as position uncertainty. We also depart from Banerjee [2], Bikhchandani et al. [4] and 
others in that agents observe the behavior of only a sample of preceding agents.

To understand the importance of position uncertainty, note that if an agent knows his posi-
tion in the sequence, he can condition his behavior on three pieces of information: his private 
signal, his sample and his position in the sequence. In fact, he may weigh his sample and signal 
differently depending on his position. The typical story of complete learning is one of learning 
over time. Early agents place a relatively larger weight on the signal than on the sample. As time 
progresses, information is aggregated and the behavior of agents becomes a better indicator of 
the true state of the world. Later agents place a relatively larger weight on the sample, which, in 
turn, can lead to precise information aggregation. In contrast, if agents have no information about 
their positions, such heterogeneity in play is impossible. Instead, agents place the same weight 

1 We study situations where network externalities do not play a salient role, including choosing between news sites, 
early search engines, computer software, smartphones, MP3 players or computer brands. Our focus is on informational 
externalities. We are currently working on a setting with network externalities, for which we have partial results.
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on the sample regardless of when they play. Heterogeneous play based on positions cannot drive 
complete learning in this setting.2

This paper presents a flexible framework for studying observational learning under position 
uncertainty. Our framework is general in two ways. First, agents are placed in the adoption se-
quence according to an arbitrary distribution. For example, some agents may, ex-ante, be more 
likely to have an early position in the sequence, while others are more likely to be towards the 
end. Second, our setup allows for general specifications of the information agents obtain about 
their position, once it has been realized. Agents may observe their position, receive no informa-
tion about it, or have imperfect information about it. For instance, agents may know if they are 
early or late adopters, even if they do not know their exact positions.

We focus on stationary sampling, which allows for a rich class of natural sampling rules. Sam-
pling rules are stationary if the probability that an agent samples a particular set of individuals 
is only a function of the distance between the agent and those he observes (that is, how far back 
in time those decisions were made). This assumption implies that no individual plays a decisive 
role in everyone else’s samples.

We say complete learning occurs if the probability that a randomly selected agent chooses the 
superior technology approaches one as the number of agents grows large. We find that learning 
is robust to the introduction of position uncertainty. We specify weak requirements on the infor-
mation of agents: they observe a private signal and at least an unordered sample of past play. 
Agents need not have any information on their position in the sequence. Under unbounded signal 
strength, complete learning occurs. This is due to the fact that as the number of agents in the 
game grows large, individuals rely less on the signal. In cases with bounded signal strength, we 
show agents achieve what we define as bounded learning: agents expect to do at least as well as 
somebody with the strongest signal structure consistent with the bound would do in isolation.

In the present setting, complete learning results from the combination of stationary sampling 
and a modified improvement principle. First introduced by Banerjee and Fudenberg [3], the im-
provement principle states that since agents can copy the decisions of others, they must do at least 
as well, in expectation, as those they observe. In addition, when an agent receives a very strong 
signal and follows it, he must do better than those he observes. As long as the agents observed 
choose the inferior technology with positive probability, the improvement is bounded away from 
zero. In Banerjee and Fudenberg’s model, agents know their positions and observe others from 
the preceding period. If learning did not occur, this would mean that agents choose the inferior 
technology with positive probability in every period. Thus, there would be an improvement be-
tween any two consecutive periods. This would lead to an infinite sequence of improvements, 
which cannot occur, since utility is bounded. In that way, Banerjee and Fudenberg [3] show com-
plete learning must occur in their setting. Acemoglu et al. [1] and Smith and Sørensen [17] use 
similar arguments to show complete learning in their models.

We develop an ex-ante improvement principle, which allows for position uncertainty, and so 
places weaker requirements on the information that agents have. However, this ex-ante improve-
ment principle does not guarantee learning by itself. Under position uncertainty, the improvement 

2 Position uncertainty leads to an additional difficulty. In the usual setup, the strategy of the agent in position 1 may 
affect the payoff of the agent in position 3, but the strategy of 3 does not affect the payoff of 1. With position uncertainty, 
agents A and B do not know if A precedes B or vice versa. This adds a strategic component to the game: A’s strategy 
affects B’s payoffs inasmuch as B’s strategy affects A’s payoffs. Thus, the game cannot be solved recursively and, in fact, 
there are cases with multiple equilibria.
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upon those observed is only true ex-ante (i.e. before the positions are realized). Conditional on 
his position, an agent may actually do worse, on average, than those he observes.3

Stationary sampling rules have the following implication: as the number of agents grows 
large, all agents become equally likely to be sampled.4 This leads to a useful accounting identity. 
Note that the ex-ante (expected) utility of an agent is the average over the utilities he would 
get in each possible position. As all agents become equally likely to be sampled, the expected 
utility of an observed agent approaches the average over all possible positions. Thus, for all 
stationary sampling rules, the difference between the ex-ante utility and the expected utility of 
those observed must vanish as the number of agents grows large.

To summarize, our ex-ante improvement principle states that the difference between the ex-
ante utility and the expected utility of an observed agent only goes to zero if, in the limit, agents 
cannot improve upon those observed. This, combined with stationary sampling rules, implies 
there is complete learning if signal strength is unbounded and bounded learning if signal strength 
is bounded.

The result of bounded learning is useful for two reasons. First, it describes a lower bound 
on information aggregation for all information structures. For any signal strength, agents do, 
in expectation, at least as well as if they were provided with the strongest signals available. 
Second, it highlights the continuity of complete learning, or perfect information aggregation. 
Complete learning becomes a limit result from bounded learning: as we relax the bounds on 
the signal strength, the lower bound on information aggregation approaches perfect information 
aggregation.

Once we establish that learning occurs, a question remains: how fast does information ag-
gregate when agents do not know their positions? In general, the speed of convergence to the 
superior alternative depends on the signal and sampling structure, and on information about po-
sitions. We specify a simple signal structure and assume each agent observes the behavior of the 
preceding agent. In this simple environment, we show convergence is slower when agents do not 
know their positions relative to when they do, but in both cases it occurs at a polynomial rate.

1.1. Related literature

The seminal contributions to the social learning literature are Bikhchandani et al. [4] and 
Banerjee [2]. In these papers, agents know their position in the adoption sequence. In each period, 
one agent receives a signal and observes what all agents before him have chosen. Given that 
each agent knows that the signal he has received is no better than the signal other individuals 
have received, agents eventually follow the behavior of others and ignore their own signals. 

3 To see this, consider the following example. Signals are of unbounded strength. There is a large number of agents in 
a sequence. Everyone knows their position exactly except for the agents in the second and last positions, who have an 
equal chance of being in each of these positions. If each agent observes the decision of the agent that preceded him, then, 
by the standard improvement principle, the penultimate agent in the sequence makes the correct choice with a probability 
approaching one. The agent who plays last, on the other hand, is not sure that he is playing last. He does not know if he is 
observing the penultimate agent, who is almost always right, or the first agent, who often makes mistakes. As a result, the 
agent who plays last relies on his signal too often, causing him to make mistakes more often than the agent he observes.

4 The following example illustrates this point. Let all agents be equally likely to be placed in any position in a finite 
sequence and let sampling follow a simple stationary rule: each agent observes the behavior of the preceding agent. An 
agent does not know his own position and wonders about the position of the individual he observes. Since the agent is 
equally likely to be in any position, the individual observed is also equally likely to be in any position (except for the last 
position in the sequence).
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Consequently, Banerjee [2] and Bikhchandani et al. [4] show that the optimal behavior of rational 
agents can prevent complete learning.

Smith and Sørensen [16] highlight that there is no information aggregation in the models of 
Banerjee [2] and Bikhchandani et al. [4] because these models assume signals are of bounded 
strength. In Smith and Sørensen [16], agents also know their positions in the adoption sequence 
and observe the behavior of all preceding agents. In contrast to Banerjee [2] and Bikhchandani 
et al. [4], agents receive signals of unbounded strength: signals can get arbitrarily close to being 
perfectly informative. In such a context, the conventional wisdom represented by a long sequence 
of agents making the same decision can always be overturned by the action of an agent with a 
strong enough signal. As a result, individuals never fully disregard their own information. In 
fact, Smith and Sørensen [16] show that if signals are of unbounded strength, complete learning 
occurs.5

Most of the literature has focused on cases in which agents know their own positions and the 
positions of those they observed, and sample from past behavior. The aforementioned Banerjee 
and Fudenberg [3], Çelen and Kariv [6], and Acemoglu et al. [1] are among them. Acemoglu 
et al. [1] present a model on social learning with stochastic sampling. In their model, agents 
know both their own position and the position of sampled individuals. Under mild conditions on 
sampling, complete learning occurs.6

Several recent papers have highlighted the importance of position uncertainty. Smith and 
Sørensen [17] is the first paper to allow for some uncertainty about positions. In their model, 
agents know their own position but do not know the positions of the individuals sampled. Since 
agents know their own positions, an improvement principle and a mild assumption on sampling 
ensures that complete learning occurs. In a context of observational learning, Costain [7] calls 
into question the uniqueness results of the global games literature. To do so, Costain [7] presents 
a model with position uncertainty but does not focus on the information aggregation dimension 
of the game. In Callander and Hörner [5], each agent observes the aggregate number of adopters, 
but does not know the order of the decisions. Callander and Hörner [5] show the counterintuitive 
result that it is sometimes optimal to follow the decision of a minority. Hendricks et al. [12]
present a similar model and test its predictions using experimental data from an online music 
market. Herrera and Hörner [13] and Guarino et al. [10] focus on the interesting case where only 
one decision (to invest) is observable whereas the other one (not to invest) is not. Herrera and 
Hörner [13] propose a continuous time model, with agents’ arrivals determined by a Poisson ar-
rival process. They show that when signals are of unbounded strength, complete learning occurs. 
In Guarino et al. [10], time is discrete and agents make decisions sequentially. Guarino et al. 
[10] show that cascades cannot occur on the unobservable decision. Our paper differs from these 
recent papers in several dimensions. First, we focus on cases where both actions are observable. 

5 Starting with Ellison and Fudenberg [8,9], other papers focus on boundedly rational agents. In Guarino and Jehiel [11]
individuals observe all preceding agents and know the (expected) fraction of agents who choose the superior technology. 
They take their sample as coming from a binomial distribution with success probability equal to that fraction. Even 
with signals of unbounded strength, complete learning does not occur. Mistakes pile up fast because of agents’ rule of 
behavior.

6 To see why position uncertainty matters in a setup like the one described in Acemoglu et al. [1], consider the following 
example. Each agent observes the agent before him and the very first agent. However, they do not know which is which. 
Since the first agent may choose the inferior technology, his incorrect choice may carry over. This happens because 
individuals cannot identify who is the first agent in their sample. If agents knew the position of those observed, complete 
learning would occur.
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Second, we allow for agents to observe a sample from past behavior. Third, we present a model 
where information aggregation can be studied for any case of position uncertainty.

Larson [14] and Lobel et al. [15] focus on the speed of learning. Larson [14] suggests a model 
where agents observe a weighted average of past actions and make a choice in a continuous 
action space. Larson [14] shows that if agents could choose weights, they would place higher 
weights on more recent actions. Moreover, learning is faster when the effects of early actions 
fade out quickly. Lobel et al. [15] study the rate of convergence for two specific sampling rules: 
either agents sample their immediate predecessor or a random action from the past. Under a 
simple signal structure, we show that lack of information about positions slows down learning, 
but modestly relative to going from sampling the preceding agent to sampling a random action 
from the past.

In the next section we present the model. Section 3 defines complete learning, presents equilib-
rium existence and shows the intuition behind our main results in a simplified example. Section 4
presents our two building blocks. First, we show how under stationary sampling rules the ex-
pected utility of an observed agent must approach the average utility of agents over all positions. 
Second, we present our ex-ante improvement principle. In Section 5, using these two results, 
we show complete learning in the case that agents are ex-ante symmetric and play a symmetric 
equilibrium. Section 6 generalizes these findings to the asymmetric cases. Section 7 studies the 
speed of learning in our simplified example. Section 8 concludes.

2. Model

There are T players, indexed by i. Agents are exogenously ordered as follows. Let p :
{1, . . . , T } → {1, . . . , T } be a permutation and let P be the set of all possible permutations. 
Then, P is a random variable with realizations p ∈ P . The random variable P(i) specifies the 
period in which player i is asked to play. Assume first that each agent has equal probability of 
acting at any time: Pr(P = p) = 1

T ! for all p ∈ P . We call this the case of symmetric position 
beliefs.

Agents know the length T of the sequence but may not know their position in it. We are 
interested in how information is transmitted and aggregated in a large society with diffuse decen-
tralized information, so we study the behavior of agents as T approaches infinity.

All agents choose one of two technologies: a ∈A = {0, 1}. There are two states of the world: 
θ ∈ Θ = {0, 1}. The timing of the game is as follows. First, θ ∈ Θ and p ∈ P are chosen. The 
true state of the world and the agents’ order in the sequence are not directly revealed to agents. 
Instead, each individual i receives a noisy signal ZP(i) about the true state of the world, a second 
signal SP(i) that may include information about his position, and a sample ξP (i) of the deci-
sions of agents before him. With these three sources of information, each agent decides between 
technologies 0 and 1, collects payoffs, and dies. Thus, the decision of each individual is once-
and-for-all.

We study situations with no payoff externalities. Let u(a, θ) be the payoff from choosing 
technology a when the state of the world is θ . We assume that agents obtain a payoff of 1
when the action matches the state of the world, and of 0 otherwise. Moreover, we assume that 
Pr(θ = 1) = Pr(θ = 0) = 1

2 .7

7 Whenever the optimal technology depends on the state of the world, payoffs as presented are without loss of gener-
ality. We assume both states of the world are equally likely to simplify the exposition, but this assumption is not required 
for any of the results.
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Agents may receive information about their position or about the position of those they ob-
serve through a (second) private signal SP(i), with realizations s ∈ S . Initially, we assume players 
have symmetric position beliefs and no ex-ante information about positions. Thus, for now, 
S = {s̄} and so SP(i) = s̄ for all i. We present our results in this environment. In Section 6, 
we show that our results hold also under general position beliefs and when agents receive infor-
mation about positions. We describe next the conditions on the private signal Z and the sample 
ξ that guarantee complete learning.

2.1. Private signals about the state of the world

Agent i receives a private signal ZP(i), with realizations z ∈Z .8 Conditional on the true state 
of the world, signals are i.i.d. across individuals and distributed according to μ1 if θ = 1 or μ0 if 
θ = 0. We assume μ0 and μ1 are mutually absolutely continuous. Then, no perfectly-revealing 
signals occur with positive probability, and the following likelihood ratio (Radon–Nikodym 
derivative) exists:

l(z) ≡ dμ1

dμ0
(z)

An agent’s behavior depends on the signal Z only through the likelihood ratio l. Given ξ and S, 
individuals that choose technology 1 are those that receive a likelihood ratio greater than some 
threshold. For this reason, it is of special interest to define a distribution function Gθ for this 
likelihood ratio: Gθ(l) ≡ Pr(l(Z) ≤ l | θ). We define signal strength as follows.

Definition 1 (Unbounded Signal Strength). Signal strength is unbounded if 0 < G0(l) < 1 for 
all likelihood ratios l ∈ (0, ∞).

Since μ0 and μ1 are mutually absolutely continuous, the support of G0 and G1 has to coin-
cide, and so the previous definition also holds for G1. Let supp(G) be the support of both G0
and G1. If Definition 1 does not hold, we assume that the convex hull of supp(G) is given by 
co(supp(G)) = [l, l], with both l > 0 and l < ∞, and we call this the case of bounded signal 
strength. We study this case in Section 5.1.9

2.2. The sample

Let at ∈ A be the action of the agent playing in period t . The history of past actions at period 
t is defined by

ht = (a0, a1, a2, . . . , at−1).

Let Ht be the (random) history at time t , with realizations ht ∈ Ht . Action a0 is not chosen 
strategically but instead specified exogenously by an arbitrary distribution H1.10

8 Formally, (Z, μ) is an arbitrary probability measure space.
9 We assume that l < 1 < l, and so we disregard cases where one action is dominant if the only source of information 

is the signal. Also, there are intermediate cases, where the bound is only in one side. They do not add much to the 
understanding of the problem, so we only mention them after presenting the results from the main two cases.
10 Conditional on θ , H1 is independent of P . The results we present in this paper do not place any other restrictions on 
the distribution H1. Typically, one can think about agent 0 as receiving no sample. He knows he is the first agent, and so 
he follows his signal.
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Agents observe the actions of a sample of individuals from previous periods. The random 
set Ot , which takes realizations ot ∈ Ot , lists the positions of the agents observed by the in-
dividual in position t . For example, if the individual in position t = 5 observes the actions of 
individuals in periods 2 and 3 then o5 = {2, 3}. We assume Ot is nonempty11 and independent of 
other random variables. We also assume sampling to be stationary. We describe this assumption 
later.

At a minimum, we assume that each agent observes an unordered sample of past play, fully 
determined by Ht and Ot . Formally, the sample ξ : Ot ×Ht → Ξ =N

2 is defined by

ξ(ot , ht ) ≡
(

|ot |,
∑
τ∈ot

aτ

)
, where |ot | is the number of elements in ot .

Therefore, ξ(ot , ht ) specifies the sample size and the number of observed agents who chose 
technology 1.12 Agents may have more information about the positions of observed agents. This 
information is included in the second signal S, as explained in Section 6.

We impose restrictions on the stochastic set of observed agents Ot . To do so, we first define 
the expected weight of agent τ on agent t ’s sample by wt,τ ≡ E[1{τ∈Ot }

|Ot | ]. These weights play a 
role in the present model because if agents pick a random agent from the sample and follow his 
strategy, the ex-ante probability agent t picks agent τ is given by wt,τ . Now, different distribu-
tions for Ot induce different weights wt,τ . We restrict the sampling rule by imposing restrictions 
directly on the weights. We suppose that, in the limit, weights only depend on relative positions.

Definition 2 (Stationary Sampling). A sampling rule is stationary if there exist limit weights 
{w(i)}∞i=1 with 

∑∞
i=1 w(i) = 1 such that for all i: limt→∞ wt,t−i = w(i).

The limit weights w depend only on the distance between agents, and so no individual plays a 
predominant role in the game. Some examples of stationary sampling rules include when 1) agent 
t observes the set of his M predecessors, or when 2) agent t observes a uniformly random agent 
from the set of his M predecessors, or finally when 3) agent t observes a uniformly random 
subset K of the set of his M predecessors.13 Another interesting stationary sampling rule is 
characterized by geometric weights: wt,t−i = γ−1

γ t−1γ t−i with γ > 1.

3. Existence and social learning in a nutshell

All information available to an agent is summarized by I = (z, ξ, s), which is an element 
of I = Z × Ξ × S . Agent i’s strategy is a function σi : I → [0, 1] that specifies a probability 
σi(I ) for choosing technology 1 given the information available. Let σ−i be the strategies for all 
players other than i. Then the profile of play is given by σ = (σi, σ−i ). The random variables in 
this model are Ω(T ) = (θ, P, {Ot }Tt=1, {Zt }Tt=1, {St }Tt=1, H1).

We focus on properties of the game before both the order of agents and the state of the world 
are determined. We define the ex-ante utility as the expected utility of a player.

11 An agent who plays without observing others chooses the inferior technology with positive probability. Thus, when-
ever a positive fraction of agents observe empty samples, complete learning does not occur.
12 For example, if t = 5, h5 = (0, 1, 1, 0, 0) and o5 = {2, 3} then ξ5(o5, h5) = (2, 1); that is, the agent in position 5
knows he observed two agents and that only one of them chose technology 1.
13 Of course, agents in positions t < M sample differently, but the sampling rule is still stationary.
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Definition 3 (Ex-ante Utility). The ex-ante utility ui is given by

ui(σ ) ≡ 1

2

∑
θ

Pr
(
aP(i)(σ ) = θ

∣∣ θ
)
.

Profile σ ∗ = (σ ∗
i , σ ∗−i ) is a Bayes–Nash equilibrium of the game if, for all σi and for all i, 

ui(σ
∗
i , σ ∗−i ) ≥ ui(σi, σ ∗−i ). Using a fixed point argument, we show that equilibria exist, for any 

length T of the game.

Proposition 1 (Existence). For each T there exists an equilibrium σ ∗(T ).

See Appendix A.2 for the proof.
When beliefs are symmetric, agents are ex-ante homogeneous; the information they obtain 

depends on their position P(i) but not on their identity i. To simplify the analysis of the model 
with symmetric beliefs, we focus on strategies where the agent in a given position behaves in the 
same way regardless of his identity.

A profile of play σ is symmetric if σi = σj for all i, j . A symmetric equilibrium is one 
in which the profile of play is symmetric. In the model with symmetric beliefs, we focus on 
symmetric equilibria.14 In general, multiple equilibria may arise, and some may be asymmetric. 
Appendix A.1 presents an example of such equilibria.

Under symmetric profiles of play, an agent’s utility is not affected by the order of the other 
agents. In other words, if σ is symmetric, the utility ut (σ ) of any agent i in position t is the same 
for any permutation p with p(i) = t . Only the uncertainty over one’s own position matters, and 
so when beliefs and strategies are symmetric the ex-ante utility of every player can be expressed 
as ui(σ ) = 1

T

∑T
t=1 ut (σ ).

For complete learning, we require that the expected proportion of agents choosing the right 
technology approaches 1 as the number of players grows large. We can infer this expected pro-
portion through the average utility of the agents.

Definition 4 (Average Utility). The average utility ū is given by

ū(σ ) = 1

T

T∑
i=1

ui(σ ).

The expected proportion of agents choosing the right technology approaches 1 if and only 
if the average utility reaches its maximum possible value, 1. In principle, there can be multi-
ple equilibria for each length T of the game. We say complete learning occurs in a particular 
sequence of equilibria, {σ ∗(T )}∞T =1, when the average utility approaches its maximum value.15

Definition 5 (Complete Learning). Complete learning occurs in a particular sequence of equilib-
ria {σ ∗(T )}∞T =1 if limT →∞ ū(σ ∗(T )) = 1.

14 In Section 6, investigating general position beliefs, we consider all equilibria and construct symmetric equilibria from 
possibly asymmetric equilibria. Thus, symmetric equilibria exist.
15 The sequence of games, each with length T , share weights wt,τ for all t ≤ T . Then, as T → ∞, the sampling rule is 
fixed and we study the properties of equilibria under that sampling rule.
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Our definition of complete learning also applies to the asymmetric cases studied in Section 6. 
In the main part of the paper we focus on the symmetric case (all players are ex-ante identical 
and play symmetric strategies). In such a case, all agents have the same ex-ante utility, which 
of course coincides with the average utility: ui(σ ) = ū(σ ). In this symmetric setting, complete 
learning occurs if and only if every individual’s ex-ante utility converges to its maximum value.

We present an ex-ante improvement principle in Section 4.2: as long as those observed choose 
the inferior technology with positive probability, an agent’s utility can always be strictly higher 
than the average utility of those observed. To accomplish this, we need to define the average 
utility ̃ui of those that agent i observes. Let ̃ξP (i) denote the action of a randomly chosen agent 
from those sampled by agent i. Then, we define ̃ui as follows.

Definition 6 (Average Utility of Those Observed). The average utility of those observed, denoted 
ũi (σ−i ), is given by

ũi (σ−i ) ≡ 1

2

∑
θ

Pr
(̃
ξP (i)(σ−i ) = θ

∣∣ θ
)
.

The average utility ũi of those that agent i observes is the expected utility of a randomly 
chosen agent from agent i’s sample.

When i is in position t the weight wt,τ represents the probability that agent τ is selected at 
random from agent i’s sample. Thus, under symmetry, ̃ui can be reexpressed as follows.

Proposition 2. When beliefs and strategies are symmetric, the average utility of those observed 
can be rewritten as

ũi (σ−i ) = 1

T

T∑
t=1

t−1∑
τ=0

wt,τ uτ (σ−i ).

See Appendix A.3 for the proof. From now on, we utilize the expression for ũi given by 
Proposition 2.

Finally, we also use ũ(σ ) to denote the average of ũi(σ−i ) taken across individuals. Notice 
that since players are ex-ante symmetric, when beliefs and the strategy profile are symmetric, 
ũi (σ−i ) = ũ(σ ).

3.1. Social learning in a nutshell

Before going over our general results, we present a simple example which captures the main 
intuition behind these results.

Example. All T agents are equally likely to be placed in any position and have no ex-ante 
information about their position. Sampling follows a simple stationary rule: each agent observes 
the behavior of the preceding agent, except for agent 0 who observes no one. The signal structure 
is described by μ1[(0, z)] = z2 and μ0[(0, z)] = 2z − z2 with z ∈ (0, 1). Then,

1. Given the sampling rule, the improvement vanishes: limT →∞ |ū(σ ) − ũ(σ )| = 0.
2. In equilibrium agents imitate the sampled action if the signal is weak: 1 − ũ(σ ∗) <

z < ũ(σ ∗). Otherwise, they follow their signal.
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3. Agents improve upon those observed: ū(σ ∗) − ũ(σ ∗) = (1 − ũ(σ ∗))2 > 0.
4. Learning is complete: limT →∞ ū(σ ∗) = 1.

First, note that each agent observes only his predecessor; thus logically, the average im-
provement is simply one in T parts of the total improvement from agent 0 to agent T : 
|ū(σ ) − ũ(σ )| = 1

T
|uT (σ ) − u0(σ )|. The improvement from agent 0 to agent T is bounded by 

one, thus |ū(σ ) − ũ(σ )| < 1
T

, which leads to what we call vanishing improvement as T → ∞. 
Second, because of the simple signal and sampling structure we can explicitly solve for the opti-
mal behavior in equilibrium. The sample’s informativeness is given by the likelihood of the action 
observed being the superior one. Moreover, since positions are unknown, the relevant likelihood 
is the average utility of those observed: ̃u(σ ∗).16 That is why agents imitate what they observe if 
and only if 1 − ũ(σ ∗) < z < ũ(σ ∗). We can solve too for the expected improvement upon those 
observed, which is bounded away from zero as long as the average utility of those observed is 
not 1. Lastly, we put together the vanishing improvement and the improvement principle so we 
have that (1 − ũ(σ ∗))2 < 1

T
. As a result, both the average utility of those observed ̃u(σ ∗) and the 

average utility ū(σ ∗) approach one as the number of players T grows.

4. Vanishing improvement and ex-ante improvement

Previous results on social learning rely on agents knowing their own position. If agents do 
not know their position, the improvement principle as developed by Banerjee and Fudenberg [3]
cannot be used to show complete learning. Agents cannot base their behavior on the expected 
utility of those observed, conditional on their position. The example from the previous section 
highlights how the combination of vanishing improvement (for stationary sampling rules) and 
an improvement principle which does not rely on information on positions guarantee complete 
learning. In this section we present these two building blocks.

4.1. Vanishing improvement

Stationary sampling has the following useful implication: the weights that one agent places 
on previous individuals can be translated into weights that subsequent individuals place on him. 
The graph on the left side of Fig. 1 represents the weights wt,τ agent t place on agent τ . For 
example, w4,2 represents the weight agent 4 places on agent 2 and w5,3 represents the weight 
agent 5 places on agent 3. As we move away from the first agents, weights wt,τ approach limit 
weights w(t − τ). Since the distance between agents 4 and 2 is equal to the distance between 
agents 5 and 3, then the limit weights are equal: w(2). The graph on the right side of Fig. 1 shows 
the sampling limit weights.

The horizontal ellipse in the left-hand side of Fig. 1 includes the weights subsequent agents 
place on agent 3. These weights approach the limit weights on the right side of Fig. 1. Since 
limit weights are only determined by the distance between agents, the sum of the horizontal limit 
weights adds up to 1. Thus, for any agent far enough from the beginning and end of the sequence, 
the sum of horizontal weights—those subsequent agents place on him—is arbitrarily close to 1. 
Intuitively, this means that all individuals in the sequence are “equally important” in the samples.

16 Note that as T → ∞ the equilibrium behavior of all agents limits to disregarding their private information. In contrast, 
if agents know their positions, the optimal strategy of an agent in a given position does not change with the total number 
of agents: early agents always put positive weight on their private signal.
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Fig. 1. Stationary sampling.

Since the weights subsequent agents place on any one agent eventually add up to 1, the average 
observed utility ultimately weights all agents equally, and the proportion of the total weight 
placed on any fixed group of agents vanishes. Then, as we show next, the homogeneous role of 
agents under stationary sampling imposes an accounting identity: average utilities and average 
observed utilities get closer as the number of agents grows large. This is not an equilibrium result 
but a direct consequence of stationary sampling, as the following proposition shows.

Proposition 3. Let sampling be stationary, and, for each T , let {yT
t }Tt=0 be an arbitrary sequence, 

with 0 ≤ yT
t ≤ 1. Let ȳ(T ) = 1

T

∑T
t=1 yT

t and ̃y(T ) = 1
T

∑T
t=1

∑t−1
τ=0 wt,τ y

T
τ . Then,

lim
T →∞ sup

{yT
t }Tt=0

∣∣ȳ(T ) − ỹ(T )
∣∣ = 0.

See Appendix A.4 for the proof.
We use arbitrarily specified sequences to highlight that Proposition 3 holds for all possible 

payoff sequences. Turning to the case of interest, let {σ(T )}∞T =1 be a sequence of symmetric strat-
egy profiles that induces average utility ū(σ (T )) and average utility of those observed ̃u(σ (T )). 
Define the ex-ante improvement v(T ) ≡ ū(σ (T )) − ũ(σ (T )) to be the difference between the av-
erage utility and the average utility of those observed. Proposition 3 has the following immediate 
corollary.

Corollary 1. If beliefs and strategies are symmetric and the sampling rule is stationary, then 
limT →∞ v(T ) = 0.

The ex-ante improvement v(T ) represents how much an agent in an unknown position expects 
to improve upon an agent he selects at random from his sample. Corollary 1 shows that under 
stationary sampling rules, the ex-ante improvement v(T ) vanishes as the number of agents in the 
sequence grows larger.
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Fig. 2. Ex-ante improvement principle with unbounded signals.

4.2. The ex-ante improvement principle

We develop an improvement principle for settings with position uncertainty. Even if an agent 
has no information about his own position or the position of those observed, he can still copy 
the behavior of somebody picked at random from those observed. Moreover, from an ex-ante 
perspective, he can obtain an expected utility higher than that of those observed by using in-
formation from the signal. The difference in our argument is that although the agent may not 
improve upon those observed, conditional on his position, he can improve upon those observed 
unconditional on his position.

Because of position uncertainty, the ex-ante improvement principle we develop does not rely 
on any information on positions. Let us restrict the information set in the following way. First, 
disregard all information contained in S. Second, pick an agent at random from those agent i
observes. Let ̃ξ denote the action of the selected agent. The restricted information set is defined 
by Ĩ = (z, ̃ξ) with Ĩ ∈ Ĩ =Z × {0, 1}.

The average utility ̃ui of those observed by agent i depends only on the likelihood that those 
observed choose the superior technology in each state of the world. Define those likelihoods by 
π0 ≡ Pr(̃ξ = 0 | θ = 0) and π1 ≡ Pr(̃ξ = 1 | θ = 1). Then, copying a random agent from the 
sample leads to a utility ũi = 1

2 (π0 + π1). Moreover, the information contained in the action ̃ξ
can be summarized by the likelihood ratio L : {0, 1} → (0, ∞) given by

L(̃ξ) ≡ Pr(θ = 1 | ξ̃ )

Pr(θ = 0 | ξ̃ )
.

Then, the information provided by ̃ξ is captured by L(1) = π1
1−π0

and L(0) = 1−π1
π0

.

Based on the restricted information set Ĩ , agents can actually do better in expectation than 
those observed. Basically, if the information from the signal is more powerful than the infor-
mation contained in the action ξ̃ , agents are better off following the signal than following the 
sample. We use this to define a “smarter” strategy σ ′

i that utilizes both information from ̃ξ and 
from the signal. If signal strength is unbounded and observed agents do not always choose the 
superior technology, the “smarter” strategy does strictly better than simply copying a random 
agent from the sample. In fact, fix a level U for the utility of observed agents. The thick line in 
Fig. 2 corresponds to combinations of π0 and π1 such that ũi(σ−i ) = U , and the shaded area 
represents combinations such that ũi(σ−i ) > U . Outside of the shaded area, the improvement 
upon those observed is bounded below by a positive-valued function C(U).
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Fig. 3. Proof of complete learning.

Proposition 4 (Ex-ante Improvement Principle). If signal strength is unbounded, players have 
symmetric beliefs and σ−i is a symmetric strategy profile, then there exists a strategy σ ′

i and a 
positive-valued function C such that for all σ−i

ui

(
σ ′

i , σ−i

) − ũi (σ−i ) ≥ C(U) > 0 if ũi (σ−i ) ≤ U < 1.

See Appendix A.5 for the proof.
Proposition 4 presents a strategy that allows the agent to improve upon those observed. Then, 

in any equilibrium σ ∗(T ), he must improve at least that much. In addition, since we focus on 
symmetric equilibria, ui(σ

∗(T )) = ū(σ ∗(T )) and ̃ui(σ
∗−i (T )) = ũ(σ ∗(T )). With these two facts, 

we present the following corollary.

Corollary 2. If signal strength is unbounded and beliefs are symmetric, then in any symmetric 
equilibrium σ ∗(T ),

ū
(
σ ∗(T )

) − ũ
(
σ ∗(T )

) ≥ C(U) > 0 if ũ
(
σ ∗(T )

) ≤ U < 1.

5. Social learning with symmetric strategies

We now present our main result.

Proposition 5 (Complete Learning Under Symmetry With Unbounded Signals). If signal strength 
is unbounded, players’ beliefs are symmetric and sampling is stationary, then complete learning 
occurs in any sequence of symmetric equilibria.

See Appendix A.6 for the proof.
Fig. 3 depicts the proof of Proposition 5. On the horizontal axis is the average utility of 

those observed, while on the vertical axis is players’ ex-ante utility. We focus on the behavior 
of the average utility ū(σ ∗(T )) as the number of players T approaches infinity. First, agents 
do at least as well as those observed, so any equilibrium must correspond to a point above the 
45

◦
line. Second, because of stationary sampling, v(T ) = ū(σ ∗(T )) − ũ(σ ∗(T )) must vanish 

as the number of players T grows large. The dashed lines in Fig. 3 represent how as T grows 
large, equilibria must approach the 45

◦
line. Finally, the improvement principle guarantees that 

ū(σ ∗(T )) ≥ ũ(σ ∗(T )) + C(̃u(σ ∗(T ))). In any equilibrium the value of ū(σ ∗(T )) must be above 
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Fig. 4. Ex-ante improvement principle with bounded signals.

the thick curve depicted in Fig. 3. These conditions together imply that as the number of players 
T grows large, any sequence of equilibria must lead to a sequence of payoffs that approach the 
northeast corner of the square. In particular, complete learning occurs: ū(σ ∗(T )) approaches 1.

This completes our discussion of the case of unbounded signal strength. As shown in Propo-
sition 5, complete learning occurs even without any information on positions. Of course, if 
individuals do have some information on their own position or the position of others, they may 
use it. However, in any case, information gets aggregated and complete learning occurs: position 
certainty is not a requirement for information aggregation.

5.1. Bounded signal strength: bounded learning

So far, we have studied social learning when signal strength is unbounded. However, one can 
imagine settings in which this assumption may be too strong, that is, there may be a lower bound l
and an upper bound l to the likelihood ratio l(Z). If signal strength is bounded, complete learning 
cannot be guaranteed. We can define, however, a bounded learning concept that is satisfied in this 
setting.

Imagine there is an agent in isolation who only receives the strongest signals, those yielding 
likelihoods l and l. Under such a signal structure the likelihood ratios determine how often each 
signal occurs in each state. Let ucl denote the maximum utility in isolation, that is the expected 
utility this agent would obtain by following his signal. We show that in the limit, the expected 
utility of a random agent cannot be lower than ucl .

In order to show that bounded learning occurs, we present an ex-ante improvement principle 
when signal strength is bounded. Based on the restricted information set Ĩ = (z, ̃ξ) defined be-
fore, an agent follows his signal when its information is stronger than the information from ̃ξ . 
An agent chooses technology 1 if l(Z)L(̃ξ) ≥ 1 and technology 0 otherwise. Now, the agent im-
proves in expectation upon those observed only if the informational content from the sample does 
not exceed the informational content of the best possible signals. In other words, if L(1)l ≥ 1 and 
L(0)l ≤ 1 both hold, all possible signals lead to the same outcome: copy the person observed, 
and no improvement can be obtained using Ĩ . The dotted lines in Fig. 4 correspond to combina-
tions of π0 and π1 such that L(1)l = 1 or L(0)l = 1. Consequently, outside of the shaded area in 
Fig. 4, signals can be used to improve upon those observed, as Proposition 6 shows. We say that 
a model of observational learning satisfies bounded learning if agents receive at least ucl in the 
limit.
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Proposition 6 (Learning Under Symmetry with Bounded Signals). If signal strength is bounded 
and players’ beliefs are symmetric, then

1. if σ−i is a symmetric strategy profile, there exists a strategy σ ′
i and a positive-valued function 

C such that for all σ−i

ui

(
σ ′

i , σ−i

) − ũi (σ−i ) ≥ C(U) > 0 if ũi (σ−i ) ≤ U < ucl, and so

2. if sampling is stationary, bounded learning occurs in any sequence of symmetric equilibria.

See Appendix A.7 for the proof.
The concept of bounded learning provides a lower bound for information aggregation in 

contexts of bounded signal strength. This result highlights that learning is not restricted to the 
extreme case of unbounded signal strength. Moreover, the bound on information aggregation de-
pends only on the most informative signals. Finally, Fig. 4 can be used to explain how the case 
of unbounded signal strength can be understood as a limit result of the case of bounded signal 
strength. If l approaches 0 and l approaches ∞, the constraints represented by the dotted lines 
become less binding, and ucl approaches 1.17

6. Social learning in asymmetric games

The model as presented in Section 2 provides a simple setup to analyze social learning. How-
ever, agents may posses more information than that contained in signal Z and the sample ξ . 
To allow for more general information frameworks, each agent receives a second private sig-
nal SP(i). Signal S may provide information about the unobserved random variables, so it may 
depend on θ , P , Ot and Ht . We require that conditional on θ , St be independent of H1 and of 
Zτ for all τ . To simplify our proof of existence, we also assume that S is finite for any length T
of the sequence.

To illustrate how S can provide additional information, assume that agents know their posi-
tion. In such a case, S = {1, . . . , T } and St = t . This setting corresponds to the model of Smith 
and Sørensen [17] where agents know their position and observe an unordered sample of past be-
havior. Our setup can also accommodate cases in which agents have no information about their 
position, but have some information about the sample, which may be ordered.18

If agents have imperfect information about their position in the sequence, then S specifies a 
distribution over positions. Moreover, S may provide information on several unobservable vari-
ables at the same time. In fact, S plays a critical role when allowing for general position beliefs, 
as we explain next. To summarize, the signal S represents all information agents have that is not 
captured by Z or ξ .

As is clear by now, the results presented so far do not depend on the distribution of S. Our 
improvement principle provides a lower bound on the improvement, so if agents are given more 
information, they cannot do worse. In particular, complete learning does not depend on the in-
formation agents possess about their position.

17 The reasoning presented in this section can also be used to study cases where the signal strength is bounded only on 
one side. For example, if l = 0 but l < ∞, bounded learning implies that agents always choose the right action in state of 
the world 0 but might not do so in state of the world 1.
18 Take the example with t = 5, h5 = (. . . , a1 = 1, a2 = 1, a3 = 0, a4 = 0) and o5 = {2, 3}, which leads to ξ5(o5, h5) =
(2, 1). If samples are ordered, then s5 = (1, 0), denoting that the first agent in the sample chose technology 1 and the 
second one chose technology 0.
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This section extends our results to settings where individuals may have asymmetric posi-
tion beliefs and to asymmetric equilibria. The generalization to asymmetric position beliefs is 
necessary to analyze position beliefs in their most general form. Naturally, when the players 
themselves are not symmetric one must also analyze asymmetric equilibria. In addition, as Ap-
pendix A.1 shows, asymmetric equilibria can arise even when players have symmetric beliefs. 
This section shows information aggregates in the most general setting, leading to learning.

Studying asymmetric settings creates a new difficulty: agents are not ex-ante identical. The 
ex-ante utility ui and the utility of those observed ̃ui vary across individuals (they are not equal 
to the average utilities ū and ũ, respectively). To address this difficulty, we construct an auxiliary 
game where agents behave in the same way as in the original game but are ex-ante identical. 
Since the auxiliary game is symmetric, we can use the tools developed in Section 5 to show 
complete learning or bounded learning, depending on the signal strength.

The intuition behind this construction is simple. For any game with an arbitrary distribution 
over permutations we can construct an analogous one in which players are ex-ante symmetric 
but have interim beliefs corresponding to those with the same arbitrary distribution over permu-
tations. We do this by adding information through the additional signal. Likewise, when agents 
are allowed to have extra information, the assumption of a symmetric equilibrium is without loss 
of generality. To see this, suppose that some players do not react in the same way to the same 
information. Then, we simply take them as different types. Since their type is part of the informa-
tion they receive, they react in the same way to the same information. Before agents are assigned 
their type, they act symmetrically.

6.1. Construction of auxiliary symmetric game

From the primitives of the game with general position beliefs, we construct an auxiliary game 
with symmetric beliefs. Let Γ1 denote the original game and Γ2 denote the auxiliary game. We 
construct an alternative random ordering P̃ and signal ̃S for Γ2. The other primitives are identical 
across the two games.

To construct P̃ we first shuffle the agents according to a uniform random ordering Q, and then 
order them according to P , the ordering of Γ1, so that P̃ = P ◦ Q. The additional set of signals 
in Γ2 is formally given by S̃t = (P −1(t), St ).

As constructed, Γ2 is an observational learning game with symmetric beliefs. First, players 
have symmetric position beliefs, Pr(P̃ = p̃) = 1

T ! . Second, conditional on θ , S̃t is independent 
of Zτ . Since all other primitives are identical to those in Γ1, Γ2 is an observational learning game 
with symmetric beliefs, as described in Section 2.

The players of Γ2 have the same information as those in Γ1. For any symmetric profile of play 
in Γ2, if agent i knows the realization of Q(i), then the remaining uncertainty in the ordering is 
identical to that in Γ1. Since the profile of play is symmetric in Γ2, all other information contained 
in Q is irrelevant. Agent i in Γ2 is told S̃P̃ (i) = (Q(i), SP̃ (i)), which is the same information 
player Q(i) has in Γ1.

6.2. Relationship between Γ1 and Γ2

The following proposition completes the description of the relationship between these games, 
showing that for any equilibrium of Γ1 there is a corresponding symmetric equilibrium of Γ2 that 
leads to the same average utility.
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Proposition 7. For any equilibrium σ ∗ of Γ1, there exists a symmetric equilibrium ̃σ of Γ2 such 
that ū(σ ∗, Γ1) = ū(̃σ , Γ2).

Proof. We construct σ̃ first. Letting j = q(i), notice that agent i plays in position p̃(i) =
p(q(i)) = p(j) and receives p−1(p̃(i)) = p−1(p(j)) = j as part of his signal. The informa-
tion that player i receives in Γ2 is Ii = (zp̃(i), ξp̃(i), sp̃(i), p−1(p̃(i))) = (zp(j), ξp(j), sp(j), j)

while a player j in Γ1 receives Ij = (zp(j), ξp(j), sp(j)). Then we can construct σ̃ from σ ∗ by 
setting ̃σi(z, ξ, s, j) = σ ∗

j (z, ξ, s) for all i, j , z, ξ and s. Notice that ̃σi does not vary with i and 
so ̃σ is a symmetric profile of play.

Next, we show that when the two games are realized on the same probability space, the action 
sample paths always coincide. When realized on the same probability space, the two games have 
identical initial histories h1. Position by position, in every realization, the players use the same 
strategy in both games. Then, the action sample paths coincide and the sum of the utilities must 
also be the same: ū(σ ∗, Γ1) = ū(̃σ , Γ2).

We show next that ̃σ is an equilibrium. To do so, we argue that in Γ2 a player cannot achieve a 
higher average utility than ū(σ ∗, Γ1) when others follow ̃σ . Suppose to the contrary that there is 
some σ ′

i such that ui(σ
′
i , ̃σ−i , Γ2) > ū(σ ∗, Γ1) and let ui(σ

′
i , ̃σ−i , Γ2, j) be the expected payoff 

to this player when q(i) = j . Since all permutations of Q are equally likely, then

ui

(
σ ′

i , σ̃−i , Γ2
) = 1

T

T∑
j=1

ui

(
σ ′

i , σ̃−i , Γ2, j
)
> ū

(
σ ∗,Γ1

) = 1

T

T∑
j=1

uj

(
σ ∗,Γ1

)
.

There must be some agent j in Γ1 with uj (σ
∗, Γ1) < ui(σ

′
i , ̃σ−i , Γ2, j). If agent i in Γ2 can do 

better, there is some agent j in Γ1 that is not playing a best response. Agent j in Γ1 can copy 
the behavior of agent i in Γ2 when q(i) = j by playing σ ′′

j , given by σ ′′
j (z, ξ, s) = σ ′

i (z, ξ, s, j). 
In this way, agents j and i get the same utility: uj (σ

′′
j , σ ∗−j , Γ1) = ui(σ

′
i , ̃σ−i , Γ2, j). To see this, 

notice that for each realization of p, player i of Γ1 and player j of Γ2 play in the same posi-
tion, i.e. p̃(i) = p(q(i)) = p(j). For reasons identical to those explained above, since the other 
players are still following ̃σ and σ ∗ in Γ1 and Γ2 respectively, the players are facing identical dis-
tributions over action histories, and since they are following the same strategy they must receive 
the same utility.

If σ̃ is not an equilibrium of Γ2, agent j has a profitable deviation in Γ1, so σ ∗ cannot an 
equilibrium of Γ1. Equivalently, if σ ∗ is an equilibrium of Γ1 then σ̃ must be an equilibrium 
of Γ2. �

With Proposition 7, extending results from symmetric position uncertainty to general posi-
tion uncertainty is straightforward. The average utilities under general position uncertainty must 
exhibit the same behavior as average utilities under symmetric position uncertainty.

Proposition 8 (Learning in Asymmetric Games). If sampling is stationary, then in any sequence 
of equilibria: 1. complete learning occurs if signal strength is unbounded and 2. bounded learn-
ing occurs if signal strength is bounded.

7. Speed of convergence under position uncertainty

Learning occurs even when agents do not know their positions, but how fast does it occur? 
In particular, is the speed of convergence to the superior technology affected by the lack of 
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T ūC ūU ūRS

10 0.894 0.885 0.846
30 0.938 0.927 0.864

100 0.971 0.955 0.882

Fig. 5. Average utilities under position certainty, position uncertainty, random sampling.

information about positions? The speed of learning depends on the sampling rule, signal distri-
bution, and the information about positions. In this section, we fix the first two as in the example 
from Section 3.1: agents observe the action of the preceding agent, and receive signals from 
μ1[(0, z)] = z2 and μ0[(0, z)] = 2z − z2 with z ∈ (0, 1). We compare how fast ū(σ ∗) → 1 when 
1) agents have no information about their positions and when 2) agents know their positions 
perfectly. Let ūC(T ) and ūU (T ) denote the average utility with and without information about 
positions respectively. We show that convergence is slower when agents do not know their posi-
tions, but in both cases it occurs at a polynomial rate.

Proposition 9 (Rate of Convergence). 1 − ūU (T ) = Θ(T − 1
2 ) and 1 − ūC(T ) = Θ(log(T )T −1).

When agents do not know their positions, (1 − ũU (T ))2 = T −1|uT (σ ∗) − u0(σ
∗)|, as shown 

in Section 3.1. The utility of the last agent uT (σ ∗) → 1, so 1 − ũU (T ) = Θ(T − 1
2 ). Additionally, 

ūU (T ) − ũU (T ) = (1 − ũU (T ))2, so also 1 − ūU (T ) = Θ(T − 1
2 ).

When agents have full information about positions, the informational content of the sam-
ple depends on the position. Still, the optimal decision in equilibrium is simple: imitate the 
sampled action if 1 − ut (σ

∗) < z < ut (σ
∗) and follow the signal otherwise. Thus, the im-

provement depends on the position: ut+1(σ
∗) − ut (σ

∗) = (1 − ut (σ
∗))2. It is immediate that 

1 − ut (σ
∗) = Θ(t−1). Given this, it is also easy to show that 1 − ūC(T ) = Θ(log(T )T −1).

Lobel et al. [15] had already shown that 1 − ut (σ
∗) = Θ(t−1) when agents know their 

positions. They study a second sampling rule: agents sample a random agent from the past. 
Given full information about positions and the same signal structure, they show 1 − ut (σ

∗) =
Θ((log(t))−1), so one can show that 1 − ū(T )(σ ∗) = Θ((log(T ))−1) in that case.

Focusing only on agents’ information can be misleading. Take an individual’s ex-ante belief 
about the position of the sampled agent. First, when the predecessor is observed and agents 
know their positions, information is perfect. Second, with the same sampling rule but position 
uncertainty, all agents from 0 to T − 1 are equally likely to be observed. Third, with position 
certainty and random sampling, the last agent T has the same beliefs as all agents in the second 
model. Other agents actually have more precise information about who they sample. Naively, one 
may assume that agents in the third model do better than those in the second. However, learning 
in the second model is much faster than in the third. See Fig. 5 for an example.

To sum up, in the present setting no information about positions does slow down learning, but 
in a modest way relative to the extreme impact of going from sampling the preceding agent to 
sampling a random action from the past.

8. Conclusion

In many real-world economic activities, each agent observes the behavior of others but does 
not know how many individuals have faced the same decision before him, or when those observed 
actually made their decisions. We present a model that allows for position uncertainty. Agents, 
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exogenously ordered in a sequence, choose between two competing technologies. They receive 
a noisy private signal about the quality of each technology and observe a sample of past play.

We present a flexible framework for studying observational learning under position uncer-
tainty: agents are placed in the adoption sequence according to an arbitrary distribution and 
receive information about their positions that can be arbitrarily specified. We focus on station-
ary sampling, which allows for a rich class of natural sampling rules and guarantees that no 
individual plays a decisive role in everyone else’s sample.

We first show that even under complete position uncertainty, complete learning occurs. In fact, 
for any information on positions, under unbounded signal strength, the fraction of adopters of the 
superior technology goes to one as the number of agents grows.

Next, we show that information also aggregates in cases of bounded signal strength. Bounded 
learning holds; individuals do at least as well as somebody with the strongest signal structure 
consistent with the bound would do in isolation. This result is useful for two reasons. First, 
it describes a lower bound on information aggregation for all information structures. Second, 
complete learning becomes a limit result from bounded learning: as we relax the bounds on 
the signal strength, the lower bound on information aggregation approaches perfect information 
aggregation.

Then, we discuss how position uncertainty may lead to asymmetric and multiple equilibria, 
even if agents are symmetric ex-ante. We then show how to translate any asymmetric case into a 
symmetric one, and so we are able to show that learning occurs for all equilibria.

Finally, we show in a simple environment that learning is slower when agents do not know 
their positions relative to when they do, but occurs in both cases at a polynomial rate.

Our results are driven by two factors. First, the homogeneous role of agents under stationary 
sampling results in a useful accounting identity: as the number of agents grows large, the dif-
ference between the ex-ante utility and the utility of observed agents must vanish. Second, our 
minimum information requirement guarantees that an ex-ante improvement principle holds: on 
average, agents must do better than those they observe.

Future work should address environments with network externalities. In some economic sit-
uations, payoffs depend both on an uncertain state of the world and on the proportion of agents 
choosing each technology. Agents are interested in learning about both the state of the world and 
the aggregate profile of play. In such situations, informational externalities get confounded with 
coordination motives. Agents do not know the true state of nature, so it is not obvious on what 
outcome they should coordinate. In addition, since they do not observe the aggregate play, even if 
they knew the state of nature, they would not know which action to choose. Finally, this environ-
ment is interesting because agents may take into consideration that their behavior provides others 
with information. As a result, agents may change their behavior in order to influence others.

Appendix A. Proofs and examples

A.1. Example of multiple and asymmetric equilibria

We present an example with T ≥ 3 agents. Each agent observes the behavior of his immediate 
predecessor. The agent in the first position knows his own position. There are two relevant agents 
in this example: John and Paul. They believe (correctly) that they are equally likely to be in 
positions 2 and 3 and know they are not placed elsewhere. The beliefs of agents in positions 4 to 
T do not play a role in this example and are therefore not specified.
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The signal structure is simple: each agent receives one of three19 possible signals Z ∈ Z =
{0, 12 , 1}, distributed as follows, with p > q ,

μ0(z) =
⎧⎨⎩

p if z = 0
q if z = 1
1 − p − q if z = 1

2

and μ1(z) =
⎧⎨⎩

p if z = 1
q if z = 0
1 − p − q if z = 1

2 .

The behavior of the first agent does not depend on the strategies employed by other agents. 
He simply follows his signal when it is informative and randomizes with equal probability when 
he receives the uninformative signal z = 1

2 .20 The behavior of agents in positions 4 to T does 
not affect John and Paul. Before presenting the result, we define biased strategies σ0 and σ1 as 
follows:

σ0(ξ, z) =
⎧⎨⎩

0 if ξ = 0
0 if ξ = 1 and z = 0
1 if ξ = 1 and z ∈ { 1

2 ,1}
and σ1(ξ, z) =

⎧⎨⎩
1 if ξ = 1
1 if ξ = 0 and z = 1
0 if ξ = 0 and z ∈ {0, 1

2 }.

Proposition 10 (Multiple Asymmetric Equilibria). There are three possible equilibria among 
John and Paul for parameters p > q and (p − q)(2 + p2 + q2) − 3(p2 + q2) ≤ 0. First, there 
is a symmetric equilibrium in which John and Paul follow the signal when it is informative 
and the sample otherwise. Also, there are two asymmetric equilibria: John playing σ0 and Paul 
playing σ1, or John playing σ1 and Paul playing σ0.

In the asymmetric equilibria, the biases reinforce one another. To see this, consider the equi-
librium when John plays σ0 and Paul plays σ1 and assume uninformative signals z = 1

2 are highly 
unlikely. When John observes somebody choosing technology 0, he does not know whether the 
observed agent is the first agent or Paul. If Paul is observed, Paul himself observed a sample 
ξ = 0 and a signal z ∈ {0, 12 }. Then, disregarding the unlikely cases of uninformative signals, 
both the first agent and Paul observed signals z = 0. In this way, when John observes somebody 
choosing 0, he chooses to disregard his own signal. Note that this in contrast to the symmet-
ric equilibrium, in which a sample never overpowers an informative signal. It is the fact that 
John and Paul might observe each other that allows these biases to reinforce one another, and 
thus the asymmetric equilibria arise. Formally, let Paul play σ1. In that case, it is straight-
forward to show that John follows an informative signal when he observes ξ = 1. Condition 
(p − q)(2 + p2 + q2) − 3(p2 + q2) ≤ 0, which is satisfied, for example, by p = 1

2 and q = 1
3 , 

guarantees that John chooses action 0 after observing ξ = 0, disregarding his own signal. These 
two facts imply that σ1 is a best response to σ0. The fact that σ0 is a best response to σ1 can 
be seen in an analogous way. Thus there are two asymmetric equilibria in which each player is 
playing one of the biased strategies.

19 We include only three possible signals for simplicity. Signals are of bounded strength, since there are finitely many 
realizations. The equilibria we present are strict, so a small probability of receiving arbitrarily informative signals can be 
added without changing any of the analysis.
20 Having the first player randomize symmetrically simplifies the example. However, this example does not rely on the 
first player being indifferent. We could instead assume that there are two approximately uninformative signals that occur 
with equal probability. This would make the first player strictly prefer to take each action.
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A.2. Equilibrium existence

Agent i’s strategy is σi ∈ Σi = ∏
(z,ξ,s)∈Z×Ξ×S [0, 1]. We can collapse the strategy σi into the 

probability of choosing technology 1, conditional on ξ , S and θ , as follows

ρi(ξ, s, θ) ≡ E
[
σi(ZP(i), ξ, s)

∣∣ θ
]
.

Then ρi : Ξ × S × Θ → [0, 1] defines a many to one mapping σi �→ ρi . Let ρ be the profile of 
such functions. Any two strategy profiles σ that lead to the same ρ give the same probability 
distribution over histories and also lead to the same utilities. It is without loss of general-
ity then to consider agents choosing ρi directly from the feasible set Ri = {ρi : ρi(ξ, s, θ) =
E[σi(ZP(i), ξ, s) | θ ] for some σi ∈ Σi}.

The advantage of dealing with ρi is that Ri is a subset of an Euclidean space with finite 
dimension |Ξ | · |S| · |Θ|. The set Ri is bounded since all elements are positive and less than one. 
To see that Ri is also closed, consider a sequence ρn

i ∈ Ri for each n, with ρn
i → ρi . For each ρn

i , 
pick a σn

i which yields ρn
i . Since Σi is sequentially compact in the product topology, there is a 

subsequence σnm

i with σnm

i → σi pointwise. By the dominated convergence theorem,

ρi(ξ, s, θ) = lim
nm→∞ρ

nm

i (ξ, s, θ) = lim
nm→∞E

[
σ

nm

i (ZP(i), ξ, S)
∣∣ θ

] = E
[
σi(ZP(i), ξ, S) | θ]

,

and so Ri is closed, which implies that it is compact. Let R = ∏T
i=1 Ri . Then R is a compact set 

in an Euclidean space of dimension |Ξ | · |S| · |Θ| · T .
Next, we rewrite the ex-ante utility of agent i as follows,

ui(ρi, ρ−i ) = 1

2

∑
θ∈Θ

∑
s∈S

Pr(s | θ)

T∑
t=1

Pr
(
P(i) = t

∣∣ s, θ
) ∑

ht∈Ht

Pr
(
Ht(ρ−i ) = ht

∣∣ s, θ
)

×
∑
ξ∈Ξ

Pr(ξ | ht , s)
[
θρi(ξ, s, θ) + (1 − θ)

(
1 − ρi(ξ, s, θ)

)]
.

Utility is continuous in one’s own strategy ρi . Next, utility only depends on the strategies of 
others through the distribution over histories. This distribution is continuous in ρ−i . Therefore 
payoffs are continuous in ρ.

We define BRi(ρ−i ) = arg maxρi∈Ri
ui(ρi, ρ−i ). Since payoffs are continuous, this corre-

spondence is u.h.c. Next, let BR(ρ) = ∏T
i=1 BRi(ρ−i ), and note that BR(ρ) is also u.h.c. By 

Kakutani’s fixed point theorem, there is a ρ∗ ∈ R such that ρ∗ ∈ BR(ρ∗). Thus if each player 
plays a strategy σ ∗

i that maps to ρ∗
i they all play a best response. Then, there exists an equilibrium 

σ ∗ of the game.21 �
A.3. Average utility of those observed

First, we show by induction that Ot is independent of the history of play Hτ for all τ ≤ t . Let 
ht+1 = ht ⊕ 1 if at = 1 and ht+1 = ht ⊕ 0 if at = 0. By assumption, Ot is independent of H1

21 We focus on Bayes–Nash Equilibria (BNE), but for any BNE one can construct an outcome equivalent Perfect 
Bayesian Equilibrium (PBE). One player’s action only affects another’s payoffs through the distribution of histories. 
Histories leading to zero probability samples have probability zero. Therefore, a player’s action in response to a sample 
with zero probability has no impact on the distribution of histories. Then, to construct a PBE, simply take a BNE, fix any 
beliefs for samples received with zero probability (i.e. agents think θ = 0) and set an optimal strategy according to those 
beliefs (agents choose a = 0).
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for all t . Then, it suffices to show that for all τ < t , if Hτ is independent of Ot , then so is Hτ+1. 
To see this, note that Hτ+1 = hτ ⊕ 1 if and only if both Hτ = hτ and aτ = 1. Consequently, it 
suffices to show that aτ = 1 is independent of Ot for all τ < t . Now, note that aτ is a function of 
θ , P , σ , Oτ , Zτ , Sτ and Hτ . Since all of them are independent of Ot , then Hτ+1 is independent 
of Ot .

With this in hand, we can simplify ̃ui . Let Õt denote the position of a randomly chosen agent 
from Ot and let ̃ξt denote the action of that agent, that is, ̃ξt = aÕt

. Since beliefs and strategies 
are symmetric, then

Pr
(̃
ξP (i)(σ−i ) = θ

∣∣ θ
) = 1

T

T∑
t=1

Pr
(̃
ξt (σ−i ) = θ

∣∣ θ
)
.

Then, by definition,

ũi (σ−i ) = 1

2

∑
θ

[
1

T

T∑
t=1

Pr
(̃
ξt (σ−i ) = θ

∣∣ θ
)]

= 1

2

∑
θ

[
1

T

T∑
t=1

t−1∑
τ=0

Pr
(
Õt (σ−i ) = τ

∣∣ θ
)

Pr
(
aτ (σ−i ) = θ

∣∣ θ, Õt = τ
)]

= 1

2

∑
θ

[
1

T

T∑
t=1

t−1∑
τ=0

wt,τ Pr
(
aτ (σ−i ) = θ

∣∣ θ, Õt = τ
)]

.

The last step holds because the distribution of Õt is a function only of the distribution of Ot , 
and Ot is independent of the state of the world and the strategy profile. In fact, Pr(Õt = τ) =
E[1{τ∈Ot }

|Ot | ] = wt,τ . Then, note that the action aτ of the individual in position τ is a function of 
Zτ , Sτ and ξτ , with ξτ itself being a function of Oτ and Hτ . Now, for all τ < t , Zτ , Sτ , Oτ

and Hτ are independent of Ot and thus also independent of Õt . Consequently, Pr(aτ (σ−i ) = θ |
θ, Õt = τ) = Pr(aτ (σ−i ) = θ | θ). As a result,

ũi (σ−i ) = 1

2

∑
θ

[
1

T

T∑
t=1

t−1∑
τ=0

wt,τ Pr
(
aτ (σ−i ) = θ

∣∣ θ
)]

= 1

T

T∑
t=1

t−1∑
τ=0

wt,τ

[
1

2

∑
θ

Pr
(
aτ (σ−i ) = θ

∣∣ θ
)]

= 1

T

T∑
t=1

t−1∑
τ=0

wt,τ uτ (σ−i ) �

A.4. Vanishing improvement with stationary sampling

In order to see that the difference must vanish, we split the expression of interest in two parts,

ȳ − ỹ = 1

T

T∑
t=1

yt − 1

T

T∑
t=1

t−1∑
τ=0

wt,τ yτ = 1

T
(yT − y0) + 1

T

T −1∑
t=0

yt − 1

T

T −1∑
t=0

T∑
τ=t+1

wτ,tyt

= 1

T
(yT − y0) + 1

T

T −1∑
yt

(
1 −

T∑
wτ,t

)
≤ 1

T
+ 1

T

T −1∑
|yt |

∣∣∣∣∣1 −
T∑

wτ,t

∣∣∣∣∣

t=0 τ=t+1 t=0 τ=t+1
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≤ 1

T
+ 1

T

T −1∑
t=0

∣∣∣∣∣1 −
T∑

τ=t+1

wτ,t

∣∣∣∣∣
≤ 1

T
+ 1

T

T −1∑
t=0

∣∣∣∣∣1 −
T∑

τ=t+1

w(τ − t)

∣∣∣∣∣ + 1

T

T −1∑
t=0

∣∣∣∣∣
T∑

τ=t+1

wτ,t − w(τ − t)

∣∣∣∣∣
≤ 1

T
+ 1

T

T∑
t=1

(
1 −

t∑
i=1

w(i)

)
+ 1

T

T∑
t=1

t∑
i=1

∣∣wt,t−i − w(i)
∣∣ (1)

Formally, we need to show that for all ε > 0 there exists a T ∗ < ∞ such that for all T ≥ T ∗, it 
is true that sup{yT

t }Tt=0
|ȳ(T ) − ỹ(T )| ≤ ε. First, we define j so most of the limit weight w is placed 

on the first j agents: 1 −∑j

i=1 w(i) < ε
10 . Second, we define t ′ ≥ j so that the first j weights are 

close to the limit weights: 
∑j

i=1 |wt,t−i −w(i)| < ε
10 for all t ≥ t ′. Since the previous expression 

is a finite sum of terms going to zero, t ′ must exist. Third, we note that the remaining terms of 
the sum are also as small as needed: 

∑t
i=j+1 |wt,t−i − w(i)| ≤ 3

10ε for all t ≥ t ′.22

We return now to Eq. (1),

ȳ − ỹ ≤ 1

T
+ 1

T

j−1∑
t=1

(
1 −

t∑
i=1

w(i)

)
+ 1

T

T∑
t=j

(
1 −

t∑
i=1

w(i)

)

+ 1

T

t ′−1∑
t=1

t∑
i=1

∣∣wt,t−i − w(i)
∣∣ + 1

T

T∑
t=t ′

(
t∑

i=1

∣∣wt,t−i − w(i)
∣∣)

≤ 1

T
+ j − 1

T
+ 1

T

T∑
t=j

ε

10
+ 1

T

t ′−1∑
t=1

(
t∑

i=1

|wt,t−i | +
t∑

i=1

∣∣w(i)
∣∣) + 1

T

T∑
t=t ′

4

10
ε

≤ j

T
+ ε

10
+ t ′(t ′ + 1)

T
+ 4

10
ε ≤ ε for T ≥ T ∗ ≡ 2

(
j + t ′

(
t ′ + 1

))
ε−1. �

A.5. Ex-ante improvement principle with unbounded signals

We present first the following auxiliary proposition.

Proposition 11. For all l ∈ (l, l), Gθ(l) satisfies:

l >
G1(l)

G0(l)
and l <

1 − G1(l)

1 − G0(l)
(2)

22 To see why, note that:

t∑
i=j+1

∣∣wt,t−i − w(i)
∣∣ ≤

t∑
i=j+1

wt,t−i +
t∑

i=j+1

w(i) ≤ 1 −
j∑

i=1

wt,t−i + ε

10

t∑
i=j+1

∣∣wt,t−i − w(i)
∣∣ ≤ 1 −

j∑
i=1

w(i) −
j∑

i=1

(
wt,t−i − w(i)

) + ε

10
≤

j∑
i=1

∣∣wt,t−i − w(i)
∣∣ + 2

10
ε ≤ 3

10
ε.
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Moreover, if k′ ≥ k then,[
1 − G1(k)

] − k
[
1 − G0(k)

] ≥ [
1 − G1

(
k′)] − k′[1 − G0

(
k′)] (3)

G0
(
k′) − G1

(
k′)(k′)−1 ≥ G0(k) − G1(k)(k)−1 (4)

The proof of Eq. (2) follows Lemma A.1 of Smith and Sørensen [16]. Let Z(L) = {Z ∈ Z :
l(Z) ≤ L}. By the definition of Radon–Nikodym derivative,

G1(L) =
∫

Z(L)

dμ1 =
∫

Z(L)

l(Z)dμ0 <

∫
Z(L)

Ldμ0 = LG0(L).

With respect to (3) and (4), [1 − G1(k)] − [1 − G1(k
′)] = G1(k

′) − G1(k) and,

G1
(
k′) − G1(k) =

∫
{Z∈Z :k≤l(Z)≤k′}

dμ1 =
∫

{Z∈Z :k≤l(Z)≤k′}
l(Z)dμ0

≥ k
[
G0

(
k′) − G0(k)

] = k
[
1 − G0(k)

] − k
[
1 − G0

(
k′)]

≥ k
[
1 − G0(k)

] − k′[1 − G0
(
k′)] and also,

G0
(
k′) − G0(k) = 1

k′
[
k′(G0

(
k′) − G0(k)

)] ≥ 1

k′

[ ∫
{Z∈Z :k≤l(Z)≤k′}

l(Z)dμ0

]

= 1

k′

[ ∫
{Z∈Z :k≤l(Z)≤k′}

dμ1

]
= 1

k′
[
G1

(
k′) − G1(k)

]
≥ G1(k

′)
k′ − G1(k)

k
. �

In order to show that an ex-ante improvement principle holds, we first define a smart strat-
egy σ ′

i : “Follow the behavior of a random agent in the sample if the likelihood ratio from the 
signal lies between [k, k]. Otherwise, follow the signal.” Cutoffs k and k are optimal given the in-
formation provided by the only agent picked at random from the sample. Thus, k(π0, π1) = π0

1−π1

and k(π0, π1) = 1−π0
π1

.
This smart strategy has an advantage over copying a random agent in that sometimes a strong 

signal overrides an incorrect sample. At the same time, this also represents a disadvantage, since 
sometimes a strong and incorrect signal overrides a correct sample. Since Ot and Zt are inde-
pendent, the improvement � from following strategy σ ′

i can be expressed as follows

�(π0,π1) ≡ ui

(
σ ′

i , σ−i

) − ũi (σ−i )

= Pr(θ = 1)(1 − π1)Pr(l ≥ k | θ = 1) + Pr(θ = 0)(1 − π0)Pr(l ≤ k | θ = 0)

− Pr(θ = 1)π1 Pr(l ≤ k | θ = 1) − Pr(θ = 0)π0 Pr(l ≥ k | θ = 0)

= 1

2

[
(1 − π1)

[
1 − G1(k)

] + (1 − π0)G0(k)
]

− 1

2

[
π1G1(k) + π0

[
1 − G0(k)

]]
= 1

2

{
(1 − π0)

[
G0(k) − (k)−1G1(k)

]
+ (1 − π1)

[[
1 − G1(k)

] − k
[
1 − G0(k)

]]}
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The lower bound on �(π0, π1) is constructed as follows. Pick any U < 1 and define π∗
0 =

π∗
1 = U , the sample distribution where the other agents perform equally well in both states and 

corresponds to an average observed utility of U . Let k∗ = k(π∗
0 , π∗

1 ) and k∗ = k(π∗
0 , π∗

1 ) and 
define the lower bound on the improvement as follows:

C(U) ≡ 1

2
min

{(
1 − π∗

0

)[
G0

(
k∗) − (

k∗)−1
G1

(
k∗)];(

1 − π∗
1

)[[
1 − G1

(
k∗)] − k∗[1 − G0

(
k∗)]]} (5)

As a direct implication of Proposition 11, C(U) is strictly positive. Next, note that a bigger U
leads to a higher π∗

0 , a higher π∗
1 , a higher k∗ and a lower k∗. Consequently, by Eqs. (3) and (4), 

C(U) is decreasing in U .
Next, pick any (π0, π1), corresponding to ũ(σ−i ) = U , that is π0+π1

2 = U . There are two 
possible cases. First, when π0 < π∗

0 , then k(π0, π1) > k∗.23 Consequently, by (4),

(1 − π0)
[
G0

(
k(π0,π1)

) − (
k(π0,π1)

)−1
G1

(
k(π0,π1)

)]
>

(
1 − π∗

0

)[
G0

(
k∗) − (

k∗)−1
G1

(
k∗)]

The second case occurs when π0 > π∗
0 . Then π1 < π∗

1 and k(π0, π1) < k∗. Then, by (3),

(1 − π1)
[
1 − G1

(
k(π0,π1)

)] − k(π0,π1)
[
1 − G0

(
k(π0,π1)

)]
>

(
1 − π∗

1

)[
1 − G1

(
k∗)] − k∗[1 − G0

(
k∗)]

Then, �(π0, π1) ≡ ui(σ
′
i , σ−i ) − ũi (σ−i ) ≥ C(U).

A.6. Complete learning with unbounded signals

First, fix U < 1. Corollary 1 states that limT →∞ v(T ) = 0. Let T (U) be such that 
v(T ) < C(U) for all T > T (U). By Corollary 2, this implies ũ(σ ∗(T )) > U . Consequently, 
ũ(σ ∗(T )) → 1. Finally, since ū(σ ∗(T )) ≥ ũ(σ ∗(T )), complete learning must occur. �
A.7. Bounded learning with bounded signals

Assume that the agent follows the smart strategy σ ′
i defined in Appendix A.5 for the case 

of unbounded signal strength. Fig. 6 presents the case of bounded signal strength. The shaded 
area in the top-right corner corresponds to combinations such that no improvement is possi-

ble with strategy σ ′
i . The combination (π̂0, π̂1) = (l

1−l

l−l
, l−1

l−l
) yields the lowest possible util-

ity in that area, ucl .24 To construct the lower bound on �(π0, π1), pick any U < ucl . Let 
(π∗

0 , π∗
1 ) = (π̂0

U
ucl

, π̂1
U
ucl

) be the only combination that 1) lies on the straight line that links 
(0, 0) and (π̂0, π̂1) and 2) yields an average expected utility of U . Let k∗ = k(π∗

0 , π∗
1 ) and

23 To see that k(π0, π1) > k∗, note that an isoutility line is characterized by π0 = 2U − π1. Then, along the isoutil-

ity line, k(π0, π1) = 1 − 2U−1
π1

. Finally, note U > 1
2 (otherwise, those observed are doing worse than following no 

information at all) and so an increase in π1 leads to an increase in k.
24 With l < 1 < l, the minimum utility such that no improvement is possible is attained at the intersection of conditions 
L(0)l = 1 and L(1)l = 1.
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Fig. 6. Bound on the improvement.

k∗ = k(π∗
0 , π∗

1 ). We show next that k∗ > l and k∗ < l. Since U < ucl , then

k∗ = 1 − π̂0
U
ucl

π̂1
U
ucl

=
1
U

− π̂0
1

ucl

π̂1
1

ucl

>

1
ucl

− π̂0
1

ucl

π̂1
1

ucl

= 1 − π̂0

π̂1
= l and

k∗ = π̂0
U
ucl

1 − π̂1
U
ucl

= π̂0
1

ucl

1
U

− π̂1
1

ucl

<
π̂0

1
ucl

1
ucl

− π̂1
1

ucl

= π̂0

1 − π̂1
= l.

Define, as before, the lower bound C(U) on the improvement by Eq. (5). Since k∗ > l

and k∗ < l, Proposition 11 implies that C(U) is strictly positive. By the same argument as 
in the case of unbounded signal strength, C(U) is decreasing in U . Finally, Eqs. (3) and (4)
again guarantee that any sample distribution (π0, π1) corresponding to ũ(σ−i ) = U leads to 
�(π0, π1) ≡ ui(σ

′
i , σ−i ) − ũi (σ−i ) ≥ C(U).

First, fix U < ucl . Corollary 1 states that limT →∞ v(T ) = 0. Let T (U) be such that v(T ) <
C(U) for all T > T (U). This implies ̃u(σ ∗−i (T )) > U . Consequently, ̃u(σ ∗−i (T )) → ucl . Finally, 
since ū(σ ∗(T )) ≥ ũ(σ ∗−i (T )), bounded learning must occur. �
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