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1 Introduction and motivations

Usually a quantum field theory in an arbitrary dimension is considered to be consistent if at
the quantum level all gauge and gravitational anomalies are canceled. However, it is known
that most of them cannot be realized in string theory. More generally, it is believed that
some seemingly consistent field theories cannot be coupled to quantum gravity, and belong
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to the Swampland [1–3], as opposed to the landscape of string theory compactifications.
Very often, anomalies are canceled à la Green-Schwarz [4]: quantum anomalies from chiral
fermions or self-dual forms are canceled by tree-level couplings of form potentials of various
degrees, which transform nontrivially under gauge and diffeomorphism transformations.
Whereas in perturbative heterotic constructions the Green-Schwarz mechanism is unique
in the sense of involving always the universal antisymmetric tensor, in type II orientifolds
it is non-universal and can involve different tensors of various rank from the Ramond-
Ramond (RR) sector, as shown by Sagnotti [5]. Whereas a string theory compactification
automatically satisfy this generalized Green-Schwarz-Sagnotti (GSS) anomaly cancellation
mechanism, it is natural to inquire the reverse question: is a field theory which satisfies
the GSS anomaly cancellation conditions always consistent in the UV? The fact that a
large class of six dimensional theories compatible with the GSS mechanism could not be
realized explicitly in string or F-theory [6] makes such examples particularly puzzling.

Recently, consistency of strings defects coupled to tensor fields of the theory were
worked out [7–12] based on generic properties of the conformal field theory (see e.g. [13])
on the string like defects and the anomaly inflow mechanism [14–16], in theories with (1, 0)
supersymmetry in 10d and 6d and then generalized to other dimensions.1 The idea is
to assume that the spectrum of quantum gravity is complete and use the consistency of
theories living on probe branes (in our case string defects) to obtain further swampland
constraints in addition to the ones arising from 6d anomaly considerations [7]. In the case
under study, the conditions are essentially on the charge vectors Qα of string defects, where
α = 0, . . . , NT , where NT is the number of tensor multiplets. If it is not possible to find
vectors Q satisfying a set of constraints, in particular a unitarity constraint, the 6d model
belong to the swampland, even if it satisfies all 6d GSS anomaly cancellation conditions.
If the original goal of [7] was to provide conditions for a generic theory of quantum gravity
coming from couplings to 2d string defects, it is important to check the generality of
such constraints in known string constructions, with different amount of supersymmetries,
especially with little or no supersymmetry. One of the reasons of doing this is to investigate
if there are assumptions needed in deriving the constraints, if some of them can be relaxed
or if there are other potential constraints needed to be imposed. We are interested in
what follows in testing and generalizing the swampland conditions introduced in [7] for 6d
theories by explicitly looking at orientifold compactifications of string theory.

On the other hand, it was shown in orientifold compactifications that certain super-
gravity (closed string) spectra necessarily break supersymmetry [29–33] at the perturba-
tive level. In the simplest 6d example, the spectrum contains seventeen tensor multiplets,
whereas supergravity couples to D-branes with supersymmetry nonlinearly realized on their
worldvolume [34, 35]. In such constructions supersymmetry breaking is localized on a set
of (anti)branes, whereas far from them supersymmetry is still present for the massless exci-
tations. The simplest settings of such brane supersymmetry breaking (BSB) constructions
have gauge theory (open string) spectra with fermionic spectrum and anomaly polynomial
exactly as a supersymmetric theory, whereas actually the massless (open string) bosonic

1Some related work include [17–28].
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partners are in different representations, breaking therefore supersymmetry at the string
scale. The necessity of breaking supersymmetry in such models is simply due to the fact
that an alternative orientifold projection generates exotic O+-planes with positive tension
and charge. From this viewpoint, these models are similar to the ten dimensional exam-
ple constructed in [36]. However, in the 10d example the same closed string spectrum
can couple to the supersymmetric SO(32) type I superstring or to its non-supersymmetric
USp(32) cousin [36]. On the other hand, the BSB 6d example is a compactification of
the type I string, but the corresponding supergravity cannot be coupled to any supersym-
metric D-branes, because in perturbation theory, in this case RR tadpole conditions can
only be satisfied by adding D5 antibranes instead of D5 branes.2 The Op+-Dp system is
similar to a brane-antibrane configuration from the viewpoint of breaking supersymmetry,
but crucially it lacks the tachyonic instability of the latter. A detailed understanding of
this models, in particular the ground state and their stability are still not completely set-
tled [40–45]. For recent work on the effective field theory with nonlinear supersymmetry
and supergravity realization of such models see [46–48]; for recent similar string and brane
constructions, see [49–53]. Since in BSB models supersymmetry breaking is geometrically
localized, it is natural to ask if and how the conditions found in [7] capture the essence
of this phenomenon. Having a different perspective on these peculiar string and F-theory
vacua was an important motivation for our investigation.

In this paper we examine Swampland constraints arising from consistently coupling
six dimensional supersymmetric and brane supersymmetry breaking (BSB) supergravity-
Yang-Mills systems to the CFT string defects via anomaly inflow considerations. We use
the known data from string orientifold models and their couplings to various objects car-
rying string defect charges, such as D1 branes and D5 branes wrapping a four-cycle in
the internal space with internal magnetic fields on their worldvolume. Our investigation
leads to a microscopic geometric understanding of the structure of the anomaly polynomial
and of the charges of string defects. We find a mini-landscape of string defects of various
charges, some of them being non-BPS but stable. We also define a geometrical factoriza-
tion of the anomaly polynomial and show that the integral basis (in the language of [6]) for
writing the string charges is not the most natural one from the viewpoint of the geometry
of D-branes and their couplings to the tensors, but it is generically related to it by a rota-
tion of charges. In all the perturbative construction we considered in this paper and other
cases we checked in the literature of 6d models with at least one tensor multiplet, it was
always possible to introduce consistently coupling to specific string defects with charges
satisfying Q · Q = 0, which we call null charged strings. Whereas we do not have a fully
general argument for their existence in all possible 6d vacua, we conjecture their existence
as a new consistency test.

On the other hand, one finds that the constraints [7] on the string charges are valid in
supersymmetric models for the BPS defects, whereas they are violated on non-BPS (but
otherwise stable) charged defects. Whereas for a generic non-supersymmetric construction

2Interestingly enough, for our main 6d example, in was shown [37, 38] to be possible to have a super-
symmetric model in F-theory [39] with the same supergravity spectrum, which is an isolated vacuum with
no possible deformation parameters.
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it is not clear what type of constraints can be proposed, one finds that when supersymmetry
is locally broken as in BSB constructions, the constraints [7] are valid if the string defects
are geometrically separated from the source of supersymmetry breaking. Conversely, if
there is no geometric separation and string defects experience supersymmetry breaking in
the spectrum, some constraints can be relaxed, in a way compatible with the microscopic
perturbative construction.

Our paper is organized as follows. Section 2 contains a short summary of general
features of six dimensional models, the anomaly inflow on string defects and proposes
a new consistency condition, based on the existence of a special type of string defects,
which in a perturbative construction includes mobile (or bulk) branes. We conjecture that
such strings, whose charges satisfy Q · Q = 0, should exist in any consistent 6d theory
with at least one tensor multiplet. Section 3 describes the geometrical factorization of
the anomaly polynomial, which encodes the geometry of D-branes and O-planes. We then
discuss the simplest 6d orbifold supersymmetric example, the Bianchi-Sagnotti-Gimon-
Polchinski (BSGP) model [54, 55], which allows us to clarify some microscopic interpreta-
tions of the consistency constraints in [7]. Section 4 introduces the class of models with the
phenomenon of brane supersymmetry breaking. We investigate the fate and modification
of the constraints in the presence of supersymmetry breaking. Both in sections 3 and 4 we
define a large class of models and string defects charges, where the string defects are either
D1 branes or D5 branes wrapping a four cycle in the internal space.

We end with a summary of our results. The appendices contain our conventions and
formulae for the anomaly computations, the string amplitudes that we used to find all
spectra of string vacua and string defects in the main text and two extra 6d models related
by continuous deformations to our main examples.

2 Six dimensional supersymmetric models

Six-dimensional N = (1, 0) supersymmetry is strongly constrained by anomalies. There
are four types of supersymmetry multiplets appearing in 6d N = (1, 0) theories: gravity,
vector, hyper and tensor multiplets. Their contributions to the anomaly polynomial3 is
summarized in table 1.

It is easy to see from the same table that the cancellation of the irreducible gravitational
anomaly, corresponding to the term trR4 in the anomaly polynomial, yields the constraint

NH −NV = 273− 29NT , (2.1)

where NH denotes the number of hypermultiplets, NV the number of vector multiplets
and NT the number of selfdual or anti-selfdual tensor multiplets. One can use the identity
in eq. (2.1) to write the generic anomaly polynomial for supersymmetric N = (1, 0) six-
dimensional models as follows

I8 = 9−NT

8
(
trR2

)2
− 1

24trR
2TrψF 2 + 1

24TrψF
4 , (2.2)

3Unless specified, we are only concerned in all our paper with the non-abelian anomalies. The abelian
gauge factors and their anomalies do not affect our considerations and results.
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SUSY Multiplet Anomaly Polynomial

Gravity −273
360trR

4 + 51
288
(
trR2)2

Vector −NV

[
1

360trR
4 + 1

288
(
trR2)2]− 1

24TrAdjF
4 + 1

24TrAdjF
2 trR2

Hyper NH

[
1

360trR
4 + 1

288
(
trR2)2]+ 1

24TrRF
4 − 1

24TrRF
2 trR2

Tensor 29
360trR

4 − 7
288
(
trR2)2

Table 1. Contributions to the anomaly polynomial from the various multiplets of 6d N = (1, 0)
supergravity. The signs reflect the chirality and duality properties of the field content of the
multiplets. TrR refers to a trace in the representation R, and Adj refers to the adjoint representation.

Group SU(N) SO(N) USp(N)
λ 1 2 1

Table 2. Normalization for the factors λi.

where Trψ denotes a trace over the charged states of a generic model, to which charged
hypermultiplets contribute with a plus sign and vector multiplets with a minus sign. Recall
that the Green-Schwarz-Sagnotti mechanism in 6d requires a factorization of the form

I8 = 1
2Ωαβ X

α
4 X

β
4 , (2.3)

where Ωαβ can be chosen (by a rotation) to be diagonal of signature (1, NT ). The polyno-
mials Xα

4 are parametrized in terms of (1 +NT )-dimensional vectors a, bi (with i labeling
the gauge group factors)4

Xα
4 = 1

2a
αtrR2 + 1

2
∑
i

bαi
λi

trF 2
i , (2.4)

such that we can write

I8 = 1
8a · a

(
trR2

)2
+ 1

8
∑
i,j

bi · bj
λiλj

trF 2
i trF 2

j + 1
4
∑
i

a · bi
λi

trR2 trF 2
i , (2.5)

where the dot products involve the symmetric form Ωαβ ; a · bi ≡ aαΩαβb
β
i , etc. The

group theory factors λi in table 2 are chosen such that one obtains integral scalar products
a · a, a · bi, bi · bj ∈ Z (see [6]). The integrality of the lattice generated by bi can be inferred
to be necessary from the Dirac quantization conditions for dyons (see [18, 56]).

The values in table 2 are guaranteeing in all cases the integrality of the scalar products
a · a, a · bi, bi · bj ∈ Z, which define an integral lattice.

When the spectrum is such that there is a six-dimensional anomaly, it can be cancelled
by adding a tree-level Green-Schwarz term of the form

SGS =
∫

Ωαβ C
α
2 ∧X

β
4 , (2.6)

4From now on, all anomaly polynomials are expressed in terms of the traces tr in the fundamental
representations of the corresponding gauge groups.
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where Cα2 are the two-forms of the theory which shift under gauge and gravitational trans-
formations. The gauge invariant field strength which appears in the action is modified to
include a Chern-Simons three-form (gauge and gravitational) with non-trivial transforma-
tion properties

Hα
3 = dCα2 + ωα3 , dωα3 ≡ Xα

4 , δθ ω
α
3 = tr

[
d
(
θX1α

2

)]
, (2.7)

so that the transformations of the two-forms,

δθ C
α
2 = −tr

(
θX1α

2

)
, (2.8)

induce a classical shift of (2.6) that cancels the anomalous shift of the action due to the
spectrum.

2.1 String defects and the anomaly inflow

Demanding a consistent coupling of the theory to BPS strings, as required by the com-
pleteness principle of quantum gravity, gives rise to additional consistency conditions to
be imposed [7]. Strings (described by D1 branes or D5 branes wrapping a four cycle in
the type I string setup of our paper) coupled to the tensors in six dimensions have charges
described by an NT + 1 dimensional vector Q. Their couplings are given by

S2d ⊃ −Ωαβ Q
α
∫
Cβ2 . (2.9)

The anomalous gauge and gravitational shifts of (2.9) add up to the ones of the 2D CFT
on the string defect, such that the overall anomaly vanish. It follows then that the anomaly
polynomial of the two dimensional CFT of the strings is generically of the form

I4 = Ωαβ Q
α
(
Xβ

4 + 1
2Q

βχ(N)
)
, (2.10)

where χ(N) is the Euler class of the normal bundle of the string (with worldvolume em-
bedded into 6d spacetime). One can further write the polynomial above in terms of the
products Q · a, Q · bi and Q ·Q by making use of the general form of Xα

4 in eq. (2.4)

I4 = 1
2Q · a trR

2 + 1
2
∑
i

Q · bi
λi

trF 2
i + 1

2Q ·Qχ(N) . (2.11)

The explicit form of the constraints formulated in [7], for a 6d gauge theory of gauge group
G =

∏
iGi coupled to (super)gravity, is:

Q · J ≥ 0 , Q ·Q ≥ −1 , Q ·Q+Q · a ≥ −2 , ki ≡ Q · bi ≥ 0 ,∑
i

ki dimGi
ki + h∨i

≤ cL , (2.12)

where ki are the levels of the Gi current algebra, h∨i the dual Coxeter number of the gauge
group factor Gi and cL is the central charge for the left-moving sector on the string (D1
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branes in the examples of this section). For the case of a non-degenerate 2d SCFT on a
string, [7] wrote down the explicit expressions for the left/right central charges

cL = 3Q ·Q− 9Q · a+ 2 , cR = 3Q ·Q− 3Q · a , (2.13)

whose positivity impose some of the conditions in (2.12). The first line of (2.12) are the
conditions that define a would-be consistent string, while the second line is a unitarity
constraint that any would-be consistent string must respect according to the completeness
principle, otherwise the theory is in the swampland. The Kähler form J in (2.12), which is
also a NT + 1 vector, is constrained by supersymmetry. Indeed, consistency of the moduli
space of scalars lead to the conditions

J · J > 0 , J · a < 0 , J · bi > 0 . (2.14)

2.2 The null charged strings conjecture

In all examples we discuss in the following sections with at least one tensor multiplet in
orbifold orientifold compactifications, for the bulk D1 branes (and also at fixed points, if
they have no twisted charges), their charge vector is null Q · Q = 0. The microscopic
explanation is that in this case D1 branes couple only to the untwisted tensor fields, with
equal couplings. More generally, using the general form of (2.10), one can see that the null
D1 branes correspond to a world-volume anomaly polynomial I4 which does not depend on
the normal bundle. An obvious particular case is when the worldvolume fermions are non-
chiral respect to the SU(2)l×SU(2)R normal bundle. This is for example the case where the
6d model corresponds to a geometric compactification of a 10d string. For non-geometric
compactifications, we are not aware of a simple argument. However, in all the examples
we checked the null charged strings always exist and satisfy all the required consistency
conditions.5 We conjecture that they should exist in all consistent 6d theories. In what
follows we check, by using this conjecture, which examples discussed in the literature,
compatible with all the other constraints, could be ruled out by the non-existence of the
null charged strings.

The first example we consider is NT = 1 with gauge group SU(N) coupled to one
symmetric and N − 8 fundamental hypermultiplets introduced in [6, 7, 17]. This model
has no known string or F-theory embedding, and the strongest known constraint is N ≤ 30
from anomaly cancellation conditions, whereas the conditions eqs. (2.12) are satisfied for
N ≤ 117 [7]. The anomaly vectors verify

a · a = 8 , a · b = 1 , b · b = −1 . (2.15)

When NT = 1, there are two possible lattices [18],

Ω0 =
(

0 1
1 0

)
, Ω1 =

(
1 0
0 −1

)
, (2.16)

5In addition to the examples discussed in this paper, we checked the examples in [57–59]. For more
standard geometric compactifications like [60, 61] their existence is guaranteed due to the geometric nature
of the compactifications of the 10d type I superstring.

– 7 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
5

but using Ω0, one immediately sees that there cannot be any b = (b0, b1) with integer
entries, since b · b = 2b0b1 = −1. Thus we can concentrate on Ω1. The only integer-valued
a (up to parity transformations in SO(1, 1)) is a = (−3, 1), for which the only integer-
valued solution for b is6 b = (0,−1). If we now consider a null charged string Q = (εq, q),
with ε = ±1, and impose the subset of constraints (2.12) k, kl, cR ≥ 0, we find that q ≥ 0
and 0 ≤ (3ε + 1)q ≤ 2, which cannot be satisfied for a non-zero integer q. Hence, there
does not exist any consistent charge vector for a null string and therefore the model can
be excluded by the inconsistency of the coupling to null charged strings.

Our second example from [6] has NT = 1, gauge group G = SU(24)× SO(8) and three
matter hypermultiplets in the antisymmetric representation of the unitary gauge factor.
This model has also no known F-theory embedding and the reason for this was explained
in [6]. From a more general supergravity viewpoint however, it satisfies all the consistency
conditions eqs. (2.12). In this model, the anomaly vectors verify7

a · a = 8 , a · b1 = −3 , a · b2 = 2 , b1 · b1 = 1 , b2 · b2 = 4 , b1 · b2 = 0 , (2.17)

and again Ω0 cannot lead to any solution with integer b1,2. Using Ω1, the most general
solution (up to parity transformations in SO(1, 1) again) is8

a = (−3, 1) , b1 = (1, 0) , b2 = (0,−2) . (2.18)

Similar to the previous example, using k1, k2, kl, cR ≥ 0, null strings Q = (εq, q) in this
case have to verify q ≥ 0, ε = 1 and 0 ≤ (3ε + 1)q ≤ 2. There are therefore no consistent
charge vectors for null strings coupling to tensors and the model can be excluded by the
null charged string hypothesis.

Since we do not have a fully general argument, the null strings hypothesis could be
violated in some exotic 6d theories. If such examples would be found in string theory, they
would probably correspond to truly non-geometric compactifications.

3 Six dimensional supersymmetric orientifold models

Whereas the main point in [7] was trying to use only general arguments, valid beyond string
perturbation theory, the opposite viewpoint, analyzing explicit perturbative examples has
its own virtues. Indeed, this can offer a microscopic insight on such constraints, delimitate
their generality, for example by relaxing supersymmetry and exploring known examples.
It can also help to identify and test new constraints which are suggested by the perturba-
tive string data, in particular our conjecture on the existence of the null charged strings
Q · Q = 0. We consider therefore supersymmetric orbifold 6d examples in what follows.
Before turning to explicit examples, we introduce and discuss a natural factorization of

6For such values, an example of Kahler form is J = (n, 1), with n > 0, but we do not need to discuss
the value of J in what follows.

7Our b2 seems to have twice the entries compared to [6]. This is probably due to a different convention for
the traces in the SO gauge group factors. We remind that ours is that all anomaly polynomials are always
expressed in terms of the traces in the fundamental representations of the corresponding gauge groups.

8The Kahler form could be chosen to be J = (2, 1).
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the anomaly polynomial in six dimensional perturbative models, called geometric in what
follows, determined by the geometry of the branes and O-planes and their couplings.

3.1 Geometric factorization of the anomaly polynomial

The anomaly polynomial (2.3) is a (NT + 1) × (NT + 1) quadratic form in nG + 1 vari-
ables, where nG is the number of non-abelian gauge group factors, if one ignores, as we
already stressed, the abelian factors. If NT ≤ nG, the factorization of the polynomial is
uniquely determined by the diagonalization of the quadratic form when the eigenspaces
are of dimension one. If NT > nG, the factorization cannot be unique and one should use
further insight in order to find the most relevant factorizations. The mapping between
various factorizations is obtained by performing SO(1, NT ) transformations, which amount
to redefining accordingly the basis of tensor fields participating in the anomaly cancellation
mechanism. One particularly important factorization, that we call geometric in what fol-
lows, is the one reflecting the geometry of the D-branes and O-planes in the internal space
and their couplings to the (closed string) tensors, in perturbative constructions. This could
be called the string basis, since the associated tensors basis is the one corresponding to
perturbation theory, whereas all other basis are obtained by taking linear combinations of
these tensors.

Due to the interpretation of the Klein, cylinder and Mobius string amplitudes as tree-
level closed string exchanges between D-branes and O-planes, the geometric basis can
be found most easily from the vacuum-to-vacuum string partition functions, restricted
to the massless tree-level RR (tadpole) exchange. The corresponding amplitudes for six-
dimensional constructions have typically the structure

−K̃0−Ã0−M̃0 =
[(∑

i

αiNi−32
)
√
v+ε

∑
aαaDa−32√

v

]2

χ+

+
[(∑

i

αiNi−32
)
√
v−ε

∑
aαaDa−32√

v

]2

χ−+
∑
α′

(∑
i

cα
′
i Ni+

∑
a

cα
′
a Da−cα

′
O

)2

χ(α′) .

(3.1)

In (3.1) (χ+, χ−, χ
(α′)) are a basis of NT + 1 group characters corresponding to RR six-

forms, enforcing the RR tadpole cancellations. χ+, χ− are characters that, at the massless
level, contain untwisted six-forms, whereas in orbifold models χ(α′) correspond to twisted
RR six-forms. If the gauge group is of the form G =

∏
iGi ⊗

∏
aGa, Ni is proportional to

the number of branes of the D9 gauge group factor Gi and Da to the number of branes of
the D5 gauge group factor Ga. Moreover, v is the volume of the internal space, ε = ±1
if D5/O5 branes/planes are present and ε = 0 otherwise, cα′

i (cα′
a ) denotes couplings of

D9 (D5) branes to the twisted sector, whereas cα′
O is the twisted charge of the O-planes

coincident with orbifold fixed points. In the simplest cases αi = αa = 1 corresponding to
rank 16 gauge factors for D9 and D5 branes (if present), but gauge groups of lower ranks
can be obtained in various ways.

The amplitudes above contain the square of the couplings of the supergravity fields
and the RR forms to D-branes [15, 16] and O-planes [62, 63]. From the effective field
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theory viewpoint, these couplings are encoded into compact formulae containing also the
couplings of lower-dimensional tensors to gauge fields and to the gravitational sector. For
D9 branes and the O9 plane, the couplings to the untwisted RR fields (those of the 10d
gravity multiplet) are captured by

−SD9 = tr
∫
R1,5×T 4

C∧eiF9∧
√
Â(R) , −SO9 =−32 tr

∫
R1,5×T 4

C∧
√
L

(
R

4

)
, (3.2)

where the formulae for the roof genus Â(R) and Hirzebruch polynomial L are given in
appendix A and C denotes the formal sum of all (untwisted) RR-fields, C ≡ C(10) +
C(6) + C(2). We also assume a compactification on a flat four-dimensional torus T 4 (or
orbifolds, as in our string examples). The compactified theory lives in the non-compact 6d
Minkowski space R1,5, which is the case of interest in this paper. Similarly, the couplings
to the untwisted RR fields for D5 branes and (one) O5 plane are captured by

−SD5 = tr
∫
R1,5

C ∧ eiF5 ∧
√
Â(R) , −SO5 = −2 tr

∫
R1,5

C ∧
√
L

(
R

4

)
. (3.3)

One finds

−(SD9+SO9) =
∫
R1,5×T 4

{
(N−32)C(10)+C(6)∧

(
N+16

24 trR2− 1
2trF

2
9

)
+· · ·

}
,

=
∫
R1,5

{
(N−32)v C̃(6)+C̃(2)∧

(
N+16

24 trR2− 1
2trF

2
9

)
+· · ·

}
, (3.4)

N is twice the number of D9 branes9 and where v C̃(6) ≡
∫
T 4 C(10), C̃(2) ≡

∫
T 4 C(6).

Similarly,

− (SD5 + 16SO5) =
∫
R1,5

{
(D − 32)C(6) + C(2) ∧

(
D + 16

24 trR2 − 1
2trF

2
5

)}
, (3.5)

where D is twice the number of D5 branes.10 The connection with the tadpole ampli-
tudes (3.1) is made transparent by defining linear combinations

√
v C(6) = C

(6)
+ − C(6)

− ,
√
v C̃(6) = C

(6)
+ + C

(6)
− ,

C(2) = C
(2)
+ + C

(2)
− , C̃(2) = C

(2)
+ − C(2)

− , (3.6)

where C(2)
+ (C(2)

− ) correspond to the self-dual (anti self-dual) untwisted tensor in 6d, whereas
C

(6)
+ , C(6)

− are more appropriately interpreted as the string basis for the non-propagating
six forms, enforcing the untwisted RR tadpole conditions. Notice that the gauge traces
above are written in the SO(32) basis.

9Our terminology here is that the number of branes is equal to the rank of the gauge group, therefore
sixteen. Actually in our particular SUSY example, if the D9 branes have continuous Wilson lines in T 4,
their number is divided by two and equals eight, plus their images.

10Like for D9 branes, the number of D5 branes is equal to the rank of the gauge group, therefore sixteen.
If the D5 branes are off the orbifold fixed points, their number is divided by two and equal eight, plus their
orbifold images.
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Multiplicity Multiplet Field Content
1 Gravity (gµν , C+

µν , ψµL)

1 Tensor (C−µν , φ, χR)

20 Hypers (4φa, ψaR)

Table 3. Closed string spectrum for the T 4/Z2 orientifold with O9−/O5− planes. We have
indicated the (on-shell) field content of each multiplet together with the chirality L,R for the
fermions and duality ± for the tensor fields.

Our discussion until now was general. In order to be more explicit, we consider the 6d
SUSY example discussed in the next section, which has sixteen D9 and D5 branes and a
gauge group G = U(16)9×U(16)5. To express the traces above in the U(16) basis, one can
use, for both D9 and D5 branes, the equalities (trF 2)SO(32) = 2(trF 2)U(16). In the U(16)
basis, one finally obtains

−SD9+O9+D5+16O5 =
∫
R1,5

{[√
v(N−32)+D−32√

v

]
C

(6)
+ +

[√
v(N−32)−D−32√

v

]
C

(6)
−

+C(2)
+ ∧

(
N+D+32

24 trR2− 1
2trF

2
9 −

1
2trF

2
5

)
+C(2)
− ∧

(
D−N

24 trR2+ 1
2trF

2
9 −

1
2trF

2
5

)
+· · ·

}
.

(3.7)

The couplings of the two-forms cancel the 6d anomaly polynomial, as discussed in (2.6),
and they are given by the expressions above. It is then clear that the tadpole conditions,
encoded in the couplings of the six-forms and which impose N = D = 32, fix the geometric
structure of the couplings of D-branes and O-planes to the tensor fields that determine the
anomaly polynomial.

There are also couplings of D-branes and O-planes to the other tensors from the twisted
sectors, the last term in eq. (3.1). They are described by couplings qualitatively similar
to (3.2)–(3.3), involving the action of the orbifold on the Chan-Paton factors. The logic
leading to the connection between the (twisted, in this case) tadpole conditions and the
couplings to tensors in the anomaly polynomial is the same as for the untwisted sector.
Since some details are model-dependent, we do not attempt here to write explicitly these
couplings.

3.2 An explicit example: the T 4/Z2 orientifold model

Arguably the simplest and most popular chiral N = (1, 0) supergravity can be obtained
in perturbative string theory by compactifying Type I theory on a T 4/Z2 orbifold with
standard O9/O5 planes (that is negative tension and charge) [54, 55], constructed first by
Bianchi and Sagnotti and interpreted geometrically later by Gimon and Polchinski. The
closed string part of the spectrum is given in table 3. Four of the hypers come from the un-
twisted sector, whereas the other sixteen come from the twisted sector, one per fixed point.

In order to cancel the tadpoles generated by the O9/O5 planes, one needs to introduce
an open string sector. The simplest solution contains two stacks: 16 D9 branes and 16 D5
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Multiplet Field Content Representation
Vector (Aµ, χL) (256, 1) + (1, 256)
Hyper (4φ, χR) (120 + 120, 1) + (1, 120 + 120) + (16, 16)

Table 4. Open string spectrum for the T 4/Z2 orientifold with O9−/O5− planes.

branes sitting at a given fixed point of the orbifold (e.g. the origin of the lattice), such that
the gauge group is

G = U(16)9 ×U(16)5 . (3.8)

The open string spectrum of this solution consists of vector multiplets and hypermultiplets
in the representations indicated in table 4.

One can show that the anomaly polynomial for the U(16)9 × U(16)5 model has the
following factorized expression

I8 = 1
16
(
−4 trR2 + trF 2

1 + trF 2
2

)2
− 1

16
(
−trF 2

1 + trF 2
2

)2
, (3.9)

where one can read off Xα
4 in (2.3) with Ω = diag(1,−1). We call this form of the anomaly

polynomial geometrical, since it is what comes naturally from the coupling of the tensor
multiplet to the D9 and D5 branes. Indeed, the first term in (3.9) reflects the coupling
of the anti-selfdual tensor from the gravity multiplet to the D9 and D5 branes, whereas
the second term is the coupling of the self-dual counterpart. In this model, there are no
physical couplings to the twisted sector fields, in other words the branes have no twisted
charges and are therefore regular. All this is manifest in the string vacuum amplitudes
(see [64, 65])

−K̃0−Ã0−M̃0∼
[
(n+n̄−32)

√
v+ d+d̄−32√

v

]2

C4C4

+
[
(n+n̄−32)

√
v− d+d̄−32√

v

]2

S4S4−
[
(n−n̄+4(d−d̄))2+15(n−n̄)2

]
S4O4 , (3.10)

where the gauge group is parametrized here by U(n)9 × U(d)5 and N = 2n = 32 and
D = 2d = 32 by the tadpole conditions. In (3.10) C4C4, S4S4 are the characters corre-
sponding to the untwisted six-forms χ+, χ− in (3.1), whereas S4O4 correspond to the
twisted six-forms χ(α′). Since in this case NT = 1 and nG = 2, the factorization of the
anomaly polynomial is completely determined by the diagonalization of the corresponding
quadratic form.

From (3.9) one can read off the vectors a and bi of (2.4)

a = (−2
√

2, 0) , b1 =
( 1√

2
,− 1√

2

)
, b2 =

( 1√
2
,

1√
2

)
, (3.11)

and find the products

a · a = 8 , a · b1 = a · b2 = −2 , bi · bj =
(

0 1
1 0

)
. (3.12)
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The expressions for a and bi are unique up to overall signs once one chooses the geometrical
basis, with Ω in the diagonal form. This is true because the number of non-zero eigenvalues
of I8, seen as a quadratic from in the variables trR2, trF 2

1 , trF 2
2 , is equal to 1+NT = 2. We

will see later when we analyse the non-supersymmetric T 4/Z2 orientifold that NT +1 can be
larger than the dimension of the eigenspace of I8, thus several factorizations of the anomaly
polynomial can arise even after fixing Ω. However, the geometry of the branes provides
always a natural, geometrical choice for the factorization. Notice that in the geometrical
basis above the vectors a, bi do not have integral entries. Since the scalar products in (3.12)
are integers, they generate an integral lattice. It has been argued in [18] that one has to
be able to embed the integral lattice generated by a and bi into a selfdual lattice. In order
to check this property it is sufficient to find a basis with integer entries. Indeed, this is
realized in our example by going to a basis where Ω has an off-diagonal form

Ω =
(

0 1
1 0

)
. (3.13)

In the integral basis the anomaly polynomial is factorized as

I8 =
(
trR2 − 1

2trF
2
1

)(
trR2 − 1

2trF
2
2

)
(3.14)

and the vectors a, bi have the representation

b1 = (1, 0) , a = (−2,−2) , b2 = (0, 1) , (3.15)

with the products given before in eq. (3.12). The two representations of Ω and a, b1, b2 are
simply related by a rotation matrix

R = 1√
2

(
1 −1
1 1

)
. (3.16)

From the explicit form of a, b1, b2 in eq. (3.11) one can immediately see that the Kahler
form J must satisfy the conditions

J0 > 0 , |J0| > |J1| (3.17)

in the geometrical basis (with diagonal Ω). A consistent choice is then easily found to be
J = (

√
2, 0), which in the integral basis become J = (1, 1).

3.3 D1 branes and the anomaly inflow

Before studying the inflow for D1 branes in the supersymmetric T 4/Z2 orientifold consid-
ered earlier, let us analyze the consistency of this model following the general prescription
of [7]. Let us choose the integral basis (3.13)–(3.15) (and J = (1, 1)), and consider a generic
string which couples to the tensor fields with charge Q = (q0, q1) ∈ Z2. For our specific case,
in the integral basis, k1 = q1, k2 = q0, Q ·Q = 2q0q1, Q · a = −2(q0 + q1), so that all condi-
tions in the first line of (2.12) are satisfied if q0 ≥ 0, q1 ≥ 0 and sgn(q0 − 1) = sgn(q1 − 1).
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Representation SO(1, 1)× SU(2)l × SU(2)R × SO(4)

rr̄ (0, 1, 1, 1) + (1
2 , 1, 2, 2

′)L
rr̄ (1, 2, 2, 1) + (1

2 , 2, 1, 2
′)R

r(r+1)
2 + r̄(r̄+1)

2 (1, 1, 1, 4) + (1
2 , 1, 2, 2)R

r(r−1)
2 + r̄(r̄−1)

2 (1
2 , 2, 1, 2)L

rn̄+ r̄n (1
2 , 1, 1, 1)L

rd+ r̄d̄ (1
2 , 1, 1, 2)L

rd̄+ r̄d (1, 1, 2, 1) + (1
2 , 1, 1, 2

′)R

Table 5. The spectrum of D1 branes at a fixed point on the T 4/Z2 supersymmetric orientifold.

Notice in particular that these conditions force Q ·Q and Q · a to be even integers. Now,

cL−
∑
i

ki dimGi
ki+h∨i

=

= 2
(
3q2

0q
2
1 +57q2

0q1 +144q2
0 +57q0q

2
1 +802q0q1 +280q0 +144q2

1 +280q1 +256
)

(q0 +16)(q1 +16) (3.18)

which is obviously positive for positive charges. Taking into account the two U(1) factors
of the gauge group, there could be at most an extra −2 added in the left hand-side [8],
which does not change the conclusion. Therefore, as expected, the T 4/Z2 orientifold can
be consistently coupled to charged strings.

We are now looking at the spectrum of D1 branes in the same supersymmetric T 4/Z2
orientifold with D9/D5 branes. For the sake of generality we look at sectors with gauge
group

U(r)1 ×U(n)9 ×U(d)5 (3.19)

and leave for the time being the numbers of branes r, n, d arbitrary. The corresponding
vacuum amplitudes can be found in appendix B. The spectrum of strings charged under
the D1 gauge group is reproduced in table 5. The R-symmetry of the D1 brane CFT is
identified with the normal bundle SU(2)l × SU(2)R, whereas SO(1, 1) is the Lorentz group
on the worldvolume of the D1 brane. Finally, the SO(4) corresponds to the toroidal orbifold
directions.

The anomaly polynomial on the D1 brane worldvolume receives the following contri-
butions (see e.g. [66])

I4 = 1
2Â(R)Â(N)−1 ×

{
ch±(N)TrψeiG

tr eiF tr eiG
, (3.20)

with the factor 1/2 arising from the fact that the relevant fermions 1/2L and 1/2R of
SO(1, 1) are Majorana-Weyl. The relevant expansions of the Dirac genus Â and the Chern
characters ch± are given in appendix A. From the spectrum above one can see that the
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anomaly polynomial corresponding to the r D1 branes becomes

I4 = −r
(
trR2 − 1

2trF
2
1

)
. (3.21)

One matches the polynomial above with the form given in eq. (2.11). It immediately
follows, after setting r = 1, i.e. considering a single D1 brane, that we must have the
following products

Q ·Q = 0 , Q · a = −2 , Q · b1 = 1 , Q · b2 = 0 . (3.22)

After solving the constraints above, with a,bi given in eq. (3.11), one finds that the tensor
charges Q of the D1 branes in the geometrical basis are then given by

Q = 1√
2

(1, 1) . (3.23)

Notice that we have Q = b2, corresponding to the fact that the D1 brane is equivalent,
in the field theory limit, to an instanton for the gauge theory living on the D5 brane
worldvolume. In the integral basis (where Ω is off-diagonal) the charges have the form
Q = (0, 1). Recall that the Kac-Moody levels of the gauge factors and of the SU(2)l have
the form

ki = Q · bi , kl = 1
2 (Q ·Q+Q · a+ 2) . (3.24)

It is now immediate to obtain the following relevant quantities

Q ·Q+Q · a = −2 , k1 = 1 , k2 = 0 , kl = 0 , Q · J = 1 > 0 . (3.25)

Furthermore, the central charges of the D1 branes CFT have the values

cL = 3Q ·Q− 9Q · a+ 2 = 20 , cR = 3Q ·Q− 3Q · a = 6 . (3.26)

Finally, one can check that the unitarity constraint is satisfied

∑
i

ki dimGi
ki + h∨i

= N2 − 1
1 +N

+ 1 = N = 16 < cL . (3.27)

We have added 1 to account for the U(1) factors of the gauge group. However, the direct
computation of the central charges from the spectrum on the D1 branes yields different
values for the central charges. The contributions of the two dimensional bosons (1 of
SO(1, 1)) and the MW fermions (1/2L and 1/2R of SO(1, 1)) are as follows

SO(1, 1) cL cR

1 1 1
1/2L 1/2 0
1/2R 0 1/2

(3.28)
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Representation SO(1, 1)× SU(2)l × SU(2)R × SO(4)
r(r−1)

2 (0, 1, 1, 1) + (1
2 , 2, 1, 2)L + (1

2 , 1, 2, 2
′)L

r(r+1)
2 (1, 2, 2, 1) + (1

2 , 1, 2, 2)R
r(r+1)

2 (1, 1, 1, 4) + (1
2 , 2, 1, 2

′)R
r(n+ n̄) (1

2 , 1, 1, 1)L

Table 6. The spectrum of D1 branes displaced in the bulk on the T 4/Z2 supersymmetric orientifold.

With the rules above one obtains the result

cL = 4CM + 26 + 96D5 , cR = 6CM + 12 + 96D5 , (3.29)

where we have separated the contributions of the ‘center of mass’ (CM) coordinates (core-
sponding to the adjoint hypermultiplet (1, 2, 2, 1)+(1

2 , 2, 1, 2
′)R) and those of the non-chiral

D1-D5 sector from the rest.
The central charges computed from the D1 branes spectrum indeed do not match the

ones computed with eq. (3.26). This is due to the fact that the D1 branes are on an orbifold
fixed point and of the fact that D5 branes sit on the same orbifold fixed point. As we will
see, the central charges for D1 branes are of the form

cL = c+3Q ·Q−9Q ·a+2≥ 3Q ·Q−9Q ·a+2 , cR = c+3Q ·Q−3Q ·a≥ 3Q ·Q−3Q ·a ,
(3.30)

with c ≥ 0 in general and equal to 6+96D5 in the example at hand. However, for D1 branes
in the bulk central charges agree with eq. (3.26). Let us consider this case. The gauge
group of the D1 branes in the bulk becomes orthogonal SO(r). The massless spectrum is
given in table 6.

From the spectrum one finds the same anomaly polynomial as when the D1 branes
were on top of an orbifold fixed point, that is

I4 = −r
(
trR2 − 1

2trF
2
1

)
(3.31)

and eqs. (3.23)–(3.27) still hold. However, the central charges computed from the spectrum
of bulk D1 brane changes to the following values

cL = 4CM + 20 , cR = 6CM + 6 , (3.32)

which now match the charges in eq. (3.26), where the center of mass contributions have been
removed. In our case these contributions come from the hypermultiplet in the symmetric
representation corresponding to (1, 2, 2, 1) + (1

2 , 1, 2, 2)R.
We considered a BPS D1 brane until now. One could wonder what would happen if

one considers instead a non-BPS, but stable D1 antibrane. The analysis above can be
easily redone and the result is the expected one: the corresponding charge vector is just
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the opposite of the one of D1 brane QD1 = −QD1. This could have been anticipated, since
the D1 is an anti-instanton for the D5 background branes of the models, and therefore
Q = −b2. Clearly most constraints in eq. (2.12) are violated in this case. In particular,
the 2d chirality of all fermions on the non-BPS string is flipped compared to the BPS case.
One can write down appropriate constraints for such non-BPS defects, but they are in
some sense mirrors of the BPS ones.

3.4 A mini-landscape of models and string defects

We consider here a general model with magnetized D9 branes and D5 branes satisfying the
tadpole conditions on the supersymmetric T 4/Z2 orientifold [67]. The gauge group is then
of the form

G =
∏
α

U(pα)9 ×U(d)5 , (3.33)

where, for simplicity, we consider a single stack of D5 branes sitting at the origin. The
magnetic field on every D9 brane stack is chosen to be selfdual in order to preserve super-
symmetry (see [67]). The RR tadpole conditions can be written as∑

α

(pα + p̄α)nα1nα2 = 32 ,
∑
α

(pα + p̄α)mα
1m

α
2 + d+ d̄ = 32 , (3.34)

whereas the twisted tadpoles are automatically satisfied by the Chan-Paton parametriza-
tion RNα = i(pα − p̄α) = 0 and RD = i(d − d̄) = 0. In the T-dual version, the D9/D5
branes correspond to intersecting D7 branes wrapping two-cycles inside T 4/Z2, whereas
the O9 and O5 planes turn into O7 planes. The spectrum and consequently the anomaly
polynomial in the intersecting brane version is conveniently described in terms of intersec-
tion numbers, for more details see appendix D. In what follows one uses the intersecting
D7 brane language for simplicity, although we will still talk about D9 and D5 branes, in
line with our type I setup throughout the paper.

By making use of the spectra given in [68], one can show that the anomaly polynomial
has the general form

I8 =
(
trR2

)2
− trR2

[
1
8
∑
α

IαO trF 2
α + 1

2trF
2
5

]
+ 1

16
∑
α

Iαα′

(
trF 2

α

)2

+ 1
8
∑
α

∑
β 6=α

(Iαβ + Iαβ′) trF 2
α trF 2

β + 1
4
∑
α

Iα5 trF 2
α trF 2

5 , (3.35)

where Fα is associated to the D9 brane stacks (including also the case of zero magnetization)
and F5 is associated to the D5 branes. Notice that the result above depends only on the
toroidal intersection numbers (the conventions and definitions we are using are given in
appendix D). The absence of contributions from the orbifold fixed points can be traced to
the fact that the branes are not fractional on this orientifold (in the T-dual picture, the
two-cycle wrapped by the brane together with its image has zero twisted charges). From
above, we can infer the anomaly lattice

a · a = 8 , a · bα = −1
2IαO , a · b5 = −2 , b2α = 1

2Iαα
′ ,

bα · bβ = 1
2(Iαβ + Iαβ′) , b25 = 0 , bα · b5 = Iα5 , (3.36)
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Brane 0 1 2 3 4 5 6 7 8 9
D9 × × × × × × × × × ×
D5 × × × × × × • • • •
D5′ × × • • • • × × × ×
D1 × × • • • • • • • •

Table 7. A cross denotes a direction parallel to the brane and a bullet denotes a direction orthogonal
to the brane.

which is manifestly integral since Iαβ + Iαβ′ , IαO and Iαα′ are always even (see appendix D
for their definitions). The formula above suggests that one can identify the vectors a,
bα, b5 with the orientifold and brane two-cycles, respectively, wrapped by the O7/D7 in
the T-dual description. Moreover, Ω is identified with the intersection form [7] such that
the anomaly lattice becomes a sublattice of H2(T 4/Z2). The most general (spacetime) D1
brane charges that can be obtained in the context of perturbative strings correspond to
magnetized D5′ branes wrapping the whole T 4/Z2. In the intersecting branes picture, D1
and D5′ correspond to D3 branes wrapping a two-cycle in the torus orbifold. The boundary
conditions for the various branes are summarized in table 7.

In the following, we consider a magnetized D5′ brane (denoted D5′a) supporting a U(1)
gauge group coupled to the general model of eq. (3.33). The magnetic field on the D5′a is as-
sumed to be either selfdual or anti-selfdual for stability. Then, one can show explicitly from
the D5′a spectra (see appendix D) that the associated anomaly polynomial takes the form

I4 = 1
2

−1
2IaO trR2 + 1

2
∑
β

(Iaβ + Iaβ′) trF 2
β + Ia5 trF 2

5 + 1
2Iaa

′ χ(N)

 . (3.37)

From above we can read the constraints that determine the charge vector Q. In this case
we obtain

Q · a = −1
2IaO , Q · bβ = 1

2(Iaβ + Iaβ′) , Q · b5 = Ia5 , Q ·Q = 1
2Iaa

′ . (3.38)

The landscape of string-like charges that we obtain in this way is very large, since the D5′

magnetizations are only constrained by the stability (absence of tachyons) arguments. They
however do not span all possible charges: for example using formulae from the appendix D
one can check Q ·Q and Q · a are even. One could therefore question the completeness hy-
pothesis [69–71]. However, we showed in the previous subsection by an explicit evaluation
in the integral charge basis that these products are indeed even integers. The complete-
ness hypothesis seem therefore to be satisfied. It can also be checked that only selfdual
and anti-selfdual magnetic field configurations on the D5′ are stable (tachyon free). The
self-dual configurations are BPS, whereas the anti-selfdual are non-BPS.

Consider a D5′a having the same magnetization as a D9 stack (labeled by α) such that
it corresponds to a gauge instanton (the results apply also for the case of D1/D5 or D5′/D9
with zero magnetic field). In particular, we have for the wrapping numbers determining
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the magnetic field the identity ⊗i(mα
i , n

α
i ) = ⊗i(ma

i , n
a
i ). Then, after comparing eqs. (3.36)

and eqs. (3.38), one can easily see that in this case the solution for the charge Q is given by

Q = bα (3.39)

Conversely, one can use the brane instanton argument to argue that the equation above
holds and then use the general anomaly lattice (3.36) in order to derive the anomaly poly-
nomial for D5′a branes in eq. (3.37). Finally, the constraints in [7] are in principle satisfied
if one chooses selfdual magnetic fields on the D5′a. In particular, from above, we have
Q ·Q ≥ 0 and Q · bβ ≥ 0, Q · b5 ≥ 0. Using the table 13 in the appendix one can compute
the central charges cL, cR and compare with eqs. (3.30). Let us consider the particular case
where all the multiplicities in table 13 are positive. In addition, we take into consideration
the possibility of having equal magnetization on the D5′a as for a stack of D9 branes with
Chan-Paton charge denoted by pα. In the T-dual picture of intersecting branes it corre-
sponds to a D3 brane wrapping the same two cycle as a D7 brane. In this case, using the
spectra in table 13, one finds

cL = 12+6pα+ 3
2Iaa

′ + 1
2IaO+ 1

2
∑
β

(Iaβ+Iaβ′)pβ+Ia5d= 4CM +8+6pα+3Q ·Q−9Q ·a ,

cR = 12+6pα+ 3
2(Iaa′ +IaO) = 6CM +6+6pα+3Q ·Q−3Q ·a . (3.40)

where we used eqs. (3.38) and the identity

1
2
∑
β

(Iaβ + Iaβ′)pβ + Ia5d = 4IaO , (3.41)

which is a consequence of the RR tadpole conditions eqs. (3.34). One finds therefore in this
case a formula of the type eqs. (3.30) with c = 6 + 6pα. One can show that the expression
for c is valid also in the case of D5′/D9 with zero magnetization or D1/D5 sitting on the
same fixed point by replacing the Chan-Paton charge pα with the one of the unmagnetized
D9 or D5 respectively. If the magnetization on the D5′a is different than the ones of the
background branes then one simply sets pα = 0, thus obtaining c = 6 (this is for example the
case for large magnetic fields on D5′ branes). The result (3.40) applies to a big ensemble of
string defects with self-dual magnetic charges, but it is still not completely general. It does
not apply for example to the cases where the multiplicity of bifundamental representations
in table 13 is negative. We actually know from the previous section the example of the bulk
D1 branes for which c = 0. However, c = 6 seems to be the most generic value for arbitrarily
large charges of BPS string defects, for which multiplicities in table 13 are all positive.

For general configurations, breaking supersymmetry, and in particular for the stable
but non-BPS D5′ with anti-selfdual magnetic field configurations, the constraints do not
hold anymore. It would be interesting to find the set of contraints that charges of stable
non-BPS string defects should satisfy for a consistent coupling to gravity.
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Multiplicity Multiplet Sector
1 Gravity Untwisted
1 Tensor Untwisted
4 Hypers Untwisted
16 Tensors Twisted

Table 8. The closed string spectrum for the brane supersymmetry breaking T 4/Z2 orientifold.

Field/Multiplet Representation
Aµ (120, 1; 1, 1) + (1, 120; 1, 1) + (1, 1; 136, 1) + (1, 1; 1, 136)
χL (120, 1; 1, 1) + (1, 120; 1, 1) + (1, 1; 120, 1) + (1, 1; 1, 120)

(4φ, ψR) (16, 16; 1, 1) + (1, 1; 16, 16)
MW ψL (16, 1; 16, 1) + (1, 16; 1, 16)

2φ (16, 1; 1, 16) + (1, 16; 16, 1)

Table 9. The open string spectrum for the brane supersymmetry breaking T 4/Z2 orientifold.

4 Six dimensional orientifold models with brane supersymmetry
breaking

We now consider a T 4/Z2 with standard O9− planes and ‘exotic’ O5+ planes [29–33]. The
closed string spectrum is now modified with respect to the orientifold considered earlier (see
table 8). Notice that the closed string spectrum is supersymmetric. From the string theory
realization, the cancellation of O9− and O5+ tadpoles requires the introduction of 16 D9
branes and 16 D5 (assumed to sit at the origin of the toroidal lattice). The presence of D5
branes breaks supersymmetry, without introducing tachyons. The question that we address
in this section, in the spirit of the swampland program, is the following: can one understand
if supersymmetry is broken or not for a 6d gauge theory coupled to the gravitational sector
in table 8, from the consistency conditions of strings couplings to the tensors in 6d? As one
will see in what follows, supersymmetry breaking is manifest in the coupling to D1 branes
of the 6d gauge theory in the perturbative string construction [29–33], with gauge group
SO(16)2

9 ×USp(16)2
5.

The gauge group derived from the perturbative string construction has the form [29–33]

G = SO(16)2
9 ×USp(16)2

5 . (4.1)

The open string spectrum is given in table 9.
Notice that the bosons and fermions from the would be vector multiplet (Aµ, χL) and

the 1/2 ‘Hyper’ (2φ, ψL) containing symplectic Majorana-Weyl spinors come in different
representations with respect to the gauge group associated to the D5 branes, breaking
supersymmetry at the string scale. The appearance of symplectic Majorana-Weyl spinors
(see [72] for a detailed discussion of their definition and consistency), which contain half
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of degrees of freedom compared to a standard 6d Weyl spinor, is possible due to the
fact that the gauge group on the D5-branes is symplectic. One could at first sight build a
supersymmetric field theory model with gauge group G = SO(16)2

9×SO(16)2
5 by putting the

corresponding bosons and fermions in the same representations, since the resulting model
would have exactly the same anomaly polynomial as the non-supersymmetric theory above,
cancelling therefore all 6d gauge and gravitational anomalies. In string theory language, it
would correspond to the introduction of D5 branes (instead of D5). However, even ignoring
the fact that it would not satisfy the O5+ tadpole conditions, it is not possible in 6d to
define 1/2 hypermultiplets without a symplectic gauge group (necessary for imposing the
symplectic MW condition on the corresponding fermions).

How does a string (D1 brane) coupled to this theory realize that supersymmetry is
broken from the viewpoint of consistency conditions in [7]? In order to answer this question,
we start from the anomaly polynomial. From the spectrum above, one can easily check
the irreducible gravitational anomaly cancellation condition eq. (2.1) (with NT = 17).
Since the number of tensor multiplets is bigger than the number of the non-abelian gauge
factors, there are various ways to factorize the anomaly polynomial, related by SO(1, 17)
transformations. However, only two factorizations are of interest for our purposes. The
first is the geometrical one, in which each term in it corresponds to the coupling to the
tensor fields defined by string perturbation theory. This form can be easily read off from
the coupling of branes to the tensors, encoded for example in the partition functions. Since
the anomaly lattice defined by a · a, a · bi, bi · bj is independent of the chosen basis, this is
enough to check that the anomaly lattice is integral, with the appropriate normalization
in table 2. However, in the geometrical basis, the components of the vectors a, bi are
generically not integers. It is nonetheless possible to switch to another basis that we call
integral basis, less natural from string theory perspective, in which the components of
vectors a, bi are integers, proving the selfduality of the anomaly lattice. In our example
at hand, the geometrical basis for the anomaly polynomial corresponds to the following
factorized form

I8 = 1
64
(
trF 2

1 +trF 2
2 −trF 2

3 −trF 2
4

)2
− 1

64
(
−8trR2+trF 2

1 +trF 2
2 +trF 2

3 +trF 2
4

)2

− 1
128

(
trF 2

1 −trF 2
2 +4trF 2

3 −4trF 2
4

)2
− 15

128
(
trF 2

1 −trF 2
2

)2
,

(4.2)

where F1, F2 (F3, F4) denote the gauge fields of the D9 branes (D5 antibranes). The first
line in (4.2) is related to the couplings to the untwisted tensors and the second line to the
couplings to the 16 twisted tensors. The first term in the second line of (4.2) encodes the
brane couplings to the twisted tensor at the fixed point where all D5 are located, whereas
the second (last) term contains the (equal) coupling to the other 15 twisted tensors in the
other fixed points, such that one has NT + 1 = 18 terms in total.

Analogously to its supersymmetric cousin, the geometric interpretation is manifest in
the string vacuum amplitudes (see [64, 65])

−K̃0−Ã0−M̃0∼
[
(n1+n2−32)

√
v− d1+d2−32√

v

]2
C4C4+ (4.3)[

(n1+n2−32)
√
v+ d1+d2−32√

v

]2
S4S4+

[
(n1−n2+4(d1−d2))2+15(n1−n2)2

]
S4O4 ,
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where the gauge group is parametrized here by [SO(n1)× SO(n2)]9 × [SO(d1)× SO(d2)]5
and n1 = n2 = 16 and d1 = d2 = 16 by the RR tadpole conditions. Unlike in the supersym-
metric T 4/Z2 orientifold, the D-branes do couple to the sixteen anti-selfdual tensors (repre-
sented by the character S4O4) from the twisted sector, therefore they are fractional branes.

From the geometrical factorization (4.2) one can write (up to signs and permutations)
the following representation for the vectors a, bi

a = (0,−2
√

2, 016) , Ω = diag(1,−117) , (4.4)

b1 =
(

1√
2
,

1√
2
,

1
2 ,
(1

2

)15
)
, b2 =

(
1√
2
,

1√
2
,−1

2 ,
(
−1

2

)15
)
, (4.5)

b3 =
(
− 1

2
√

2
,

1
2
√

2
, 1, 015

)
, b4 =

(
− 1

2
√

2
,

1
2
√

2
,−1, 015

)
. (4.6)

The corresponding products between the vectors a and bi are then found to be

a · a = −8 , a · bi =


2
2
1
1

 , bi · bj =


−4 4 −1 0
4 −4 0 −1
−1 0 −1 1
0 −1 1 −1

 . (4.7)

Notice that we have integer entries for the products bi · bj only if one takes λi = 2 for the
orthogonal gauge group factors as indicated in table 2.

The requirement to find a basis with integral entries (see [18]) is also satisfied for the
model under consideration. Indeed, one can check that the products in eq. (4.7) can be
obtained from the following vectors

a = (2,−2, 0, 0, 0,−13, 1, 0, 2, 07) , (4.8)
b1 = (0, 14, 013) , (4.9)
b2 = (2,−14, 1,−1, 12, 09) , (4.10)
b3 = (−1, 1, 04, 1, 011) , (4.11)
b4 = (−1, 07,−1, 0,−1, 07) . (4.12)

Let us check now if it is possible, in this case, to define a Kähler form J = (J0, J1, . . . , J17)
that satisfies J · J > 0, J · a < 0 and J · bi > 0. For the explicit vectors a, bi given
in (4.4)–(4.6), one finds the following system of inequalities

|J0| > |J1| , J1 < 0 , J0 − J1 > 0 , J0 + J1 < 0 , (4.13)

which does not have a solution. Notice that if one relaxes the condition J · a < 0 it is
still not possible to find a solution for J . We interpret this failure as a non-perturbative
proof that it is not possible to define a supersymmetric model coresponding to this anomaly
polynomial. Indeed, the would be supersymmetric model with SO(16)2

9 × SO(16)2
5 gauge

group does not exist in string theory or field theory. On the other hand we argue that a
non-supersymmetric orientifold model is not required, in general, to satisy these conditions,
since J is related to supersymmetry. The impossibility to define J does not depend on the
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Representation SO(1, 1)× SU(2)l × SU(2)R × SO(4)
d(d−1)

2 (0, 1, 1, 1) + (1
2 , 1, 2, 2

′)L
d(d+1)

2 (1, 2, 2, 1) + (1
2 , 2, 1, 2

′)R
dn1 (1

2 , 1, 1, 1)L
dm1 (1

2 , 1, 1, 2
′)L

dm2 (1
2 , 1, 1, 2)R

Table 10. The spectrum of D1 branes at a fixed point (same as the D5 antibranes) on the T 4/Z2
brane supersymmetry breaking orientifold.

choice of basis. Indeed, one can show the same result by making use of the integral basis
in eqs. (4.8)–(4.12). Two additional examples (with gauge groups SO(16)9×USp(16)5 and
[SO(8)4]9 × [USp(8)4]5) for which one cannot define J are given in appendix E.

4.1 D1 branes and the anomaly inflow

If supersymmetry is broken in an arbitrary way, it is not clear if simple constraints can be
formulated from coupling to string defects. However, if supersymmetry is broken locally
on a collection of (anti-branes) as in our current example, then it should be possible, at
least if the string defects are geometrically separated from the source of supersymmetry
breaking. As one will see, a detailed analysis suggests appropriate modifications to some
constraints in case where supersymmetry is broken.

We start by considering the coupling to D1 branes of the brane supersymmetry break-
ing orientifold model. D1 branes at an orbifold fixed point are fractional (they have twisted
charges), and their gauge group is of the form SO(d1)× SO(d2) in this case, where the two
factors have opposite twisted charges. Let us choose d1 = d and d2 = 0 such that we can
write the total gauge group as

SO(d)1 × [SO(n1)× SO(n2)]9 × [USp(m1)×USp(m2)]5 . (4.14)

The vacuum amplitudes can be found in appendix C. We give in table 10 the spectrum of
strings charged under the D1 branes, in case they sit at the same fixed point as the D5
antibranes.

From the spectrum, one can easily see that the anomaly polynomial corresponding to
the D1 branes can be written in the following form

I4 = −d2

(
trR2 − 1

2trF
2
1 − trF 2

3 + trF 2
4 + dχ(N)

)
. (4.15)

After comparing with the general form in eq. (2.11) we can infer the following conditions
for the charges

Q ·Q = −1 , Q · a = −1 , Q · b1 = 1 , Q · b2 = 0 , Q · b3 = 1 , Q · b4 = −1 , (4.16)

– 23 –



J
H
E
P
1
1
(
2
0
2
0
)
1
2
5

where we have considered the minimal Chan-Paton d = 1. The solution for the vector of
charges Q, for the basis in eqs. (4.4)–(4.6) is then found to be

Q =
( 1

2
√

2
,− 1

2
√

2
,−1, 015

)
. (4.17)

Notice that the position of the −1 value can be permuted by placing the D1 branes on a
different orbifold fixed point. Let us consider the following two choices of charge vectors

Q =
( 1

2
√

2
,− 1

2
√

2
,−1, 015

)
, Q̃ =

( 1
2
√

2
,− 1

2
√

2
, 0,−1, 014

)
, (4.18)

which reflect placing the branes on different fixed points. It is interesting to notice that
the D1 brane is an anti-instanton for the D5 when they sit on the same fixed point. Then,
from above, we see that indeed Q = −b3 is the solution of the inflow. The products of the
two charges above with the vectors in eqs. (4.4)–(4.6) yield

k1 = Q · b1 = 1 , k2 = Q · b2 = 0 , k3 = Q · b3 = 1 , k4 = Q · b4 = −1 , (4.19)
k1 = Q̃ · b1 = 1 , k2 = Q̃ · b2 = 0 , k3 = Q̃ · b3 = 0 , k4 = Q̃ · b4 = 0 . (4.20)

Notice the k4 violation of the positivity requirement, in the first line above. This is due to
the fact that the Kac-Moody algebra in this case is realized on both left and right sectors.
Indeed, due to the presence of D5 on the same fixed point as the D1 branes, this gives
rise to right-handed fermions in the spectrum (see table 10). Also, k3 is positive as the
corresponding spectrum consists of left-handed fermions. If one places the D1 branes on
a different fixed point (corresponding to the charge Q̃) then strings stretched between the
D1 and D5 become massive and thus they cannot detect supersymmetry breaking (in the
infrared). From eq. (4.16) we also have kl = 0. The products Q ·Q and Q · a give the same
result for both choices Q and Q̃ (as in eq. (4.16)) and thus the minimal central charges cL,
cR are the same

cL = 8 , cR = 0 . (4.21)

Finally, it turns out that the unitarity constraint is saturated in this case

∑
i

ki dimGi
ki + h∨i

= N(N − 1)
2

1
1 +N − 2 = N

2 = 8 = cL . (4.22)

It is useful to estimate the central charges from the D1 brane spectrum. By making use of
the rules in eq. (3.28) one obtains

cL = 4CM + 8 + 16D5 , (4.23)
cR = 6CM + 0 + 16D5 . (4.24)

Notice that if one displaces the D1 branes at a different fixed point then the 16D5 con-
tribution disappears and the central charges coincide with the minimal ones computed
from Q and a. In general, the central charges match the form in eq. (3.30). A vector
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Representation SO(1, 1)× SU(2)l × SU(2)R × SO(4)
d(d−1)

2 (0, 1, 1, 1) + (1
2 , 2, 1, 2)L + (1

2 , 1, 2, 2
′)L

d(d+1)
2 (1, 2, 2, 1) + (1

2 , 1, 2, 2)R
d(d+1)

2 (1, 1, 1, 4) + (1
2 , 2, 1, 2

′)R
d(n1 + n2) (1

2 , 1, 1, 1)L

Table 11. The spectrum of D1 branes displaced in the bulk on the T 4/Z2 brane supersymmetry
breaking orientifold.

of integer tensor charges can be found in the integral basis (4.8)–(4.12), after solving the
constraints (4.16) with the corresponding a and bi. In this case one finds

Q = (1,−1, 04,−1, 011) . (4.25)

As in the supersymmetric case, we now consider D1 brane probes in the bulk for which the
central charges match precisely the ones computed from Q and a. The massless spectrum
of the bulk D1 branes is given in table 11.

From above, one finds that the anomaly polynomial for the D1 branes displaced in the
bulk becomes

I4 = −d
(
trR2 − 1

4trF
2
1 −

1
4trF

2
2

)
. (4.26)

After matching the polynomial above with the general form in eq. (2.11), one finds the
following constraints for the charges

Q ·Q = 0 , Q · a = −2 , Q · b1 = 1 , Q · b2 = 1 , Q · b3 = 0 , Q · b4 = 0 . (4.27)

Notice that even in this case with localized supersymmetry breaking, we are able to identify
null charged strings satisfying Q ·Q = 0, for bulk D1 branes, which are away also away from
the supersymmetry breaking source. In the basis given in eqs. (4.4)–(4.6), the equations
above determine the tensor charges of the D1 branes as follows

Q =
(
− 1

2
√

2
,

1
2
√

2
, 016

)
. (4.28)

Notice that from eq. (4.27) follows that we have k1 = k2 = 1 integral only if we take λ = 2
for the orthogonal gauge group factors (with λ = 1 they are equal to 1/2). In the integral
basis of eqs. (4.8)–(4.12) the charge Q is given by

Q = (2,−1, 04,−1, 0, 1, 0, 1, 07) . (4.29)

The central charges of the D1 brane CFT are given by

cL = 3Q ·Q− 9Q · a+ 2 = 20 , cR = 3Q ·Q− 3Q · a = 6 . (4.30)

We also have kl = 0. Let us now check the central charges from the massless spectrum of
bulk D1 branes. It easy to see that we have

cL = 4CM + 20 , cR = 6CM + 6 , (4.31)
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where we have separated the contributions of the center of mass coordinates corresponding
to the hypermultiplet (1, 2, 2, 1) + (1

2 , 1, 2, 2)R in the symmetric representation of the D1
brane gauge group.

Similarly to the SUSY example, one could considers instead a stable D1 antibrane.
The corresponding charge vector is again just the opposite of the one of a D1 brane
QD1 = −QD1. Indeed, the D1 is an instanton for the D5 background antibranes of the
models, and therefore Q = b3. Most constraints in eq. (2.12) are violated in this case and
the 2d chirality of all fermions on the D1 is flipped compared to the D1 case.

4.2 A mini-landscape of models and string defects

As for the supersymmetric case, we consider now a general model with magnetized D9
branes and D5 branes for the T 4/Z2 brane supersymmetry breaking orientifold [67]. One
has to distinguish, in this case, between the D9 with zero magnetization having an orthog-
onal gauge group and the magnetized D9’s with unitary gauge group. The gauge group is
then of the form

[SO(n1)× SO(n2)]9 × [USp(m1)×USp(m2)]5 ×
∏
α

U(pα) . (4.32)

Notice that one has to choose antiselfdual magnetic fields on the D9 branes such that
supersymmetry is broken without generating tachyons. The RR tadpole conditions are∑

α

(pα + p̄α)nα1nα2 + n1 + n2 = 32 ,∑
α

(pα + p̄α)mα
1m

α
2 +m1 +m2 = −32 ,∑

α

(pα + p̄α)εαij +RN +RD = 0 .

(4.33)

In (4.33), εαij are twisted charges equal to ±1 if the brane stack α passes through the fixed
point labeled by ij and zero otherwise (i, j = 1, . . . , 4). In addition, the orbifold actions on
the Chan-Paton factors RN , RD are different from zero only for the D9/D5 branes which
pass through the corresponding orbifold fixed point. The conventions and definitions we
are using are given in appendix D.

By making use of the spectra given in [68], one can show that the anomaly polynomial
has the general form11

I8 =−
(
trR2

)2
−trR2

(
1
8
∑
α

ĨαO trF 2
α−

1
4

4∑
i=1

trF 2
i

)
+ 1

8

[∑
α

1
2(Iαα′−8)

(
trF 2

α

)2
−

4∑
i=1

(
trF 2

i

)2
]

+ 1
8
∑
α

∑
β 6=α

(Iαβ+Iαβ′−2εαεβSαβ)trF 2
α trF 2

β+ 1
8
∑
α

(Iα9−εαSα9)trF 2
α trF 2

1

+ 1
8
∑
α

(Iα9+εαSα9)trF 2
α trF 2

2 −
1
8
∑
α

(Iα5+εαSα5)trF 2
α trF 2

3 −
1
8
∑
α

(Iα5−εαSα5)trF 2
α trF 2

4

+ 1
4
(
trF 2

1 trF 2
2 +trF 2

3 trF 2
4

)
− 1

8
(
trF 2

1 trF 2
3 +trF 2

2 trF 2
4

)
, (4.34)

11See appendix D for the definitions of the various quantities.
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where F1, F2 are associated to the unmagnetized D9 branes with orthogonal gauge group,
F3, F4 are associated to the D5 branes with symplectic gauge group and Fα to the mag-
netized D9 branes with unitary gauge group. Notice that now one receives contributions
from the orbifold fixed points signaling the fact that the branes are fractional. We can now
read the anomaly lattice from above

a ·bα =−1
2 ĨαO , b2α = 1

2(Iαα′−8) , bα ·bβ = 1
2(Iαβ+Iαβ′−2εαεβSαβ) ,

bα ·b1 = Iα9−εαSα9 , bα ·b2 = Iα9 +εαSα9 ,

bα ·b3 =−1
2(Iα5 +εαSα5) , bα ·b4 =−1

2(Iα5−εαSα5) , (4.35)

supplemented with eq. (4.7) for the unmagnetized part. It is easy to see that the anomaly
lattice is manifestly integral. Similarly, as for the supersymmetric case, in the intersecting
brane picture, the vectors a, bα, bi can be identified with the two-cycles wrapped by the
orientifold planes and the branes and Ω can be identified with the intersection form [7] such
that the anomaly lattice becomes a sublattice of H2(T 4/Z2) (involving also the twisted part
in this case).

We consider the coupling to a magnetized D5′a brane with U(1) gauge group (thus as-
suming non-zero magnetic field12). Furthermore, the magnetic field on the D5′a is assumed
to be either self-dual or anti-selfdual. One can show from the massless spectra for D5′a
branes (see appendix D) that the anomaly polynomial has the form

I4 = 1
2

−1
2 ĨaO trR2+ 1

2
∑
β

(Iaβ+Iaβ′−2εaεβSaβ)trF 2
β+ 1

2(Ia9−εaSa9)trF 2
1

+ 1
2(Ia9+εaSa9)trF 2

2 −
1
2(Ia5+εaSa5)trF 2

3 −
1
2(Ia5−εaSa5)trF 2

4 + 1
2(Iaa′−8)χ(N)


(4.36)

From above we can read the constraints that determine the charge vector Q. In this case
we obtain

Q · a = −1
2 ĨaO Q · bβ = 1

2(Iaβ + Iaβ′ − 2εaεβSaβ)

Q · b1 = Ia9 − εaSa9 Q · b2 = Ia9 + εaSa9

Q · b3 = −1
2(Ia5 + εaSa5) Q · b4 = −1

2(Ia5 − εaSa9)

Q ·Q = 1
2(Iaa′ − 8) (4.37)

Consider a D5′a-brane having the same non-zero magnetization as a D9 brane such that it
corresponds to a gauge instanton. Then, after comparing eq. (4.35) and eq. (4.37), one can
easily see that in this case the solution for the charge Q is again given by

Q = bα . (4.38)
12The case with zero magnetic field has to be considered separately as the gauge group is not unitary.

One can infer the results in this case by using the fact that the unmagnetized D5′ is an instanton for the
unmagnetized D9.
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For the case of unmagnetized D5′ one finds Q = b1/2 or Q = b2/2, the factor of 2 arising
from taking λSO = 2.

As in the SUSY example, the landscape of string-like charges that we obtain in this way
is very large, since the D5′ magnetizations are only constrained by the stability (absence
of tachyons) arguments. It can be checked that only selfdual and anti-selfdual magnetic
field configurations on the D5′ are stable (tachyon free). However, they do not span all
possible charges: one can again check that Q · Q is even. In this case, we didn’t check
the compatibility with the completeness hypothesis [69–71]. Finally, in this case we expect
most of the constraints in [7] to be violated. For example, for antiselfdual magnetic fields
on D5′ we find that Q ·Q < −1 is possible and generic.

In conclusion, both the SUSY and the BSB example contain a large class of non-BPS
but stable string defects. It would be interesting to find new consistency constraints on the
charges on non-BPS string defects coming from anomaly inflow and unitarity arguments.

4.3 Morrison-Vafa F-theory SO(8)8 example

Interestingly, there is an F-theory realization with the same closed string sector as the
T 4/Z2 orientifold with O9− and O5+ planes and thus having NT = 17, with pure su-
per Yang-Mills sector and gauge group SO(8)8 [37, 38]. The model has no perturbative
orientifold realization, due to the impossibility to cancel the RR tadpole in a supersym-
metric way, as discussed in the brane supersymmetry breaking (BSB) example before. The
anomaly polynomial can be written in one factorization as

I8 = 1
64
(
trF 2

1 + . . .+ trF 2
8

)2
− 1

64
(
−8 trR2 + trF 2

1 + . . .+ trF 2
8

)2

− 1
16

[
2
(
trF 2

1

)2
+ . . .+ 2

(
trF 2

8

)2
]
,

(4.39)

From above, the products between the vectors a, bi associated to the polynomial can be
found to be

a · a = −8 , a · bi = 2 , bi · bj = −4δij . (4.40)

A choice for Ω and a, bi consistent with the products above is the following

Ω = diag(1,−117) , a = (−3, 117) , (4.41)
b1 = (0,−2, 07, 09) , . . . , b8 = (0, 07,−2, 09) . (4.42)

The constraints for finding a Kähler form J are then

J · J = J2
0 − ~J2 > 0 , J · bi = 2Ji > 0 , J · a = −3J0 −

17∑
I=1

JI < 0 . (4.43)

One can check that a possible solution is

J = (3, 18, 09) . (4.44)

Let us again check that the model, being a F-theory model, is not ruled out by the tech-
niques of [7], using the vectors defined just above. We consider a generic string which
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couples to the tensor fields with charge Q = (q0, q1, . . . , q17) ∈ Z18, subject to the consis-
tency conditions the first line of (2.12). We have 0 ≤ ki=1,...,8 = Q · bi = 2qi. To find
non-trivial constraints, we should consider at least one non-zero ki, meaning one non-zero
qi=1,...,8. Thus from Q ·Q ≥ −1, we derive that q2

0 ≥
∑17
i=9 q

2
i . From Q · J ≥ 0 we find that

3q0 ≥
∑8
i=1 qi ≥ 0, and it follows that

3q0 ≥

√√√√9
17∑
i=9

q2
i =

√√√√ 17∑
i=9

q2
i +

17∑
i=9

17∑
j>i

(q2
i + q2

j ) ≥
17∑
i=9
|qi| , (4.45)

where for the last inequality one uses q2
i + q2

j ≥ ±2qiqj . From above one further has that
Q · a = −3q0 −

∑
i qi ≤ −

∑8
i=1 qi. Then,

cL = 3Q ·Q− 9Q · a+ 2 ≥ 9
8∑
i=1

qi − 1 , (4.46)

and
8∑
i=1

ki dim Gi
ki + h∨i

=
8∑
i=1

28qi
qi + 3 ≤

8∑
i=1

7qi ≤ 9
8∑
i=1

qi − 1 ≤ cL . (4.47)

Thus, we conclude that the model passes the consistency test of [7].
Notice that the model is compatible with the null charged strings condition, proposed

in section 2.2. Indeed, a null charge vector in this case can be chosen to be

Q = (3, 1, 08,−18) (4.48)

giving rise to the following data

Q ·Q = 0 , Q · a = −2 , (4.49)

Q · J = 8 > 0 , ~k = (2, 07) , (4.50)
cL = 20 , cR = 6 , kl = 0 . (4.51)

It can also easily be checked that the last condition in (2.12) is verified.
One could imagine that the BSB vacuum discussed in section 4 and the F-theory

supersymmetric vacuum discussed above are related to each other in some way, being
coupled to the same gravitational spectrum. However, we are not aware of an obvious
connection between the two. The perturbative BSB construction can be deformed in various
ways by moving or recombining branes, see [68] and our appendix. The SO(8)8 F-theory
model on the other hand has no possible deformations parameters in six dimensions and
is isolated in the space of vacua. No higgsing phenomenon or brane recombination seems
to account for an eventual transition between the BSB vacuum, of gauge group SO(16)2×
USp(16)2, to the supersymmetric F-theory one with smaller gauge group SO(8)8. The fact
that the latter has no perturbative orientifold realization hints towards a nonperturbative
transition (if any), of unknown nature to us.
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5 Summary of results and conclusions

Our main motivation for this paper was to investigate consistency constraints for quantum
gravity models coming from their coupling to string defects, in settings with minimal su-
persymmetry in 6d, or broken (non-linear) supersymmetry localized on antibranes of the
brane supersymmetry breaking (BSB) type, with a supersymmetric gravitational (closed
string) spectrum. We confronted consistency conditions on 6d theories from anomaly in-
flow and conformal symmetry constraints derived in [7] with perturbative 6d orientifold
constructions with minimal supersymmetry and BSB models, by adding string defects with
a large set of charges.

In all cases we studied and other string constructions existing in the literature that we
were able to check, we found that string defects having null charges Q · Q = 0 do exist.
Their existence is guaranteed in geometric string compactifications, and could therefore be
a string lamppost signal. Based on this argument and our scan of the landscape we conjec-
tured their existence in any quantum gravity theory. By investigating their presence, we
were able to exclude some 6d models with no current string or F-theory realization, other-
wise consistent with the other constraints. Furthermore, if the null strings hypothesis is vi-
olated in string theory, we expect it to correspond to truly non-geometric compactifications.

In our orbifold examples, we found generic constraints on the string charges coming
from the geometry of the models: the left and right central charges on D1 strings have
additional contributions compared to [7], if they intersect D5 branes leading to massless
fermions, or if the D1 strings have non-trivial Chan-Paton (CP) factors. The latter can
happen even for the minimum CP factor. In all cases, if D1 strings are not at orbifold
singularities their central charges fit precisely with the formulae in [7]. All these results hold
also in BSB vacua, if the D1 strings are geometrically separated from the supersymmetry
breaking (antibrane) source.

We also analyzed a large class of string defects coming from D5 branes (called D5′ in
the text) wrapping the four orbifolded dimensions, with self-dual and anti-selfdual magnetic
fluxes in their worldvolume. In the SUSY vacua, the self-dual magnetized D5′ are BPS,
whereas the anti-selfdual ones are non-BPS but stable. In the BSB case, both of them are
non-BPS but stable. Interestingly, their charges do not span all possible set of integers, how-
ever in the SUSY case we checked the compatibility with the completeness hypothesis. For
the BSB non-SUSY case, we didn’t perform a complete check of all consistent charges from
unitarity arguments and therefore we didn’t check the validity of the completeness principle.

One important result is the proof that the anomaly polynomial and the constraints
in [7] applied to the supergravities of the 6d BSB type [29–33] and similar constructions,
‘know’ that the 6d gauge theory derived from the perturbative type I spectrum breaks su-
persymmetry (realizes it nonlinearly). More precisely, in the brane supersymmetry break-
ing case, the anomaly polynomial shows that generically one cannot define a Kahler form
J , which clearly indicates that its existence is tied to supersymmetry. In addition, the
flavor central charges for bulk gauge fields living on antibranes (D5 in our examples) can
be negative, since the fermions at the intersection of the strings with the antibranes have
opposite chirality compared to the supersymmetric case. This also shows that some models
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which do not fulfil the constrains of [7]–[11], could have non-supersymmetric solutions, i.e.
the gravitational sector (closed sector in string constructions) could still lead to a con-
sistent theory, but with non-linear supersymmetry in the gauge/brane sector. However,
the isolated F-theory supersymmetric vacuum with the same gravitational sector [37] does
satisfy the constraints coming from coupling to string defects. The unknown transition
between the non-supersymmetric perturbative orientifold vacuum and the supersymmetric
rigid F-theory one remains mysterious to us.

A more technical summary of our results is:

• If NT ≥ 1, D1 strings in the bulk (away from orbifold fixed points) couple only to the
untwisted tensor multiplet, which is split as usual into a self-dual and an anti self-dual
components. The charge vector for all such D1 strings satisfy Q·Q = 0. Such strings13

should exist in any model with tensor multiplets coming from a geometric string
compactification. It is tempting to contemplate the conjecture that null charged
strings should always exist in a consistent 6d theory coupled to strings. We gave
examples of 6d theories satisfying all other consistency conditions (2.12), that would
be excluded by this new condition.

• The central charges of the BPS string defects (D1 brane or D5 branes wrapped
over four internal dimensions, called D5′ in the main text, with self-dual magnetic
configurations), are generally of the form

cL = c+3Q·Q−9Q·a+2 ≥ 3Q·Q−9Q·a+2 , cR = c+3Q·Q−3Q·a ≥ 3Q·Q−3Q·a ,
(5.1)

where c ≥ 0 is a left-right symmetric contribution to the central charge due to either
vector-like massless degrees of freedom at the intersection of D1 and D5 branes or
the D5′ and the D9 branes, or to the additional Chan-Paton charges living on the
string. This result holds also if supersymmetry is broken in a localized way in the
internal space, à la BSB for branes far from the supersymmetry breaking source.14

• Non-BPS string defects (D5 wrapped over four internal dimensions, with anti-self
dual magnetic configurations in SUSY vacua, or both self-dual and anti-self-dual
magnetic fields in BSB vacua) violate generically all constraints, eqs. (2.12), except
the last one.

• The Kahler form J cannot be in general be defined in brane supersymmetry breaking
models. This means that its existence and properties is intrinsic to supersymmetric
models.

13Regular D1 strings at orbifold fixed points can also have null charges, since they have no twisted charges.
14In our BSB example, also for D1 branes sitting at the fixed point where supersymmetry is broken by

antibranes. But not for most general non-BPS stable string defects, coming from D5 branes wrapping the
four orbifolded dimensions.
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• Flavor charges ki = Q · bi on D1 branes for bulk (six dimensional) gauge symmetries
are non-negative in supersymmetric models, since the fermionic zero-modes at the
intersection between the bulk branes and the D1 branes (string) are left-handed. For
brane supersymmetry breaking models containing antibranes, if they intersect the
D1 branes, they lead to fermionic zero modes which can have opposite chiralities
and therefore to negative ki in a consistent way. Moving the D1 strings away from
the antibranes render these states massive, and as a result the flavor charges become
positive. For the wrapped D5′ string defects landscape, ki are positive in the self-
dual magnetic configurations leading to BPS string defects, whereas they are typically
negative for the non-BPS string defects, due to the flip of 2d chirality of fermions.

Let us comment that for the spontaneous supersymmetry breaking (for example à la
Scherk-Schwarz [73–76]), the consistency conditions from couplings to defect strings are
the same as in the supersymmetric case. The reason is that due to its spontaneous nature,
supersymmetry breaking is adiabatic and is restored in the decompactification limit. Since
the consistency conditions should hold for all values of the adiabatic parameter, it holds
in particular in the supersymmetric limit. This is the case for example for the recent
constructions with suppressed one-loop vacuum energy [77–83]. For tachyon-free models
with no supersymmetry at all, we expect that the constraints discussed in this paper do not
apply. This could be the case for the 10d SO(16)×SO(16) heterotic string [84, 85] (however,
its continuous interpolation with the superstring could make it similar to the Scherk-
Schwarz examples), the 0’B orientifold [86, 87] and their compactifications [30, 88–93].

It would be very interesting to investigate along these lines four-dimensional field
theory models with minimal supersymmetry or no supersymmetry, with tensor fields, dual
to axions in four dimensions, coupling to string defects. Nontrivial restrictions would
impose new swampland constraints on physics beyond the Standard Model, coming from
inflow arguments.
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A Anomaly polynomials

The contribution to gravitational and gauge anomalies from right-handed spin 1/2 and
spin 3/2 fermions and from anti-selfdual antisymmetric tensors have the expressions (see
for ex. [94])

Î
1/2
2r+2 = 2π

[
Â(M2r) ch(−F )

]
2r+2

, (A.1)

Î
3/2
2r+2 = 2π

[
Â(M2r)

(
tr e2iR − 1

)
ch(−F )

]
2r+2

, (A.2)

ÎA2r+2 = 2π
[(
−1

2

) 1
4 L(M2r)

]
2r+2

, (A.3)

where one picks the 2r + 2 form after expanding the polynomials. The genus Â and the
Hirzebruch polynomial L are given by

Â(M2r) = 1 + 1
12trR

2 + 1
360trR

4 + 1
288

(
trR2

)2

+ 1
5670trR

6 + 1
4320trR

4 trR2 + 1
10368

(
trR2

)3
+ . . . ,

(A.4)

L(M2r) = 1− 4× 1
6trR

2 + 16×
[
− 7

180trR
4 + 1

72
(
trR2

)2
]

+ 64×
[
− 31

2835trR
6 + 7

1080trR
4 trR2 − 1

1296
(
trR2

)3
]

+ . . . ,

(A.5)

with M2r being the spacetime manifold. It is easy to see that we can also write

Â(M2r)
(
tr e2iR − 1

)
= 2r − 1 + 2r − 25

12 trR2 + 2r + 239
360 trR4 + 2r − 49

288
(
trR2

)2

+ 2r − 505
5670 trR6 + 2r + 215

4320 trR4 trR2 + 2r − 73
10368

(
trR2

)3
+ . . .

(A.6)

and for the Chern character

ch(−F ) = nψ −
1
2trψF

2 + 1
4!trψF

4 − 1
6!trψF

6 + . . . , (A.7)

where our conventions for the normalization of F and R are such that we have

R =
Rref. [94]

4π , F =
Fref. [94]

2π . (A.8)

From the equations above one derives the following anomaly polynomials (I ≡ Î/2π)
relevant for the six dimensional orientifold models that we consider

I
1/2
8 = nψ

[ 1
360trR

4 + 1
288

(
trR2

)2
]
− 1

24trR
2 TrψF 2 + 1

24TrψF
4 , (A.9)

I
3/2
8 = 245

360trR
4 − 43

288
(
trR2

)2
, (A.10)

IA8 = 28
360trR

4 − 8
288

(
trR2

)2
, (A.11)
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Representation Decomposition
Antisymmetric TrF 2 = (N − 2)trF 2

SU/SO/USp(N) TrF 4 = (N − 8)trF 4 + 3
(
trF 2)2

Symmetric TrF 2 = (N + 2)trF 2

SU/SO/USp(N) TrF 4 = (N + 8)trF 4 + 3
(
trF 2)2

Adjoint TrF 2 = 2NtrF 2

SU(N) TrF 4 = 2NtrF 4 + 6
(
trF 2)2

Bifundamental Tr(m,n)F
2 = m trnF 2 + n trmF 2

G1 ×G2 Tr(m,n)F
4 = m trnF 4 + n trmF 4 + 6 trmF 2 trnF 2

Table 12. Trace formulas for the groups and representations present in this paper.

where we have assumed the gravitino to be uncharged with respect to the gauge group. For
the left-handed chirality or selfdual tensor the overall sign of the anomaly polynomial gets
flipped. For D1 branes the spectrum contains only spin 1/2 (symplectic) Majorana-Weyl
fermions. In this case the anomaly polynomial has the form

I
1/2
4 = 1

2

(
nψ
12 trR2 − 1

2TrψF
2
)
. (A.12)

A more refined version of the anomaly polynomial I4 can be obtained by taking into
consideration the contributions from the decomposition into tangent and normal bundle to
the worldvolume of the D1 branes. In this case one has [66]

I4 = Â(R)Â(N)−1 ×
{
ch±(N)TrψeiG

tr eiF tr eiG
, (A.13)

where the first line counts contributions from states charges only under the D1 brane gauge
group G and the second line counts contributions from bifundamental representatations.
The genus Â is given in eq. (A.4). For the I4 polynomial one has the following relevant
terms in the expansion of the Dirac genus and Chern characters

Â(R) = 1 + 1
12trR

2 + . . . , (A.14)

Â(N)−1 = 1− 1
12trN

2 + . . . , (A.15)

ch±(N) = 2− 1
2trN

2 ± 1
2χ(N) + . . . , (A.16)

where χ(N) is the Euler class of the normal bundle. Notice that for Majorana-Weyl
fermions, as is the case for D1 branes, one needs to include a factor of 1/2.

For perturbative D-brane models one can have only antisymmetric, symmetric, ad-
joint and bifundamental representations of the gauge group, generically being a product
of orthogonal, symplectic or unitary factors. The traces of these representations can be
expressed in terms of the traces over the fundamental, as presented in table 12.
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B D1 brane amplitudes for the supersymmetric T 4/Z2 orientifold

All our notations and conventions for the open string cylinder and Mobius amplitudes are
explained in [64, 65], to which we refer the reader for more details.

B.1 D1-branes at an orbifold fixed point

We reproduce here the open string vacuum amplitudes corresponding to D1 branes on the
T 4/Z2 orientifold with O9− and O5− planes.

A11 = 1
4(r+r̄)2 [O0(O4V4+V4O4)+V0(O4O4+V4V4)−S0(S4S4+C4C4)−C0(S4C4+C4S4)]

− 1
4(r−r̄)2 [O0(−O4V4+V4O4)+V0(O4O4−V4V4)−S0(−S4S4+C4C4)−C0(S4C4−C4S4)] ,

(B.1)

M1 =−r+r̄
4

[
−Ô0(Ô4V̂4+V̂4Ô4)+V̂0(Ô4Ô4−V̂4V̂4)−Ŝ0(Ŝ4Ŝ4+Ĉ4Ĉ4)+Ĉ0(Ŝ4Ĉ4+Ĉ4Ŝ4)

−Ô0(Ô4V̂4−V̂4Ô4)+V̂0(−Ô4Ô4−V̂4V̂4)−Ŝ0(Ŝ4Ŝ4−Ĉ4Ĉ4)+Ĉ0(−Ŝ4Ĉ4+Ĉ4Ŝ4)
]
, (B.2)

A19 = 1
2(n+n̄)(r+r̄) [O0(S4C4+C4S4)+V0(S4S4+C4C4)−S0(O4O4+V4V4)−C0(O4V4+V4O4)]

− 1
2(n−n̄)(r−r̄) [O0(S4C4−C4S4)+V0(−S4S4+C4C4)−S0(O4O4−V4V4)−C0(−O4V4+V4O4)] ,

(B.3)

A15 = 1
2(d+d̄)(r+r̄) [O0(S4V4+C4O4)+V0(S4O4+C4V4)−S0(O4S4+V4C4)−C0(O4C4+V4S4)]

− 1
2(d−d̄)(r−r̄) [O0(−S4V4+C4O4)+V0(S4O4−C4V4)−S0(−O4S4+V4C4)−C0(O4C4−V4S4)] .

(B.4)

The contributions to the massless spectrum are found to be

A(0)
11 +M(0)

1 = rr̄ (O0V4O4+V0O4O4−S0C4C4−C0S4C4) (B.5)

+ r(r+1)+r̄(r̄+1)
2 (O0O4V4−C0C4S4)+ r(r−1)+r̄(r̄−1)

2 (−S0S4S4) ,

A(0)
19 =−(nr̄+n̄r)S0O4O4 , (B.6)

A(0)
15 =−(dr+d̄r̄)S0O4S4+(dr̄+d̄r)(O0C4O4−C0O4C4) . (B.7)

B.2 D1 branes in the bulk

Displacing the D1 branes in the bulk changes its worldvolume gauge group to SO(r).
Indeed, this can be inferred from the corresponding vacuum amplitudes

A11 = r2

2 [O0(O4V4+V4O4)+V0(O4O4+V4V4)−S0(S4S4+C4C4)−C0(S4C4+C4S4)]

×
(
W+ 1

2W2a+ 1
2W−2a

)
W (3) , (B.8)

M1 =−r2
[
−Ô0(Ô4V̂4+V̂4Ô4)+V̂0(Ô4Ô4−V̂4V̂4)−Ŝ0(Ŝ4Ŝ4+Ĉ4Ĉ4)+Ĉ0(Ŝ4Ĉ4+Ĉ4Ŝ4)

]
+ r

2
[
−Ô0(−Ô4V̂4+V̂4Ô4)+V̂0(Ô4Ô4+V̂4V̂4)−Ŝ0(−Ŝ4Ŝ4+Ĉ4Ĉ4)+Ĉ0(Ŝ4Ĉ4−Ĉ4Ŝ4)

]
× 1

2 (W2a+W−2a)W (3) . (B.9)
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Furthermore, for the D1-D9 sector one has

A19 = r(n+n̄) [O0(S4C4+C4S4)+V0(S4S4+C4C4)−S0(O4O4+V4V4)−C0(O4V4+V4O4)] ,
(B.10)

whereas A15, corresponding to the D1-D5 sector, has only massive contributions. The
contributions to the massless spectrum are then given by

A(0)
11 +M(0)

1 = r(r − 1)
2 (V0O4O4 − S0S4S4 − S0C4C4)

+ r(r + 1)
2 (O0O4V4 +O0V4O4 − C0S4C4 − C0C4S4) , (B.11)

A(0)
19 = −r(n+ n̄)S0O4O4 . (B.12)

C D1 brane amplitudes for the non-supersymmetric T 4/Z2 orientifold

C.1 D1 branes at an orbifold fixed point

We reproduce here the open string vacuum amplitudes corresponding to D1 branes on the
brane supersymmetry breaking T 4/Z2 orientifold with O9− and O5+ planes.

A11 = 1
4(d1+d2)2 [O0(O4V4+V4O4)+V0(O4O4+V4V4)−S0(S4S4+C4C4)−C0(S4C4+C4S4)]

+ 1
4(d1−d2)2 [O0(−O4V4+V4O4)+V0(O4O4−V4V4)−S0(−S4S4+C4C4)−C0(S4C4−C4S4)] ,

(C.1)

M1 =− (d1+d2)
4

[
−Ô0(Ô4V̂4+V̂4Ô4)+V̂0(Ô4Ô4−V̂4V̂4)−Ŝ0(Ŝ4Ŝ4+Ĉ4Ĉ4)+Ĉ0(Ŝ4Ĉ4+Ĉ4Ŝ4)

−Ô0(−Ô4V̂4+V̂4Ô4)+V̂0(Ô4Ô4+V̂4V̂4)−Ŝ0(−Ŝ4Ŝ4+Ĉ4Ĉ4)+Ĉ0(Ŝ4Ĉ4−Ĉ4Ŝ4)
]
, (C.2)

A19 = 1
2(d1+d2)(n1+n2) [O0(S4C4+C4S4)+V0(S4S4+C4C4)−S0(O4O4+V4V4)−C0(O4V4+V4O4)]

+(d1−d2)(n1−n2) [O0(S4C4−C4S4)+V0(−S4S4+C4C4)−S0(O4O4−V4V4)−C0(−O4V4+V4O4)] ,
(C.3)

A15̄ = 1
2(d1+d2)(m1+m2) [O0(S4O4+C4V4)+V0(S4V4+C4O4)−S0(O4C4+V4S4)−C0(O4S4+V4C4)]

+1
2(d1−d2)(m1−m2) [O0(S4O4−C4V4)+V0(−S4V4+C4O4)−S0(O4C4−V4S4)−C0(−O4S4+V4C4)] .

(C.4)

One obtains the following contributions to the massless spectrum

A(0)
11 = d1d2 (O0O4V4−S0S4S4−C0C4S4)+ d1(d1−1)+d2(d2−1)

2 (V0O4O4−S0C4C4) ,

+ d1(d1+1)+d2(d2+1)
2 (O0V4O4−C0S4C4) (C.5)

A(0)
19 =−(d1n1+d2n2)S0O4O4 , (C.6)

A(0)
15̄ = (d1m1+d2m2)(O0S4O4−S0O4C4)+(d1m2+d2m1)(−C0O4S4) . (C.7)
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C.2 D1 branes in the bulk

Displacing the D1 branes in the bulk changes its worldvolume gauge group to SO(d) (instead
of SO(d1)×SO(d2)). Indeed, this can be inferred from the corresponding vacuum aplitudes

A11 = d2

2 [O0(O4V4+V4O4)+V0(O4O4+V4V4)−S0(S4S4+C4C4)−C0(S4C4+C4S4)]

×
(
W+ 1

2W2a+ 1
2W−2a

)
W (3) , (C.8)

M1 =−d2
[
−Ô0(Ô4V̂4+V̂4Ô4)+V̂0(Ô4Ô4−V̂4V̂4)−Ŝ0(Ŝ4Ŝ4+Ĉ4Ĉ4)+Ĉ0(Ŝ4Ĉ4+Ĉ4Ŝ4)

]
− d2

[
−Ô0(−Ô4V̂4+V̂4Ô4)+V̂0(Ô4Ô4+V̂4V̂4)−Ŝ0(−Ŝ4Ŝ4+Ĉ4Ĉ4)+Ĉ0(Ŝ4Ĉ4−Ĉ4Ŝ4)

]
× 1

2 (W2a+W−2a)W (3) . (C.9)

Furthermore, for the D1-D9 sector one has

A19 = d(n1+n2) [O0(S4C4+C4S4)+V0(S4S4+C4C4)−S0(O4O4+V4V4)−C0(O4V4+V4O4)],
(C.10)

whereas A15, corresponding to the D1-D5 sector, has only massive contributions. The
massless spectrum is then given by

A(0)
11 +M(0)

1 = d(d− 1)
2 (V0O4O4 − S0S4S4 − S0C4C4)

+ d(d+ 1)
2 (O0O4V4 +O0V4O4 − C0S4C4 − C0C4S4) , (C.11)

A(0)
19 = −d(n1 + n2)S0O4O4 . (C.12)

D Definitions and notations for magnetized/intersecting branes;
D5′a brane spectra

The magnetic fields on the D9 and D5′ branes in type I are related to the wrapping numbers
in the T-dual version of intersecting D7 branes according to

Hα
i = mα

i

nαi vi
. (D.1)

As mentioned also in the main text, one uses for simplicity the T-dual D7 brane language
of intersecting numbers, although we will still talk about D9 and D5 branes of type I. The
intersection numbers between D7 brane stacks α and β (Iαβ), between stack α and image
stack β′ (Iαβ′), and the intersection number between brane stack α and all orientifold planes
(IαO in the SUSY orientifold and ĨαO for the brane supersymmetry breaking orientifold)
have the following expressions

Iαβ =
2∏
i=1

(mα
i n

β
i − n

α
i m

β
i ) , Iαβ′ =

2∏
i=1

(mα
i n

β
i + nαi m

β
i ) , (D.2)

IαO = 4(mα
1m

α
2 + nα1n

α
2 ) , ĨαO = 4(mα

1m
α
2 − nα1nα2 ) . (D.3)

Furthermore we have

Sαβ = number of common fixed points that the branes α and β intersect. (D.4)
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Multiplicity Representation SO(1, 1)× SU(2)l × SU(2)R × SO(4) Sector
1 rar̄a (0, 1, 1, 1) + (1

2 , 1, 2, 2
′)L aa

1 rar̄a (1, 2, 2, 1) + (1
2 , 2, 1, 2

′)R aa

1
4(Iaa′ + 4 + IaO) ra(ra+1)

2 (1, 1, 1, 4) + (1
2 , 1, 2, 2)R aa′

1
4(Iaa′ + 4− IaO) ra(ra−1)

2 (1, 1, 1, 4) + (1
2 , 1, 2, 2)R aa′

1
4(Iaa′ + 4− IaO) ra(ra+1)

2 (1
2 , 2, 1, 2)L aa′

1
4(Iaa′ + 4 + IaO) ra(ra−1)

2 (1
2 , 2, 1, 2)L aa′

1
2(Iaβ − Saβ) (ra, p̄β) (1

2 , 1, 1, 2)L aβ, a 6= β

1
2(Iaβ′ + Saβ) (ra, pβ) (1

2 , 1, 1, 2)L aβ′, a 6= β

1 (ra, p̄α) + (r̄a, pα) (1, 1, 2, 1) + (1
2 , 1, 1, 2

′)R aα, a = α

1
2(Iaa′ + 4) (ra, pα) (1

2 , 1, 1, 2)L aα′, a = α

1
2 (Ia5 − Sa5) (ra, d) + (r̄a, d̄) (1

2 , 1, 1, 1)L a5
1
2 (Ia5 + Sa5) (ra, d̄) + (r̄a, d) (1

2 , 1, 1, 1)L a5

Table 13. Massless spectrum of the BPS magnetized D5′a brane with non-zero Ha
1 = Ha

2 for the
supersymmetric T 4/Z2 orientifold.

The wrapping numbers/magnetizations for the various branes are given by

D9α : (mα
1 , n

α
1 )⊗ (mα

2 , n
α
2 ) ,

D5′a : (ma
1, n

a
1)⊗ (ma

2, n
a
2) ,

D5′,D9 : (0, 1)⊗ (0, 1) , (D.5)
D1, D5 : (1, 0)⊗ (1, 0) ,

D5 : (−1, 0)⊗ (1, 0) .

The Chan-Paton parametrizations of the various branes and the corresponding Z2 action
for the supersymmetric and BSB T 4/Z2 are given below

SUSY :



D9α : pα + p̄α → i(pα − p̄α)
D5′a : ra + r̄a → i(ra − r̄a)
D9 : n+ n̄→ i(n− n̄)
D1 : r + r̄ → i(r − r̄)
D5 : d+ d̄→ i(d− d̄)

BSB :



D9α : pα + p̄α → εα(pα + p̄α)
D5′a : ra + r̄a → εa(ra + r̄a)
D9 : n1 + n2 → n1 − n2

D1 : d1 + d2 → d1 − d2

D5 : m1 +m2 → m1 −m2

(D.6)

where εa, εα = ±1.
In tables 13, 14 we reproduce the massless spectra for magnetized D5′a branes (BPS

with respect to the D9 branes) on the supersymmetric and non-supersymmetric T 4/Z2
orientifolds respectively.

In tables 15, 16 we reproduce the massless spectra for magnetized D5’a branes
(non-BPS with respect to the D9 branes but stable) on the supersymmetric and non-
supersymmetric T 4/Z2 orientifolds respectively.
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Multiplicity Representation SO(1, 1)× SU(2)l × SU(2)R × SO(4) Sector
1 rar̄a (0, 1, 1, 1) + (1

2 , 1, 2, 2
′)L aa

1 rar̄a (1, 2, 2, 1) + (1
2 , 2, 1, 2

′)R aa

1
4(−Iaa′ − 4− IaO) ra(ra+1)

2 (1, 1, 1, 4) aa′

1
4(−Iaa′ − 4 + IaO) ra(ra−1)

2 (1, 1, 1, 4) aa′

1
4(−Iaa′ + 4− ĨaO) ra(ra+1)

2 (1
2 , 1, 2, 2

′)L aa′

1
4(−Iaa′ + 4 + ĨaO) ra(ra−1)

2 (1
2 , 1, 2, 2

′)L aa′

1
4(−Iaa′ + 4 + ĨaO) ra(ra+1)

2 (1
2 , 2, 1, 2

′)R aa′

1
4(−Iaa′ + 4− ĨaO) ra(ra−1)

2 (1
2 , 2, 1, 2

′)R aa′

1
2(−Iaβ + εaεβSaβ) (ra, p̄β) (1

2 , 1, 1, 2
′)R aβ, a 6= β

1
2(−Iaβ′ + εaεβSaβ) (ra, pβ) (1

2 , 1, 1, 2
′)R aβ′, a 6= β

1
2(1 + εaεα) (ra, p̄α) + (r̄a, pα) (1, 1, 2, 1) + (1

2 , 1, 1, 2
′)R aα, a = α

1
2(1− εaεα) (ra, p̄α) + (r̄a, pα) (1

2 , 1, 1, 2)L aα, a = α

1
2(Iaa′ + εaεα4) (ra, pα) (1

2 , 1, 1, 2
′)R aα′, a = α

1
2(−Ia9 + εaSa9) (ra, n1) (1

2 , 1, 1, 2
′)R a9

1
2(−Ia9 − εaSa9) (ra, n2) (1

2 , 1, 1, 2
′)R a9

1
2(Ia5 + εaSa5) (ra + r̄a,m1) (1

2 , 1, 1, 1)R a5
1
2(Ia5 − εaSa5) (ra + r̄a,m2) (1

2 , 1, 1, 1)R a5

Table 14. Massless spectrum of the BPS magnetized D5′a brane with non-zero Ha
1 = −Ha

2 for the
brane supersymmetry breaking T 4/Z2 orientifold.
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Multiplicity Representation SO(1, 1)× SU(2)l × SU(2)R × SO(4) Sector
1 rar̄a (0, 1, 1, 1) + (1

2 , 1, 2, 2
′)L aa

1 rar̄a (1, 2, 2, 1) + (1
2 , 2, 1, 2

′)R aa

1
4(−Iaa′ + 4− ĨaO) ra(ra+1)

2 (1, 1, 1, 4) aa′

1
4(−Iaa′ + 4 + ĨaO) ra(ra−1)

2 (1, 1, 1, 4) aa′

1
4(−Iaa′ − 4− IaO) ra(ra+1)

2 (1
2 , 1, 2, 2

′)L aa′

1
4(−Iaa′ − 4 + IaO) ra(ra−1)

2 (1
2 , 1, 2, 2

′)L aa′

1
4(−Iaa′ − 4 + IaO) ra(ra+1)

2 (1
2 , 2, 1, 2

′)R aa′

1
4(−Iaa′ − 4− IaO) ra(ra−1)

2 (1
2 , 2, 1, 2

′)R aa′

1
2(−Iaβ + Saβ) (ra, p̄β) (1

2 , 1, 1, 2
′)R aβ

1
2(−Iaβ′ − Saβ) (ra, pβ) (1

2 , 1, 1, 2
′)R aβ′

1
2 (Ia5 − Sa5) (ra, d) + (r̄a, d̄) (1

2 , 1, 1, 1)L a5
1
2 (Ia5 + Sa5) (ra, d̄) + (r̄a, d) (1

2 , 1, 1, 1)L a5

Table 15. Massless spectrum of the non-BPS magnetized D5′a brane with Ha
1 = −Ha

2 6= 0 for the
supersymmetric T 4/Z2 orientifold.

Multiplicity Representation SO(1, 1)× SU(2)l × SU(2)R × SO(4) Sector
1 rar̄a (0, 1, 1, 1) + (1

2 , 1, 2, 2
′)L aa

1 rar̄a (1, 2, 2, 1) + (1
2 , 2, 1, 2

′)R aa

1
4(Iaa′ − 4 + ĨaO) ra(ra+1)

2 (1, 1, 1, 4) aa′

1
4(Iaa′ − 4− ĨaO) ra(ra−1)

2 (1, 1, 1, 4) aa′

1
4(Iaa′ − 4− ĨaO) ra(ra+1)

2 (1
2 , 2, 1, 2)L aa′

1
4(Iaa′ − 4 + ĨaO) ra(ra−1)

2 (1
2 , 2, 1, 2)L aa′

1
4(Iaa′ − 4 + ĨaO) ra(ra+1)

2 (1
2 , 1, 2, 2)R aa′

1
4(Iaa′ − 4− ĨaO) ra(ra−1)

2 (1
2 , 1, 2, 2)R aa′

1
2(Iaβ − εaεβSaβ) (ra, p̄β) (1

2 , 1, 1, 2)L aβ

1
2(Iaβ′ − εaεβSaβ) (ra, pβ) (1

2 , 1, 1, 2)L aβ′

1
2(Ia9 − εaSa9) (ra, n1) (1

2 , 1, 1, 2)L a9
1
2(Ia9 + εaSa9) (ra, n2) (1

2 , 1, 1, 2)L a9
1
2(Ia5 + εaSa5) (ra + r̄a,m1) (1

2 , 1, 1, 1)R a5
1
2(Ia5 − εaSa5) (ra + r̄a,m2) (1

2 , 1, 1, 1)R a5

Table 16. Massless spectrum of the non-BPS magnetized D5′a brane with Ha
1 = Ha

2 6= 0 for the
brane supersymmetry breaking T 4/Z2 orientifold.
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Field/Multiplet Multiplicity Representation
Gauge Multiplet (L) 1 (120,1)

Vector Boson 1 (1,136)
Weyl Fermion (L) 1 (1,120)
Hypermultiplet (R) 1 (136,1)

Scalar 4 (1,120)
Weyl Fermion (R) 1 (1,136)
Hypermultiplet (L) 1 (16,16)

Table 17. Open string spectrum for the SO(16)×USp(16) model.

Field/Multiplet Multiplicity Representation
Aµ 1 (28, 13, 14) + (14, 36, 13)

χL 1 (28, 17)

Hyper Multiplets (R) 1 (8, 8, 16) + (12, 8, 8, 14)
1 (14, 8, 8, 12) + (16, 8, 8)

Majorana-Weyl Fermions (L) 1 (8, 13, 8, 13) + (8, 15, 8, 1)
1 (1, 8, 13, 8, 12) + (1, 8, 15, 8)
1 (12, 8, 1, 8, 13) + (12, 8, 13, 8, 1)
1 (13, 8, 1, 8, 12) + (13, 8, 13, 8)

Scalars 2 . . .

Table 18. Open string spectrum for the SO(8)4 ×USp(8)4 model.

E Extra models

BSB in the bulk SO(16) × USp(16). We consider a model with continuous Wilson
lines on the D9 branes and D5 branes displaced in the bulk (T-dual to the intersecting
(orthogonal) D7 branes model presented in [68]) such that the gauge group of the BSB
orientifold becomes SO(16)×USp(16). The open string spectrum is summarized in table 17.

From the spectrum, the anomaly polynomial in factorized form is found to be

I8 = 1
16
(
trF 2

1 − trF 2
2

)2
− 1

16
(
−4trR2 + trF 2

1 + trF 2
2

)2
. (E.1)

It is easy to show from above that one obtains the same constraints for J as for the model
at fixed points given in eq. (4.13) and hence it is not possible to define J .

BSB with Wilson Lines SO(8)4×USp(8)4. We now consider a BSB model with dis-
crete Wilson lines on the D9 and D5’s distributed on fixed points such that the gauge group
becomes SO(8)4

9 ×USp(8)4
5̄. The open string spectrum of this model is given in table 18.
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From the spectrum, the anomaly polynomial in factorized form is found to be

I8 = 1
64
(
trF 2

1 +trF 2
2 +trF 2

3 +trF 2
4 −trF 2

5 −trF 2
6 −trF 2

7 −trF 2
8

)2

− 1
64
(
−8 trR2 +trF 2

1 +trF 2
2 +trF 2

3 +trF 2
4 +trF 2

5 +trF 2
6 +trF 2

7 +trF 2
8

)2

− 1
128

(
trF 2

1 −trF 2
2 +trF 2

3 −trF 2
4 +4[trF 2

5 −trF 2
6 ]
)2

− 1
128

(
trF 2

1 −trF 2
2 +trF 2

3 −trF 2
4 +4[trF 2

7 −trF 2
8 ]
)2

− 8
128

(
trF 2

1 −trF 2
2 −trF 2

3 +trF 2
4

)2
− 6

128
(
trF 2

1 −trF 2
2 +trF 2

3 −trF 2
4

)2
. (E.2)

Again, one cannot define J for this model. Indeed, it is easy to see from the factorization
above that one arrives at the same constraints in eq. (4.13) which do not have a solution.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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