
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Aggregate centrality measures for IoT-based coordination

Published version:

DOI:10.1016/j.scico.2020.102584

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1767046 since 2021-01-21T08:59:18Z

Aggregate Centrality Measures for IoT-based
Coordination

Giorgio Audritoa,∗, Danilo Pianinib, Ferruccio Damiania, Mirko Virolib

aUniversity of Torino, Italy
bAlma Mater Studiorum–Università di Bologna, Cesena, Italy

Abstract

Collecting statistics from graph-based data is an increasingly studied topic in

the data mining community. We argue that they can have great value in the

coordination of dynamic IoT systems as well, especially to support complex

coordination strategies related to distributed situation recognition.

Thanks to a mapping to the field calculus, a distribution coordination model

proposed for collective adaptive systems, we show that many existing “central-

ity measures” for graphs can be naturally turned into field computations that

compute the centrality of nodes in a network. Not only this mapping gives

evidence that the field coordination is well-suited to accommodate massively

parallel computations over graphs, but also it provides a new basic “brick” of

coordination which can be used in several contexts, there including improved

leader election or network vulnerabilities detection. We validate our findings by

simulation, first measuring the ability of the translated algorithm to self-adjust

to network changes, then investigating an application of centrality measures for

data summarisation.

Keywords: graph algorithms, network centrality, distributed computing,

aggregate computing

2010 MSC: 03.5, 05.5, 05.6

∗Corresponding author
Email addresses: giorgio.audrito@unito.it (Giorgio Audrito),

danilo.pianini@unibo.it (Danilo Pianini), ferruccio.damiani@unito.it (Ferruccio
Damiani), mirko.viroli@unibo.it (Mirko Viroli)

Preprint submitted to Science of Computer Programming January 16, 2021

1. Introduction

Statistical informations are having an increasingly important role in handling

massive graph-based data, such as the Web Graph or social network graphs.

In this context, statistical summaries are able to detect local- or global-level

features which can give approximate solutions to problems which would not5

be solvable exactly for graphs of that size. A particularly versatile statistic is

the neighbourhood function NG, which calculates the number of vertices within

a certain distance from a given vertex, and can be computed efficiently for

massive graphs through the state-of-the-art HyperANF algorithm [1]. Through

NG several specific problems can be addressed [2]: among many others, ranking10

vertices by their harmonic centrality (which is easily derivable from NG).

Vertex ranking is particularly relevant for distributed IoT scenarios, since

these measures can help selecting “first-class” vertices (which could fruitfully

be promoted to local communication hubs), or weaknesses in the network in-

frastructure (vertices with few close-range neighbours). Different ranking meth-15

ods have been developed in various settings, each with its own weaknesses and

strengths: for example, PageRank is effective for the web graph, but is outper-

formed by other measures on other kinds of graphs [1]. Algorithms computing

those metrics need to satisfy several non-trivial requirements in order to be suit-

able for fully-distributed IoT scenarios, such as: resilience to network changes,20

continuous adaptation to input evolution (formalizable by self-stabilisation [3]),

near-constant time complexity for each computational unit, locality of interac-

tions (obtainable with the aggregate programming paradigm [4] for designing

individual behaviour from a collective viewpoint). Porting algorithms to the

IoT is thus a non-trivial task which may require extensive work where natural25

translations are not possible or sufficiently performing.

In this paper, we provide a natural translation of four centrality measures

(degree, PageRank, closeness, harmonic) in field calculus [5], a tiny functional

language for expressing “aggregate” coordination policies: essentially, a field

calculus program specifies the dynamic behaviour of a “computational field”30

2

([6, 7, 8]), a map from nodes of the network to computational values. While

the first two measures are translated directly from their definition, the last two

are obtained from the HyperANF algorithm [1], hence providing an efficient

approximation of the neighbourhood function. Even though the translation is a

natural porting to field calculus, it automatically empowers the algorithms with35

the ability to scale over arbitrarily large distributed networks, and to react to

transient changes or faults. This latter property can be formalised through the

notion of self-stabilisation, which can be proved for the translated algorithms

(except for PageRank) thanks to the results in [3]. To the best of our knowl-

edge, self-stabilisation for algorithms computing centrality measures, hence their40

computation on mutable inputs, have not been investigated in previous works.

As key contribution, we then show that such implementation of centrality

measures can be applied to solve important coordination problems in IoT-based

systems: specifically, in this paper we show it can be used to improve selection of

local coordinators to support situation recognition tasks [9, 10, 11]. More gen-45

erally, we believe this translation gives an example suggesting that field calculus

is well-suited for expressing massively parallel computations over graphs, and

paves the way towards more extensive application of graph-based algorithms

to IoT systems. The translation of the HyperANF algorithm (in Section 3.3)

in field calculus has been already presented in [12] (without experimental tests50

and self-stabilisation checks); all the other results presented in this paper are

new. Section 2 introduces the four centrality measures and the other concepts

needed to express the translation. Section 3 provides the translation, together

with a motivation outlining its possible use cases. Section 4 evaluates the cen-

trality measures in two simulation scenarios: the first measures the error of55

harmonic centrality estimations in a mutable scenario; the second compares the

effectiveness of various centrality measures in guiding the selection of a central

coordinator. Section 5 discusses related work and Section 6 summarizes the

paper and outlines directions for future work.

3

P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ v

∣∣ e(e)
∣∣ if(e0){e1} else {e2} expression∣∣ nbr{e}

∣∣ rep(e){(x)=>e}
∣∣ share(e){(x)=>e}

v ::= φ
∣∣ ` value

φ ::= δ 7→ ` neighbouring field value

` ::= c(`)
∣∣ f local value

f ::= b
∣∣ d

∣∣ (x)=>e function value

Figure 1: Syntax of Field Calculus.

2. Background60

2.1. Field Calculus

The field calculus is a tiny functional language for formally and practically

expressing aggregate programs: a detailed account of it is given in [5, 3, 13]—

we hereby recollect its most basic characteristics in order to be able to use it

as common language to express the algorithms used in this paper with actual65

executable code.

The syntax of field calculus is given in Figure 1. In field calculus a program

P consists of a sequence of function declarations F and of a main expression e—

following [14], the overbar notation denotes metavariables over sequences: e.g.,

e ranges over sequences of expressions e1, . . . , en with n ≥ 0. On each device70

δ the expression e evaluates to a value v that may depend on the state of δ

(values sensed by δ, the result of previous evaluation, and information coming

from neighbours). Therefore the expression e induces a computational field Φ,

which can be represented as a time-varying map δ1 7→ v1, . . . , δn 7→ vn, assigning

a value vi to each device δi in a network. Each device δ updates its value (by75

evaluating e) in asynchronous computational rounds.

The syntax of an expression e comprises several constructs, which we briefly

present. Firstly, e can be a variable x, used as function formal parameter, or a

4

value v which in turn could be either a neighbouring field value φ (associating to

each device a map from neighbours to local values), or a local value ` (built-in80

functions b, user-defined functions d, anonymous functions (x)=>e, or built-in

values c(`) where c is a data constructor). Secondly, e can be a function call

e(e) where an expression of functional type e is applied by-value to arguments

e1, . . . en; or an if-expression if(e0){e1} else {e2} modelling domain restric-

tion, which computes e1 in the devices where e0 is true, and e2 on the others.85

Finally, e can be a nbr-, rep- or share-expression, which are the three most

characteristic constructs of field calculus. An nbr-expression nbr{e} models

neighbourhood observation, by producing a neighbouring field value that rep-

resents an “observation map” of neighbour’s values for expression e, namely,

associating to each device δ (that has evaluated nbr{e} during its last up-90

date) a map from neighbours to their latest evaluation of e. A rep-expression

e = rep(e1){(x)=>e2} models time evolution and state preservation, by repeat-

edly applying the anonymous function (x)=>e2 to the value computed for e

in the previous round, starting from e1 if no previous value is available. A

share-expression e = share(e1){(x)=>e2} combines aspects of both rep and95

nbr: it models state preservation, evolution and sharing, by repeatedly apply-

ing (x)=>e2 to the neighbouring field value of the values computed for e in

the last round of neighbour devices (including the previous round of the same

device).

Example 1. In order to showcase a field calculus program at work, consider100

function ever below, computing whether a certain distributed Boolean value v

has ever became false in some device of the network.

1 def ever(v) {

2 share (false) { (x) => or(v, any(x)) }105

3 }

The above program can be understood as evolving a distributed Boolean value

ever(v), by repeatedly updating it in each computational round of the network.

In every device, this value is first initialised to false, and then updated by110

5

e ::= x
∣∣ v

∣∣ e(e)
∣∣ e o e

∣∣ if(e0){e1} else {e2} expression∣∣ let x = e; e
∣∣ nbr(e)

∣∣ rep(x<-e){e}
∣∣ share(x<-e){e}

v ::= φ
∣∣ ` ∣∣ [v] value

f ::= b
∣∣ d

∣∣ {x->e} function value

Figure 2: Syntax of the fragment of Protelis used in this paper. Differences with Fig. 1 are

highlighted in grey, and identical production rules are omitted.

gathering the neighbours’ values of ever(v) as a neighbouring field value into x

(including the value of ever(v) in the previous round on the same device, if it

exists). This value is first collapsed to a single Boolean value through any(x),

which is true if x (hence ever(v) is true) is true for any neighbour. Then, the

current value of ever(v) is obtained by combining the result of any(x) with v,115

becoming true in case v is true in the current round. This final result is then

implicitly shared with neighbours for their following computational rounds.

2.2. Protelis

Protelis [15] is a Java-interoperable1 domain-specific language, implemented

via Xtext [16, 17], which reifies the field calculus semantics. Its syntax has been120

designed to be familiar to those acquainted Java and Kotlin, and its runtime

requires a Java Virtual Machine. Protelis has been used for several distributed

scenarios, including among others: crowd steering [18], adaptive service dis-

persal [19], and airborne sensor sharing [20]. All the algorithms presented in

this paper have been implemented in Protelis for evaluation; their complete im-125

plementation is available online, and essential parts of it are reported in the

paper.

Figure 2 presents the fragment of the Protelis language used in the code

snippets presented in this paper. Most of the syntax is identical to that of field

1 The interoperation capabilities are actually targeting JVM types regardless of the lan-

guage which generated them: Protelis can de fact interoperate also with Kotlin, Scala, and

other JVM languages.

6

calculus in Figure 1. Thus, identical production rules are omitted and differences130

are highlighted in grey. Three additional constructs are present:2 application

of binary operators o in infix notation, let-binding expressions let x = e1; e2,

and the notation [e1, . . . , en] for tuple construction. The syntax of the three

characteristic field calculus constructs is slightly modified: nbr uses parentheses

instead of curly braces, rep and share have the variable declaration together135

with the initialisation expression instead of with the update expression. Finally,

the syntax of anonymous functions is modified to follow that of the Kotlin

language, where the whole expression is between curly braces. Overall, these

modifications are essentially cosmetic: for example, in Protelis function ever in

Example 1 can be rewritten as follows.140

1 def ever(v) {

2 share (x <- false) { v || any(x) }

3 }
145

2.3. Centrality Measures

Many different techniques for collecting statistics from graph-based data are

being studied in the data mining community, each able to address different

questions. In this paper, we focus on statistics measuring centralities of the

nodes of the graph. Among the many ones ever proposed, in particular, we150

focus on the most common ones, allowing for efficient distributed computation,

listed in the remainder of this section.

2.3.1. Degree centrality

The historically first and conceptually simplest centrality measure is the so-

called degree centrality, which is defined as the number of links incident upon155

a node (i.e. its degree). Intuitively, nodes with an higher number of links are

less prone to encounter network disconnections, hence may be elected as com-

munication hubs more effectively than nodes with a lower degree. Athough this

2In field calculus, all those constructs can be defined as syntactic sugar in terms of the

other existing constructs.

7

measure is particularly simple and efficient to calculate, compared with other

centrality measures, degree centrality is usually the least effective: in approxi-160

mately homogeneous situated networks, nodes at the edge of the network will

have lower degrees, while all other nodes will have similar degrees, hence se-

lecting the node with the highest degree mostly accounts to selecting a random

node which is not at the network edge.

2.3.2. PageRank165

A very popular centrality measure in the data mining community is PageR-

ank [21], first introduced for the Google search engine, which is an instance of

the broader class of eigenvector centrality measures. According to this measure,

the centrality score ri of a node i is the fixed point of the system of equations:

ri = (1− α) + α
∑

j∈neigh(i)

rj
deg(j)

where α is a parameter (usually set at 0.85 [22]), deg(j) is the degree of node

j and neigh(i) is the set of neighbour nodes j connected to i. This centrality

measure have been proved effective on logical graphs such as the web graph, and

can be efficiently calculated by re-iterating the equations above for each node,

starting from r0i = 1. However, it is usually not very effective on approximately170

homogeneous situated networks: in this case, PageRank favours nodes with

many neighbours with a lower degree, which usually are nodes almost at the

edge of the network. In fact, doubts on its effectiveness have also been risen

on logical graphs [1] with respect to distance-based measures (in particular

harmonic centrality), and will be experimentally proven in section 4.3.175

2.3.3. Neighbourhood function

The most effective centrality measures considered [1] are harmonic and close-

ness centrality, both derivable from (variations of) the neighbourhood function

of a graph.

Definition 1 (Neighbourhood Function). Let G = 〈V,E〉 be a graph with180

n vertices and m edges. The generalized individual neighbourhood function

8

NG(v, h, C), given v ∈ V , h ≥ 0 and C ⊆ V , counts the number of ver-

tices u ∈ C which lie within distance h from v. In formulas, NG(v, h, C) =

|{u ∈ C : dist(v, u) ≤ h}|.

Elaborations of the NG values have been used to answer many different ques-185

tions [1, 2], including: graph similarity, vertex ranking, robustness monitoring,

network classification. Since exact computation of NG is impractical, requiring

O(nm) time in linear memory and O(n2.38) time in quadratic memory, effort

has been spent in developing fast algorithms approximating NG up to a desired

precision.190

In Palmer et al. [2], the problem of computing NG is reduced to that of suc-

cinctly maintaining size estimates for sets upon set unions. DefineMG(v, h, C)

as the set of vertices in C within distance h from v, so that NG(v, h, C) =

|MG(v, h, C)|. Notice that MG can be computed recursively as:

MG(v, h, C) =
⋃

(vu)∈E

MG(u, h− 1, C)

where MG(v, 0, C) = {v} ∩ C. If we represent the sets MG(v, h, C) through

succinct counters, the previous formula translates into an algorithm comput-

ing estimations of NG. Vigna et al. [1] later improved the original algorithm

by using a more effective class of estimators, the HyperLogLog counters [23],

by expressing the “counter unions” through a minimal number of broadword195

operations, and by engineering refined parallelisation strategies. HyperLogLog

counters maintain size estimates with asymptotic relative standard deviation

σ/µ ≤ 1.06/
√
k, where k is a parameter, in (1 + o(1)) · k · log log(n/k) bits of

space. Updates are carried out through k independent “max” operations on

log log(n/k)-sized words. It follows that NG, given a fixed precision, can be200

computed in O(nh) time and O(n log log n) memory, allowing it to be applied

on very large graphs such as the Facebook graph [24].

2.3.4. Closeness centrality

Closeness centrality ci of a node i is defined as the reciprocal of the total

distance to other nodes, and can be computed in terms of the neighbourhood

9

function as in the following equation:

1

ci
=
∑
j 6=i

dist(i, j) =

D∑
h=1

h (NG(i, h, V)−NG(i, h− 1, V))

where D is the graph diameter (maximum distance between nodes in G).

2.3.5. Harmonic centrality205

Harmonic centrality hi of a node i is defined as the sum of the reciprocals of

distances to other nodes, and can also be computed in terms of the neighbour-

hood function as in the following equation:

hi =
∑
j 6=i

1

dist(i, j)
=

D∑
h=1

NG(i, h, V)−NG(i, h− 1, V)

h

where D is the graph diameter (maximum distance between nodes in G). Ver-

tices with high harmonic (or closeness) centrality are best-suited to be elected

as leaders for coordination mechanisms, since they are connected to many other

vertices through a small number of hops.

3. Aggregate Graph Statistics210

We now show how all centrality measures and statistics in section 2.3 can be

naturally translated into field calculus. This transformation suggests that the

field calculus is a natural framework for parallel computations, so that a future

cloud-based implementation of it (as envisaged in [25]) could be used to address

a relevant class of “traditional” massively parallel computations. Furthermore,215

this translation has additional relevance in the aggregate computing context,

since the resultant algorithms are able self-adjust to dynamic changes in inputs

(i.e., they have the self-stabilisation property and belong to the self-stabilising

fragment of the calculus [3]). In fact, these algorithms altogether provide a

new centrality building block which can be used to produce various dynamic220

vertex rankings, able to classify vertices by features of their neighbourhoods.

These rankings can in turn be used either to recognise network vulnerabilities

(vertices with few short-range neighbours and many long-range neighbours), or

10

to elect leaders for other coordination mechanisms (vertices with high degrees

of “centrality”).225

3.1. Degree centrality

Degree centrality can be easily written in field calculus (in particular in its

implementation Protelis [15]) through the following one-liner, computing it by:

(i) creating a constant field whose value is 1 everywhere, and (ii) summing the

contribution of every neighbour, hence counting them.230

1 def degree() { foldSum(0, nbr(1)) }

This function belongs to the self-stabilising fragment identified in [3], since it

does not contain any occurrence of rep or share.235

3.2. PageRank

PageRank centrality can be easily written in Protelis as the following simple

program:

1 def pagerank() {240

2 share (rank <- 1) {

3 foldSum(0.15, 0.85 / nbr(max(degree(), 1)) * rank)

4 } }

Here, the rank is repeatedly updated by adding 0.15 with the sum of neigh-245

bours’ ranks divided by their degree (and multiplied by 0.85). Unfortunately,

this function does not belong to the self-stabilising fragment identified in [3].

Experimental evaluation in Section 4 suggests that this function is indeed self-

stabilising, although a formal proof of this property is left as future work.

3.3. Neighbourhood function and HyperANF250

Assume that we are given an HyperLogLog type, which can be constructed out

of numerical elements, composed through a union operator, and inspected for

size through member function getCardinality. Moreover, consider a function

myself, returning a HyperLogLog built using solely the local node unique identifier.

We can then express HyperANF through the following simple field calculus code,255

11

computing a list of floating-point estimations 〈NG(δ, i, C) : i = 0 . . . h〉 in each

device δ, provided that source is true if and only if δ ∈ C.

1 def hyperANF(depth, source) { // Recursive implementation of hyperANF

2 if (depth == 0) { // End of the recursion, the result is a HLL with myself260

3 [myself(), [myself().getCardinality()]]

4 } else {

5 // Recurse one level and get the result

6 let recursion = hyperANF(depth - 1, source);

7 // Compute the union of the local and neighbours’ results at this depth265

8 let union = foldUnion(nbr(recursion.get(0)));

9 // Return both the union of results and the list of cardinalities per-depth

10 [union, recursion.get(1).append(union.getCardinality())]

11 }

12 }270

Note that the above function belongs to the self-stabilising fragment identified

in [3], since it does not contain any occurrence of rep or share.

In Vigna et al. [1], non-trivial effort was made to allow for efficient parallel

computation of HyperANF, since the algorithm did not fit inside existing parallel275

computation frameworks (e.g., MapReduce [26]). Thus, it is worth noting that

the field calculus is instead able to easily capture the algorithm, allowing for an

“automatic” parallelisation and naturally extending the original algorithm to

an “on-line” context (i.e., self-adapting to changes of either network structure

or source vertices).280

3.4. Harmonic and closeness centrality

The result provided by hyperANF can be used to implement real-time vertex

ranking calculations for efficient leader election or network weaknesses detec-

tion. In the following Kotlin code, we succinctly express the computation of

harmonic centrality and closeness centrality based on the estimates produced285

by hyperANF. We picked Kotlin instead of Protelis for this part of the imple-

12

mentation3 for the following reasons: (i) once hyperANF has been executed, the

information is entirely available and the remainder of the computation can be

local; (ii) Protelis is designed for succinctly express field computations, but its

standard library is less expressive and rich than Kotlin’s; (iii) which in turn290

makes the Kotlin implementation much more compact and clean.

1 // Extension function representing a mapping over a sequence of HHL counters

2 fun <R> Sequence<HyperLogLog>.indexedMap(

3 operation: (IndexedValue<Long>) -> R // mapping operation on cardinalities295

4): Sequence<R> = map { it.cardinality } // map HLL to its cardinality

5 // type is now Sequence<Long>

6 .zipWithNext { a, b -> b - a } // subtract the previous cardinality

7 .withIndex() // provide distance information as index

8 // Type is now IndexedValue<Long>, namely a pair of index and cardinality300

9 .map(operation) // run the mapping

10

11 // Divide each cardinality for the distance, then sum

12 fun harmonicCentrality(cardinalities: Iterable<HyperLogLog>): Double =

13 cardinalities.asSequence()305

14 // it.value is the cardinality, it.index the recursion depth

15 .indexedMap { it.value.toDouble() / (it.index + 1) }.sum()

16

17 // Multiplicative inverse of the sum of the product of cardinalities

18 // with their respective distances310

19 fun closenessCentrality(cardinalities: Iterable<HyperLogLog>): Double =

20 1 / cardinalities.asSequence()

21 // it.value is the cardinality, it.index the recursion depth

22 .indexedMap { it.value.toDouble() * (it.index + 1) }.sum()
315

Extension function Sequence<HyperLogLog>.indexedMap is a higher order trans-

formation operation which prepares the Sequence<HyperLogLog> to be used in har-

monic and closeness centrality computation by computing the cardinality of

each recursion level. The function operation: (IndexedValue<Long>) -> R taken as

parameter is responsible to reduce the couples of (index, cardinality) to the320

3Indeed this part of the software is actually written in Kotlin, it’s not just for a cleaner

presentation in the manuscript, see https://archive.is/npvCe

13

https://archive.is/npvCe

desired final value. Sequence<HyperLogLog>.indexedMap factorises the common be-

haviour of harmonicCentrality and closenessCentrality, allowing for a simplified

implementation.

3.5. Leader election

As a further motivating example, we can use any of the previously introduced325

centrality measures to elect a leader for coordination routines. Given (an upper

bound of) the network diameter, the node with highest centrality can be selected

through the following routine:

1 def leaderElection(rank, id, diameter) {330

2 // simmetry is broken by using rank. The second parameter of

3 // the following triple is the distance from the closest leader

4 // the third parameter is the id of the leader (candidate)

5 let local = [-rank, 0, id]; // the default candidate is myself

6 share (neigh <- local) { // compute the field or neighboring candidates335

7 // discard candidates that are farther than the diameter upper bound

8 let options = mux (neigh.get(1) <= diameter) { neigh } else { local };

9 let best = foldMin(local, options); // pick the best candidate

10 // I’m one hop more distant from the leader than my neighbour

11 best.set(1, best.get(1) + 1)340

12 }.get(2) // return the id of the leader

13 }

The routine logic is the following: (i) a candidature is expressed as a triple

[rank, id, distance]; (ii) by default, each node candidates itself; (iii) can-345

didates from the neighbourhood are retrieved; (iv) candidates whose distance

is farther than the upper bound of the network diameter left the network and

thus get discarded; (v) among the remaining candidates, the one with the best

rank is selected; (vi) in case of ties, the closest one is selected, and in case of

further ties the one with the lowest id is selected; (vii) the distance from the350

leader is the distance from the leader to the neighbour plus one extra hop.

14

4. Evaluation

We evaluate our proposed approach via simulation in three phases: first, we

investigate the approximation quality of the proposed approach by measuring

the error of estimating the harmonic centrality for a network of devices via355

hyperANF with respect to an oracle; second, we show how the proposed approach

allows for a self-stabilising and completely distributed leader election, and we

proposed the technique to dynamically create fog colonies [27]; third, we provide

evidence that relying on aggregate graph statistics can be valuable for higher

level aggregate computing applications.360

Aggregate code has been written in Protelis [15], and simulations have been

performed using Alchemist [28]. Alchemist4 is a flexible simulator based on an

extended version of the Gibson-Bruck kinetic Monte Carlo algorithm [29], used

in several scientific publications for rather diverse scenarios, ranging from smart

cities [4] to drone swarms [30] to morphogenesis [31]. Alchemist provides native365

integration with various aggregate computing languages, such as Scafi [32] and

Protelis [15], and is equipped with a batch engine for automating the execution

of several repetitions of a simulation; making it a straightforward choice for the

analysis to be presented. Generated data has been processed using xarray [33];

visual reports of have been created via matplotlib [34]. For the sake of repro-370

ducibility, the experiment code is available online5, along with instructions, a

fully automated execution system, and continuous integration in place6. The

entire data analysis includes over 1000 charts, available on the aforementioned

source. For the sake of brevity, only the most relevant data is discussed in this

manuscript.375

4.1. Quality of the Estimates

For the first experiment, we deploy a network of n mobile nodes in a square

arena with a 500m wide side. Nodes are free to move within the arena using

4alchemistsimulator.github.io
5https://github.com/DanySK/Experiment-2020-SCP-Graph-Statistics
6https://travis-ci.org/github/DanySK/Experiment-2020-SCP-Graph-Statistics

15

alchemistsimulator.github.io
https://github.com/DanySK/Experiment-2020-SCP-Graph-Statistics
https://travis-ci.org/github/DanySK/Experiment-2020-SCP-Graph-Statistics

Name Description Values Unit

|~v| node speed 0, 1, 2, 5, 10 m
s

n device count {1, 2, 5} × {10, 102, 103} devices

E[N] mean neighbours 2, 3, 5, 7, 10 devices

Table 1: List of the variables and their values for the simulations.

Lévy walks [35] with velocity ~v and constant speed |~v|, bouncing off the arena

boundary. Nodes communicate with devices located at a distance shorter than380

500
√

2πN meters; hence, they communicate on average with E[N] other devices.

Every node x estimates its normalized7 harmonic centrality Ha(x) in asyn-

chronous fairly scheduled rounds with a frequency of 1Hz. This value is com-

pared with the exact harmonic centrality value for node x, H(x), as provided by

an oracle. The local absolute error is evaluated as ex = |Ha(X)−H(x)|, and the385

mean absolute error is computed for the whole network as MAE = 1
n

∑n
x=1 en.

Each combination of variable values (namely, for each member of the set

representing the Cartesian product of the possible values of each variable in

table 1) is tested 20 times changing the simulation seed, which in turn modifies

the initial node deployment, the movement of nodes, and the round scheduling390

times.

Data shows that, as expected, larger networks require a longer time to con-

verge, as pictured in fig. 3, fig. 4, fig. 5, and fig. 8. This is due to the stabilisation

time of the algorithm scaling linearly with the network diameter: the larger the

diameter, the longer the stabilisation time. Denser networks feature a higher395

initial error peak, but they then converge to the final value more quickly than

sparser networks (again, due to shorter diameter) as depicted in figs. 3 and 7.

Intermediate densities achieve the worst results in our tests (see figs. 5 to 7).

7The formulas given in section 2.3 for harmonic and closeness centrality produce values

which are larger for larger networks, and are usually normalised by dividing for the total

network size.

16

Intuitively, higher values for N are expected to produce networks with a single

large connected component, while lower values are expected to produce net-400

works with multiple small connected components. This intuition is formally

captured by the concept of percolation threshold: above such threshold, there

exist a single large connected component encompassing the whole system. The

percolation threshold of a disk communication model has being measured at

N = 4.5123495 neighbours [36]: thus, an average of less than five neighbours405

causes frequent partitioning on the network graph into sub-networks, which

quickly converge to their final value. Instead, an average of five neighbours

causes the computation to be performed on a large but sparse network, hence

increasing error and volatility. Error introduced by node mobility stacks with

the error due to the natural time required for algorithm stabilisation. Initially,410

the contribution of the latter error is dominant, but it then progressively shrinks

with the algorithm stabilisation. Error on the later phases of the simulation are

instead mostly due to the disruption induced by node mobility and subsequent

network reconfiguration. This kind of two-phased error dominance give rise to

the local minimum in error seen in fig. 4 and fig. 8, as well as the behaviour415

observed in fig. 6, fig. 7.

4.2. Application: fog colonies partitioning

Measures of node centrality can be used in processes involving leader elec-

tion to determine a set of good candidates, or the leader itself. One possible

application of a leader election process is partitioning of a network into colonies,420

each containing a single leader node which can communicate with other leaders.

This sort of network overlay has been used in several works found in litera-

ture [27, 37, 38, 39], and has a wide range of applications, including vehicular

networks [40], artificial biology [41], coordination of swarms of construction

robots [42], and edge systems resource management and monitoring [43, 44, 45].425

In this section, we excercise our distributed version of HyperANF in a setup

similar to the one presented in [27], with the goal of showing how a different

leader selection policy may affect the overlay network shape. To this end, we

17

0 10 20 30 40 50
time

10 3

10 2

10 1

E[
H

]

E[H] for diverse n when E[N]=2
10
20
50
100
200
500
1000
2000
5000

0 10 20 30 40 50
time

10 3

10 2

10 1

E[
H

]

E[H] for diverse n when E[N]=3
10
20
50
100
200
500
1000
2000
5000

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse n when E[N]=5
10
20
50
100
200
500
1000
2000
5000

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse n when E[N]=7
10
20
50
100
200
500
1000
2000
5000

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse n when E[N]=10
10
20
50
100
200
500
1000
2000
5000

Figure 3: Mean absolute error for diverse network sizes (different colours) for increasing

expected neighbourhood sizes (left to right, top to bottom). Denser networks feature a peak

in error during the initial stabilisation phase, followed by a quicker convergence due to shorter

network diameter. Very small networks have erratic behaviour, larger networks feature a

smoother convergence to a lower error.

18

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse n when |v|=0
10
20
50
100
200
500
1000
2000
5000

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse n when |v|=1
10
20
50
100
200
500
1000
2000
5000

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse n when |v|=2
10
20
50
100
200
500
1000
2000
5000

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse n when |v|=5
10
20
50
100
200
500
1000
2000
5000

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse n when |v|=10
10
20
50
100
200
500
1000
2000
5000

Figure 4: Mean absolute error for diverse network sizes (different colours) for increasing

node mobility speed (left to right, top to bottom). Node movement introduces both error and

volatility. The larger the network, the more such effect is visible. The algorithm tolerates slow,

continuous changes in the network structure rather well, while error ramps up consistently if

the network is very instable, possibly due to problem in stabilizing related to the recursive

nature of the algorithm.

19

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse E[N] when n=100
2
3
5
7
10

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse E[N] when n=200
2
3
5
7
10

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse E[N] when n=500
2
3
5
7
10

0 10 20 30 40 50
time

10 3

10 2

10 1
E[

H
]

E[H] for diverse E[N] when n=1000
2
3
5
7
10

0 10 20 30 40 50
time

10 3

10 2

10 1

E[
H

]

E[H] for diverse E[N] when n=2000
2
3
5
7
10

0 10 20 30 40 50
time

10 3

10 2

E[
H

]

E[H] for diverse E[N] when n=5000

2
3
5
7
10

Figure 5: Mean absolute error for diverse expected neighbourhood sizes (different colours)

for increasing node count (left to right, top to bottom). Larger network introduce larger

error, due to progressive lack of precision in the HyperLogLog estimates. Error peaks for an

expected neighbourhood size of five, for which the computation gets performed on a large but

sparse network.

20

0 10 20 30 40 50
time

10 3

10 2

10 1

E[
H

]

E[H] for diverse E[N] when |v|=0
2
3
5
7
10

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse E[N] when |v|=1
2
3
5
7
10

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse E[N] when |v|=2
2
3
5
7
10

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse E[N] when |v|=5
2
3
5
7
10

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse E[N] when |v|=10
2
3
5
7
10

Figure 6: Mean absolute error for diverse expected neighbourhood sizes (different colours)

for increasing movement speed (left to right, top to bottom). Node movement introduces both

error and volatility, however the network tolerates moderate changes well. Error peaks for an

expected neighbourhood size of five, for which the computation gets performed on a large but

sparse network.

21

0 10 20 30 40 50
time

10 3

10 2

E[
H

]

E[H] for diverse |v| when E[N]=2

0
1
2
5
10

0 10 20 30 40 50
time

10 2

E[
H

]

E[H] for diverse |v| when E[N]=3
0
1
2
5
10

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse |v| when E[N]=5
0
1
2
5
10

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse |v| when E[N]=7
0
1
2
5
10

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse |v| when E[N]=10
0
1
2
5
10

Figure 7: Mean absolute error for diverse node speed (different colours) for increasing ex-

pected neighbourhood sizes (left to right, top to bottom). Node movement introduces both

error and volatility, however the network tolerates it well. Dense networks converge more

quickly regardless of node movement speed, but they have a greater error peak in the ini-

tial transient. Higher node mobility impacts absolute error and transient dynamics, but not

stabilization time. An initial error peak is measured in all conditions.

22

0 10 20 30 40 50
time

10 1

E[
H

]

E[H] for diverse |v| when n=100
0
1
2
5
10

0 10 20 30 40 50
time

10 2

10 1

E[
H

]

E[H] for diverse |v| when n=200
0
1
2
5
10

0 10 20 30 40 50
time

10 2

E[
H

]

E[H] for diverse |v| when n=500
0
1
2
5
10

0 10 20 30 40 50
time

10 2

E[
H

]

E[H] for diverse |v| when n=1000
0
1
2
5
10

0 10 20 30 40 50
time

10 2E[
H

]

E[H] for diverse |v| when n=2000

0
1
2
5
10

0 10 20 30 40 50
time

10 2E[
H

]

E[H] for diverse |v| when n=5000

0
1
2
5
10

Figure 8: Mean absolute error for diverse node speed (different colours) for increasing network

size (left to right, top to bottom). Data shows an increase in error related to increased node

movement speed. The first phase of the stabilization transient is dominated by initialization

of the computation, which peaks and decreases. The second phase is instead dominated by

the error introduced by node movement, which starts low and progressively increases to a

plateau.

23

are interested in two measures: the first is the total count of colonies that get

dynamically formed C; and the second, IntradDist [27], is the mean across all430

colonies of the mean distance between every node of a colony and the colony

leader. For both measures, lower values indicate better performance: lower

C values suggest a selection of leaders that better covers the overall network

extension, while IntradDist can be seen as a proxy metric for intra-colony

communication latency.435

We evaluate the behaviour of different metrics computed with our distributed

HyperANF implementation in the following conditions:

� different graph sizes, with the node count n ranging in {25, 50, 100, 200, 400, 800};

� different graph topologies: Barabasi-Albert [46], lobster [47], and random

euclidean [48];440

� different desired cluster radius, ranging (in hops) from 1 to 10.

Graph generation has been realised via GraphStream [49]; in order to run our

software stack on the generated topologies, we had to provide integration be-

tween Alchemist and GraphStream. Such integration is a further contribution of

this work, it has been opensourced and integrated in the simulator since devel-445

opment version 9.3.0-dev1bn+1fc9a8ebd, and will be part of the next major

stable release of Alchemist.

Colony count results are depicted in Figure 9 for the Barabasi-Albert topol-

ogy, in Figure 10 for the lobster topology, and in Figure 11 for the random

euclidean topology. Different topologies have a very relevant effect on perfor-450

mance. The centrality measure that seem to perform better across the board

is harmonic, which gets bested in few configurations, and usually of a short

margin. Degree centrality performs well on highly connected topologies, such as

Barabasi-Albert and random euclidean. It struggles however on lobster topolo-

gies, unless the selected radius matches exactly the maximum distance allowed455

for “non hub” nodes.

Mean intra-cluster distance results are depicted in Figure 12 for the Barabasi-

24

2 4 6 8 10
cluster radius (hops)

0

5

10

15

20

25

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, BarabasiAlbert topology, 25 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

10

20

30

40

50

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, BarabasiAlbert topology, 50 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

20

40

60

80

100

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, BarabasiAlbert topology, 100 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

25

50

75

100

125

150

175

200
ne

tw
or

k
di

st
an

ce
 (h

op
s)

, BarabasiAlbert topology, 200 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

50

100

150

200

250

300

350

400

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, BarabasiAlbert topology, 400 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

100

200

300

400

500

600

700

800

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, BarabasiAlbert topology, 800 nodes
random
pageRank
harmonic

closeness
degree

Figure 9: Mean colony count for diverse desired cluster radii on a Barabasi-Albert topology.

Degree and harmonic centrality are the best performer, as they both favor the most con-

nected nodes. Closeness centrality is the worst performer, doing slightly worse than a random

selection.

25

2 4 6 8 10
cluster radius (hops)

0

5

10

15

20

25

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, Lobster topology, 25 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

10

20

30

40

50

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, Lobster topology, 50 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

20

40

60

80

100

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, Lobster topology, 100 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

25

50

75

100

125

150

175

200

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, Lobster topology, 200 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

50

100

150

200

250

300

350

400

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, Lobster topology, 400 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

100

200

300

400

500

600

700

800

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, Lobster topology, 800 nodes
random
pageRank
harmonic

closeness
degree

Figure 10: Mean colony count for diverse desired cluster radii on a lobster topology.

Harmonic centrality achieves the best performance when large colonies are desired. On large

networks, page rank and degree centrality achieve better performance when 2 hops colonies are

desired, while closeness and random both outperform harmonic centrality when the desired

radius is 3 hops. This phenomenon is strictly related to the specific instance of the lobster

graph, featuring at most 2 hops from “hub” nodes, and a maximum degree of 10.

26

2 4 6 8 10
cluster radius (hops)

18

19

20

21

22

23

24

25

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, RandomEuclidean topology, 25 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

25

30

35

40

45

50

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, RandomEuclidean topology, 50 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

20

30

40

50

60

70

80

90

100

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, RandomEuclidean topology, 100 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

25

50

75

100

125

150

175

200
ne

tw
or

k
di

st
an

ce
 (h

op
s)

, RandomEuclidean topology, 200 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

50

100

150

200

250

300

350

400

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, RandomEuclidean topology, 400 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

100

200

300

400

500

600

700

800

ne
tw

or
k

di
st

an
ce

 (h
op

s)

, RandomEuclidean topology, 800 nodes
random
pageRank
harmonic

closeness
degree

Figure 11: Mean colony count for diverse desired cluster radii on a random euclidean

topology. This kind of graphs are very densely connected, and as such performance of all the

algorithms (including random selection) are pretty similar, especially on large networks. On

smaller network, and for small colonies, pagerank, harmonic, and degree centralities perform

better than random and closeness centrality measures.

27

2 4 6 8 10
cluster radius (hops)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, BarabasiAlbert topology, 25 nodes

random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, BarabasiAlbert topology, 50 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, BarabasiAlbert topology, 100 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

1

2

3

4
ne

tw
or

k
di

st
an

ce
 (h

op
s)

IntraDist, BarabasiAlbert topology, 200 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

1

2

3

4

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, BarabasiAlbert topology, 400 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0

1

2

3

4

5

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, BarabasiAlbert topology, 800 nodes
random
pageRank
harmonic

closeness
degree

Figure 12: Mean intra-cluster distance across all colonies on a Barabasi-Albert topology.

Page rank, harmonic, and degree centrality perform similarly, random and closeness are gener-

ally the worst performers. Interestingly, however, for mid-range radii, they seem to outperform

the other centrality measures. This effect is due to these centrality measures being source of

a larger number of clusters (see Figure 9), whose size (and hence, intra-cluster distance) is

smaller.

28

2 4 6 8 10
cluster radius (hops)

0

1

2

3

4

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, Lobster topology, 25 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, Lobster topology, 50 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, Lobster topology, 100 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.5

1.0

1.5

2.0

2.5

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, Lobster topology, 200 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.2

0.4

0.6

0.8

1.0

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, Lobster topology, 400 nodes

random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.2

0.4

0.6

0.8

1.0

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, Lobster topology, 800 nodes
random
pageRank
harmonic

closeness
degree

Figure 13: Mean intra-cluster distance across all colonies on a lobster topology. Page

rank, harmonic, and degree centrality perform similarly, random and closeness are generally

the worst performers. All centrality measure seem to follow a sigmoid shaped curve. As in

Figure 9, those conditions in which the centrality measures originate less clusters are linked

with a higher intra-cluster distance. However, it is interesting to see how degree outperforms

pageRank for colony radius equal to 2, indicating that the former is better at selecting a good

“center” for the colony.

29

2 4 6 8 10
cluster radius (hops)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, RandomEuclidean topology, 25 nodes

random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, RandomEuclidean topology, 50 nodes

random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.2

0.4

0.6

0.8

1.0

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, RandomEuclidean topology, 100 nodes

random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.5

1.0

1.5

2.0
ne

tw
or

k
di

st
an

ce
 (h

op
s)

IntraDist, RandomEuclidean topology, 200 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, RandomEuclidean topology, 400 nodes
random
pageRank
harmonic

closeness
degree

2 4 6 8 10
cluster radius (hops)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ne
tw

or
k

di
st

an
ce

 (h
op

s)

IntraDist, RandomEuclidean topology, 800 nodes
random
pageRank
harmonic

closeness
degree

Figure 14: Mean intra-cluster distance across all colonies on a random euclidean topology.

In this case, as pictured in Figure 11, the colony count is simular for all centrality measures, so

different performances in this context point to a better selection of the leader node. Harmonic

centrality is the best performer, closely followed by page rank and degree centrality, which

perform very similarly. Closeness centrality performs worse than a random selection.

30

Albert topology, in Figure 13 for the lobster topology, and in Figure 14 for the

random euclidean topology. Results are to be read along with the colony count:

in fact, on graphs of the same size, more the colonies are usually associated460

with smaller colonies and hence shorter intra distances. Of course, however, a

smarter selection of the leader node may provide a lower intra distance with a

similar colony count. Data shows that harmonic centrality is one of the best

performers, closely followed by page rank and degree centrality.

4.3. Application: Self-organising Coordination Regions465

In Section 4.2, we discussed how the leader selection (and subsequent fog

colony formation) may in principle benefit of a “good” selection of leaders. In

this section, we provide empiric evidence that such selection is indeed key for

the performance some high level distributed patterns. For instance, in the self-

organising coordination regions (SCR) [37] pattern, devices are partitioned, a470

leader is elected for each partition, and upstream and downstream communi-

cation from and to the leader is established. One possible way to select a

leader in a partition is by relying on its centrality, with the goal of shortening

the latency of information aggregation and diffusion. A typical aggregate pro-

gramming implementation of SCR would involve the use of single-path converge475

cast to build upstream (from leaf nodes to the leader) information flow. This

algorithm is sensible to the leader position in the network: the longer is the

communication delay from the leader to the farthest node in the partition, the

higher will be the overall delay (hence, the error) of the whole algorithm.

In this section, we show how a different selection method for the leader may480

impact the responsiveness of the system by simulating a network partition of

n = 1000 devices displaced in a regular grid of shape is d × n
d communicating

with their Moore neighborhood (hence, d is both the width and the diameter of

the network). We let d range in the set of divisors of n whose value is greater

than
√
n, namely, we test grids ranging from 40× 25 to 1000× 1 devices.485

Devices compute a graph statistics on the network and use it to elect a single

leader. The leader aggregates the minimum time in the network, in such a way

31

0 20 40 60 80 100
time

De
la

y
(s

)

Median converge-cast delay when diameter=40

worst
random
pagerank.

harmonic
closeness
degree

0 20 40 60 80 100 120
time

De
la

y
(s

)

Median converge-cast delay when diameter=50

worst
random
pagerank.

harmonic
closeness
degree

0 50 100 150 200 250
time

De
la

y
(s

)

Median converge-cast delay when diameter=100
worst
random
pagerank.

harmonic
closeness
degree

0 50 100 150 200 250 300
time

De
la

y
(s

)

Median converge-cast delay when diameter=125
worst
random
pagerank.

harmonic
closeness
degree

0 100 200 300 400 500
time

De
la

y
(s

)

Median converge-cast delay when diameter=200
worst
random
pagerank.

harmonic
closeness
degree

0 100 200 300 400 500 600
time

De
la

y
(s

)

Median converge-cast delay when diameter=250
worst
random
pagerank.

harmonic
closeness
degree

0 200 400 600 800 1000 1200
time

De
la

y
(s

)

Median converge-cast delay when diameter=500
worst
random
pagerank.

harmonic
closeness
degree

0 250 500 750 1000 1250 1500 1750
time

De
la

y
(s

)

Median converge-cast delay when diameter=1000
worst
random
pagerank.

harmonic
closeness
degree

Figure 15: Median delay for converge-cast with different algorithms for leader election for

different network shapes, ranging from a 40x25 (top left) to a 1000x1 grid (bottom right).

Pagerank performs badly across the board, with a performance comparable to the worst case.

Degree centrality’s results show a behaviour only slightly improving over a random selection.

Harmonic centrality outperfoms every other algorithm in grids up to 125× 8, followed closely

by closeness centrality. In the most extreme quasi-linear scenarios, degree centrality attains

the best results.
32

that it collects the oldest valid message in the partition. The difference between

the collected value and the time at the leader is the information delay. We

compare several centrality statistics in fig. 15 (PageRank [21], degree, closeness490

and harmonic centrality, see section 2.3), using a random selection of the leader

and the worst case (a leader on a corner of the grid) as baselines. Notice that

random selection is the most common way a leader is selected (especially when

devices are homogeneous). Data shows that for bidimensional network shapes

closeness centrality and harmonic centrality outperform a random selection of495

the leader consistently (up to 125 × 8). Such advantage progressively lessen

with more extreme shapes, with degree centrality attaining the best results for

quasi-linear 1D networks; which is however an unlikely configuration in edge

scenarios.

5. Related Work500

This papers concerns the implementation of centrality measure algorithms,

and applys to graphs induced by the proximity relation of devices in distributed

IoT contexts. To the best of our knowledge, centrality measures have been so

far mostly considered for social networks, and their implementation assumes the

availability of the (static) graph at hand at a single machine [1, 21, 24], such that505

the algorithms computes its output using techniques that exploit parallelism to

address large-scale. The work in this paper is different from at least two points

of view:

� the input graph is not available in a single machine, but is actually dis-

tributed across space (each node of the network knows the neighbours it510

can communicate to): accordingly, computation of a centrality measure is

carried on in a fully distributed way, propagating the relevant information

until reaching the desired result in each node of the network;

� the input graph can also vary over time (because of device faults, network

partitions, and mobility): accordingly, computation has to be seen as an515

33

ongoing task, in which changes to the input are continuosly processed and

eventually reflect into the output.

Systems performing this kind of input/output distributed computation are often

referred to as self-stabilising systems [3, 50, 51, 52]. There, the goal is to make

transient changes eventually irrelevant, such that as soon as a network becomes520

static, the result converges to the correct expected value.

Several approaches have been introduced to conveniently analyse and de-

sign distributed computations spanning over physical space. They fall under

the umbrella of so-called spatial computing languages—a survey on which can

be found in [53], along with a more recent historical perspective in [54]. In525

principle, most of them could be used to implement the centrality measures as

proposed in this paper, though our choice of field-calculus and Protelis language

provides a key combination that effectively allows to design and test several cen-

trality measures, making them readily available in practical systems—e.g, for

the applications contexts described in [54].530

For instance, a number of approaches in spatial computing are aimed at

providing programming models that abstract from the existence of individual

devices, such as Hood [55], Abstract Regions [56], self-healing geometries [57],

or universal patterns [58]: so, they are not appropriate for centrality measures,

which are tightly connected to the problem of counting neighbours and estimat-535

ing distances.

Another set of approaches are more data oriented, and concern summari-

sation of information extracted from certain regions, to be streamed to others,

such as TinyDB [59], Cougar [60], TinyLime [61], and Regiment [62]): again, this

context does not fit centrality measures, which has the goal of creating a result540

in every device of the network, achieved by local propagation and aggregation

of information.

Centrality measures require an expressive programming model, specifically

targeted at the idea of considering as result of computation a true distributed

data structure, namely, one assigning a value to each device of the network.545

34

This is precisely the goal of aggregate computing approaches [4], and especially

of field-based computing models, such as those based on the field calculus [5].

While in principle several instantiations of this approach exist, such as Scafi [32],

Proto [63], and the fixpoint framework in [7], the programming language Pro-

telis [15] along with the Alchemist simulator [28] provided an expressive and550

practical framework for quickly designing and testing centrality measure algo-

rithms.

6. Conclusions and Further Work

In this paper, we presented a natural translation of various centrality mea-

sures in field calculus, both suggesting that field calculus is well-suited for ex-555

pressing massively parallel computations over graphs, and producing a new

self-stabilising building block which can be applied to solve problems such as

improved leader election or network vulnerabilities detection. We then evalu-

ated the translations in two simulation scenarios: the first measuring the error

of harmonic centrality estimations in a mutable scenario; the second compar-560

ing the effectiveness of various centrality measures in guiding the selection of a

central coordinator.

Our results suggest a possible trade-off between computation cost and rank-

ing effectiveness: PageRank is more easy to compute, while harmonic centrality

is more effective in selecting central vertices. Thus, a centrality measure which565

is simultaneously effective on IoT graphs and of low computation cost still has

to be developed. In future work, we plan to search for centrality measures im-

proving the trade-off, and investigate further practical applications of centrality

measures in edge computing case studies. Furthermore, we plan check whether

the field calculus implementation of centrality measures may be fruitfully ap-570

plicable also to HPC settings. Finally, self-stabilisation of PageRank has only

been validated in simulation: in future work we plan to search for a formal proof

of this fact.

35

References

References575

[1] P. Boldi, M. Rosa, S. Vigna, Hyperanf: approximating the neighbourhood

function of very large graphs on a budget, in: Proceedings of the 20th

International Conference on World Wide Web, WWW 2011, Hyderabad,

India, March 28 - April 1, 2011, 2011, pp. 625–634. doi:10.1145/1963405.

1963493.580

[2] C. R. Palmer, P. B. Gibbons, C. Faloutsos, ANF: a fast and scalable

tool for data mining in massive graphs, in: Proceedings of the Eighth

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, July 23-26, 2002, Edmonton, Alberta, Canada, 2002, pp. 81–90.

doi:10.1145/775047.775059.585

[3] M. Viroli, G. Audrito, J. Beal, F. Damiani, D. Pianini, Engineering re-

silient collective adaptive systems by self-stabilisation, ACM Transactions

on Modelling and Computer Simulation (TOMACS) 28 (2) (2018) 16:1–

16:28. doi:10.1145/3177774.

[4] J. Beal, D. Pianini, M. Viroli, Aggregate programming for the Internet of590

Things, IEEE Computer 48 (9).

[5] G. Audrito, M. Viroli, F. Damiani, D. Pianini, J. Beal, A higher-order cal-

culus of computational fields, ACM Transactions on Computational Logic

(TOCL) 20 (1) (2019) 5:1–5:55. doi:10.1145/3285956.

[6] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing595

applications with the tota middleware, in: Pervasive Computing and Com-

munications, 2004, IEEE, 2004, pp. 263– 273. doi:10.1109/PERCOM.2004.

1276864.

[7] A. Lluch-Lafuente, M. Loreti, U. Montanari, Asynchronous distributed exe-

cution of fixpoint-based computational fields, Logical Methods in Computer600

Science 13 (1). doi:10.23638/LMCS-13(1:13)2017.

36

http://dx.doi.org/10.1145/1963405.1963493
http://dx.doi.org/10.1145/1963405.1963493
http://dx.doi.org/10.1145/1963405.1963493
http://dx.doi.org/10.1145/775047.775059
http://dx.doi.org/10.1145/3177774
http://dx.doi.org/10.1145/3285956
http://dx.doi.org/10.1109/PERCOM.2004.1276864
http://dx.doi.org/10.1109/PERCOM.2004.1276864
http://dx.doi.org/10.1109/PERCOM.2004.1276864
http://dx.doi.org/10.23638/LMCS-13(1:13)2017

[8] J. Bachrach, J. Beal, J. McLurkin, Composable continuous space programs

for robotic swarms, Neural Computing and Applications 19 (6) (2010) 825–

847.

[9] J. Coutaz, J. L. Crowley, S. Dobson, D. Garlan, Context is key, Commun.605

ACM 48 (3) (2005) 49–53. doi:10.1145/1047671.1047703.

[10] N. Bicocchi, M. Mamei, F. Zambonelli, Self-organizing virtual macro sen-

sors, TAAS 7 (1) (2012) 2:1–2:28.

[11] J. Beal, K. Usbeck, J. Loyall, M. Rowe, J. Metzler, Adaptive opportunistic

airborne sensor sharing, ACM Trans. Auton. Adapt. Syst. 13 (1) (2018)610

6:1–6:29.

[12] G. Audrito, F. Damiani, M. Viroli, Aggregate graph statistics, in: D. Pi-

anini, G. Salvaneschi (Eds.), Proceedings First Workshop on Architec-

tures, Languages and Paradigms for IoT, ALP4IoT@iFM 2017, Turin,

Italy, September 18, 2017, Vol. 264 of EPTCS, 2017, pp. 18–22. doi:615

10.4204/EPTCS.264.2.

[13] G. Audrito, J. Beal, F. Damiani, M. Viroli, Space-time universality of

field calculus, in: Coordination Models and Languages, Vol. 10852 of

Lecture Notes in Computer Science, Springer, 2018, pp. 1–20. doi:

10.1007/978-3-319-92408-3_1.620

[14] A. Igarashi, B. C. Pierce, P. Wadler, Featherweight Java: A minimal core

calculus for Java and GJ, ACM Transactions on Programming Languages

and Systems 23 (3).

[15] D. Pianini, M. Viroli, J. Beal, Protelis: Practical aggregate programming,

in: ACM Symposium on Applied Computing 2015, 2015, pp. 1846–1853.625

[16] M. Eysholdt, H. Behrens, Xtext: Implement your language faster than

the quick and dirty way, in: Proceedings of the ACM International Confer-

ence Companion on Object Oriented Programming Systems Languages and

37

http://dx.doi.org/10.1145/1047671.1047703
http://dx.doi.org/10.4204/EPTCS.264.2
http://dx.doi.org/10.4204/EPTCS.264.2
http://dx.doi.org/10.4204/EPTCS.264.2
http://dx.doi.org/10.1007/978-3-319-92408-3_1
http://dx.doi.org/10.1007/978-3-319-92408-3_1
http://dx.doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625

Applications Companion, OOPSLA ’10, Association for Computing Ma-

chinery, New York, NY, USA, 2010, p. 307–309. doi:10.1145/1869542.630

1869625.

URL https://doi.org/10.1145/1869542.1869625

[17] L. Bettini, Implementing domain-specific languages with Xtext and Xtend,

Packt Publishing Ltd, 2016.

[18] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, M. Viroli, Mod-635

elling and simulation of opportunistic iot services with aggregate comput-

ing, Future Gener. Comput. Syst. 91 (2019) 252–262. doi:10.1016/j.

future.2018.09.005.

URL https://doi.org/10.1016/j.future.2018.09.005

[19] A. Paulos, S. Dasgupta, J. Beal, Y. Mo, K. D. Hoang, L. J. Bryan, P. P.640

Pal, R. E. Schantz, J. Schewe, R. K. Sitaraman, A. Wald, C. Wayllace,

W. Yeoh, A framework for self-adaptive dispersal of computing services,

in: IEEE 4th International Workshops on Foundations and Applications of

Self* Systems, FAS*W@SASO/ICCAC 2019, Umea, Sweden, June 16-20,

2019, IEEE, 2019, pp. 98–103. doi:10.1109/FAS-W.2019.00036.645

URL https://doi.org/10.1109/FAS-W.2019.00036

[20] J. Beal, K. Usbeck, J. P. Loyall, M. Rowe, J. M. Metzler, Adaptive oppor-

tunistic airborne sensor sharing, ACM Trans. Auton. Adapt. Syst. 13 (1)

(2018) 6:1–6:29. doi:10.1145/3179994.

URL https://doi.org/10.1145/3179994650

[21] L. Page, Method for node ranking in a linked database, uS Patent 6,285,999

(Sep. 4 2001).

[22] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search

engine, Comput. Networks 30 (1-7) (1998) 107–117. doi:10.1016/

S0169-7552(98)00110-X.655

38

http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1016/j.future.2018.09.005
http://dx.doi.org/10.1016/j.future.2018.09.005
http://dx.doi.org/10.1016/j.future.2018.09.005
http://dx.doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1016/j.future.2018.09.005
https://doi.org/10.1109/FAS-W.2019.00036
http://dx.doi.org/10.1109/FAS-W.2019.00036
https://doi.org/10.1109/FAS-W.2019.00036
https://doi.org/10.1145/3179994
https://doi.org/10.1145/3179994
https://doi.org/10.1145/3179994
http://dx.doi.org/10.1145/3179994
https://doi.org/10.1145/3179994
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X

[23] P. Flajolet, É. Fusy, O. Gandouet, F. Meunier, Hyperloglog: the analysis of

a near-optimal cardinality estimation algorithm, in: Analysis of Algorithms

2007 (AofA07), 2007, pp. 127–146.

[24] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, S. Vigna, Four degrees of

separation, in: Web Science 2012, WebSci ’12, Evanston, IL, USA - June660

22 - 24, 2012, 2012, pp. 33–42. doi:10.1145/2380718.2380723.

[25] M. Viroli, R. Casadei, D. Pianini, On execution platforms for large-

scale aggregate computing, in: Proceedings of the 2016 ACM Interna-

tional Joint Conference on Pervasive and Ubiquitous Computing: Ad-

junct, UbiComp ’16, ACM, New York, NY, USA, 2016, pp. 1321–1326.665

doi:10.1145/2968219.2979129.

[26] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large

clusters, Commun. ACM 51 (1) (2008) 107–113. doi:10.1145/1327452.

1327492.

[27] C. Guerrero, I. Lera, C. Juiz, On the influence of fog colonies partitioning670

in fog application makespan, in: M. Younas, J. P. Disso (Eds.), 6th IEEE

International Conference on Future Internet of Things and Cloud, FiCloud

2018, Barcelona, Spain, August 6-8, 2018, IEEE Computer Society, 2018,

pp. 377–384. doi:10.1109/FiCloud.2018.00061.

URL https://doi.org/10.1109/FiCloud.2018.00061675

[28] D. Pianini, S. Montagna, M. Viroli, Chemical-oriented simulation of com-

putational systems with ALCHEMIST, J. Simulation 7 (3) (2013) 202–215.

doi:10.1057/jos.2012.27.

[29] M. A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical

systems with many species and many channels, The Journal of Physical680

Chemistry A 104 (9) (2000) 1876–1889. doi:10.1021/jp993732q.

URL https://doi.org/10.1021/jp993732q

39

http://dx.doi.org/10.1145/2380718.2380723
http://dx.doi.org/10.1145/2968219.2979129
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/FiCloud.2018.00061
https://doi.org/10.1109/FiCloud.2018.00061
https://doi.org/10.1109/FiCloud.2018.00061
http://dx.doi.org/10.1109/FiCloud.2018.00061
https://doi.org/10.1109/FiCloud.2018.00061
http://dx.doi.org/10.1057/jos.2012.27
https://doi.org/10.1021/jp993732q
https://doi.org/10.1021/jp993732q
https://doi.org/10.1021/jp993732q
http://dx.doi.org/10.1021/jp993732q
https://doi.org/10.1021/jp993732q

[30] R. Casadei, M. Viroli, G. Audrito, D. Pianini, F. Damiani, Engineering col-

lective intelligence at the edge with aggregate processes, Engineering Appli-

cations of Artificial Intelligence 97 (104081). doi:10.1016/j.engappai.685

2020.104081.

[31] S. Montagna, D. Pianini, M. Viroli, A model for drosophila melanogaster

development from a single cell to stripe pattern formation, in: S. Ossowski,

P. Lecca (Eds.), Proceedings of the ACM Symposium on Applied Comput-

ing, SAC 2012, Riva, Trento, Italy, March 26-30, 2012, ACM, 2012, pp.690

1406–1412. doi:10.1145/2245276.2231999.

URL https://doi.org/10.1145/2245276.2231999

[32] R. Casadei, M. Viroli, Towards aggregate programming in Scala, in: First

Workshop on Programming Models and Languages for Distributed Com-

puting, PMLDC ’16, ACM, New York, NY, USA, 2016, pp. 5:1–5:7.695

doi:10.1145/2957319.2957372.

[33] S. Hoyer, J. Hamman, xarray: N-D labeled arrays and datasets in Python,

Journal of Open Research Software 5 (1). doi:10.5334/jors.148.

[34] J. D. Hunter, Matplotlib: A 2d graphics environment, Computing In Sci-

ence & Engineering 9 (3) (2007) 90–95. doi:10.1109/MCSE.2007.55.700

[35] V. Zaburdaev, S. Denisov, J. Klafter, Lévy walks, Reviews of Modern

Physics 87 (2) (2015) 483–530. doi:10.1103/revmodphys.87.483.

[36] S. Mertens, C. Moore, Continuum percolation thresholds in two dimensions,

Physical Review E 86 (6).

[37] D. Pianini, R. Casadei, M. Viroli, A. Natali, Partitioned integra-705

tion and coordination via the self-organising coordination regions

pattern, Future Generation Computer Systems 114 (2021) 44 – 68.

doi:https://doi.org/10.1016/j.future.2020.07.032.

URL http://www.sciencedirect.com/science/article/pii/

S0167739X20304775710

40

http://dx.doi.org/10.1016/j.engappai.2020.104081
http://dx.doi.org/10.1016/j.engappai.2020.104081
http://dx.doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1145/2245276.2231999
https://doi.org/10.1145/2245276.2231999
https://doi.org/10.1145/2245276.2231999
http://dx.doi.org/10.1145/2245276.2231999
https://doi.org/10.1145/2245276.2231999
http://dx.doi.org/10.1145/2957319.2957372
http://dx.doi.org/10.5334/jors.148
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1103/revmodphys.87.483
http://www.sciencedirect.com/science/article/pii/S0167739X20304775
http://www.sciencedirect.com/science/article/pii/S0167739X20304775
http://www.sciencedirect.com/science/article/pii/S0167739X20304775
http://www.sciencedirect.com/science/article/pii/S0167739X20304775
http://www.sciencedirect.com/science/article/pii/S0167739X20304775
http://dx.doi.org/https://doi.org/10.1016/j.future.2020.07.032
http://www.sciencedirect.com/science/article/pii/S0167739X20304775
http://www.sciencedirect.com/science/article/pii/S0167739X20304775
http://www.sciencedirect.com/science/article/pii/S0167739X20304775

[38] J. Wang, Y. Gao, K. Wang, A. K. Sangaiah, S. Lim, An affinity

propagation-based self-adaptive clustering method for wireless sensor net-

works, Sensors 19 (11) (2019) 2579. doi:10.3390/s19112579.

URL https://doi.org/10.3390/s19112579

[39] E. Sakhaee, K. Leibnitz, N. Wakamiya, M. Murata, Bio-inspired layered715

clustering scheme for self-adaptive control in wireless sensor networks, in:

2009 2nd International Symposium on Applied Sciences in Biomedical and

Communication Technologies, 2009, pp. 1–6.

[40] S. Raghuwanshi, A. Mishra, A self-adaptive clustering based algorithm for

increased energy-efficiency and scalability in wireless sensor networks, in:720

2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE

Cat. No.03CH37484), Vol. 5, 2003, pp. 2921–2925 Vol.5.

[41] P. Zahadat, Self-adaptation and self-healing behaviors via a dynamic distri-

bution process, in: IEEE 4th International Workshops on Foundations and

Applications of Self* Systems, FAS*W@SASO/ICCAC 2019, Umea, Swe-725

den, June 16-20, 2019, IEEE, 2019, pp. 261–262. doi:10.1109/FAS-W.

2019.00072.

URL https://doi.org/10.1109/FAS-W.2019.00072

[42] R. L. Stewart, R. A. Russell, A distributed feedback mechanism to regulate

wall construction by a robotic swarm, Adapt. Behav. 14 (1) (2006) 21–51.730

doi:10.1177/105971230601400104.

URL https://doi.org/10.1177/105971230601400104

[43] M. Abderrahim, M. Ouzzif, K. Guillouard, J. François, A. Lebre, A holis-

tic monitoring service for fog/edge infrastructures: A foresight study, in:

M. Younas, M. Aleksy, J. Bentahar (Eds.), 5th IEEE International Confer-735

ence on Future Internet of Things and Cloud, FiCloud 2017, Prague, Czech

Republic, August 21-23, 2017, IEEE Computer Society, 2017, pp. 337–344.

doi:10.1109/FiCloud.2017.30.

URL https://doi.org/10.1109/FiCloud.2017.30

41

https://doi.org/10.3390/s19112579
https://doi.org/10.3390/s19112579
https://doi.org/10.3390/s19112579
https://doi.org/10.3390/s19112579
https://doi.org/10.3390/s19112579
http://dx.doi.org/10.3390/s19112579
https://doi.org/10.3390/s19112579
https://doi.org/10.1109/FAS-W.2019.00072
https://doi.org/10.1109/FAS-W.2019.00072
https://doi.org/10.1109/FAS-W.2019.00072
http://dx.doi.org/10.1109/FAS-W.2019.00072
http://dx.doi.org/10.1109/FAS-W.2019.00072
http://dx.doi.org/10.1109/FAS-W.2019.00072
https://doi.org/10.1109/FAS-W.2019.00072
https://doi.org/10.1177/105971230601400104
https://doi.org/10.1177/105971230601400104
https://doi.org/10.1177/105971230601400104
http://dx.doi.org/10.1177/105971230601400104
https://doi.org/10.1177/105971230601400104
https://doi.org/10.1109/FiCloud.2017.30
https://doi.org/10.1109/FiCloud.2017.30
https://doi.org/10.1109/FiCloud.2017.30
http://dx.doi.org/10.1109/FiCloud.2017.30
https://doi.org/10.1109/FiCloud.2017.30

[44] A. Brogi, S. Forti, M. Gaglianese, Measuring the fog, gently, in: S. Yangui,740

I. B. Rodriguez, K. Drira, Z. Tari (Eds.), Service-Oriented Computing -

17th International Conference, ICSOC 2019, Toulouse, France, October 28-

31, 2019, Proceedings, Vol. 11895 of Lecture Notes in Computer Science,

Springer, 2019, pp. 523–538. doi:10.1007/978-3-030-33702-5_40.

URL https://doi.org/10.1007/978-3-030-33702-5_40745

[45] O. Skarlat, M. Nardelli, S. Schulte, S. Dustdar, Towards qos-aware fog ser-

vice placement, in: 1st IEEE International Conference on Fog and Edge

Computing, ICFEC 2017, Madrid, Spain, May 14-15, 2017, IEEE Com-

puter Society, 2017, pp. 89–96. doi:10.1109/ICFEC.2017.12.

URL https://doi.org/10.1109/ICFEC.2017.12750

[46] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Sci-

ence 286 (5439) (1999) 509–512. doi:10.1126/science.286.5439.509.

URL https://doi.org/10.1126/science.286.5439.509

[47] X. Zhou, B. Yao, X. Chen, Every lobster is odd-elegant, Information Pro-

cessing Letters 113 (1-2) (2013) 30–33. doi:10.1016/j.ipl.2012.09.008.755

URL https://doi.org/10.1016/j.ipl.2012.09.008

[48] M. Penrose, et al., Random geometric graphs, Vol. 5, Oxford university

press, 2003.

[49] Y. Pigné, A. Dutot, F. Guinand, D. Olivier, Graphstream: A tool for

bridging the gap between complex systems and dynamic graphs, CoRR760

abs/0803.2093. arXiv:0803.2093.

URL http://arxiv.org/abs/0803.2093

[50] K. Altisen, P. Corbineau, S. Devismes, A framework for certified self-

stabilization, in: Formal Techniques for Distributed Objects, Components,

and Systems, Springer International Publishing, Cham, 2016, pp. 36–51.765

[51] F. Faghih, B. Bonakdarpour, S. Tixeuil, S. Kulkarni, Specification-based

synthesis of distributed self-stabilizing protocols, in: Formal Techniques

42

https://doi.org/10.1007/978-3-030-33702-5_40
http://dx.doi.org/10.1007/978-3-030-33702-5_40
https://doi.org/10.1007/978-3-030-33702-5_40
https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1109/ICFEC.2017.12
http://dx.doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/j.ipl.2012.09.008
http://dx.doi.org/10.1016/j.ipl.2012.09.008
https://doi.org/10.1016/j.ipl.2012.09.008
http://arxiv.org/abs/0803.2093
http://arxiv.org/abs/0803.2093
http://arxiv.org/abs/0803.2093
http://arxiv.org/abs/0803.2093
http://arxiv.org/abs/0803.2093

for Distributed Objects, Components, and Systems, Springer International

Publishing, Cham, 2016, pp. 124–141.

[52] J. Beal, M. Viroli, Building blocks for aggregate programming of self-770

organising applications, in: 2nd FoCAS Workshop on Fundamentals of

Collective Systems, IEEE CS, to appear, 2014, pp. 1–6.

[53] J. Beal, S. Dulman, K. Usbeck, M. Viroli, N. Correll, Organizing the aggre-

gate: Languages for spatial computing, in: Formal and Practical Aspects

of Domain-Specific Languages: Recent Developments, IGI Global, 2013,775

Ch. 16, pp. 436–501. doi:10.4018/978-1-4666-2092-6.ch016.

[54] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, D. Pianini, From

distributed coordination to field calculus and aggregate computing, J. Log.

Algebraic Methods Program. 109. doi:10.1016/j.jlamp.2019.100486.

URL https://doi.org/10.1016/j.jlamp.2019.100486780

[55] K. Whitehouse, C. Sharp, E. Brewer, D. Culler, Hood: a neighborhood

abstraction for sensor networks, in: Proceedings of the 2nd international

conference on Mobile systems, applications, and services, ACM Press, 2004.

[56] M. Welsh, G. Mainland, Programming sensor networks using abstract re-

gions., in: NSDI, Vol. 4, 2004, pp. 3–3.785

URL https://dl.acm.org/citation.cfm?id=1251178

[57] L. Clement, R. Nagpal, Self-assembly and self-repairing topologies, in:

Workshop on Adaptability in Multi-Agent Systems, RoboCup Australian

Open, 2003.

[58] D. Yamins, A theory of local-to-global algorithms for one-dimensional spa-790

tial multi-agent systems, Ph.D. thesis, Harvard, Cambridge, MA, USA

(2007).

[59] S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, TAG: A Tiny

AGgregation Service for Ad-hoc Sensor Networks, SIGOPS Oper. Syst.

Rev. 36 (2002) 131–146. doi:10.1145/844128.844142.795

43

http://dx.doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1016/j.jlamp.2019.100486
https://dl.acm.org/citation.cfm?id=1251178
https://dl.acm.org/citation.cfm?id=1251178
https://dl.acm.org/citation.cfm?id=1251178
https://dl.acm.org/citation.cfm?id=1251178
http://dx.doi.org/10.1145/844128.844142

[60] Y. Yao, J. Gehrke, The cougar approach to in-network query processing in

sensor networks, SIGMOD Record 31 (2002) 9–18. doi:10.1145/601858.

601861.

[61] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy, G. P. Picco,

Mobile data collection in sensor networks: The tinylime middleware, Else-800

vier Pervasive and Mobile Computing Journal 4 (2005) 446–469.

[62] R. Newton, M. Welsh, Region streams: Functional macroprogramming for

sensor networks, in: Workshop on Data Management for Sensor Networks,

DMSN ’04, ACM, 2004, pp. 78–87.

[63] J. Beal, J. Bachrach, Infrastructure for engineered emergence in sensor/ac-805

tuator networks, IEEE Intelligent Systems 21 (2006) 10–19.

44

http://dx.doi.org/10.1145/601858.601861
http://dx.doi.org/10.1145/601858.601861
http://dx.doi.org/10.1145/601858.601861

	Introduction
	Background
	Field Calculus
	Protelis
	Centrality Measures
	Degree centrality
	PageRank
	Neighbourhood function
	Closeness centrality
	Harmonic centrality

	Aggregate Graph Statistics
	Degree centrality
	PageRank
	Neighbourhood function and HyperANF
	Harmonic and closeness centrality
	Leader election

	Evaluation
	Quality of the Estimates
	Application: fog colonies partitioning
	Application: Self-organising Coordination Regions

	Related Work
	Conclusions and Further Work

