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46 Abstract

47

48 Large differences in COVID-19 death rates exist between countries and between regions of the same 

49 country. Some very low death rate countries such as Eastern Asia, Central Europe or the Balkans have a 

50 common feature of eating large quantities of fermented foods. Although biases exist when examining 

51 ecological studies, fermented vegetables or cabbage were associated with low death rates in European 

52 countries. SARS-CoV-2 binds to its receptor, the angiotensin converting enzyme 2 (ACE2). As a result of 

53 SARS-Cov-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT1R) axis  

54 associated with oxidative stress. This leads to insulin resistanceas well as lung and endothelial damage, two 

55 severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent 

56 antioxidant in humans and can block the AT1R axis. Cabbage contains precursors of sulforaphane, the most 

57 active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 

58 activators. Three examples are given: Kimchi in Korea, westernized foods and the slum paradox. It is 

59 proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-

60 associated antioxidant effects helpful in mitigating COVID-19 severity. 

61 Key words: COVID-19, diet, sulforaphane, Lactobacillus, Angiotensin converting enzyme 2, kimchi, 

62 cabbage, fermented vegetable

63 Abbreviations

64 ACE: Angiotensin converting enzyme

65 Ang II: Angiotensin II

66 AT1R: Angiotensin II receptor type 1

67 COVID-19: Coronavirus 19 disease

68 GI: Gastro-intestinal 

69 LAB: Lactic acid bacilli

70 NF-κB: Nuclear factor kappa B

71 Nrf2: Nuclear factor (erythroid-derived 2)-like 2

72 PEDV: Porcine epidemic diarrhea virus 

73 ROS: Reactive oxygen species

74 SARS: Severe acute respiratory syndrome

75 SARS-Cov-2: Severe acute respiratory syndrome coronavirus 2

76 TGEV: Transmissible Gastroenteritis Coronavirus InfectionA
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80 Introduction

81 A COVID-19 epidemic started in China and then disseminated to other Asian countries before becoming a 

82 pandemic. There is a large variability across countries in both incidence and mortality, and most of the 

83 current debates on COVID-19 focus on the differences between countries. Several intertwined factors can 

84 be proposed: social distancing, health system capacity, age of the population, social lifestyle (gathering of 

85 family/friends, social behavior), testing capacity and/or timing and intensity of the first outbreak.German 

86 fatalities are strikingly low as compared to many European countries. Among the several explanations 

87 proposed, an early and large testing of the population was put forward 1 as well as social distancing. 

88 However, little attention has been given to regional within-country differences that may propose new 

89 hypotheses. 

90 It would appear that the pandemic has so far resulted in proportionately fewer deaths in some Central 

91 European countries, the Balkans, China, in most Eastern Asian countries as well as in many Sub-Saharan 

92 African countries. Several reasons can explain this picture. One of them may be the type of diet in these 

93 low mortality countries. 2,3

94 Diet has been proposed to mitigate COVID-19.4,5Some foods or supplements may have a benefit on the 

95 immune response to respiratory viruses. However, to date, there are no specific data available to confirm 

96 the putative benefits of diet supplementation, probiotics, and nutraceuticals in the current COVID-19 

97 pandemic. 6News and social media platforms have implicated dietary supplements in the treatment and 

98 prevention of COVID-19  without evidence.7

99 In this paper, we discuss country and regional differences in COVID-19 deaths. We attempt to find 

100 potential links between foods and differences at the national or regional levels in the aim to propose a 

101 common mechanism focusing on oxidative stress that may be relevant in COVID-19 mitigation strategies. 

102 We used cabbage and fermented vegetable as a proof-of-concept.

103 1- Biases to be considered

104 According to the Johns Hopkins coronavirus resource center (https://coronavirus.jhu.edu), one of the most 

105 important ways of measuring the burden of COVID-19 is mortality. However, death rates are assessed 

106 differently between countries and there are many biases that are almost impossible to assess. Using the 

107 rates of COVID-19 confirmed cases is subject to limitations that are similar to or even worse than the 

108 differences in the use of COVID-19 testing. A
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109 Differences in the mortality rates depend on health care systems, the reporting method and many unknown 

110 factors. Countries throughout the world have reported very different case fatality ratios - the number of 

111 deaths divided by the number of confirmed cases - but these numbers cannot be compared easily due to 

112 biases. On the other hand, for many countries, the methodology used to report death rates in the different 

113 regions is standardized across the country.

114 We used mortality per number of inhabitants to assess death rates, as proposed by the European Center for 

115 Disease Prevention and Control  (ecdc, https://www.ecdc.europa.eu/en),and to report trends with cutoffs at 

116 25, 50, 100 and 250 per million.   

117 Our hypothesis is mostly based on ecological data that are hypothesis-generating and that require 

118 confirmation by proper studies.

119 2- Multifactorial origin of the COVID-19 epidemic

120 Like most diseases, COVID-19 exhibits large geographical variations which frequently remain unexplained 

121 8. The COVID-19 epidemic is multifactorial, and factors like climate, population density, age,phenotype 

122 and prevalence of non-communicable diseases are also associated to increased incidence and mortality 9. 

123 Diet represents only one of the possible causes of the COVID-19 epidemic and its importance needs to be 

124 better assessed. Some risk factors for the COVID-19 epidemics are proposed at the individual and country 

125 levels in Table 1.

126 3- Ecological data on COVID-19 death rates 

127 When comparing death rates, large differences exist between and within countries and the evolution of the 

128 pandemic differs largely between countries (Figure 1). Although there are many pitfalls in analyzing death 

129 rates for COVID-19,3 the evolution of death rates between May 20 and July 18 shows a dramatic increase 

130 in Latin America and only some increase in European countries, certain African countries, the Middle East, 

131 India, Pakistan and some of the South East Asian countries. However, there is no change in the very low 

132 death rates of Cambodia, China, Japan, Korea, Lao, Malaysia, Taiwan, Vietnam and of many Sub-Saharan 

133 African countries, Australia and New Zealand. This geographical pattern is very unlikely to be totally due 

134 to reporting differences between countries.  

135 In some high death-rate countries such as Italy (Figure 2), variations are extremely large from 50 per 

136 million in Calabria to over 1,600 in Lombardia. In Switzerland, the French- and Italian-speaking cantons 

137 have a far higher death rate than the German-speaking ones (Office fédéral de la santé publique, 

138 Switzerland) (Figure 3). It may be proposed that the high-death rate cantons were contaminated by French A
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139 and Italian people. However, the Mulhouse airport serves the region of Basel (Switzerland), the Haut-Rhin 

140 department (France) and the region of Freiburg (Germany). There was a COVID-19 outbreak in the Haut-

141 Rhin department, in particular in Mulhouse and Colmar. The death rate for COVID-19 (May 20, 2020) was 

142 935 per million inhabitants in France but only 10 to 25 in Switzerland and 7 in Germany. It is important to 

143 consider these regional differences since reporting of deaths is similar within the country and many factors 

144 may be considered.

145 In many Western countries, large cities (e.g. London, Madrid, Milan, New York, Paris) have been the most 

146 affected. This seems to be true also for many countries in which the rural areas have much fewer cases.  

147 The number of deaths is relatively low in Sub-Saharan Africa compared to other regions, and the low 

148 population density (which applies in rural areas but not in megacities such as Cairo or Lagos) or the 

149 differences in health infrastructure are unlikely to be the only explanation. 10 It has been proposed that hot 

150 temperature may reduce COVID-19, but, in Latin American countries, death rates are high (e.g. Brazil, 

151 Ecuador, Peru and Mexico). 

152 4- Is diet partly responsible for differences between and within countries?

153 Nutrition may play a role in the immune defense against COVID-19 and may explain some of the 

154 differences seen in COVID-19 between and within countries 3. In this concept paper, raw and fermented 

155 cabbage were proposed to be candidates.

156 To test the potential role of fermented foods in the COVID-19 mortality in Europe, an ecological study,  the 

157 European Food Safety Authority (EFSA) Comprehensive European Food Consumption Database, was used 

158 to study the country consumption of fermented vegetables, pickled/marinated vegetables, fermented milk, 

159 yoghurt and fermented sour milk. 11 Of all the variables considered, including confounders, only fermented 

160 vegetables reached statistical significance with the COVID-19 death rate per country. For each g/day 

161 increase in consumption of fermented vegetables of the country, the mortality risk for COVID-19 was 

162 found to decrease by 35.4% (Figure 4). 

163 A second ecological study has analyzed cruciferous vegetables (broccoli, cauliflower, head cabbage (white, 

164 red and savoy cabbage), leafy brassica) and compared them with spinach, cucumber, courgette, lettuce and 

165 tomato 12.Only head cabbage and cucumber reached statistical significance with the COVID-19 death rate 

166 per country. For each g/day increase in the average national consumption of some of the vegetables (head 

167 cabbage and cucumber), the mortality risk for COVID-19 decreased by a factor of 11, to 13.6 %. The 

168 negative ecological association between COVID-19 mortality and consumption of cabbage and cucumber A
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169 supports the a priori hypothesis previously reported. However, these are ecological studies that need to be 

170 further tested.

171 Another diet component potentially relevant in COVID-19 mortality may be the food supply chain and 

172 traditional groceries.13 The impact of the long supply chain of food on health is measurable by an increase 

173 in metabolic syndrome and insulin resistance.14 Therefore, areas that are more prone to short supply food 

174 and traditional groceries may have been able to better tolerate COVID-19 with a lower death toll. These 

175 considerations may be partly involved in the lower death rates of Southern Italy compared to the Northern 

176 part (Figure 2).

177 5- Fermented foods, microbiome and lactobacilli 

178 The fermentation process, born as a preservation method in the Neolithic age, enabled humans to eat not-

179 so-fresh food and to survive. 15Indigenous fermented foods such as bread, cheese,vegetables and alcoholic 

180 beverages have been prepared and consumed for thousands of years, are strongly linked to culture and 

181 tradition, especially in rural households and village communities, and are consumed by hundreds of 

182 millions of people.16Fermented foods are “foods or beverages made via controlled microbial growth 

183 (including lactic acid bacteria (LAB)) and enzymatic conversions of food components.” 17Not all fermented 

184 foods contain live cultures, as some undergo further processing after fermentation: pasteurization, smoking, 

185 baking, or filtration. These processes kill or remove the live microorganisms in foods such as soy sauces, 

186 bread, most beers and wines as well as chocolate. Live cultures can be found in fermented vegetables and 

187 fermented milk (fermented sour milk, yoghurt, probiotics, etc.).  

188 Most traditional foods with live bacteria in the low-death rate countries are based on LAB fermentation 

189 18.A number of bacteria are involved in the fermentation of kimchi and other Korean traditional fermented 

190 foods, but LAB - including Lactobacillus- are the dominant species in the fermentation process19,20. 

191 Lactobacillus is also an essential species in the fermentation of sauerkraut, Taiwanese 21, Chinese 22 or 

192 other fermented foods23. Lactobacilli are among the most common microorganisms found in kefir, a 

193 traditional fermented milk beverage 24, milk and milk products 25,26. During fermentation, LAB synthesize 

194 vitamins and minerals, and produce biologically-active peptides with anti-oxidant activity 17,27-31.

195 Humans possess two protective layers of biodiversity, and the microbiome has been proposed as an 

196 important actor of COVID-19 32. The environment (outer layer) affects our lifestyle, shaping the 

197 microbiome (inner layer). 33 Many fermented foods contain living microorganisms and modulate the 

198 intestinal microbiome. 17,31,34-36   
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199 The composition of microbiomes varies in different regions of the world. 37Gut microbiota has an inter-

200 individual variability due to genetic predisposition and diet. 38As part of the gut 

201 microbiome, Lactobacillus spp. contributes to its diversity and modulates oxidative stress in the GI tract.  

202 Some foods like cabbage can be fermented by the gut microbiota.39

203 Westernized foods usually lack fermented vegetables and milk-derived products have less biodiversity than 

204 traditional ones. Urbanization in western countries was associated with changes in the gut microbiome and 

205 with intestinal diversity reduction. 38,40-43 Westernized food in Japan led to changes in the microbiome and 

206 in insulin resistance. 44The gut microbiome of westernized urban Saudis had a lower biodiversity than that 

207 of the traditional Bedouin population.45Fast food consumption was characterized by reduced Lactobacilli in 

208 the microbiome. 46

209 The links between gut microbiome, inflammation, obesity and insulin resistance are being observed but 

210 further large studies are needed for a definite conclusion. 47-49

211 Some COVID-19 patients have intestinal microbial dysbiosis 50 with decreased probiotics such 

212 as Lactobacillus and Bifidobacterium 51. Many bacteria are involved in the fermentation of vegetables but 

213 most traditional foods with live bacteria in the low-death rate countries are based on LAB fermentation.18-

214 20,23,30Lactobacilli are among the most common microorganisms found in milk and milk products 24-26.

215 6- Angiotensin-converting enzyme 2 (ACE2) and COVID-19

216 COVID-19 is more severe in older adults and/or patients with comorbidities, such as diabetes, obesity or 

217 hypertension, suggesting a role for insulin resistance.52 Although differences exist between countries, the 

218 same risk factors for severity were found globally, suggesting common mechanisms. A strong relationship 

219 between hyperglycemia, impaired insulin pathway, and cardiovascular disease in type 2 diabetes is linked 

220 to oxidative stress and inflammation.53Lipid metabolism has an important role to play in obesity, in 

221 diabetes and its multi-morbidities, and in ageing.54 The increased severity of COVID-19 in diabetes, 

222 hypertension, obese or elderly individuals may be related to insulin resistance, with oxidative stress as a 

223 common pathway.55Moreover, the severe outcomes of COVID-19 - including lung damage, cytokine storm 

224 or endothelial damage - appear to exist globally, again suggesting common mechanisms.

225 The angiotensin-converting enzyme 2 (ACE2) receptor is part of the dual system -therenin-angiotensin-

226 system (RAS) - consisting of an ACE-Angiotensin-II-AT1R axis and an ACE-2-Angiotensin-(1-7)-Mas 

227 axis. AT1R is involved in most of the effects of Ang II, including oxidative stress generation,56 which in 

228 turn upregulates AT1R 57. In metabolic disorders and with older age, there is an upregulation of the AT1R 

229 axis leading to pro-inflammatory, pro-fibrotic effects in the respiratory system, and to insulin resistance.58 A
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230 SARS-CoV-2 binds to its receptor ACE2 and exploits it for entry into the cell. The ACE2 downregulation, 

231 as a result of SARS-CoV-2 binding, enhances the AT1R axis 59 likely to be associated with insulin 

232 resistance 60,61 but also to severe outcomes of COVID-19 (Figure 5A).

233 7- Anti-oxidant activities of foods linked with COVID-19

234 Many foods have an antioxidant activity 62-64 and the role of nutrition has been proposed to mitigate 

235 COVID-19 65. Many antioxidant mechanisms have been proposed, and several foods can interact with 

236 transcription factors related to antioxidant effects such as theNuclear factor (erythroid-derived 2)-like 2 

237 (Nrf2).4Some processes like fermentation increase the antioxidant activity of milk, cereals, fruit, 

238 vegetables, meat and fish.29

239 7-1- Nrf2, a central antioxidant system

240 Reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, exert beneficial and 

241 toxic effects on cellular functions. Nrf2 is a pleiotropic transcription factor at the centre of a complex 

242 regulatory network that protects against oxidative stress and the expression of a wide array of genes 

243 involved in immunity and inflammation, including antiviral actions.66  Nrf2 activity in response to chemical 

244 insults is regulated by a thiol-rich protein named KEAP1 (Kelch-like ECH-associated protein 1).  The 

245 KEAP1-Nrf2 system is the body’s dominant defense mechanism against ROS.67Induction of the antioxidant 

246 responsive element and the ROS mediated pathway by Nrf2 reduces the activity of nuclear factor kappa B 

247 (NF-κB),  68whereas NF-κB can modulate Nrf2 transcription and activity, having both positive and negative 

248 effects on the target gene expression 69.

249 Natural compounds derived from plants, vegetables, fungi and micronutrients (e.g. curcumin, sulforaphane, 

250 resveratrol and vitamin D) or physical exercise can activate Nrf2.70,71However, sulforaphane is the most 

251 potent activator of Nrf2.3,34“Ancient foods”, and particularly those containing Lactobacillus, activate 

252 Nrf2.72

253 Nrf2 may be involved in diseases associated with insulin-resistance.60,73-75Nrf2 activity declines with age, 

254 making the elderly more susceptible to oxidative stress-mediated diseases.76 Nrf2 is involved in the 

255 protection against lung 77 or endothelial damage. 78 Nrf2 activating compounds downregulate ACE2 mRNA 

256 expression in human liver-derived HepG2 cells.79Genes encoding cytokines including IL-6 and many 

257 others specifically identified in the "cytokine storm" have been observed in fatal cases of COVID-19.ACE2 

258 can inhibit NF-κB and activate Nrf2.80

259 7-2- Sulforaphane, the most potent Nrf2 natural activatorA
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260 Isothiocyanates are stress-response chemicals formed from glucosinolates in plants often belonging to the 

261 cruciferous family, and more broadly to the Brassica genus including broccoli, watercress, kale, cabbage, 

262 collard greens, Brussels sprouts, bok choy, mustard greens and cauliflower .81The formation of 

263 isothiocyanates from glucosinolates depends on plant-intrinsic factors and extrinsic postharvest factors 

264 such as industrial processing, domestic preparation, mastication, and digestion.82

265 Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)butane] is an isothiocyanate occurring in a stored form 

266 such as glucoraphanin in cruciferous vegetables 83,84.Sulphoraphanes are also found in fermented cabbage 

267 31,85. Present in the plant as its precursor, glucoraphanin, sulforaphane is formed through the actions of 

268 myrosinase, a β-thioglucosidase present in either the plant tissue or the mammalian microbiome 86,87. 

269 Sulforaphane is a clinically relevant nutraceutical compound used for the prevention and treatment of 

270 chronic diseases and may be involved in ageing.88 Along with other natural nutrients, sulforaphane has 

271 been suggested to have a therapeutic value for the treatment of coronavirus disease 2019 (COVID-19).89

272 One of the key mechanisms of action of sulforaphane involves the activation of the Nrf2-Keap1 signaling 

273 pathway.90Sulforaphane is the most effective natural activator of the Nrf2 pathway, and Nrf2 expression 

274 and function is vital for sulforaphane-mediated action.91,92Sulforaphanes were suggested to be effective in 

275 diseases associated with insulin resistance 1,93-95It has been proposed that SARS-CoV-2 downregulates 

276 ACE2 and that there is an increased insulin resistance associated with oxidative stress through the AT1R 

277 pathway. Fermented vegetables and Brassica vegetables release glucoraphanin,converted by the plant or by 

278 the gut microbiome into sulforaphane, which activates Nrf2 and subsequently reduces insulin intolerance 

279 (Figure 5B).

280 7-3- Lactic acid bacteria 

281 Antioxidant activity of Lactobacillus

282 The gastrointestinal (GI) tract is challenged with oxidative stress induced by a wide array of factors, such 

283 as exogenous pathogenic microorganisms and dietary aspects. Redox signaling plays a critical role in the 

284 physiology and pathophysiology of the GI tract 96. The redox mechanisms of Lactobacillus spp. are 

285 involved in the downregulation of ROS-forming enzymes,97,98and redox stress resistance proteins or genes 

286 differ largely between LAB species. In addition, Nrf-2 and NF-κB are two common transcription factors, 

287 through which Lactobacillus spp. also modulates oxidative stress.99 

288 Do lactobacilliprevent insulin resistance? A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

289 Hundreds of studies have attempted to find an efficacy of LAB on insulin resistance-associated diseases. 

290 However, most of them are underpowered or have some methodological flaws. Moreover, not all LAB 

291 strains have the same action on insulin resistance 100 and new better designed studies with the appropriate 

292 LAB are required. A large meta-analysis found that the intake of probiotics resulted in minor but consistent 

293 improvements in several metabolic risk factors in subjects with metabolic diseases, and particularly in 

294 insulin resistance 101. Another recent meta-analysis found that an oral supplementation with probiotics or 

295 synbiotics has a small effect in reducing waist circumference but no effect on body weight or body mass 

296 index (BMI) 102.Kefir, a fermented milk product, was not found to be more effective than yoghurt in the 

297 glycemic control of obesity, possibly because there are insufficient differences between both 103. 

298 Lactobacillus and Nrf2

299 Nrf2 may be involved in diseases associated with insulinresistance 73-75. “Ancient foods”, and particularly 

300 those containing Lactobacillus, activate Nrf272. The microbiome is highly related to insulin resistance.  In 

301 mice, several strains of Lactobacillus were found to regulate Nrf2 in models of ageing 104, in 

302 cardioprotective effects 105, and in non-alcoholic fatty acid liver disease 106. Lactobacillus 

303 plantarum CQPC11 - isolated from Sichuan pickled cabbages - antagonizes oxidation and ageing in mice 

304 107. Lactobacillus protects against ulcerative colitis by modulation of the gut microbiota and Nrf2/Ho-1 

305 pathway 108. The sugary kefir strain, Lactobacillus mali APS1, ameliorates hepatic steatosis by regulation 

306 of Nrf2 and the gut microbiota in rats 109.  In vitro studies have also found an effect of Lactobacilli 

307 mediated by Nrf2 110-112. Interestingly, the symbiotic combination of prebiotic grape pomace extract and 

308 probiotic Lactobacillus sp. reduces intestinal inflammatory markers.113

309 Coronavirus disease in animals and lactic acid bacteria.

310 The porcine epidemic diarrhea virus (PEDV) and the Transmissible Gastroenteritis Coronavirus Infection 

311 (TGEV) are worldwide-distributed coronaviruses. Low levels of Lactobacillus were foundin the intestine 

312 of piglets infected by TGEV 114 or PEDV. Lactobacillus inhibits PEDV or TGEV effects in vitro115,116. 

313 7-4-Nrf2 and COVID-19  

314 A putative mechanism may be proposed (Figure 5). SARS-CoV-2 downregulates ACE2 inducing an 

315 increased insulin resistance associated with oxidative stress through the AT1R pathway. This may explain 

316 risk factors for severe COVID-19. 

317 Fermented vegetables are often made from cruciferous (Brassica) vegetables that release glucoraphanin 

318 converted by the plant or by the gut microbiome into sulforaphane which activates Nrf2 and subsequently A
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319 reduces insulin intolerance by its potent antioxidant activities. Fermented vegetables contain a high content 

320 of Lactobacillus that can activate Nrf2 and impact on the microbiome. 117Sulforaphane and LAB both 

321 thereforehave  the ability to reduce insulin resistance. 

322 Other putative actions on COVID-19 severity may be postulated. The down-regulation of ACE2 reduces 

323 the Ang-1,7 anti-oxidant activity that was found to activate Nrf2. 118,119 Nrf2 protects against hallmarks of 

324 severe COVID-19. It has anti-fibrotic effects on various organs including the lungs, 120 protects against 

325 lung injury and acute respiratory distress syndrome, 121 and endothelial damage78  . Finally, Nrf2 can block 

326 IL-6 in different models of inflammation 122 and might play a role in the COVID-19 cytokine storm.

327 These different mechanisms may explain the importance of fermented cabbage in preventing the severity of 

328 COVID-19. It is clear that other nutrients, vitamin D123 and many different foods act on NRF2 and that 

329 mechanisms other than Nrf2 may be operative.

330 It is not yet known whether sulforaphane and/or LAB may act on the infectivity of SARS-CoV-2. Disulfide 

331 bonds can be formed under oxidizing conditions and play an important role in the folding and stability of 

332 some proteins. The receptor-binding domain of the viral spike proteins and ACE2 have several cysteine 

333 residues. Using molecular dynamics simulations, the binding affinity was significantly impaired when all 

334 of the disulfide bonds of both ACE2 and SARS-CoV/CoV-2 spike proteins were reduced to thiol groups. 

335 This computational finding possibly provides a molecular basis for the differential COVID-19 cellular 

336 recognition due to the oxidative stress.124

337 It is likely that foods with anti-oxidant activity can interact with COVID-19 and that fermented or 

338 cruciferous vegetables represent one of the possible foods involved. If some foods are found to be 

339 associated with a prevention of COVID-19 prevalence or severity, it may be of interest to study their LAB 

340 and/or sulforaphane composition in order to eventually find some common mechanisms and targets for 

341 therapy.   

342 8- May dietary modifications change the course of COVID-19?

343 8-1- Fermented vegetables and Kimchi

344 It is tempting to propose that countries where traditional LAB-fermented vegetables are largely consumed 

345 are those showing lower COVID-19 death rates and that fermented vegetables represent one possible 

346 preventive approach. Other nutrients are found in these products that may enhance their effect (e.g. vitamin 

347 K 125).Kimchi fermented from many vegetables including cabbage has several effects on insulin resistance 

348 associated diseases: anti-diabetic properties,126,127 cardiovascular diseases,28 dyslipidemia 128 or A
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349 ageing.129Kimchi, when fermented for a long time, reduces insulin intolerance to a greater extent than fresh 

350 kimchi,126 indicating that newly formed products during fermentation are important. In particular, Kimchi 

351 from cabbage and Chinese cabbage contains several glucosinolates130-132 that can be transformed in 

352 sulforaphanes either in the plant itself or by the human microbiome.60 In central European countries, raw 

353 and fermented cabbage is commonly consumed.  

354 In Sub-Saharan Africa, people commonly eat fermented foods, mainly cereal-based foods like sorghum, 

355 millet and maize, roots such as cassava, fruits and vegetables.  Fermented cassava products 

356 (like gari and fufu) are a major component of the diet of over 800 million people and, in some areas, these 

357 products constitute over 50% of the diet.16

358 It is clear that sauerkraut is consumed in Alsace (France) where a COVID-19 outbreak has been identified, 

359 but it is not a regular meal. 

360 8-2- Westernized diet

361 Westernized diets contain a reduced amount of fermented vegetables43,133 and may be prone to increasing 

362 insulin resistance44,134 and diseases associated with it, 135 and thereby severe COVID-19.  

363 In the Mediterranean diet, well known for reducing insulin resistance, 136 Nrf2 appears to play an important 

364 role. 71,137 The COVID-19 death rate differences in Italian (Figure 2) and Spanish 3regions suggest a role for 

365 Mediterranean diet and short chain food supply. This also indicates that many foods can have an effect and 

366 that cabbage and fermented foods represent a proof-of-concept. Nrf2 is also involved in the Okinawan-

367 based diet 71, active on insulin intolerance. 138 Taken altogether, it is possible that diet is partly involved in 

368 the COVID-19 death clusters found in large Western cities where traditional diet is often replaced by long 

369 chain food supply.

370 It is clear that diet is not the only risk factor and should be considered in the context of COVID-19 in a 

371 given setting. For example, Nordic/central European people socialize less than the Mediterraneans and 

372 simultaneously may consume more fermented vegetables.

373 8.3. The COVID-19 slum paradox

374 It was expected that the COVID-19 pandemic will be catastrophic if it reached deprived areas of low- and 

375 middle-income countries, in particular informal settlements (slum areas) where social distancing and 

376 lockdown are almost impossible to set up. 139A
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377 In the US, highly populated, regional air hub areas, minorities and poverty had an increased risk of 

378 COVID-19 related mortality. 140 It was proposed that the inequality might be due to the workforce of 

379 essential services, poverty, access to care or air pollution 141. These are common risk factors in mortality 

380 observed in deprived areas of the US. 142 Moreover, in the US and the UK, there are unique health issues 

381 facing black, Asian and minority ethnic communities. 143,144 This greater risk of hospitalizations in these 

382 populations was not explained by socio-economic or behavioural factors. 145 Social distancing is an  

383 important factor to be considered 146 but diet may also be involved.

384 On the other hand, a recent report of the Municipal Corporation of Greater Mumbai (Public Relation 

385 Department, 28-07-2020) found that 57% of subjects tested in the slum area had antibodies against SAR-

386 CoV-2 but only 16% in the non-slum areas. The fatality rate in slum areas was very low (0.05-0.1%). 147 

387 Although precise data are lacking, in Brazilian favelas the spread of COVID-19 is not noticed. 148  

388 Temperature does not seem to be an important factor to contain the pandemic.Fermented foods are popular 

389 throughout the world and in many regions they represent a widespread tradition as well as they make a 

390 significant contribution to the diet of millions of individuals.16 This is the case in slum areas and it is 

391 possible that fermented foods explain, at least partly, the paradox.

392 Conclusion

393 Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented 

394 vegetables contain many lactobacilli, also potent Nrf2 activators. It is proposed that fermented cabbage is a 

395 proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects helpful in 

396 mitigate COVID-19 severity. 

397 Mainstream COVID-19 control strategies including social distancing, confinement and intensive case 

398 finding, testing, tracing and isolating are so far not enough to provide a SARS-CoV-2-free environment and 

399 restore a safe social life. There are hopes for a safe and effective vaccine, but this is unlikely to become 

400 rapidly available. So, there is a need to explore other potentially useful strategies. An area that has not been 

401 sufficiently considered is diet, both as a preventive and/or therapeutically useful intervention, encouraging 

402 people to eat more traditional foods containing fermented vegetables (Figure 6).  We have suggested that 

403 fermented vegetables could be associated with a lower COVID-19 mortality due to their potent antioxidant 

404 effect among which sulforaphane and LABare important. However, many other foods may have a similar 

405 activity. It should be noted that dietary supplements that over-activate Nrf2 may have side-effects.149

406
407 Robust evidence from observational studies would be helpful to formally investigate associations between 

408 fermented foods and clinical outcomes in COVID-19. State-of-the-art methods, including the use of DAGs A
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409 (Directed Acyclic Graphs), may be needed to help assess whether the associations seen are likely to 

410 represent causal relationship 150. A faster approach would be to develop large clinical trials in the 

411 appropriate populations. Interventions based on diets with a high intake of fermented foods like Kimchi or 

412 other fermented foods are unlikely to present ethical difficulties. Furthermore, the fact that a precise 

413 mechanism has been proposed would facilitate adding reliable biomarkers to the relevant clinical outcomes. 

414 Moreover, new drugs based on the components of these fermented foods may be of interest.

415 If the hypothesis is proved, COVID-19 will be the first infectious disease outbreak associated with a loss of  

416 “nature” 151 and to be ascribed as a disease of the Anthropocene 152. Imbalance in the gut microbiota is 

417 responsible for the pathogenesis of various disease types including allergy, asthma, rheumatoid arthritis, 

418 different types of cancer, diabetes mellitus, obesity and cardiovascular disease 153. Fermentation was 

419 introduced during the Neolithic age and was essential for the survival of human kind. When modern life led 

420 to eating reduced amounts of fermented foods, the microbiome drastically changed 154, allowing SARS-

421 CoV-2 to spread or to be more severe 155. It is time for mitigation 156. 

422
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Table 1: Possible risk factors for COVID-19 infection explaining geographical differences

Individual 

level

Country/region level

A Contact with a SARS-CoV-2 

infected individual

++++ Case zero identified

++++

e.g. Lombardy

A Intensity of social contacts ++ +++ 

A Intensity of occupational 

contacts

+++ ++

A Confinement (level) +++ +++ 

e.g. US versus EU

      Sweden vs Nordic countries

A Confinement (early measures) +++ +++

e.g. UK versus EU

A Climatic conditions 

(temperature, humidity)

? ++

Hot and humid temperature may reduce infection but epidemic 

bursts in Brazil, Peru and Ecuador

A GDP of a country/region ? +

A Vitamin D ? +

B Diet ? +

The map of COVID-19 deaths in Europe and the low prevalence in 

Asia and Africa suggest a role for diet

B Food  ++? +

Bibliographic analysis suggests a role for some fermented foods. 

Raw cabbage can be fermented in the intestine.

Kefir is largely used in many low-prevalence countries.

B Long food chain supply  ++? +

In Italy and Spain, there may be an association with long chain 

supply. This may be relevant since food quality differs.

B Traditional fermented food 

(example of food)

++? ++

This may be a relevant issue. In former Eastern European countries, 

in the Balkans, in Africa and in many Asian countries with low-

COVID-19 prevalence, traditional fermented foods are common (in 

line with short food chain supply)

B Air pollution +? +?

B Underserved area ++ ++

C Age +++

C Comorbidities (severity of +++ ++A
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COVID-19)

C Sex ++

C Institutionalized person ++

A: Risk factors at a country level, B: Environment, nutrition, C: individual level

+ to ++++: Proposed relative importance
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Figure 1:COVID-19 deaths per million inhabitants(from Johns Hopkins Coronavirus Center)

Figure 2: Regional differences of death rates in Italy (from Worldometer)

Figure 3: Regional differences of death rates (May 20) (from Office fédéral de la santé publique, 

Switzerland, Gouvernement français, Lander Bade Wurtenberg))

Figure 4: Consumption of head cabbage and COVID-19 death rate at a country level(from Fonseca et al, 

12)

Figure 5: Putative mechanisms of fermented orBrassicavegetables against COVID-19

A: Oidative stress induced by SARS-CoV-2 after its binding to ACE2

B: Preventive effects of cabbage and fermented vegetables through Nrf2

Figure 6 : Putative role of diet in COVID-19
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: Enzymatic activity
ACE: Angiotensin-converting enzyme
Ang: Angiotensin
AT1R: ACE-Angiotensin-II-AT1R axis 
Mas: ACE-2-Angiotensin-(1-7)-Mas axis
Nrf2: nuclear factor erythroid 2 p45-related factor 2
TMPRSS2: Trans-membrane serine protease 2
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