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Abstract 18 

Context: Land use legacies of human activities and recent post-abandonment forest expansion have 19 

extensively modified numerous forest landscapes throughout the European mountain ranges. Drivers of 20 

forest expansion and the effects of changes on ecosystem services are currently debated.  21 

Objectives: i) to compare landscape transition patterns of the Alps and the Apennines (Italy), ii) to quantify 22 

the dominant landscape transitions, and iii) to measure the influence of climatic, topographic and 23 

anthropogenic driving factors. 24 

Methods: Land cover changes and landscape pattern modifications were investigated at the regional (over 25 

28 years, Alps and Apennines, Corine Land Cover dataset) and landscape scale (over 58 years, 8 Alpine and 26 

8 Apennine sites, aerial images). The main driving factors of post-abandonment forest landscape dynamics 27 

were assessed with a statistical modeling approach. 28 

Results: Forest expansion was the dominant landscape transition at both Italian mountain ranges, with an 29 

annual overall rate of 0.6%. Forest expansion was more extensive at lower elevations in the Apennines 30 

where climate is less limiting and extensive abandoned croplands and pastures were available throughout 31 

the study period. Distance from pre-existing forest edges in the Alps and elevation in the Apennines 32 

emerged as the most important predictors. 33 

Conclusions: Forest expansion is most rapid where areas of recent agricultural abandonment coincide with 34 

favorable climatic conditions. Thus the prediction of forest landscape dynamics, in these mountain forests 35 

with a long history of cultural use, requires knowledge of how the magnitude and timing of land use 36 

changes intersect spatially and temporally with suitable conditions for tree establishment and growth. 37 

Keywords Forest expansion, cultural landscape, historical ecology, aerial photographs, landscape structure, 38 

land abandonment 39 
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Introduction 44 

Land use history exerts a strong long term legacy on forest landscapes, affecting their structure, spatial 45 

pattern and associated ecosystem services (Bellemare et al. 2002; Ziter et al. 2017). At a landscape scale, 46 

forests after their removal can be replaced by other land cover types such as crops, pastures, and 47 

settlements, which in turn can lead to habitat fragmentation. Land abandonment has important effects on 48 

natural disturbance regimes especially in regions with a long history of intensive human influence (Mantero 49 

et al. submitted). After land abandonment, secondary succession can lead to forest expansion, a complex 50 

dynamic process influenced by different factors such as climate, topography, seed availability and 51 

anthropogenic variables. An important driver at local scales has proven to be the former land use intensity 52 

and type (Walker et al. 2010). For example, abandoned cropland, with compacted soil due to former 53 

plowing, may experience slower successional dynamics than former pastures (Dupouey et al. 2002). A pan-54 

European scale study over the last 25 years revealed that the most important landscape transitions are 55 

urbanization and natural afforestation processes, both affecting landscape service provision (Van der Sluis 56 

et al. 2019). In forest landscapes post-abandonment processes generally cause increased wildfire 57 

frequency, extent and severity (e.g. Moreira 2001; Lloret 2002; Pausas et al. 2012) and a decrease in the 58 

frequency and intensity of rockfall (Lopez-Saez et al. 2016; Farvaque et al. 2019) and avalanches 59 

(Kulakowski et al. 2011; García-Hernández et al. 2017). Post-abandonment forest expansion can also cause 60 

changes to major bio-geochemical cycles, soil properties and eco-hydrological processes (Pellis et al. 2019), 61 

loss of biodiversity especially in semi-open areas with species-rich grasslands, and loss of cultural 62 

landscapes (Otero et al. 2015; Hermoso et al. 2018; Ridding et al. in press). Secondary succession processes 63 

can result in multiple pathways and abandoned lands may become more vulnerable to invasive species and 64 

fire (Munroe et al. 2013). 65 

For thousands of years, anthropogenic pressure over the Mediterranean basin has shaped the numerous 66 

and diverse cultural landscapes (Naveh 1995). In many European rural areas abandonment after WW2 was 67 

a widespread socio-economic process, causing large human migrations toward urban areas (MacDonald et 68 

al. 2000; Poyatos 2003; Hochtl et al. 2005). The decline of traditional agro-pastoral activities was 69 

particularly intense in southern European mountains such as the Italian Alps and the Apennines. These two 70 

mountain ranges, covering approximately 35% of the entire country of Italy (Vacchiano et al. 2017), 71 

experienced a significant forest expansion after an extensive decrease of cultivated lands due to 72 

depopulation (Falcucci et al. 2007). Forest cover in Italy shifted from 6 million ha in 1936 (Forest Map of the 73 

Italian Kingdom) to 8.5 million ha in 1985 (First Italian Forest Inventory, IFNI85), and to 10.5 million in 2005 74 

(Second Italian Forest Inventory, INFC05) and is currently estimated at about 11 million ha in 2015 with an 75 

increase of 20% in the last 30 years (Ferretti et al. 2018). These estimates rely on a wide range of sources, 76 

and studies using consistent datasets to quantify changes in land cover across broad areas prior to 77 

widespread availability of satellite imagery are lacking. In the Italian and French Alps, the depopulation of 78 

marginal lands started after the Industrial Revolution in approximately 1871 and, due to the two World 79 

Wars, lasted through the 1950s (Batzing et al. 1996). Before the 1950s, grazing was widely distributed in 80 

the Italian Alps where rangelands occupied 53% of the mountain areas (White 1950; Garbarino et al. 2013). 81 

This was primarily cattle grazing in unfenced pastures. In the Apennines a human migration from mountain 82 

areas toward the Adriatic and Tyrrhenian coastal areas occurred from 1951 to 1991, especially in the 83 

northern and southern Apennines (Malandra et al. 2018; Vitali et al. 2018). Many of these areas were 84 

subjected to former heavy exploitation for firewood and charcoal production, with wood pastures 85 

occurring frequently at higher elevations. A national reforestation program to reduce slope erosion, 86 

launched before WW2 and lasting until the 1970s, resulted in approximately 760,000 ha of new plantation 87 

forests composed mainly of coniferous tree species (Piermattei et al. 2016). 88 

In both mountain regions, forest expansion has occurred as a gap-filling process at lower elevations and as 89 

an upward shift of treeline at higher elevations (Tasser et al. 2005). Forest expansion caused a direct 90 
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reduction of open areas, reduced the extent of forest-grassland ecotones, and led to decreases in species 91 

diversity as well as culturally important landscapes (Falcucci et al. 2007; Petanidou et al. 2008). However, 92 

there are fundamental differences in how forest expansion processes have unfolded in the two mountain 93 

regions. A gentler topography and a favorable climate led to more intense deforestation in the Apennines, 94 

creating open areas that were used as pastures and crops both at low and high elevations. However, 95 

landscape mosaic simplification due to forest gap-filling processes mainly occurred at lower elevations.  At 96 

higher elevations, forest succession on abandoned croplands and grasslands led to a complex and 97 

fragmented landscape (Malandra et al. 2019; Vitali et al. 2019). Understanding the underlying drivers of 98 

forest landscape changes by comparing the different land use legacies of the Alps and the Apennines is a 99 

fundamental step for more ecologically based landscape planning and management oriented toward 100 

biodiversity conservation and other ecosystem services.  101 

The Alps and the Apennines are large and highly representative areas for testing our three hypotheses on 102 

mountain forest landscape changes in Italy over the last 60 years: 1) forest cover is increasing everywhere, 103 

but with different patterns in the Alps and the Apennines; 2) pasture-to-forest is the dominant landscape 104 

transition at high elevation; 3) historical forest cover (i.e. land use legacy) is the most important 105 

environmental driver for predicting forest expansion today. 106 

 107 

Methods 108 

Study area and sampling design 109 

Our multiscale research design was structured at two spatial scales (region and landscape) aimed at 110 

comparing the two mountain ranges of Italy, the Alps (AL) and the Apennines (AP). They have similar total 111 

length (1300 – 1350 km, respectively), but different geographic orientation (AL: from west-to-east across 112 

northern Italy; AP: northwest-to-southeast from Liguria to Calabria). The two mountain ranges differ in 113 

terms of climate, topography and land use history.  114 

In AL, mean annual temperatures range from less than 0° to over 10° C, with very cold winters. Annual 115 

precipitation ranges from 400 to over 3000 mm and summer dry periods are very rare (Isotta et al. 2013). 116 

Metamorphic lithology with intrusive igneous rocks prevail in the inner sectors and sedimentary outcrops 117 

dominate in the outer ones. Oak forests dominate at lower elevations whereas beech-silver fir (Fagus 118 

sylvatica and Abies alba) forests prevail on mesic aspects of the montane zone, replaced by Pinus sylvestris 119 

on xeric slopes. Coniferous forests with Picea abies (L.) H.Karst., Larix decidua Mill. and Pinus cembra L. 120 

dominate the subalpine zone (Fauquette et al. 2018).  121 

At AP, mean annual temperatures range from 6° to 10° C, and annual precipitation ranges from 730 to 877 122 

mm, with a short and pronounced summer dry period at lower elevations (Blasi et al. 2014). The eastern 123 

Mediterranean side (Adriatic) is generally more continental and humid than the western (Tyrrhenian) one. 124 

The forest vegetation is largely dominated by broadleaf species of the Mediterranean and temperate 125 

biomes. Xeric oak forests of Quercus ilex L., Quercus pubescens Willd., Quercus cerris L. and Ostrya 126 

carpinifolia Scop. dominate at lower elevations and Castanea sativa Mill. the sub-montane zone. Fagus 127 

sylvatica, locally mixed with Abies alba, largely dominates the montane zone up to treeline except for a few 128 

locations in the central and southern sectors where natural pine forests occur, dominated by Pinus mugo, 129 

P. heldreichii, or P. nigra laricio. 130 

For our regional scale analyses, the study area in each mountain chain included all contiguous land above 131 

500 m a.s.l. excluding those island polygons separated from the main mountain chains (Fig. 1). We obtained 132 

two large areas of 52,002 km2 (AL) and 44,615 km2 (AP), where we assessed the land-cover changes (LCC) 133 

for the 1990 – 2018 period, based on the Corine Land Cover (CLC Level 3, Feranec et al. 2016) raster maps 134 



4 
 

(100-m spatial resolution) after merging the original CLC categories into five larger groups: forest (FO), 135 

grassland (GR), cropland (CR), urban (UR), and unvegetated (UV) (Table S1). We developed a transition 136 

matrix for both regions by assessing changes for the five selected land-cover categories, allowing us to 137 

compute the relative changes in AL and AP. 138 

For our landscape-scale analyses, in each region (AL and AP) we selected 8 landscapes of variable extent 139 

ranging from 6.3 to 16 km2. These landscapes were selected and harmonized from previous projects and 140 

unpublished data on land-use/land-cover changes in AL and AP (e.g. Garbarino et al. 2013; Malandra et al. 141 

2019. The 16 study landscapes cover a total surface area of approximately 23,000 ha within an elevation 142 

range of 500 – 2,600 m a.s.l., including all vegetation zones (Table 1). We adopted the altitudinal threshold 143 

of 2,600 m a.s.l., as the potential alpine treeline (Caccianiga et al. 2008; Lingua et al. 2008; Garbarino et al. 144 

2013) in order to limit the LUC analysis to the vegetated part of the 16 landscapes and to reduce the weight 145 

of the ‘rock’ land cover category, which is uninformative for our research. Historical aerial photographs for 146 

the years 1954-1962 (b/w, 1: 60,000 approximate cartographic scale, Italian Geographic Military Institute - 147 

IGMI) were scanned and digitized at 800 ppi, with a mean spatial resolution of 1 m. The IGMI images were 148 

georeferenced and orthorectified using PCI Geomatica 2012 software. Regularly distributed tie points were 149 

used to co-register IGMI images with 2012 orthophotos (RGB, 0.5 m cell size, National Agency for Funding 150 

in Agriculture - AGEA) resampled at 1 m. The average horizontal Root Mean Square Error (RMSE) was 23 m± 151 

2SD. We used the TINITALY DEM at 10 m spatial resolution (Tarquini et al. 2012) for orthorectification. 152 

We applied a semi-automated object-based classification by combining the automated image segmentation 153 

from eCognition software (scale factor 100, color factor 0.5) with on-screen photointerpretation of 154 

segmented polygons (Garbarino et al. 2013). We then performed a supervised classification of the objects 155 

based on an initial set of at least 10 training polygons for each category, selected through 156 

photointerpretation. This was followed by a manual classification of the previously unclassified polygons. 157 

Each polygon of the 32 land cover maps (16 landscapes × two time periods), was classified into five land 158 

cover classes that were used for the regional-scale analysis: forest (FO), grassland (GR), cropland (CR), 159 

urban (UR), unvegetated (UV). The UV category includes different land cover types such as rock, gravel, 160 

sand, bare soil and sparse vegetation areas. The latter is a mosaic of sparse grasslands and barren 161 

nonvegetated areas that are mostly located between 2000-3000 m a.s.l.  A post-processing procedure on 162 

the resulting 32 land cover maps was performed in a GIS environment to enforce consistency among the 163 

two datasets. A minimum mapping unit (MMU) of 100 m2 (Garbarino et al. 2011) was obtained by merging 164 

smaller polygons with neighboring larger ones by using the ArcGIS tool ‘Eliminate’ (Malandra et al. 2019). 165 

Merged polygons were rasterized at 1-m resolution and the resulting raster maps were smoothed using a 166 

moving window (3 × 3) majority filter. We obtained the level of accuracy by randomizing 16 polygons/ha on 167 

each map and classifying the objects visually using the same land cover categories adopted in the 168 

automatic segmentation (Radoux and Bogaert 2017). Overall, the classification accuracy ranged from 78% 169 

to 96% with a Cohen's Kappa coefficient between 0.67 and 0.93 (Table S2). The land cover change analysis 170 

at the landscape scale provided 16 transition matrices that were combined to detect overall transitions and 171 

differences between the AL and AP mountain regions. We converted the two transition matrices into two 172 

transition diagrams showing gain, loss, net change and persistence for each land cover category (Cousins 173 

2001). With the same dataset (Garbarino et al. 2019), we computed the relative contribution (in hectares) 174 

of each land cover category to the transition to forest cover and we applied a Mann–Whitney test to 175 

compare the medians of the two mountain ranges (AL and AP). The Mann–Whitney test was performed for 176 

each of the five categories by using the 8 landscapes as sample size for each mountain range. 177 

For our landscape-scale analyses, we assessed the main drivers affecting forest expansion in AL and AP 178 

using a Random Forest (RF) model (Rodman et al. 2019). Specifically, we modelled the occurrence of a 179 

transition to forest through a binary classification method using ‘mlr’ (Bischl et al. 2016) and ‘ranger’ 180 

(Wright & Ziegler 2017) R packages (R Core Team 2019). Given the unbalanced ratio between cells with a 181 
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transition to forest (minority class) and cells that remained unchanged (the majority class), we under-182 

sampled unchanged cells using a spatially random selection within each landscape using the ‘spatialEco’ R 183 

package (Evans 2019). Before computing class transitions, we filtered out from the dataset the landscape 184 

portions that were already forests in the past, and we downscaled gridded land cover maps from 1 m to 30 185 

and 60 m resolutions using the majority class within each coarser cell. The coarser resolutions allowed us to 186 

limit the influence of both co-registration and classification errors of aerial images on model predictions 187 

and to evaluate the dependence of model predictions on the spatial scale. For our final analysis, we used 188 

the 30 m resolution because RF models trained with data at 30 or 60 m resolutions produced very similar 189 

outputs in terms of variables importance and trends of partial dependences. At a coarser resolution 190 

prediction errors slightly increased (Table S3). 191 

 192 

 193 

Figure 1. Location of the 16 landscapes (white circles) within the two Italian mountain regions: the Alps (light green) 194 
and the Apennines (light grey) with a minimum elevation of 500 m a.s.l. For landscape codes see Table 1. 195 

 196 

Because there was a substantial area of Pinus plantations within the forest cover of 2012 images in certain 197 

landscapes of the Apennines, we removed plantation patches before computing class transitions in order to 198 

model only natural forest dynamics. 199 

 200 
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Table 1. Environmental descriptors (Area = total surface area; El = mean elevation; Sl = mean slope; Te = mean annual 201 
temperature; Pr = mean annual precipitations; BD = mean distance from buildings; RD = mean distance from roads) of 202 
16 landscapes divided by mountain region (AL or AP). 203 

Region Landscape 
name 

Landscape 
Code 

Area 
(ha) 

El 
(m a.s.l.) 

Sl 
(°) 

Te 
(°C) 

Pr 
(mm) 

BD 
(m) 

RD 
(m) 

AL Bagni BAN 1574.3 1788.1 36.0 3.9 1081.3 678.4 289.4 
AL Mello MEL 1433.7 2045.8 34.1 1.7 983.7 935.0 359.8 
AL Sapè SAP 959.4 1419.8 22.3 6.2 1001.9 343.8 178.4 
AL Pesio PES 1599.2 1596.5 31.7 5.7 980.0 711.0 202.1 
AL Ventina VEN 630.4 2248.6 30.1 0.1 900.8 1044.9 366.4 
AL Musella MUS 921.4 2155.6 27.7 2.0 788.2 592.1 190.6 
AL Veglia VEG 1407.2 2043.8 25.4 1.7 1045.1 815.3 205.1 
AL Devero DEV 1570.0 2169.9 23.6 1.2 1138.6 1048.2 323.3 

AP Cimone CIM 1593.4 1444.7 19.2 6.8 1352.5 349.3 111.6 
AP Sibillini SIB 1601.3 1397.2 26.3 6.8 940.1 549.4 115.9 
AP Gran Sasso GRS 1602.4 1577.5 27.2 6.3 872.3 1548.4 294.2 
AP Terminillo TER 1600.7 1573.5 25.7 6.8 831.5 700.4 202.8 
AP Morrone MOR 1603.7 1422.8 22.8 7.6 792.4 1447.3 276.9 
AP Genzana GEN 1603.4 1234.7 22.4 8.2 789.1 664.7 228.5 
AP Monte Mare MMA 1604.0 1149.7 24.1 9.0 780.9 1622.2 410.9 
AP Matese MAT 1605.4 1112.5 22.5 9.2 694.7 481.4 163.4 

 204 

We used several spatial predictors (Table S4) such as the distance from pre-existing forest edges, 205 
topographic variables (elevation, slope, heat load index sensu McCune and Grace 2002), climatic variables 206 
(mean annual temperature, annual precipitation), and anthropogenic variables (cost of movement, 207 
Euclidean distance to buildings, Euclidean distance to roads). We derived topographic variables from the 10 208 
m DEM and climatic variables from the ‘Climatologies at high resolution for the earth’s land surface areas’ 209 
(CHELSA) v1.2 datasets at 30 arcsec (~1 km) spatial resolution (Karger et al. 2017). We computed the 210 
accumulated cost of movement across the terrain through the Tobler’s hiking function (on-path) 211 
implemented in the ‘movecost’ R package (Alberti 2019), using “buildings” in OpenStreetMap as starting 212 
locations. We applied two different approaches to obtain either the RF models predictions or the predictive 213 
performance estimates with a reduced bias. Specifically, we trained two RF models, one for AL and one for 214 
AP, using all the data and tuning hyper-parameters through an 8-fold spatial cross-validation (Brenning 215 
2012, Schratz et al. 2019). We used bias-reduced predictive performance estimates using two common 216 
measures in binary classification, the Brier score (Brier 1950) and the area under the receiver operating 217 
characteristics curve (AUC). These measures were averaged over a total of 800 RF models obtained through 218 
an 8-fold spatial cross-validation repeated 100 times using a nested 5-fold spatial cross-validation for 219 
hyper-parameters tuning (Lovelace et al. 2019, Schratz et al. 2019). For both strategies, we used a 220 
sequential model-based optimization approach in ‘mlrMBO’ R package (Bischl et al. 2017) to search for the 221 
optimal RF hyper-parameters (mtry, sample fraction and minimum node size) using 50 steps. The spatial 222 
cross-validation resampling technique was based on k-means clustering of observation coordinates and 223 
allowed us to geographically partition the data, thus maintaining the assumption of independence among 224 
training and test sets which would be violated in the case of randomly sampled observations due to the 225 
presence of spatial autocorrelation. We assessed variable importance from each model using the 226 
permutation method (Breiman 2001) and we employed partial dependencies (Friedman 2001; Goldstein et 227 
al. 2015) to interpret the marginal effect of each variable on the predicted probability of forest expansion. 228 
Specifically, we computed the average and the standard deviation of individual marginal effects obtained 229 
using all the observations in the dataset through the ‘generatePartialDependenceData’ function in ‘mlr’ R 230 
package. 231 
 232 
 233 
 234 
 235 
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Results 236 

Regional land cover changes – CORINE database 237 

Forest expansion occurred in both areas, but was greater in AL (+2,951 ha, +9 %) than in AP (+1023 ha, +3.7 238 

%) (Tab. 2). Cropland cover is generally stable whereas human infrastructures increased more at AP (+ 131 239 

ha, +34 %) than at AL (+256 ha, +19 %). Grasslands greatly decreased at both mountain ranges, but more at 240 

AL (-2784 ha, -39 %) than at AP (-1160 ha, -27 %), a pattern also observed for unvegetated areas (AP -56 ha, 241 

-19 %; AL -503ha, -9 %). Regional scale results (1990-2018) were weakly in agreement with the landscape 242 

scale results (1954-2012) as shown in the supplementary material (Table S5).    243 

 244 

Table 2. Land cover categories surface areas expressed as a percentage of the total mountain area derived from the 245 
Corine Land Cover in the Alps (AL) and the Apennines (AP) throughout the years. Changes across the entire period 246 
(1990-2018) are indicated in the last two columns as absolute and relative percent values. 247 

AL 1990 2000 2006 2012 2018 1990-2018 Change  
      Absolute Relative 

Forest (FO) 62.9 62.4 62.5 68.6 68.6 +5.7 +9.0 
Grassland (GR) 13.8 14.9 14.6 8.5 8.5 -5.4 -38.8 
Cropland (CR) 10.1 10.1 10.4 10.2 10.2 +0.2 +1.5 
Urban (UR) 2.6 2.7 2.8 3.0 3.1 +0.5 +19.3 
Unvegetated (UV) 10.6 9.9 9.7 9.6 9.6 -1.0 -9.2 

AP 1990 2000 2006 2012 2018 1990-2018 Change 
      Absolute Relative 

Forest (FO) 62.5 62.5 62.3 64.8 64.8 +2.3 +3.7 
Grassland (GR) 9.8 9.8 9.8 7.2 7.2 -2.6 -26.6 
Cropland (CR) 26.2 26.1 26.2 26.3 26.3 +0.1 +0.5 
Urban (UR) 0.9 1.0 1.1 1.1 1.2 +0.3 +34.2 
Unvegetated (UV) 0.7 0.6 0.5 0.5 0.5 -0.1 -19.1 

 248 

Landscape transitions – aerial imagery 249 

Forest expansion also occurred at the landscape scale in both ranges. For all study landscapes combined, 250 

the mean annual forest surface area increment was 60 ha/year (0.5 %/year), and was slightly greater at AP 251 

(41 ha yr-1 or 0.6% yr-1) than at AL (19 ha yr-1 or 0.4% yr-1). Grasslands and Crops decreased in both areas, 252 

but a larger reduction of crops (CR) occurred at AP (Fig. 2). Unvegetated lands (UV) decreased only at AL, 253 

and urban infrastructures (UR) increased more at AP. The relative weights of CR and UR were historically 254 

higher at AP, whereas UV values were historically higher at AL. Forest expansion was mostly related to the 255 

“GR to FO” transition (66.3 % overall), but was greater at AL than at AP (74.4 % and 62.4 % respectively, Fig. 256 

3). The “CR to FO” transition was stronger at AP than AL (32.4 % and 1.4 %), whereas the opposite pattern 257 

was observed for the “UV to FO” transition (AL = 23.9 %, AP = 3.1 %). All land cover transitions to forest 258 

were significantly different between the two mountain ranges (Mann-Whitney test: GR, UR with p < 0.05; 259 

CR, UR with p < 0.01).     260 

 261 
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 262 

Figure 2. Area of land cover classes (ha) and land cover transitions from historic (1954-1962) to present time (2012) in 263 
the Alps (left panel) and the Apennines (right panel) study sites. Colored boxes refer to land cover categories with box 264 
size scaled to area: darker-colored inset boxes represent land cover class (LCC) persistence over time in the case of 265 
LCC increase (e.g. FO and UR categories); light-colored inset boxes represent persistence over time in the case of LCC 266 
decrease (e.g. GR, CR and UV). Transitions representing forest expansion are highlighted with arrows. Arrow thickness 267 
increases with magnitude of the land cover transition. The area converted to forest (ha) for each transition is reported 268 
in text above the arrow symbols. 269 

 270 

 271 

Figure 3. Percent contribution of each land cover category (GR = grassland, CR = cropland, UR = urban, UV = 272 
unvegetated) to forest expansion over the studied period (1954-2012). 273 

 274 
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Drivers of forest expansion 275 

RF models derived for the forest expansion portion of the landscape indicate that the best predictor was 276 

the distance from pre-existing forest edges (DF), particularly at AL (importance rate - IR = 0.13, Fig. 4). 277 

Forest expansion is predicted also by elevation (El), which is particularly important for AP mountain range 278 

(AL: IR = 0.08, AP: IR = 0.16). Climatic variables such as mean annual temperature (Te) and precipitation (Pr) 279 

were more important at AP (IR = 0.07-0.08). Anthropogenic impact proxy variables (MC, DB and DR) were 280 

less influential in the models (IR = 0.05-0.03), but DB was more important for AP than for AL (IR = 0.05 and 281 

0.03 respectively). 282 

 283 

 284 

Figure 4. Importance rate of variables in random forest (RF) models of the Alps (light green) and the Apennines (grey). 285 
Variables are: distance from pre-existing forest edges (DF), topographic (El = elevation, Sl = slope, HL = Heat load 286 
index), climatic (Te = mean annual temperature, Pr = annual precipitation) and anthropogenic (MC = cost of 287 
movement, DB = Euclidean distance to buildings, DR = Euclidean distance to roads). 288 

 289 

At AL forest expansion probability was higher close to pre-existing forest edges, rapidly declining between 0 290 

and 200 m and with a gradual decline between 200 and 800 m (Fig. 5). At AP the negative relationship 291 

between forest expansion probability and distance to pre-existing forest edges featured a rapid decline 292 

(from 0.6 to 0.4 of probability) between 0 and 150 m and a gradual decline between 150 and 900 m. The 293 

effect of distance from pre-existing forest edges (DF) observed at AP exhibited a higher heterogeneity 294 

compared to those observed at AL as highlighted by standard deviation computed at different values of the 295 

predictor variable (Fig. 5). Forest expansion at AP was more likely to occur at lower elevations (500 – 1,000 296 

m a.s.l.) and the probability abruptly decreased between 1,000 and 1,500 m a.s.l. A similar pattern was 297 

observed at AL, but at higher elevations (1,000 – 2,000 m a.s.l.), with a clear decrease from 2,000-2,500 m 298 

a.s.l. Relationships between forest expansion probability and annual temperature were generally weak, 299 

although there was a slightly higher probability of forest expansion occurring between 2.5 - 7 °C at AL and 300 

7.5 - 13 °C at AP. 301 
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 302 

Figure 5. Partial dependence plots showing relative influences of the five most important predictors on the probability 303 
of forest expansion, for the Alps (left) and the Apennines (right) across the respective input data ranges. We used all 304 
observations to train the model for computing the partial dependence function. Solid lines indicate the average over 305 
individual marginal effects of each selected explanatory variable (distance from pre-existing forest edges, elevation, 306 
temperature, precipitation and cost of movement) whereas dotted lines are the standard deviations of individual 307 
marginal effects.  308 

 309 

 310 

 311 
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Discussion 312 

Forest expansion following land abandonment is a well-known process in mountain forests globally (Sitzia 313 

et al. 2010). For example, forest expansion in mountainous populated areas has been recently detected in 314 

South America (Nanni et al. 2019) and East Asia (Fang et al. 2014). Grazing decline and fire suppression 315 

favored forest expansion and forest infilling in California, USA (Lydersen and Collins 2018) and recently rain 316 

forest expansion into savanna has been detected in Australia (Ondei et al. 2017). Natural forest expansion 317 

is particularly evident and rapid in several mountain ranges of the World such as in the Mediterranean 318 

Basin (e.g. Roura-Pascual et al. 2005; Niedrist et al. 2009; Weisberg et al. 2013) where agro-silvo-pastoral 319 

traditional practices declined abruptly due to rural depopulation (Lasanta et al. 2017). However, there have 320 

been few studies comparing post-abandonment forest expansion patterns among different regions or 321 

mountain ranges (e.g. Tasser et al. 2007; Fontana et al. 2014). 322 

By comparing the Italian Alps and the Apennines we found that environmental influences on forest 323 

expansion processes were similar between the two regions. Our results for the observed time span (1954-324 

2012) indicate an overall forest area increase of 0.6% yr-1 in the Italian Alps and Apennines. These values 325 

match with the annual increments recently reported either for the entire Italian peninsula in 1985-2005 326 

(0.3% yr-1) and 2005-2015 (0.2% yr-1) periods (RAF 2018) or for different sites of the Apennines (0.4 - 0.7% 327 

yr-1, Brachetti et al. 2012; Malandra et al. 2019). Similar rates are reported for other Alpine regions such as 328 

Carnia (0.7% yr-1), Tyrol (0.35% yr-1) and South Tyrol (0.1% yr-1) in the 1955-2000 period (Tasser et al. 2007).   329 

Important differences between the two studied mountain ranges emerged from our analysis. Forest 330 

expansion was more intense in the Apennines during the 1954-2012 period. This outcome could be related 331 

to the different geographic layout of this mountain range and the wider latitudinal gradient that it 332 

encompasses, providing warmer climate conditions more favorable for forest regeneration. Another 333 

possible explanation for this pattern arises from to the large differences in elevation gradients between the 334 

two mountain ranges. Abandoned sites at lower elevations that were previously cultivated or grazed were 335 

more common in the Apennines than in the Alps, and such sites experienced more rapid and extensive 336 

forest expansion.  337 

These differences highlight the importance of regional variation in climate and land use history for 338 

understanding and predicting forest landscape change following agricultural abandonment. Differences in 339 

land use history expressed by a mosaic of former croplands and pastures have important long-term 340 

implications for post-abandonment forest establishment (Zimmermann et al. 2010). At the regional scale, 341 

we found a greater reduction of grasslands in the Alps than in the Apennines, where we found a greater 342 

increase of anthropogenic land cover types (mostly UR). The landscape transitions from grasslands, 343 

croplands, and unvegetated lands to forests were by far the most relevant at our landscape scale of 344 

analysis. Grassland-to-forest was the dominant shift in both mountain ranges due to a general decline of 345 

traditional cattle grazing in mountain areas (e.g. Nagy et al. 2003). However, the two mountain ranges 346 

differ in that the widespread transition from unvegetated areas (e.g. rocks and bare soil) to forest occurred 347 

only in the Alps. Here, this transition is probably due to the tendency for coniferous treeline species (Larix 348 

decidua and Pinus cembra) to invade higher-elevation, shrub-dominated and alpine plant community types 349 

(Vittoz et al. 2008). On the other hand, Fagus sylvatica dominated treelines of the Apennines are less prone 350 

to upward migration; forest expansion here was mostly the outcome of gap infilling processes (Vitali et al. 351 

2018, Malandra et al. 2019). High elevation forests in the Apennines are dominated by Fagus sylvatica, a 352 

strongly resprouting species, but with heavy seeds that disperse predominantly over short distances (Vitali 353 

et al. 2017). Conifer species with greater long-distance seed dispersal ability occur at a few sites of the 354 

central (Pinus nigra – Vitali et al. 2017; Pinus mugo – Dai et al. 2017) and southern (Pinus heldreichii – Vitali 355 

et al. 2018) Apennines. Here, croplands-to-forest was the second most important transition, given the 356 

possibility of growing a few rare food crops (e.g. potatoes, special cultivars of cereals, apples and chestnuts) 357 
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at higher elevations especially on southern or less exposed slopes (Bracchetti et al. 2012; Rovelli 2019). The 358 

abandonment of upland traditional farming systems in the Apennines is one of the most important socio-359 

economic drivers of landscape degradation and biodiversity depletion (Farina 1995; Zimmermann et al. 360 

2010).  361 

Pre-existing forest edges emerged as a key land use legacy for future forest expansion both in the Alps 362 

(Abadie et al. 2017; Tasser et al. 2007) and the Apennines (Malandra et al. 2019) with a greater importance 363 

in the Alps. A general explanation for this is related to seed source availability and to the marginality of 364 

ecotones such as forest edges. These are the first pastoral zones to be abandoned when grazing pressure is 365 

reduced. The distance from pre-existing forest edges (years 1954-1962) appears a stronger driver in the 366 

Alps where, because of harsh conditions at higher elevations, favorable microsites are necessary for tree 367 

establishment. In the Apennines, where this variable was second in importance, high variability in effect 368 

size is likely caused by heterogeneity among individual observations belonging to different landscapes. On 369 

the other hand, in the Apennines, elevation was the most influential predictor variable with widespread 370 

forest expansion having occurred at lower altitudes on slopes severely exploited prior to the analyzed time 371 

span (1954-2012). The probability of forest expansion gradually decreased along an altitude gradient from 372 

1,000 to 1,800 m a.s.l. in the Apennines, but decreased abruptly between 2,000 and 2,300 m a.s.l. in the 373 

Alps. Forest expansion on former pastures and croplands was also faster at lower elevations in mountains 374 

of southern Spain (Fernàndez et al. 2004).  375 

The importance of land use legacy for forest landscape dynamics is emphasized by long-term studies 376 

demonstrating that legacies may persist for decades, affecting current and future land cover changes 377 

(Loran et al. 2017; Tasser et al. 2017). Human activities such as harvesting, grazing, fire and litter removal 378 

when practiced for long time periods, may greatly affect current forest dynamics (Gimmi et al. 2013). The 379 

role of land use legacies on past and future forest dynamics is typical of many southern European mountain 380 

ranges shaped by historical anthropogenic disturbance regimes such as an intensive land use (Albert et al. 381 

2008; Ameztegui et al. 2016). Our study confirms the importance of the location of pre-existing forest 382 

edges as the legacy of centuries of human land use in mountain regions, as in other Mediterranean 383 

mountain ranges such as the Pyrenees and the French Alps (Mouillot et al. 2005; Gartzia et al. 2016; Abadie 384 

et al. 2017). 385 

The differences observed in land cover change patterns between the Alps and the Apennines are not 386 

surprising because of strong regional differences in climate, geology, topography, vegetation (e.g. treeline 387 

species composition). Forest expansion by upward treeline rise or forest gap-filling processes has occurred 388 

primarily on warmer and gentler slopes (e.g. southern exposure), whether in the Alps (Tasser et al. 2007; 389 

Garbarino et al. 2013), the Apennines (Vitali et al. 2018) or the Pyrenees (Gartzia et al. 2016).  More 390 

favorable climate conditions and the greater availability of abandoned open areas make south-exposed low 391 

elevation sites suitable areas for forest expansion. Ultimately, the more rapid rate of forest expansion in 392 

the Apennines was linked to the greater availability of open areas given the more intense previous land 393 

use. Tree encroachment on old pastures by secondary succession and on former unvegetated areas 394 

through primary succession prevail in the Alpine region where climate change appears to have a strong 395 

influence (Dirnböck et al. 2003; Gehrig‐Fasel et al. 2007; Giorgi and Lionello 2008). Elevation plays a 396 

fundamental role on forest dynamics at both landscape and stand scales in the Alps (Garbarino et al. 2009; 397 

Kulakowski et al. 2011). Land use legacies such as conifer plantations and high elevation crop farming seem 398 

stronger in the Apennines where climate change effects on forest expansion at high elevation appear 399 

constrained by the unsuitability of Fagus sylvatica to migrate upwards due to its heavy seeds and its limited 400 

ability to invade adjacent plant community types (Vitali et al. 2018, 2019). However, the limited transitions 401 

from unvegetated areas to forests in the Apennines were also due to a combination of topographic 402 

influences and the previous land use. In particular, several Apennines peaks with sandy or marl-sandy soils 403 



13 
 

are less topographically limited (mountain mass effect) so that unvegetated areas are rare and in the 404 

absence of past human activities they are climatically suitable for forest dominance.  405 

Forest expansion is an emerging and debated issue that requires accurate measurement and monitoring to 406 

allow for proper management of current and future dynamics (Otero et al. 2015). There are two main 407 

management strategies: i) passive management to support rewilding processes and limit human induced 408 

landscape fragmentation and ii) active management to control and limit the negative effects of re-409 

vegetation processes (Lasanta et al. 2015). Negative effects of natural forest expansion include 410 

simplification of landscape structure, decline of species diversity, increased risk of fire and soil erosion, and 411 

the loss of cultural landscapes (Lasanta et al. 2015; Ferretti et al. 2019). A balance between conservation 412 

through monitoring and active management of secondary succession dynamics (new forests) should be 413 

attempted. A recent review, contrasting active management strategies with passive strategies allowing 414 

forest secondary succession, found that the most efficient technique seems to be a combination of clearing 415 

and extensive grazing (Lasanta 2019), maintaining high levels of landscape complexity and forest-meadow 416 

edge.  417 

With this study, by means of a standardized aerial image processing protocol we provided a robust dataset 418 

that should be implemented with more comprehensive records (Garbarino et al. 2019). Quantitative 419 

historical ecology with data on land use legacies can provide excellent information for ecosystem modelling 420 

to predict forest landscape changes (Stürck and Verburg 2017).  421 

We have shown that forest expansion in mountain ranges of Italy is controlled by land use legacies of pre-422 

existing forest edges, interacting with topography and climate. The Alps and the Apennines showed similar 423 

landscape changes featuring grassland-to-forest transitions. However, the rate of forest expansion was 424 

faster in the Apennines for the larger occurrence at lower elevations of old-fields recolonized by secondary 425 

forests. In the Alps, climate and land use changes favored a widespread transition from unvegetated areas 426 

to forest at higher elevations. Our results could be biased by the stronger mass effect on the Alps, and the 427 

higher average elevation of alpine landscapes. A further limit in our approach is the spatial resolution 428 

mismatch between the 1-km climate data resolution and the 30 m unit of forest expansion analysis. Thus, 429 

the influence of climatic variables on forest expansion could be underestimated by our random forest 430 

models.  431 

Despite these limitations, our results demonstrate that post-abandonment forest expansion is a 432 

widespread and ongoing process in Italian mountain forest landscapes. Future research should increase the 433 

number of surveyed sites for increased sensitivity in comparing regional differences. It would be 434 

informative to apply a land use change modeling approach. Predicting new landscape scenarios for Italian 435 

mountain forests should account for the possible changes to disturbance regimes linked to climatic changes 436 

(Vacchiano et al. 2017). The extensive forest cover that is blanketing large mountain areas has important 437 

implications for habitat and biodiversity. Forest expansion in these mountain landscapes additionally leads 438 

to an increase of fuel load continuity that increases the risk of wildfires, particularly in areas exposed to 439 

severe drought stress increased by recent climate changes. Large wildfires have recently increased in 440 

occurrence in mountain areas where they have historically been quite rare due to the prevalence of 441 

managed pastures and farmlands. Other implications regard snowfall and accumulation regimes in 442 

combination with soil erosion dynamics after forest fire. These issues are connected also to the naturalness 443 

of these processes triggered by man in human-shaped landscapes. A no-management approach of the 444 

successional processes would not guarantee, at least in the short term, a strictly natural forest 445 

encroachment. A comprehensive overview and assessment of the multiple ecosystem services provided by 446 

these complex and millenary landscapes is necessary in order to attempt a sustainable forest management 447 

(Schulze and Schulze, 2010). 448 

 449 
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Supplemental material 687 

Table S1. Harmonization details of the Corine Land Cover legend in 5 land cover categories at AL and AP. 688 

Corine Land Cover Harmonization 

Code Description Code Description 

111 Continuous urban fabric UR Urban 
112 Discontinuous urban fabric UR Urban 
121 Industrial or commercial units UR Urban 
122 Road and rail networks and associated land UR Urban 
123 Port areas UR Urban 
124 Airports UR Urban 
131 Mineral extraction sites UR Urban 
132 Dump sites UR Urban 
133 Construction sites UR Urban 
141 Green urban areas UR Urban 
142 Sport and leisure facilities UR Urban 
211 Non-irrigated arable land CR Cropland 
212 Permanently irrigated land CR Cropland 
213 Rice fields CR Cropland 
221 Vineyards CR Cropland 
222 Fruit trees and berry plantations CR Cropland 
223 Olive groves CR Cropland 
231 Pastures GR Grassland 
241 Annual crops associated with permanent crops CR Cropland 
242 Complex cultivation patterns CR Cropland 
243 Land principally occupied by agriculture with … natural vegetation CR Cropland 
244 Agro-forestry areas CR Cropland 
311 Broad-leaved forest FO Forest 
312 Coniferous forest FO Forest 
313 Mixed forest FO Forest 
321 Natural grasslands GR Grassland 
322 Moors and heathland FO Forest 
323 Sclerophyllous vegetation FO Forest 
324 Transitional woodland-shrub FO Forest 
331 Beaches dunes sands UV Unvegetated 
332 Bare rocks UV Unvegetated 
333 Sparsely vegetated areas UV Unvegetated 
334 Burnt areas FO Forest 
335 Glaciers and perpetual snow UV Unvegetated 
411 Inland marshes UV Unvegetated 
412 Peat bogs UV Unvegetated 
421 Salt marshes UV Unvegetated 
422 Salines UV Unvegetated 
423 Intertidal flats UV Unvegetated 
511 Water courses UV Unvegetated 
512 Water bodies UV Unvegetated 
521 Coastal lagoons UV Unvegetated 
522 Estuaries UV Unvegetated 
523 Sea and ocean UV Unvegetated 
999 NODATA 999 No Data 

 689 
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Table S2. Classification accuracy (OA = overall accuracy, K = Cohen's Kappa coefficient) of 32 land cover 690 

maps (16 landscapes x 2 periods). 691 

Landscape Year OA K 

BAG 1962 79 0.69 
2012 89 0.83 

CIM 1954 82 0.73 

2012 93 0.88 

DEV 1954 82 0.71 

2012 86 0.77 

GEN 1954 78 0.70 

2012 78 0.67 

GRS 1954 80 0.67 

2012 86 0.76 

MAT 1954 86 0.77 

2012 94 0.88 

MEL 1962 82 0.73 

2012 88 0.82 

MMA 1954 91 0.83 

2012 90 0.68 

MOR 1954 82 0.69 

2012 90 0.83 

MUS 1961 82 0.72 

2012 89 0.84 

PES 1954 88 0.78 

2012 86 0.73 

SAP 1954 84 0.73 

2012 91 0.84 

SIB 1954 86 0.80 

2012 86 0.77 

TER 1954 85 0.75 

2012 84 0.71 

VEG 1954 87 0.81 

2012 91 0.87 

VEN 1961 94 0.89 

2012 96 0.93 

 692 

 693 

 694 

 695 

 696 

 697 

 698 
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Table S3. Random forest model parameters used in this study (N transitions = number of forest expansion 700 

pixels, N total = number of total pixels in the model, OOB = Out-of-bag error or prediction error of RF 701 

models, Brier score = Brier predictive performance estimate, AUC = area under the receiver operating 702 

characteristics curve, K = Cohen's Kappa coefficient) computed for the AL and the AP datasets both at 30 703 

and 60 m spatial resolutions.  704 

RF models AL 30 m AP 30 m AL 60 m AP 60 m 

N transitions 14420 21027 3555 5184 

N total 28900 40575 7082 10010 

OOB 0.108 0.091 0.126 0.098 
Brier score 0.175 0.151 0.182 0.132 

AUC 0.829 0.854 0.819 0.849 

K 0.482 0.519 0.483 0.510 

DF IR 0.127 0.088 0.114 0.072 

El IR 0.077 0.156 0.065 0.168 

MC IR 0.053 0.054 0.034 0.039 

Te IR 0.049 0.076 0.033 0.051 

Pr IR 0.048 0.073 0.028 0.060 

DB IR 0.031 0.050 0.016 0.033 

DR IR 0.026 0.025 0.014 0.012 

Sl IR 0.022 0.035 0.013 0.030 

HL IR 0.019 0.032 0.011 0.023 

Total IR 0.452 0.589 0.329 0.489 

 705 

 706 

Table S4. Description, data sources, spatial characteristics and usage rationale of explanatory and predictor 707 
variables used in the Random Forest models. 708 
 709 

Variable Code Type Resolution Data source Description Units 

Forest expansion FE Binary  10 m LC map Transition to forest occurrence Pres/ab
s 

Elevation El Topographic 10 m DEM tinitaly Gradient of site suitability m a.s.l. 
Slope Sl Topographic 10 m DEM tinitaly Proxy of human pressure ° 
Heat Load Index HL Topographic 10 m DEM tinitaly Gradient of site suitability - 
Precipitation Pr Climatic 1 km CHELSA Average annual precipitation mm 
Temperature Te Climatic 1 km CHELSA Average annual temperature °C 
Distance to Forests DF LU Legacy 10 m LU 1954 Distance to former forest borders m 
Distance to Roads DR Anthropic 10 m OSM Euclidean distance from roads m 
Distance to Buildings DB Anthropic 10 m OSM Euclidean distance from buildings m 
Moving cost MC Anthropic 10 m DEM - OSM Cost of movement across the terrain - 

 710 

 711 

 712 

 713 

 714 
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 715 

Table S5. Land cover surface as a percentage of the total surface of AL and AP landscapes (10091 and 12830 716 

ha, respectively) divided by regional (CORINE land cover) and landscape (aerial imagery) scales. For 717 

comparison purposes, the considered study area is included within the borders of the 16 selected 718 

landscapes. 719 

Regional scale (CORINE LC) Landscape (Aerial imagery) 

AL 1990 2018 Delta AL 1954 2012 Delta 

FO 51.58 53.02 1.44 FO 38.75 48.82 10.07 

GR 16.16 4.43 -11.73 GR 28.35 24.51 -3.84 

CR 0.81 0.55 -0.26 CR 0.37 0.10 -0.26 

UR 0.04 0.04 0.00 UR 0.15 0.30 0.15 

UV 31.40 41.96 10.55 UV 32.38 26.26 -6.11 

AP 1990 2018 Delta AP 1954 2012 Delta 

FO 67.16 65.98 -1.18 FO 46.99 65.40 18.41 

GR 16.03 10.82 -5.21 GR 36.11 26.67 -9.44 

CR 3.52 3.66 0.14 CR 11.17 0.98 -10.19 

UR 0.65 0.70 0.05 UR 0.95 1.47 0.52 

UV 12.63 18.84 6.21 UV 4.78 5.49 0.70 
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