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multi-core with FastFlow: the
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Abstract. Shared-memory multi-core architectures are becoming increasingly pop-
ular. While their parallelism and peak performance is ever increasing, their effi-
ciency is often disappointing due to memory fence overheads. In this paper we
present FastFlow, a programming methodology based on lock-free queues explic-
itly designed for programming streaming applications on multi-cores. The poten-
tial of FastFlow is evaluated on micro-benchmarks and on the Smith-Waterman
sequence alignment application, which exhibits a substantial speedup against the
state-of-the-art multi-threaded implementation (SWPS3 x86/SSE2).

Keywords. Lock-free queues, multi-threading, multi-core, stream parallel programming,
software pipeline, SCM, Smith-Waterman, local sequence alignment, bioinformatics.

Introduction

The success of future multi- and many-core chips depends mainly on advances in sys-
tem software technologies (compilers, run-time support, programming environments) in
order to utilise fully the on-chip parallelism. The tighter coupling of on-chip resources
changes the communication to computation ratio that influences the design of parallel
algorithms. Modern Single Chip Multiprocessor (SCM) architectures introduce the po-
tential for low overhead inter-core communications, synchronisations and data sharing
due to fast path access to the on-die caches. These caches, organised in a hierarchy, are
also a potential limiting factor of these architectures since access patterns which are not
carefully optimised may lead to relevant access contention for shared cache and invalida-
tion pressure for replicated caches. In fact SCM and, especially, shared-cache multi-core
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architectures are showing, even at the current scale, severe scalability limitations when
programmed in the traditional way (e.g. using threads and monitors).

Performance on SCM is limited by the same factors as those that arise in shared-
memory parallel architectures. Some of these limitations stem from the use of atomic
memory transactions, which exhibit a rather high latency and tend to pollute the shared
memory hierarchy. In reality, those operations are not strictly required when concurrent
threads operate in a pipeline fashion, because data can be streamed from one stage to
the next using fast lock-free queues. In this paper we show that this lock-free approach
can be extended from simple pipelines to any streaming network. Such networks can be
used directly to build efficient applications working on data streams; and, indirectly, to
realise the implicit parallelisation of a wide class of algorithms. In fact a parallel Macro
Data-Flow interpreter can be designed as a (cyclic) streaming network (e.g. according to
the farm or master-worker paradigms/skeletons) [2,4,16,3].

FastFlow streaming networks are build upon two lower-level companion concepts:
lock-free Multiple-Producer-Multiple-Consumer (MPMC) queues and a parallel lock-
free memory allocator (MA). Both are realised as specific networks of threads connected
via lock-free Single-Producer-Single-Consumer (SCSP) queues, which admit a very ef-
ficient implementation on cache-coherent SCM [9]. These concepts are implemented as
a C++ template library.

Here we discuss how the FastFlow library can be used to build a widely used parallel
programming paradigm (a.k.a. skeleton), i.e. the streaming stateful farm; and we com-
pare its raw scalability against a hand-tuned Pthread-based counterpart on a dual quad-
core Intel platform. The FastFlow farm skeleton can be rapidly and effectively used to
boost the performance of many existing real-world applications, for example the Smith-
Waterman local alignment algorithm [18]. In the following we show that a straightfor-
ward porting of the multi-threaded x86/SSE2-enabled SWPS3 implementation [19] onto
FastFlow is twice as fast as the SWPS3 itself, which is a hand-tuned high-performance
implementation.

1. Related Work

The stream programming paradigm offers a promising approach for programming multi-
core systems. Stream languages are motivated by the application style used in image pro-
cessing, networking, and other media processing domains. Many languages and libraries
are available for programming stream applications. Some are general purpose program-
ming languages that hide the detail of the underlying architectural. Stream languages
enable the explicit specification of producer-consumer parallelism between coarse grain
units of computation; examples include StreamIt [20], S-Net [17], Brook [6], and CUDA
[11]. Some other languages, such as the Intel Threading Building Block (TBB), provide
explicit mechanisms for both streaming and other parallel paradigms, while others, such
as OpenMP and Cilk, although targeted particularly at data parallelism, can with greater
programming effort be used to implement streaming applications.

StreamIt is an explicitly parallel programming language based on the Synchronous
Data Flow (SDF) programming model. A StreamIt program is represented as a set of
autonomous actors that communicate through first-in, first-out (FIFO) data channels.
StreamIt contains syntactic constructs for defining programs structured as task graphs,



where each task contains Java-like sequential code. The interconnection types provided
are: Pipeline for straight task combinations, SplitJoin for nesting data parallelism and
FeedbackLoop for connections from consumers back to producers. The communications
are implemented either as shared circular buffers or message passing for small amounts
of control information.

S-Net [17] is a coordination language to describe the communications of asyn-
chronous sequential components (a.k.a. boxes) written in sequential language (e.g. C,
C++, Java) through typed streams. S-net boxes are entirely stateless, they are connected
to other boxes by one single input and one single output typed streams and operate only
in a input-process-output cycle. Complex stream networks are inductively defined using
a set of four network combiners, which can express serial and parallel composition of
two different networks as well as serial and parallel replication of a single network.

Brook [6] provides extensions to the C language with single program multiple data
(SPMD) operations that work on streams. User defined functions operating on stream el-
ements are called kernels and can be executed in parallel. Brook kernels feature blocking
behaviour: the execution of a kernel must complete before the next kernel can execute.
This is the same execution model as is available on graphics processing units (GPUs).
CUDA [11], which is an infrastructure from NVIDIA, presents features similar to those
of Brook, but programmers are required to use low-level mechanisms to manage memory
hierarchies.

Streaming applications are also targeted by TBB [10] through the pipeline construct.
FastFlow is methodologically similar to TBB, since it aims to provide a library of explic-
itly parallel constructs (a.k.a. parallel programming paradigms or skeletons) that extends
the base language (e.g. C, C++, Java). This approach is fully aligned with those tradi-
tionally followed within the skeleton research community [7,16,1,4,5,15,3]. However,
TBB does not support any kind of non-linear streaming network, which therefore has to
be embedded in a pipeline. This results in a non-trivial programming and performance
drawback since pipeline stages must bypass data that they are not interested with.

Giacomini et al. [9] highlight the fact that traditional locking queues feature a
high overhead on today’s multi-core. Revisiting Lamport’s work [12], which proves the
correctness of lock-free mechanisms for concurrent Single-Producer-Single-Consumer
(SPSC) queues on systems with memory sequential consistency commitment, they pro-
posed a set of lock-free cache-optimised protocols for today’s multi-core architectures.
They also prove the benefit of those mechanisms on pipeline applications. Exploiting a
lock-free SPSC, FastFlow substantially extends the work of Giacomini et al., from simple
pipelines to any streaming network.

2. Fast Streaming Networks on Multi-core

FastFlow aims to provide a set of low-level mechanisms capable of supporting low-
latency and high-bandwidth data flows in a network of threads running on a cache-
coherent SCM. These flows, which are typical of streaming applications, are assumed to
be mostly unidirectional and asynchronous. On these architectures the key issues concern
memory fences, which are required to keep the various caches coherent.

FastFlow currently provides the programmer with two basic mechanisms: MPMC
queues and a memory allocator. The memory allocator is build on top of MPMC queues
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Figure 1. FastFlow concepts: Lock-free SPSC queue, MP queue, MC queue, Emitter (E) and Collector (C),
and a streaming network implementing a task farm.

and can be substituted by either an OS standard allocator or a third-party allocator (e.g.
TBB scalable allocator [10]). The FastFlow memory allocator substantially boosts Fast-
Flow applications that use dynamic memory allocation but it does not have any impact
on applications using static memory allocation, and thus is not discussed in this paper.

The key intuition behind FastFlow is to provide the programmer with lock-free MP
queues and MC queues (that can be used in pipeline to build MPMC queues) to sup-
port fast streaming networks. Traditionally, MPMC queues are build as passive enti-
ties: threads concurrently synchronise (according to some protocol) to access data; these
synchronisations are usually supported by one or more atomic operations (e.g. CAS:
Compare-And-Swap) that behave as memory fences. The FastFlow design follows a dif-
ferent approach: to avoid any memory fence, the synchronisations among queue readers
or writers are arbitrated by an active entity (e.g. a thread), as shown in Fig. 1. We call
these entities Emitter (E) or Collector (C) according to their role; they actually read an
item from one or more lock-free SPSC queues and write to one or more lock-free SPSC
queues. This requires a memory copy but no atomic operations (this is a trivial corollary
of lock-free SPSC correctness [9]). FastFlow networks do not suffer from the ABA prob-
lem [14] since MPMC queues are built by explicitly linearising correct SPSC queues
using Emitters and Collectors.

The performance advantage of this solution derives from the relative speed of the
copy with respect to the memory fence, and its impact on cache invalidation. This also
depends on the size and the memory layout of copied data. The former point is addressed
by using data pointers instead of data and enforcing that data is not concurrently written:
in many cases this can be derived from the semantics of the skeleton that has been im-
plemented using MPMC queues (for example, this is guaranteed in a stateless farm and
many other cases). The latter point is addressed by using a suitable memory allocator
(not presented in this paper).

3. Experimental Evaluation

We evaluate the performance of FastFlow with two families of applications: a synthetic
micro-benchmark and the Smith-Waterman local sequence alignment algorithm. All ex-
periments are executed on a shared memory Intel platform with two quad-core Xeon
E5420 Harpertown 2.5GHz 6MB L2 cache and 8 GBytes of main memory.



void Emitter () {
for ( i=0;i<streamLen;++i){

task= create_task () ;
queue=

SELECT_WORKER_QUEUE();
queue−>PUSH(task);

}
}

void Worker() {
while (!end_of_stream){

myqueue−>POP(&task);
do_work(task);

}
}

int main () {
spawn_thread(Emitter ) ;
for ( i=0;i<nworkers;++i){

spawn_thread(Worker);
}
wait_end() ;

}

Figure 2. Micro-benchmark pseudo-code.

3.1. Micro-benchmarks

Micro-benchmarks mock a parallel filtering application via a farm skeleton with a para-
metric synthetic load in the worker; by varying this load it is possible to evaluate the
speedup for different computation grains, and therefore the overhead of the communica-
tion infrastructure. The pseudo-code of the micro-benchmark is sketched in Fig.2. A task
is a pointer to a pre-allocated array of data, whereas the do_work() function just modifies
the data pointed to by the task and then spends a fixed amount of time. Notice that the
analysis of communication latency and bandwidth among a linear pipeline (through a
lock-free SPSC queue) is beyond the scope of this paper (see related works [9]).

As is clear from the comparison of the two families of curves in Fig. 3, the standard
implementation based on Pthread exhibits no speedup at all with fine grain tasks, while
the proposed implementation exhibits a reasonable speedup, even for very fine compu-
tation grains (e.g. 5 µS and even finer grains such as 0.5 µS), and almost ideal speedup
for medium to coarse grains. The communication overhead between successive stages is
the most important limiting factor for fine-grain streaming networks. On the tested archi-
tecture we experienced that a put/get operation on a lock-based queue exhibits at least a
threefold cost with respect to the same operation on a lock-free implementation (0.09 –
0.11 µs vs 0.03 – 0.04 µs).

3.2. Smith-Waterman Algorithm

In bioinformatics, sequence database searches are used to find the similarity between
a query sequence and subject sequences in the database, in order to discover similar
regions between two nucleotide or protein sequences, encoded as a string of characters in
an alphabet (e.g. {A,C,G,T}). The sequence similarities can be determined by computing
their optimal local alignments using the Smith-Waterman (SW) algorithm [18]. SW is a
dynamic programming algorithm that is guaranteed to find the optimal local alignment
with respect to the scoring system being used. Instead of looking at the total sequence,
the SW algorithm compares segments of all possible lengths and optimises the similarity
measure. The cost of this approach is fairly expensive in terms of memory space and
computing time (O(mn), where n and m are the lengths of the two sequences), which is
increasingly significant with the rapid growth of biological sequence databases.

For SW and similar algorithms, the emerging multi- and many-core architectures
represent a concrete opportunity to cut computation time to acceptable figures, even for
large datasets.

Moreover, it provides an ideal test-bed to evaluate the FastFlow performance on a
real-world algorithm because:
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Figure 3. The speedup of different implementations of farm for different computation grains.

• SW features several efficient parallel hand-tuned implementations to be used as
reference implementations;

• it works on a long stream of independent tasks;
• it makes possible variation of the computational grain from very fine to coarse by

simply changing the query length.

Recent works in this area focus on the implementation of the SW algorithm on
many-core architectures like GPUs [13] and Cell/BE [8] and on multi-core architectures
exploiting the x86/SSE2 instruction set [8]. From them we selected the SWPS3, which
has been extensively optimised to run on Cell/BE and on x86/64 CPUs with SSE2 in-
structions [19]. SWPS3 is an extension of Farrar’s work for the Striped Smith-Waterman
algorithm described in [8].

The original SWPS3 version is designed as a master-worker computation where the
master process distributes the workload to a set of worker processes. The master process
handles file I/O and communicates with the worker processes over bidirectional pipes
to supply them with database sequences and to collect alignment scores. Every worker
computes the alignment of the query sequence with a separate database sequence. We
modified the original code to turn it into a FastFlow application by simply (almost syn-
tactically) substituting processes with threads and pipes with FastFlow queues. The mas-
ter thread (emitter) reads the sequence database and produces a stream of pairs: <query
sequence, subject sequence>. The query sequence remains the same for all the subject
sequences contained in the database. The worker threads compute the Smith-Waterman
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Figure 4. Smith-Waterman sequence alignment algorithm: FastFlow against SWPS3 implementation for
(5− 2k) and (10− 2k) gap penalties evaluated on Release 57.5 of 07-Jul-09 of UniProtKB/Swiss-Prot (con-
tains 471472 sequence entries, comprising 167326533 amino-acids abstracted from 181042 references). The
two implementations share exactly the same sequential (x86/SSE2 vectorised) code.

algorithm on the input pairs using the SSE2 instructions set. The collector thread gets the
resulting score and produces the output string (score and sequence name).

Figure 4 reports the performance comparison between SWPS3 and the FastFlow ver-
sion of the SW algorithm for x86/SSE2 executed on the test platform described above.
The scoring matrix BLOSUM50 is used for the tests with a gap penalty of 10-2 k and
5-2 k respectively. All the other parameters in the SWPS3 implementation are used with
their default values. As can be seen from the figures, the FastFlow implementation out-
performs the original SWPS3 x86/SSE2 version for all the sequences tested. SWPS3
achieves a peak performance of up to 16.31 and 29.19 GCUPS with a gap penalty of 5-2
k and 10-2 k, respectively, whereas the FastFlow version reaches a peak performance of
up to 18.94 GCUPS with a gap penalty of 5-2 k and 34.38 GCUPS with a gap penalty of
10-2 k. The GCUPS (Giga-Cell-Updates-Per-Second) is a commonly used performance
measure in bioinformatics and is calculated by multiplying the length of the query se-
quence by the length of the database divided by the total elapsed time.

The smaller the query sequences are, the bigger is the performance gain. This is
mainly due to the lower overhead of the FastFlow communication channels with respect
to the standard POSIX channels exploited by SWPS3. Other results, not shown here due
to space limitations, demonstrate the further performance gain obtained by the FastFlow
implementations when multiple query sequences are tested in a single FastFlow run. In
fact, in this case, contrary to the SWPS3 implementation, FastFlow does not require the
flushing of farm queues when the query changes.

4. Conclusions

FastFlow extends the use of lock-free SPSC queues from the implementation of the lin-
ear pipeline to any streaming network, including task farming. FastFlow networks make
it possible to build very fast streaming applications on commodity multi-core architec-
tures even for very fine-grained tasks. As an example, the FastFlow version of the Smith-
Waterman algorithm, obtained from a third-party high-performance implementation by
simply substituting communication primitives, is always faster when compared to the



original version and exhibits double its speedup on fine-grained datasets. The presented
results should be considered as a “feasibility study” of the proposed approach. We en-
visage, in the medium term, FastFlow as part of the run-time support of a higher-level
skeletal programming framework for a multi- and many-core C++ template-based li-
brary that will be released as open-source. Comparison with other multi-core-specific
programming frameworks such as Intel TBB and OpenMP is among planned activities.
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