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Chapter 6
Measures of Biological Diversity: Overview 
and Unified Framework

Vincenzo Crupi

Abstract  A variety of statistical measures of diversity have been employed across 
biology and ecology, including Shannon entropy, the Gini-Simpson index, so-called 
effective numbers of species (aka Hill’s measures), and more besides. I will review 
several major options and then present a comprehensive formalism in which all 
these can be embedded as special cases, depending on the setting of two parameters, 
labelled degree and order. This mathematical framework is adapted from general-
ized information theory. A discussion of the theoretical meaning of the parameters 
in biological applications provides insight into the conceptual features and limita-
tions of current approaches. The unified framework described also allows for the 
development of a tailored solution for the measurement of biological diversity that 
jointly satisfies otherwise divergent desiderata put forward in the literature.

Keywords  Diversity · Richness · Evenness · Entropy · Information theory

Suppose that four different species, X, Y, W, and Z, are present in a given environ-
ment at a certain time, counting exactly 50, 25, 15, and 10 organisms each, respec-
tively. At the same time in a different location (alternatively: at a later moment in the 
same area) the numbers are 40, 30, 30, and 0, respectively. In which of these two 
situations one deals with a more diverse community?

This example, although drastically simplified, illustrates a rather general prob-
lem. With minor variations, X, Y, W, and Z might just as well be the firms operating 
in a sector of the economy (see, e.g., Chakravarty and Eichhorn 1991), the lan-
guages spoken in a region (see, e.g., Greenberg 1956), the types of television chan-
nels in a country (see, e.g., Aslama et al. 2004), or the parties in a political system 
(see, e.g., Golosov 2010) characterized by their shares of market, speakers, overall 
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broadcasting, or parliamentary seats. In each of these domains, and still others, 
measuring diversity (or, conversely, concentration) has been a significant scientific 
issue. In biology and ecology, tracking diversity over space and time is of course a 
key topic for environmental concerns, but biological diversity also plays a relevant 
theoretical role for its connections with other variables of interest, such as stability, 
predation pressure, and so on.

In this chapter, I will review a variety of measures of biological diversity that 
have been employed and discussed across the scientific literature. Relying on a few 
intuitive illustrations, I will carry out an assessment of the strengths and limitations 
of some major options, including Shannon entropy, the Gini-Simpson index, so-
called effective numbers of species, and more besides. I will also highlight the 
appeal of one specific measure, which might have not received adequate attention so 
far. Finally, I will describe a comprehensive formalism and point out how all diver-
sity measures previously considered can be conveniently embedded in it as special 
cases, depending on the setting of two parameters, labelled order and degree. This 
unified mathematical framework is adapted from generalized information theory 
(Aczél 1984). As we will see, it provides insight into the conceptual features of cur-
rent approaches and can allow for tailored technical solutions for the measurement 
of biological diversity.

6.1  �Richness

For our current purposes, measuring diversity has to do with how a given quan-
tity is distributed among some well defined categories.1 In biological applica-
tions, it is typical (although by no means necessary) that such categories amount 
to distinct species characterized by their relative abundance. The latter quantity, 
in turn, is often simply measured by the proportion of organisms of that species 
in the overall target population (but biomass can be employed as well, for 
instance). In what follows, we will denote diversity as D(p1, …, pn), where n 
species—s1, …, sn—are involved and pi is the relative abundance of the i-th spe-
cies, si. With this bit of formal notation, we can thus represent our initial example 
with categories X, Y, W, and Z as concerning the comparison between D(0.5, 
0.25, 0.15, 0.10) and D(0.40, 0.30, 0.30, 0). Note that, as a direct consequence of 
our definition, p1, …, pn will always be positive numbers summing to 1, so that 
(p1, …, pn) actually represents a probability distribution. In our canonical 

1 Our use of the term category here is very general: essentially, categories in our current sense 
are the elements of any partition of interest. This terminology is thus not constrained by the 
more technical and specific distinction between “species category” and “species taxon”  
(e.g., Bock 2004). In particular, a set of different taxa can be treated as a partition of categories 
in our terms.
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interpretation, pi equals the probability that a randomly selected individual from 
the target population belongs to species si.

The simplest way to measure diversity, and a useful starting point for discussion, 
is to just count out the number of species with non-zero relative abundance. This 
straightforward approach relies on what is usually labelled richness, namely, how 
many different species are represented in an environment. In our formalism, it can 
be computed as follows (with the convenient convention that 00 = 0):
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As pi
0 = 1 whenever pi > 0, Richness always takes an integer value corresponding to 

how many ps are strictly positive, i.e., how many species are effectively instantiated 
by some organism. In order to satisfy the appealing constraint that diversity is null 
(rather than 1) in the extreme case when only one species is present, the following 
minor variation is sometimes employed (Patil and Taille 1982, p. 551):
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As austere as it may seem as a measure of diversity, Richness yields “an intuitive 
property that is implicit in much biological reasoning about diversity” (Chao and 
Jost 2012, p. 204). A basic illustration of such property (aka the replication princi-
ple, see Jost 2009, p. 927) is conveyed by the following example.

Test Case 1  (Jost 2006, p. 363). Let us consider communities consisting of n 
equally common species, like (1/5, …, 1/5) (with n = 5) and (1/10, …, 1/10) 
(with n = 10). Arguably, diversity in the latter case should just be twice as in the 
former. A compelling measure of diversity should recover such assessment. 
Richness clearly does, because Richness(1/10, …, 1/10) = 10 and Richness(1/5, 
…, 1/5) = 5.

The richness measure is of course completely transparent in its interpretation, but it 
is also simplistic in a fairly obvious way: it is entirely insensitive to how even/
uneven the distribution is. Here is a second test case to clarify the point.

Test Case 2  (evenness sensitivity, see Pielou 1975, p. 7). For a given number of 
species n, a compelling measure of diversity should assign maximum value to a 
completely even distribution (with p1 = … = pn = 1/n), and a strictly lower value 
to a distribution which is much more skewed. Richness, however, clearly fails 
this condition. For instance, one has Richness(0.25, 0.25, 0.25, 
0.25) = 4 = Richness(0.97, 0.01, 0.01, 0.01).
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6.2  �Entropies and Diversity

One traditional approach to meet the requirement underlying Test case 2 is to ana-
lyze biological diversity on the basis of entropy measures developed in information 
theory (Csizár 2008). By far the most widely known such measure is Shannon’s 
(Shannon 1948). In our current notation, it amounts to the following2:
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How can this measure be interpreted in the biological context? The quantity 

log
1
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÷  can be seen as representing potential surprise, to wit, how surprising it 

would be to find out that a randomly selected individual from the target population 
belongs to species si. In fact, such index of surprise is null in the extreme case when 
the outcome is already known for sure (so that pi = 1, and log(1) = 0) and it is 
increasingly and indefinetely large as pi approches 0. As a consequence, 
DShannon(p1,  …  , pn) quantifies the average (expected) surprise should one get to 
know the species to which a randomly sampled element will belong. Appropriately, 
such expected surprise will be low when a very uneven distribution—such as (0.97, 
0.01, 0.01, 0.01)—implies a low level of uncertainty about the outcome, because 
one species is (or few of them are) very likely to be instantiated in a random draw. 
On the other hand, expected surprise gets its maximum value (for given n) when a 
completely even distribution—namely, (0.25, 0.25, 0.25, 0.25)—implies the high-
est level of uncertainty, because each species is equally likely to be instantiated in 
a random draw. In fact, the Shannon index of diversity gets Test case 2 just right: in 
particular, DShannon(0.25, 0.25, 0.25, 0.25)  =  1.386  >  0.168  =  DShannon(0.97, 0.01, 
0.01, 0.01).

Another very popular index of diversity which is appropriately sensitive to the 
unevenness of the abundance distribution is quadratic entropy (Vajda and Zvárová 
2007), also widely known as the Gini or the Gini-Simpson index (after Gini 1912 
and Simpson 1949):
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DGini, too, can be given a convenient interpretation. It amounts to 1 minus the prob-
ability that two random draws (with replacement) from the background population 
instantiate the same category (in fact, the latter probability is pi × pi, for each species 

2 The choice of a base for the logarithm is a matter of conventionally setting a unit of measurement. 
Usual options include 2, 10, and e. We will adopt the latter throughout our discussion, thus employ-
ing the natural logarithm in subsequent calculations.
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si). For this reason, in biological and ecological applications, DGini is often seen as 
the probability of interspecific encounter (see Patil and Taille 1982, pp. 548–550), 
to wit, the probability that two random draws do not instantiate the same species. 
Also, 1—pi can be taken as a natural measure of the rarity of species si in the target 
environment. Then, DGini(p1, …, pn) computes the average (expected) rarity of the 
species to which a (randomly sampled) individual would belong, as emphasized by 
the following equivalent rendition:
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Expected rarity will be low when a very uneven distribution—such as (0.97, 0.01, 
0.01, 0.01)—implies that one very common species is (or few of them are) likely to 
be instantiated in a random draw. On the other hand, expected rarity gets its maxi-
mum value (for given n) when a completely even distribution—namely, (0.25, 0.25, 
0.25, 0.25)—implies that the species instantiated in a random draw will always have 
the same, and substantial, degree of rarity. Accordingly, the Gini index of diversity 
also gets Test case 2 right: DGini(0.25, 0.25, 0.25, 0.25) = 0.75 > 0.06 = DGini(0.97, 
0.01, 0.01, 0.01).

One important and well-known feature of both the Shannon and the Gini index 
of diversity is that they are concave functions. The formal definition of concavity 
involves the notion of a mixture M p p p pP P

n na a a a a, , ,
*

= + -( ) ¼ + -( )( )* *
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two distributions of relative abundance P = (p1, … , pn) and P p pn
* * *= ¼( )1 , , , where 

α ∈ [0,1] determines the relative weights of the distributions combined. As a plain 
illustration, if P  =  (0.9, 0.1), P*  =  (0.7, 0.3), and α  =  0.5, then the mixture is 
MP P

a
, *

 = (0.8, 0.2). A measure of diversity D is then said to be concave if and only 

if, for any P, P*, and any α ∈ [0,1], one has a a aD P D P D MP P( ) + -( ) ( ) £ ( )* *

1 , . 
Concavity is sometimes advocated for measures of biological diversity as convey-
ing the idea that, if one pools together two distinct populations X and Y composed 
by possibly different abundance distributions (P vs. P*) of the same list of n species, 
then the aggregate should have a diversity that is at least as great as the average of 
the initial diversities of X and Y. Whether or not such condition is meant to be com-
pelling in general, one significant implication of concavity is involved in the follow-
ing example.

Test Case 3  Consider three subsequent moments in time t1, t2, and t3, with 
corresponding relative abundace distributions of a population with n = 10, as 
follows.
t1: (0.1,    0.1,    0.1,    0.1,    0.1,    0.1,    0.1,    0.1,    0.1,    0.1)

t2: (0.5,    0.1,    0.05,  0.05,  0.05,  0.05,  0.05,  0.05,  0.05,  0.05)

t3: (0.9,    0.1,    0,     0,     0,     0,     0,     0,     0,     0)

6  Measures of Biological Diversity: Overview and Unified Framework



128

Quite clearly, a drop in diversity occurred from t1 to t2. But, arguably, the loss of 
diversity was even greater from t2 to t3, essentially because most of the species (in 
fact, 80% of them) disappeared altogether. A compelling measure of diversity 
should recover such assessment, and concave measures such as DShannon and DGini 
do. DShannon takes values 2.303 at t1, 1.775 at t2, and then drops to 0.325 at t3. With 
DGini, we have 0.90, 0.72, and 0.18, respectively.

As we already know, because it lacks evenness sensitivity entirely, the Richness 
measure fails our Test case 2 above. Concerning Test case 3, Richness gets the main 
point right, namely that a larger drop in diversity occurs from t2 to t3 (although, 
again because of evenness insensitivity, it fails to detect any change in diversity 
from t1 to t2). Noting that DShannon and DGini do well in both cases 2 and 3, one might 
conclude that diversity should be quantified by these measures. And yet, the asses-
ment of biological diversity on the basis of entropy measures such as DShannon and 
DGini has been forcefully questioned because such measures do not fulfil the replica-
tion principle, and in fact fail as basic a benchmark as Test case 1. As it turns out, 
DShannon(1/10, …, 1/10) = 2.303, which is definitely less than twice DShannon(1/5, …, 
1/5) = 1.609, and DGini(1/10, …, 1/10) = 0.9, which is definitely less than twice 
DGini(1/5, …, 1/5) = 0.8. To emphasize the troubling consequences of these failures, 
Jost (2009, p.  926) put forward a variation that is even more extreme (notation 
slightly adapted):

Biologists frequently use measures of diversity to detect changes in the environment due to 
pollution, climate change, or other factors. […] Suppose a continent has a million equally 
common species, and a meteor impact kills 999,900 of the species, leaving 100 species 
untouched. Any biologist, if asked, would say that this meteor impact caused a large abso-
lute and relative drop in diversity. Yet DGini only decreases from 0.999999 to 0.99, a drop of 
less than 1%. Evidently, the metric of this measure does not match the intuitive concept of 
diversity as used by biologists, and ecologists relying on DGini will often misjudge the mag-
nitude of ecosystem change. This same problem arises when DShannon is equated with 
diversity.

6.3  �Effective Numbers

Consider Jost’s meteor illustration above. According to the replication principle 
(which Jost 2009 strongly advocates), diversity should be 10.000 times lower 
after the impact than it was before (1.000.000/100). Is it possible to define a 
measure such that (as it happens with richness but not with entropy) the replica-
tion principle is retained and at the same time (as it happens with entropy but not 
richness) the (un)evenness of the distribution is also integrated in the assessment 
of diversity?

A crucial step in this direction was made in classical work by MacArthur (1965) 
and Hill (1973). To introduce their proposal, consider an entropy measure such as 
DGini, and take one specific example such as DGini(0.4, 0.3, 0.2, 0.1), which amounts 
to 0.7. We now ask: how many species should a completely even population include 
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in order for its diversity to be just the same (i.e., 0.7) according to DGini itself? Note 

that, for a completely even population of n species, DGini equals å -æ
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For such a hypothetical population of equally abundant species to have DGini-

diversity of 0.7, it should then hold that 1
1

-
n

  =  0.7, by which we compute 

n =
-
1

1 0 7.
, and thus n = 3.333… So a hypothetical completely even population of 

3.333… species would have the same DGini-diversity as our initial population with 
actual distribution (0.4, 0.3, 0.2, 0.1). Given a canonical diversity index such as 
DGini, this number of corresponding equally abundant categories is usually called the 
effective number of species (relative to the index at issue, DGini in this case). As our 
illustration shows, the effective number of species is a theoretical construct: often it 
will not be an integer. Generalizing from our computation above, one can see that 
the effective number corresponding to DGini is as follows:
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In this case, too, in order to have null diversity (rather than 1) in the extreme case 
when only one species is present, a minor variation can be employed:
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An effective number measure like DGini-EN meets the requirement of combining the 
replication principle and evenness sensitivity. Indeed, it can be shown that DGini-EN 
(p1, …, pn) = Richness(p1, …, pn) whenever the abundance distribution is uniform, so 
that, for instance, DGini-EN(1/10, …, 1/10) = 10 and DGini-EN(1/5, …, 1/5) = 5 (see Test 
case 1 above). On the other hand, DGini-EN is a smooth and strictly increasing function 
of DGini, thus it retains the evenness sensitivity of the latter when distributions are not 
uniform: for instance, DGini-EN(0.25, 0.25, 0.25, 0.25) = 4 while DGini-EN(0.97, 0.01, 
0.01, 0.01) = 1.064 (see Test case 2 above). To achieve the same results, one can 
alternatively generate an effective number measure from yet another evenness sensi-

tive index of diversity, such as Shannon entropy. The general method is the same: 

take the actual value of DShannon  (p1, … , pn), equate it to D
n nShannon

1 1
, ,¼æ
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÷ , which 

amounts to log(1/n), then solve for n. The resulting measure is 

D p p eShannon EN n
D p pShannon n

-
¼( )¼( ) =1

1, , , ,  (see, e.g., Jost 2006, p. 364–365).

According to some authors, using an effective number measure is the one right 
way to quantify true diversity in biological and ecological applications (see Hoffmann 
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and Hoffmann 2008, and again Jost 2009, for a debate). Following Hill (1973, 
pp. 429–430) and Ricotta (2003, pp. 191–192), one can highlight another attractive 
consequence of the replication principle, which is implied by all effective number 
measures. If a diversity measure D(p1, …, pn) satisfies the replication principle, then 
one can define a measure of evenness in a very natural way, as Evenness(p1, …, 
pn) = D(p1, …, pn)/n. A simple and compelling property of such a measure of evenness 
is that it equates a fixed maximum value of 1 (i.e., n/n) whenever the distribution P is 
uniform, regardless of the value of n. And a straightforward implication is that diver-
sity can then be neatly factorized into richness and evenness as distinct and indepen-
dent components, for instance as follows:

	
D p p Richness p p Evenness p pGini EN n n Gini EN n- -¼( ) = ¼( )´ ¼1 1 1, , , , , ,(( ) 	

One should note, however, that effective number measures do not retain the concav-
ity of their generating indexes. For instance, the concavity of DGini is not retained in 
DGini-EN (and the same applies to DShannon and DShannon-EN). One disturbing consequence 
is that Test case 3 above is not addressed in a convincing way. To illustrate, accord-
ing to DGini-EN, diversity decreases from DGini-EN(0.1, …, 0.1) = 10 to DGini-EN(0.5, 0.1, 
0.05, …, 0.05) = 3.57 between t1 and t2, but the drop is smaller from t2 to t3, with 
DGini-EN(0.9, 0.1, 0, …, 0) = 1.22. As pointed out above, intuition clearly goes in the 
opposite direction, given that from time t2 to t3 eight out of ten species have disap-
peared entirely.

Table 6.1 summarizes our results so far. On inspection, it naturally suggests the 
question whether there exist a measure of diversity yielding a satisfactory response 
to all of our test cases above. As a final remark in our comparative discussion, I 
would like to point out that this can be done. One effective way is to adopt the 
following as a measure of diversity (see Arimoto 1971, p. 186, for an earlier occur-
rence in the information theory literature):

	
D p p pRoot n

i

n

i1
1

2

, ,¼( ) = åæ
è
ç

ö
ø
÷

= 	

Table 6.1  Some properties of alternative ways to quantify biological diversity. 

Test case 1  
(replication principle)

Test case 2  
(evenness sensitivity)

Test case 3 
(concavity)

Richness Yes No Yes
Entropy (DGini) No Yes Yes
Effective number 
(DGini-EN)

Yes Yes No

Test cases are explained in the text, and associated to formally relevant mathematical conditions 
(in parenthesis). “Yes” / “no”: the diversity measure (in row) yields/does not yield an intuitively 
adequate result in the test case at issue (in column)
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Once again, a  – 1 correction can be employed to yield D p pRoot n
* ¼( )1, , , with null 

diversity (rather than 1) in the extreme case when only one species is present.3 DRoot 
is demonstrably evenness sensitive (see Crupi et al. 2018). It is also concave and it 
satisfies the replication principle (see below for this). It addresses Test case 1 appro-
priately, because (according to the replication principle), DRoot(1/10, …, 1/10) = 10 
and DRoot(1/5, …, 1/5) = 5. Moreover, it gets Test case 2 right, because (according to 
evenness sensitivity), DRoot(0.25, 0.25, 0.25, 0.25) = 4 > 1.651 = DRoot(0.97, 0.01, 
0.01, 0.01). And finally, in virtue of concavity, it also accommodates Test case 3, 
implying a moderate decrease in diversity between t1 and t2—from DRoot(0.1, …, 
0.1) = 10 to DRoot(0.5, 0.1, 0.05, …, 0.05) = 7.908—and a much larger drop between 
t2 and t3—from DRoot(0.5, 0.1., 0.05, …, 0.05)  =  7.908 to DRoot(0.9, 0.1, 0, …, 
0) = 1.6.

6.4  �Parametric Measures of Diversity

The discussion above suggests that statistical measure of diversity DRoot combines a 
number of appealing features, and it is good news, I submit, that such a measure 
exists. In general, however, the plurality of non-identical ways to quantify biologi-
cal diversity needs not be a reason for concern or skepticism, like in Hurlbert’s 
(1971, p. 585) complaint that “diversity per se does not exists”. As noted by Patil 
and Taille (1982, p. 551), the plurality of measures is a very mundane phenomenon 
in various domains: in statistics, for instance, mean and median are non-equivalent 
measures of “central tendency”; variance, mean absolute variation, and range are 
non-equivalent measures of “spread”, and so on. In fact, once their main distinctive 
properties become well understood, it is natural to think that different measures may 
be most useful relative to varying purposes or contexts. For this reason, several 
authors have put forward a comprehensive approach, based on parametric families 
of diversity measures. In the final part of this contribution, I would like to point out 
that all of the specific measures mentioned in the foregoing discussion can be 
embedded as special cases in a unified formalism taken from generalized informa-
tion theory (Sharma and Mittal 1975; Hoffmann 2008), namely:
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Parameters r and t of the Sharma and Mittal (1975) family of measures are usually 
taken to be non-negative (r,t ≥ 0), while for r → 1 and t → 1 D p pSharma Mittal

r t
n-

( ) ¼( ), , ,1  
is known to yield the classical Shannon formula, DShannon(p1, … , pn) in our notation 

3 As pointed out by Arimoto (1971, p. 186), it also turns out that D p p p pRoot n
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(see Crupi et  al. 2018). Accordingly, it is costumary to just posit 
D p p D p pSharma Mittal n Shannon n-

( ) ¼( ) = ¼( )1 1
1 1

, , , , , . Other settings of parameters r, t 

(known as order and degree, respectively, in the information theory literature) gen-
erate all diversity measures mentioned above, as illustrated in Table 6.2.

What is the meaning of the order (r) and degree (t) parameters in the Sharma-
Mittal formalism when employed in the measurement of biological diversity?

The order parameter r is an index of the insensitivity to less abundant species. In 
fact, as r increases, diversity gets closer and closer to a simple (decreasing) function 
of one single element p* in the distribution (p1, …, pn), that is, the relative abun-
dance of the most common species. As an illustration, on the basis of the limit for 
r → ∞ when t = 2, one has D p p pSharma Mittal n-

¥( ) *¼( ) = -, , ,2
1 1  (see Crupi et al. 2018). 

When r = 0, on the contrary, diversity becomes a (increasing) function of the plain 
number of species with non-null relative abundance. The simplest illustration here 

is just D p p Richness p pSharma Mittal n n-
( ) *¼( ) = ¼( )0 0

1 1
, , , , ,  (see Table 6.2 and Fig. 6.1). 

This shows that the order parameter r indicates how much a diversity measure dis-
regards relatively rare species. For order-0 measures, the actual distribution of rela-
tive abundance is neglected: non-zero abundance species are just counted, as if they 
were all equally important. For order-∞ measures, on the other hand, only the most 
abundant species matters, and all others are neglected altogether. The higher [lower] 
r is, the more [less] the common species are regarded and the rare species are dis-
counted in the measurement of diversity.

Importantly, for extreme values of the order parameter, an otherwise natural idea 
of continuity fails in the measurement of diversity: when r goes to either zero or 
infinity, it is not the case that small (large) changes in the abundance distribution 
produce comparably small (large) changes in diversity. To illustrate, all order-0 

Table 6.2  Some important special cases of the Sharma-Mittal framework for statistical measures 
of diversity
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entropies remain entirely invariant upon as large a change as that from, say, (1/3, 
1/3, 1/3) to (0.98, 0.01, 0.01), while they yield clearly different values for as small 
a change as that from (0.98, 0.01, 0.01) to (0.99, 0.01, 0). Order-∞ entropies, in 
turn, remain entirely invariant upon as large a change as that from, say, (0.50, 0.25, 
0.25) to (0.50, 0.50, 0), yet they still yield distinct values for as small a change as 
that from (0.50, 0.25, 0.25) to (0.52, 0.24, 0.24).

The role of the degree parameter t is somewhat more technical: it affects a few 
important metric properties. To appreciate this, it is useful to consider that all spe-
cific measures we considered earlier lie either (i) on the x-axis or (ii) on the diagonal 
line in Fig. 6.1. This is not by chance. Let us conclude our discussion by briefly 
considering cases (i) and (ii) in turn.

4

3

quadratic (Gini)

Tsa
llis

Shannon

Richness*

Root* Shannon-EN* Gini-EN*

effective numbers (Hill)

2

1

0 1 2

order (r )

de
gr

ee
 (
t)

3 4

Fig. 6.1  The Sharma-Mittal family of diversity measures is represented in a Cartesian quadrant 
with values of the order parameter r and of the degree parameter t lying on the x– and y–axis, 
respectively. Each point in the quadrant corresponds to a specific measure. A line corresponds to a 
distinct one-parameter generalized diversity function. Several special cases are highlighted. A 
point in the plane represents a concave diversity measure unless it lies strictly below the dotted line 
where t = 2–1/r
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	(i)	 Measures lying on the x-axis are obtained by positing t = 0, thus yielding:
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For a diversity measure in the Sharma-Mittal family, having degree 0 (t  =  0) is 
known to be a necessary and sufficient condition to satisfy the replication principle. 
In fact, this was a major reason for Hill (1973) to advocate this formalism as a one-
parameter generalized approach to measure diversity. More precisely, the replica-
tion principle is satisfied by D p pSharma Mittal

r
n-

( ) ¼( ) +, , ,0
1 1  (for any r) (see Hoffmann 

2008, pp. 20–21), and that is equivant to the formula originally employed by Hill 
(1973, p.  428). The comprehensive approach presented here reveals one striking 
aspect of Hill’s measures: for any Sharma-Mittal measure of a specified order r 
(regardless of the concurrent value of the degree parameter t!) D p pSharma Mittal

r
n-

( ) ¼( ) +, , ,0
1 1  

computes the corresponding effective number as defined earlier, i.e., the theoretical 
number of equally abundant categories that would be just as diverse as (p1, …, pn) is 
under that measure (see Crupi et al. 2018).

	(ii) As we have seen with some special cases like D p pGini EN n-
* ¼( )1, , , effective 

number measures of diversity may not be concave functions. Most Sharma-Mittal 
measures are concave, however: D p pSharma Mittal

r t
n-

( ) ¼( ), , ,1  generates a concave func-
tion as long as t ≥ 2–1/r (see Hoffmann 2008 for a proof). This implies, in particular, 
the concavity of all measures lying on the diagonal line in Fig.  6.1, which are 
obtained by positing r = t, thus yielding:
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Measures of this kind are often labelled after Tsallis’s (1988, 2004) work in gen-
eralized thermodynamics. Partly because of the concavity property, the Tsallis 
one-parameter continuum has been recently advocated as a compelling approach to 
the measurement of biological diversity by Keylock (2005).

The relevance of statistical measures of diversity is an open issue for the theo-
retical biologist and the philosopher addressing the investigation of biodiversity, 
and indeed a matter of much debate (see, e.g., Barrantes and Sandoval 2009 and 
Blandin 2015). In this chapter, no claim has been made to the resolution of diver-
gences in this respect. Consideration of the variety and integration of diversity mea-
sures remains important, however, for the debate to be adequately informed. 
Advocates of the measurement of diversity should of course be aware of the tools 
at their disposal. Opponents and skeptics, on the other hand, should be careful to 
make sure that their legitimate doubts are not inflated by too narrow an outlook on 
the ways in which the notion of biological diversity can be formally unpacked and 
assessed.
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