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The power of meta-analysis: a challenge for
evidence-based medicine

ABSTRACT

This paper discusses the outstanding problem of replicability of empirical
data in the context of recent work on meta-analysis, especially within the
field of evidence-based medicine. Specifically, it deals with the methodologi-
cal issue of how to determine the degrees of heterogeneity between different
collected studies. After critically reviewing the standard measures used to
quantify meta-analytical heterogeneity, we argue that they should be revised
in such a way to take into account the statistical power of the individual stud-
ies. We thus propose some new measures of heterogeneity. Subsequently, we
apply them to re-assess concrete case-studies from clinical research, thereby
showing explicitly how the relevant values of heterogeneity diverge from those
obtained with the original measures.

Keywords: meta-analysis; heterogeneity; power; evidence-based medicine

1 Introduction

The possibility of reproducing the results of an experiment is one of the cor-
nerstone of the modern scientific method. For one, the fact that repeating
an experiment under fixed conditions yields the same outcome over and over
again is regarded as a sign that such an outcome is reliable, provided that
the experimental procedure is adequately carried out. Moreover, it enables
one to communicate the results of one’s research to the scientific community
thanks to the fact that different scientists can reproduce the same experiment
independently, thereby enhancing objectivity, or at least inter-subjectivity,
of the experimental findings. In light of this, Popper [14] went as far as char-
acterizing reproducibility as the “hallmark of science”, in that he claimed
that single occurrences that cannot be reproduced should have no place in
science. Yet, reproducibility proves too strong a requirement, since one can
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seldom obtain the exact same outcomes in different experiments. So, scien-
tific practice often resorts to the concept of replicability, which only requires
that, if the same experimental procedure is repeated or carried out indepen-
dently by different experimenters, the results ought to be similar rather than
identical. Arguably, the notion of similarity is somewhat vague, yet replica-
bility seems well-suited to those fields of science, such as the social sciences
and medicine, in which the experimental results have remarkable statistical
features and one needs to amalgamate evidence from different studies.

Nevertheless, due to the increasing availability of large sets of data from
diverse sources, in the last decade even this weaker requirement has been
called into question, thereby contributing to what has been named the repli-
cability crisis. The predicament is perceived as being particularly dramatic
in the field of evidence-based medicine, where one employs experimental pro-
cedures like randomized controlled trials that rely on statistics in order to
limit the impact of biases and to evaluate the potential efficacy of a treat-
ment. Arguably, the problem of replicability arises inasmuch as the results
of different studies prove to be highly heterogeneous, and hence it becomes
difficult to determine the extent to which they can be regarded as similar.
In clinical research, meta-analysis is a widely used statistical method that
aims to combine the results of multiple collected studies, so as to establish
the extent to which there is agreement among them. So, in the context of
meta-analysis, the problem of replicability requires one to quantify and in-
terpret the relevant degrees of heterogeneity between the collected results.
Here, we focus on the question what is the proper measure of heterogeneity
to apply to evidence-based medicine, and we propose a modified method to
quantify heterogeneity that revises the standard measures.

The paper is organized as follows. In section 2, after explaining the sense
in which meta-analytical heterogeneity is related to the problem of repli-
cability, we review the two main measures of heterogeneity adopted in the
literature (section 2.1), namely the Q index and the I2 index, by emphasiz-
ing their limitations. In the following section 3, we proceed to argue that,
in order to properly quantify heterogeneity, one ought to take into account
the conditional probability that a true effect be correctly detected, or that a
false null hypothesis be correctly rejected. That leads us to develop a mod-
ified measure based on the concept of a posteriori statistical power (section
3.1), which properly readjusts the relative weight of each individual study.
We label such a measure I2r so as to emphasize that it revises the I2 index.
Section 4 is devoted to apply our newly defined measure of heterogeneity to
specific examples of clinical research, where we compare it with the other
standard heterogeneity indexes. Finally, in section 5, we explain in what
sense including statistical power in the assessment of heterogeneity helps us
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better understand the problem of replicability in meta-analysis.

2 Meta-analysis in the replicability crisis

Meta-analysis is a procedure by which the results of multiple studies are col-
lected and combined. It has a long tradition in statistics tracing back to
Simpson and Pearson [19] and, even though it has been mainly used in social
sciences in the 1970s, nowadays it is extensively applied in clinical research
following the evidence-based approach to medicine [1]. Indeed, meta-analysis
is regarded as a powerful method to provide the highest level of statistical
evidence. In the contest of clinical research it fulfills a variety of objectives:
most notably, providing a synthesis of the results of individual studies; inves-
tigating the heterogeneity in the results and differences in methods among
studies; overcoming small samples sizes of individual study to detect effects
of interest and investigate endpoints requiring larger sample sizes; increasing
precision in assessing effects in subsets of patients; determining if new studies
are needed to further investigate the issue; generating new clinical hypothe-
ses [25]. The use of meta-analysis has become so widespread in evidence-
based medicine that, as Stegenga (2009) [21] observes, it is commonly taken
to provide the “platinum standard of evidence”. Variation between stud-
ies included in the collected sample, namely heterogeneity, is one of the key
components upon which the meta-analysis is reviewed. The underlying idea
is that, if there is a lot of heterogeneity, the results of the meta-analysis
cannot be considered as a reliable and generalizable estimate of the pooled
effect size. If so, though, the problem of replicability of the experimental re-
sults presents itself in evidence-based medicine, as well as in any other field
adopting meta-analysis as a statistical method to combine multiple studies.

When it comes to evaluating evidence and combining the results of dif-
ferent studies, there arise plenty of philosophical issues. Just to echo Worrall
(2007), “we need guidance in particular on what these different types of evi-
dence are to be amalgamated and in particular on what to do when different
types of evidence seem prima facie to clash” [27]. Meta-analysis covers a key
role in evidence-based medicine for the purpose of amalgamating evidence
from different sources in face of heterogeneity. That said, in philosophy of
science meta-analysis has not yet received the same attention as in the sta-
tistical sciences. To our knowledge, in the philosophical literature one of the
few systematic discussions of meta-analysis in the context of evidence-based
medicine is given by Stegenga [21], [22], and his diagnosis is rather criti-
cal1: according to him, meta-analysis should not be regarded as providing

1See also [6] for another relevant discussion present in philosophical literature.
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the platinum standard of evidence because the very process of collecting the
relevant data to which the statistical methods are applied is already beset
with subjective factors and intrinsic biases . Here, however, we are concerned
with a different issue than subjectivity. It is the methodological issue of how
to evaluate and quantify heterogeneity. It is connected with the problem
of replicability in the sense that the extent to which the results of different
studies in a sample can be regarded as similar (one may say “robust” across
the sample), as required by the notion of replicability, effectively depends on
how heterogeneous the studies included in the meta-analysis are. Thus, in
order to cope with this problem, one needs to understand what factors are
responsible for the diversity between the results, as well as to determine the
best mathematical measure for the degrees of heterogeneity.

To see how meta-analysis works, let us begin with the informal presenta-
tion by Stegenga [21], and then illustrate it with an example from evidence-
based medicine. According to it, the general methodology employed in meta-
analysis comprises four subsequent steps. That is, (i) selecting which primary
studies are to be included; (ii) calculating the magnitude of the effect one
wishes to investigate; (iii) assigning a weight to each study; and (iv) cal-
culating a weighted average of the effect magnitudes. Step (i) is of course
the starting point in meta-analysis, since the aim is to compare a fix sample
of collected studies whose results are then combined. As we shall explain
in greater detail below, a big source of heterogeneity comes just from the
selection of very diverse studies. The second step (ii) is more formal: once
the relevant effect E has been identified, one must determine the value of its
magnitude, possibly under certain statistical conditions. To fix the terminol-
ogy, in the example of clinical trials the effect size corresponds to a numerical
value that reflects the magnitude of the treatment effect. Mathematically,
that expresses the strength of a relationship between two variables: for in-
stance, the risk ratio of the reduction of cardiovascular outcomes with high
dose versus standard dose of statins. When the risk ratio (the ratio of the
incidence in the two groups of patients) is equal to 1, it means that there is
no statistical difference between the two treatments. Instead, if a risk ratio is
less than 1 it means that the risk is lower in the high-dose group, whereas a
risk ratio greater than 1 means that the risk was lower in the standard-dose
group. In the following figure, taken from [2],
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solid squares are used to depict how the size of each study varies. The p-value
encodes the probability of obtaining a test statistics being at least as extreme
as the one actually observed, on the assumption that the null hypothesis H0

is true. Then, step (iii) prescribes that, under the same operating statistical
conditions, we also assign a weight to each study. This is actually a crucial
point for the assessment of heterogeneity, to which we shall focus in section
3. For now, it is worth just noting that the way in which weights are assigned
depends on our hypotheses about the distribution of effect sizes from which
the studies were sampled2. Finally, as prescribed in step (iv), the summary
effect is calculated as the weighted mean of the individual effects, which are
represented in the figure by a diamond. In this specific case, the summary
risk ratio is 0.85, indicating that the risk of cardiovascular problems is lower
for patients receiving the high dose rather than for patients receiving the
standard dose. This gives a rough illustration of the general methodology
followed in a meta-analysis.

Sources of heterogeneity arise throughout the process. As Rücker et al.
pointed out [16], one can identify three sources of heterogeneity plaguing
meta-analysis in the context of evidence-based medicine. The first one is
clinical baseline heterogeneity, which is due to the differences among sample
characteristics between the studies: for instance, various patients may belong
to rather different age groups. The second source is traced back to the

2In particular, under the fixed-effect model, one assumes that all studies in the analysis
have the same true effect size, and the summary effect is our estimate of this common effect
size; under the random-effects model, instead, one assumes that the true effect size varies
from study to study, and the summary effect is our estimate of the mean of the distribution
of effect sizes (see [2])
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statistical heterogeneity found in the collected outcomes. In general, if the
outcomes vary considerably from study to study, we are not in a position to
determine how effective a clinical treatment really is. Moreover, that dilutes
the confidence in the pooled effect, too. Thirdly, one can have heterogeneity
coming from other sources, like design-related heterogeneity. In terms of the
general scheme outlined by Stegenga, it seems that the factors responsible
for heterogeneity mostly intervene at the stage in which one sorts out the
primary studies, i.e. step (i); and, especially as regards the second statistical
source, they also affect the way in which one computes the magnitude of the
effect, i.e. step (ii). Arguably, these factors are accountable for the intrinsic
subjectivity Stegenga imputes meta-analysis for. However, differently from
Stegenga, the relevant issue we are concerned with is a methodological one:
that is, granted that there is already heterogeneity, as it does arise from
the above listed sources, one needs to establish how to properly quantify
it. In this respect, our own focus is on the other two steps (iii) and (iv),
which effectively shape the particular method one adopts to compute the
degrees of heterogeneity. Indeed, we contend that the appropriate measure
of heterogeneity across multiple studies strongly depends on how exactly one
assigns the weights to the individual studies in step (iii), since that determines
the overall value of heterogeneity calculated through the subsequent step (iv)
as an average across the studies. In order to see why that is the case, here
below we present and discuss the standard measures of heterogeneity, so as
to emphasize how they explicitly depend on the relative weight of each study.
The quantitative method we will subsequently develop aims to contribute to
limit the impact of the statistical component of heterogeneity, so that the
remaining amount can be just traced back to design-based factors and, most
importantly, to clinical factors.

2.1 Quantifying Heterogeneity

One of the standard methods to quantify heterogeneity is provided by the
Q index, which was first proposed by Cochrane in 1954 [3]. Formally, for an
effect detected in the studies included in a meta-analysis, given the number
k of collected studies, namely the sample size, such a measure is defined as
follows:

Q =
k∑

i=1

wi(Ti − T̄ )2 (1)

where Ti is the effect size of each individual study i with weight wi and T̄ is
the mean effect size of all the studies. In other words, Q is constructed as the
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weighted sum over i of the squared differences between each individual study
effect and the pooled effect across studies. The contribution of each study
i is thus given by two components. One is the quantity (Ti − T̄ )2, which
measures the deviation of the size effect Ti of the study with respect to the
mean T̄ of the sample of size k. It tells us how much study i diverges from
the other collected studies. The other component is the relative weight wi.
In particular, in the simple case of a fixed-effects statistical model, wherein
all the studies in the population are supposed to be conducted under the
same conditions so that their summary statistics result from estimates with
common mean, it is standard to compute the weight of each study as the
inverse-variance, that is wi = 1

s2i
with si being the deviation of study i from

the mean. Since there are different ways to assign weights to the individual
studies, though, it is clear that how exactly one decides to do so affects the
overall value of heterogeneity. Indeed, studies for which the effect size Ti
largely deviates from the mean size T̄ will contribute more than if they have
high weight rather than low weight, thereby increasing heterogeneity. We
will present a different method to assign weights in the next section. What
we wish to stress here is that the value of the Cochrane index is known
to increase when the sample size k grows. Unfortunately, though, it is also
known that, if the number k of studies remains low, the ability of Q to detect
heterogeneity proves rather poor. As a consequence, one can hardly take it
as a generally reliable measure [17].

In order to improve on the Cochrane index, Higgins et al. [10] introduced
another measure of heterogeneity, which is labeled the I2 index. It is defined
by the following formula:

I2 = (
Q− df
Q

)× 100% (2)

where Q is the Cochrane index and the term df = k − 1 is given by the
number of studies minus one degree of freedom. Technically, the I2 statistics
represents the percentage of variability in the effect sizes that is not caused
by the sampling error. As such, it corresponds to the proportion of actual
between-study heterogeneity with respect to the total amount of heterogene-
ity in the meta-analysis, and thus it expresses the mutual inconsistencies of
the various studies’ outcomes. In principle, according to the above formula
(2), negative values could be possible if Q < df , but Higgins et al. suggest
that such cases should be interpreted in the same way as I2 = 0%. A zero
value means that there is no actual between-study heterogeneity, whereas
I2 = 100% indicates that all heterogeneity is due to between-study hetero-
geneity. Typically, for Q > df one obtains values between these two extreme
cases. It is important to stress that the I2 statistics involves some degrees of
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uncertainty: therefore, it is recommended to present it together with a con-
fidence interval (CI), especially when the number of studies k is low. This
measure of heterogeneity has some advantages with respect to the Cochrane’s
Q index in that, unlike the latter, the I2 index is comparable between differ-
ent meta-analyses. Indeed, the I2 statistics is not at all sensitive to changes
in the sample size. Nevertheless, there are also limitations with the use of
such a standard measure. For, it suffers from some arbitrariness as regards
how exactly the percentages should be interpreted: for instance, Higgins et
al. [9] stipulate that the heterogeneity is mild if I2 is less than 30% and
notable if it is greater than 50%, whereas in [10] heterogeneity is low when
I2 = 25%, moderate when I2 = 50% and high when I2 = 75%. Furthermore,
in the presence of limited data, the uncertainty on the value of I2 is very
large, in particular for the common situation of meta-analyses with two or
three studies [11].

Therefore, while the I2 index improves on the Q index, it is doubtful
that, as it stands, it can serve as a proper measure of heterogeneity in many
important cases. To add to the above limitations3, we wish to observe that
the definition of I2 given in equation (2) is sensitive to the choice of the
weights wi of each individual study appearing in equation (1) for Cochrane’s
Q index. However, there are different possible ways to assign such weights in
the definition of heterogeneity, and the standard choice employed in formulas
(1) and (2) may not be adequate. In the next section we formulate a modified
method to quantify heterogeneity in meta-analysis, which revises both the
Q and the I2 measure, in the sense that the choice of the weights hinges on
another important aspect of meta-analysis, namely the statistical power of
the individual studies included in the sample. In fact, we argue that failure to
incorporate statistical power is yet another weakness of the standard indexes,
over and above the already well-known limitations.

3 How much statistical power is needed?

Even though the heterogeneity of the included studies is important when
evaluating the meta-analysis, it is just one of the aspects to be considered.
Taking into account the statistical power of the original studies provides a
different point of view for reviewing the meta-analysis. The guiding idea is
that studies with higher statistical power should have a stronger impact on
the conclusions of the meta-analysis than those with lower statistical power.

3It should be stressed, though, that arbitrariness and uncertainty, as well as poor
effectiveness for small sample size, are of course limitations that are common to other
measures, too.
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We thus submit that for the purpose of quantifying heterogeneity one ought
to include the statistical power of the studies under consideration. Accord-
ingly, here below in section 3.1 we construct a new measure of heterogeneity
that properly revises the standard I2 index introduced in section 2.1. Before
doing so, we explain in great details what is the role of statistical power when
assessing single studies and why it must be incorporated in meta-analytical
heterogeneity.

To introduce the concept of power of a study, let us explain first of all
that the types of error one ought to avoid in meta-analysis are the same as in
statistical test theory. For, suppose the null hypothesis H0 states that there
is no effect across the selected individual studies: then, if a certain effect
E is detected in a study, H0 proves false and hence it should be rejected.
Type I errors occur when one rejects the null hypothesis even if H0 is true.
Correspondingly, in a meta-analysis one would commit to a false positive
if by combining the results of the collected studies one detects an effect E
even though the effect is actually false. The probability of a Type I error
is denoted by α. Type II errors, instead, occur when one fails to reject the
null hypothesis even if H0 is false. Correspondingly, in a meta-analysis one
would commit to a false negative if by combining the results of the collected
studies one does not detect an effect E even though the effect is actually
true. The probability of a Type II error is denoted by β. Type I errors
are typically considered to be about four times more dangerous than Type
II errors. To minimize risk, it is thus customary to first set the minimum
acceptable probability α to the conventional value 0.05, meaning that the
likelihood of rejecting a true null hypothesis or to detect a false effect cannot
exceed 5%. The one-to-four trade-off between α and β then gives a minimum
acceptable probability of Type II errors being four times bigger than that
of Type I errors, that is 0.2 = 20%. Of course, what matters most in a
meta-analysis is not just to avoid Type I and Type II errors but also to
reveal true negatives and true positives, so as to determine whether a study
correctly detects a true effect and correctly rejects a false null hypothesis and
to estimate with better precision the true effect magnitude or effect size.

The statistical power of a test of statistical significance encodes the proba-
bility that the test correctly rejects the null hypothesis when H0 is false. Cor-
respondingly, it quantifies the likelihood that an effect E is detected across
the studies included in a meta-analysis when E is actually present. In fact,
the statistical power π of each individual study is the (conditional) proba-
bility that the study reveals a true positive. As such, it is inversely related
to the likelihood of committing a Type II error, and hence it is given by
π = 1 − β. It follows that increasing statistical power diminishes the prob-
ability of false negatives. Underpowered studies are thus less reliable than
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studies with high power. For this reason, it is essential to take statistical
power into account when carrying out a meta-analysis. Note that the sta-
tistical power depends upon the magnitude of the effect to be detected as
well as the sample size: so, the larger the effect size the higher the statistical
power at the same sample size. In particular, given the one-to-four trade-off
between α = 0.05 and β = 0.2, the minimum acceptable power for a study is
commonly recommended to be 80%, that is 1− 0.2 = 0.8. Surely, we do not
advocate individual statistical power as a stand-alone criterion for a study
to be included in a meta-analysis. Indeed, according to, e.g., the review by
Turner and colleagues [23], most meta-analyses include studies that do not
have enough statistical power to detect a meaningful (or clinically significant
in biomedical research) effect. However, it is also true that failure to rely
on power has an impact on the overall conclusions of a meta-analysis, espe-
cially when (i) the conclusions are drawn from the results of underpowered
studies, or when (ii) the difference in statistical power of single studies is
not taken into account. Hence, an evaluation of the power of each studies
ought to be included in the estimation of heterogeneity among the collected
studies. In light of these remarks, it thus seems quite natural to demand that
a proper measure of meta-analytical heterogeneity should include the values
of statistical power of the individual studies in the selected sample.

For purposes of computing the value πi for each study i, recall that sta-
tistical power is defined as a conditional probability. Here, it is important
to distinguish between retrospective and a posteriori power [28]. On the one
hand, retrospective statistical power is the conditional probability of cor-
rectly rejecting a false null hypothesis after H0 has been rejected, that is
Pr(H0 false | reject H0). As such, it is computed after a study has been
conducted and one has already decided whether to reject the null hypoth-
esis or not (and in fact, it is also known as post-study probability). On
the other hand, a posteriori statistical power is the conditional probability
of correctly rejecting a null hypothesis when H0 is actually false, that is
Pr(reject H0| H0 false). As such, it is computed before a study is con-
ducted, so as to estimate the sample size necessary to detect a meaningful
effect. In general, these two measures of power yield different values, ex-
cept in the trivial case in which the prior probability Pr(H0 false) that H0

be false and the prior probability Pr(reject H0) of rejecting H0 are equal.
Thus, when computing πi for each study i, one must choose whether to adopt
retrospective or a posteriori statistical power. Fallacies due to retrospective
statistical power are actually typical and, in a certain sense, its use is demon-
strated to be fundamentally flawed (see, for instance, [26] for a critique). So,
a posteriori power seems to be a more suitable choice in order to embed sta-
tistical power into the measure of heterogeneity, and indeed it is taken to be
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standard notion by practicing statisticians.
This fact becomes transparent if we cast the above definitions in terms of

whether a certain effect E is detected or not. Retrospective power quantifies
how likely it is that, if the effect E has been detected in study i, such an
effect is actually true. It thus tells us the extent to which we are licensed to
infer that the effect E is real from the fact that it has been detected. Instead,
a posteriori statistical power quantifies how likely it is that, if the effect E
is actually true, such an effect is detected by study i. Here, differently from
the retrospective case, the power is prospective in that one presupposes that
the effect E is real: one then determines what is the probability that it be
detected in any study i in the sample. A posteriori statistical power thus
corresponds exactly to the probability of obtaining a true positive. In fact, it
is usually computed before conducting a study, in such a way to estimate the
sample size necessary to detect a meaningful effect at the level of type I error.
To put the distinction more technically, retrospective statistical power is a
conditional probability with respect to the size effect detected by the study,
that is one fixes the size effect and lets the sample size vary; a posteriori
statistical power, instead, is a conditional probability with respect to the
actual sample size k, that is one fixes the sample size and lets the size effect
vary. Since we adopt the latter notion of statistical power, for the sake of
evaluating the power values πi of the studies collected in a sample of fixed
size i = 1, ..., k we suggest to consider three distinct scenarios, involving the
detection of (B) a small effect size, (C) a medium effect size and (D) a large
effect size, as classified by Cohen [4]4.

We are now in position to introduce a new measure of heterogeneity that
takes into account the statistical powers of the individual studies. Specif-
ically, we propose to modify the standard heterogeneity indexes Q and I2

so as to incorporate the a posteriori statistical power of each study entering
into a meta-analysis. In our view, this enables one to provide a more refined
judgement of meta-analytical heterogeneity.

3.1 A revised measure of heterogeneity

The mathematical formulation of our proposed measure hinges on a revision
of the I2 index, whereby the weights of the studies appearing in the Cochrane
index Q in formula (1) are recomputed based on statistical power, namely the
probability of correctly detecting a true effect, and the conventional minimum
acceptable power π0, that is 0.8 = 80%. Accordingly, if πi denotes the a

4Let us note that Ioannidis [12] pointed out that effect sizes of newly discovered true
associations are essentially inflated on average if power is not considered. Our approach
thus tries to deal with the issue of the magnitude of effect size based on statistical power.
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posteriori statistical power of the individual study i, the adjusted weight
becomes

w̃i =
πi
π0
wi (3)

where wi is the original weight of study i. The readjusting factor depends on
whether the statistical power πi of study i is greater, equal or smaller than the
minimal accepted power π0, so that the adjusted weight w̃i becomes greater,
equal or smaller than the original weight wi, respectively5. In other words,
studies with high statistical power increase their relative weight, whereas
under-powered studies are assigned smaller weights.

By replacing the weights w̃i expressed by (3) for the original weights wi

in formula (1) of the Cochrane’s index, one obtains the new index

Qr =
k∑

i=1

w̃i(Ti − T̄ )2 (4)

with Ti being the effect size detected by each study and T̄ the mean effect
size. This means that, for fixed deviations (Ti − T̄ )2, studies with high
statistical power contribute more than under-powered studies to the value of
heterogeneity. So, compared with the standard measure, when the detected
effect size Ti largely deviates from the mean effect size T̄ , studies with low πi
have less impact on the heterogeneity of the sample since the adjusted weight
w̃i is less than the original weight wi, whereas studies with high πi have a
greater impact since the adjusted weight w̃i is greater than the original weight
wi. The revised Qr index have the same value of Cochrane’s Q index if the
power of all the collected studies is exactly equal to the minimal acceptable
power π0.

Similarly to what was done in section 2.1, the next step is to define the
proper measure of heterogeneity as a straightforward revision of formula (2)
for the I2 index based on the new Qr index, as follows:

I2r = (
Qr − df
Qr

)× 100% (5)

where again df represents the total number of collected studies k minus one
degree of freedom, and hence it depends on the sample size. This index
varies depending on the value of the new Cochrane index calculated with the
adjusted weights w̄i: so, the higher Qr with respect to df , the higher the I2r

5Let us note that, contrary to the original weights wi, summing over the new weights
w̃i of all k studies does not necessarily yield a value equal to 1, just owing to the presence
of the readjusting factor πi

π0
.
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index. In particular, the I2r index vanishes if Qr is equal to df , meaning that
there is no heterogeneity in the sample. In addition, as it is customary, we
set I2r = 0% also whenever Qr < df . Of course, our measure of heterogeneity
(5) is also sensitive to the individual statistical powers πi of the i = 1, ..., k
studies included in the sample, which appear in equation (4) for the Qr index:
therefore, even according to the I2r index, studies with high statistical power
have a greater impact on the meta-analytical heterogeneity of the sample
than underpowered studies.

In general, the indexes Qr and I2r we have thus constructed yield values
that are quite different from the standard indexes Q and I2. Such values
are more informative about the heterogeneity across a sample of i = 1, ..., k
collected studies, because they take into account also the statistical power πi
of each individual study. Using the adjusted weights w̃i assures that, for an
effect E, studies with high statistical power increase meta-analytical hetero-
geneity more than underpowered studies, when the effect size Ti deviates from
the mean effect size T̄ . Armed with our refined measure of heterogeneity, we
can now proceed to re-assess the standard meta-analyses of concrete exam-
ples of clinical research with a method that incorporates statistical power,
in the hope to better cope with the problems of evidence amalgamation and
replicability arising in evidence-based medicine.

4 Case-studies from evidence-based medicine

In the present section we apply our proposed measure of heterogeneity I2r to
two real-life examples of meta-analyses, so as to show how explicit calcula-
tions based on formula (5) yield different results than the standard measure
I2. To do this we re-run the meta-analysis of Crins et al. [5], which examines
the effect of Interleukin-2 receptor antibodies (IL-2RA) on safe immunosup-
pression after liver transplantation in children. In this work, which adopts
the standard Q and I2 indexes, the efficacy of the therapy was evaluated
on different outcomes: specifically, the reduction of (i) steroids-resistant re-
jections (SSRs) and (ii) acute rejections (ARs)6. We choose to work with
these case-studies because they highlight some of the critical issues of meta-
analysis we previously discussed, like the reduced sample size (namely the
small number k of included studies), which tend to affect heterogeneity.

We proceed by discussing the two case-studies (i) SSRs and (ii) ARs in the
order. For both, we first present the results obtained by the meta-analysis of
Crins et al., in particular the values of the original Cochrane’s Q index and

6For completeness, let us mention that Crins et al. also run their meta-analysis for the
cases of graft-loss and death, which we do not address here.
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the original I2 index, as given by equations (1) and (2), respectively. Then,
we determine the statistical power of each study i. Given that our method
uses a posteriori statistical power, the effect size varies while the sample size
remains fixed: to this extent, we compute the a posteriori statistical power
πi of each study in three distinct scenarios, involving the detection of (B)
a small effect size, (C) a medium effect size and (D) a large effect size, as
classified by Cohen [4]. Finally, on the basis of the weights w̃i adjusted in
accordance with formula (3), we calculate the revised Qr index and the I2r
index by means of equations (4) and (5), respectively. The results of our
meta-analysis in the three scenarios can then be compared with the original
results of Crins et al. for both cases (i) SSRs and (ii) ARs. Our calculations
have been performed by using R version 3.5.0 as in [15] and metaphor package
[24].

Let us begin with case (i) concerning steroids-resistant rejections. Here,
the sample size is relatively low, since the meta-analysis of Crins et al. in-
cludes just k = 3 different clinical studies. In order to estimate the between-
study variance s2i of each study, which is needed to compute the weights
wi, they employed the DerSimonian–Laird (DL) [7] approach. The results
of their meta-analysis on the controlled trials assessing SRRs in paediatric
patients with IL-2RA as monotherapy or in combination in liver transplant
recipients compared with placebo or no add-on are reported in Figure 1A.
Notice that, based on original weights, statistical significance was achieved.
Moreover, Cochran’s Q index was equal to 2.37, and therefore by means of
formula (2) one obtains I2 = 2.37−2

2.37
= 15.59%. So, in this case heterogeneity

was not particularly high, although it was given with a confidence interval
95%CI : (0; 60)%, which ranges just from very low to moderate7. Let us now
compare these results with those obtained with our proposed method under
three distinct scenarios, involving the detection of (B) a small effect size, (C)
a medium effect size and (D) a large effect size. The respective values of the
a posteriori statistical power πi we calculated for each study are shown in
Table 1, together with the overall values of the revised heterogeneity index
I2r . The new meta-analysis derived by using the weights adjusted according
to our method is shown in Figure 1. It can be observed that in the scenarios
of small and medium effect, the revised meta-analytic risk-ratio summary
estimate shows a smaller risk reduction and the statistical significance is no
more reached, since the null value 1 is inside the 95%CI. What is more, het-
erogeneity completely vanishes, that is I2r = 0%, in scenario (B) of a small
effect size and scenario (C) of a medium effect size for which the adjusted

7Note that in this case the source of heterogeneity mainly arises from differences in the
design of the studies themselves (for instance, only the study by Heffron [8] is randomized).
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Table 1: A posteriori power computed on the basis of the real sample size
Power

Small Effect
Scenario

Medium Effect
Scenario

Large Effect
Scenario

Heffron 2003 12.1% 49.2% 87.4%
Granschow 2005 18.0% 73.8% 98.6%
Gros 2008 14.7% 61.4% 94.9%
I2r (95%CI) 0% (0; 1)% 0% (0; 89)% 27% (15; 73)%

Cochrane index yields values Qr = 0.44 and Qr = 1.79, respectively. That is
due to the fact that all the three studies have relatively low statistical power,
and hence their contribution to heterogeneity is not very significant, to a
point that Qr is less than df , which is equal to 2 for a sample including three
studies. Instead, in scenario (D) of large effect size the value of heterogeneity
has slightly raised compared with Crins et al., in that we obtained Qr = 2.76
and I2r = 27% for the adjusted indexes. Here, the discrepancy with respect
to the original values of Q and I2 is explained by the fact that the statistical
powers πi of all studies have increased above the minimal acceptable power
π0, and therefore the contributions coming from their adjusted weights w̃i

are higher than from their original weights wi.
Let us now turn to the second case-study (ii) concerning acute rejections.

The meta-analysis considered by Crins et al. includes six controlled trials
assessing the effect of IL-2RA on ARs, and hence we have a larger sample size
than in the previous case-study (i) concerning steroids-resistant rejections.
Figure 2A shows the original results published in [5]. The original Q for
Cochrane statistics was equal to 14.51, statistically significant (p = 0.012),
and therefore it follows from equation (2) that I2 = 66%. Heterogeneity is
higher than in case (i) because the sample size has increased. Similarly to our
treatment of case-study (i), we computed the a posteriori power under the
three scenarios of detecting (B) a small, (C) a medium and (D) a large effect.
The results we obtained for each study are reported in Table 2, along with the
values for our revised measure of heterogeneity I2r . The meta-analyses under
the three scenarios obtained by applying the adjusted weights w̃i described
by formula (3) are depicted in Figure 2B, Figure 2C, Figure 2D. Let us
stress that the revised heterogeneity index I2r vanishes for scenario (B) of
small effect size for which the adjusted Cochrane index is Qr = 2.23. This
is due to the fact that such a value is smaller than df , which here is equal
to 5. Moreover, the index I2r is not zero, but still lower than the original
value obtained by Crins et al. in scenario (C) of medium size effect since
by equation (5) we obtained I2r = 44% from the adjusted Cochrane index
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Figure 1: Treatment effect on SRRs estimated in the original meta-analysis
(A), adjusting the weights by the statistical a posteriori power under the
scenario of a small effect size (B), a medium effect size (C) and a large effect
size (D).

Qr = 8.95. In fact, the latter is greater than df , so that there must be
some heterogeneity present, yet it is smaller than the original Cochrane’s
index Q. A smaller value of heterogeneity indicates that for some of the
studies with higher statistical power, and hence with high adjusted weights
w̃i, the detected effect size Ti does not diverge much from the mean effect size
T̄ . Finally, the index I2r remains roughly the same in scenario (D) of large
size effect, where we obtained I2r = 68% from the adjusted Cochrane index
being Qr = 15.51. Note that, except for the relatively underpowered study
Schuller [18], all the other studies have statistical power above the minimal
acceptance power π0. Beside the remarks already made, we just add that the
behaviour of the revised degrees of heterogeneity across the three scenarios
shows that the index tends to increase as the size effect grows. In fact, also
the individual statistical power πi of each study becomes progressively higher
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Table 2: A posteriori power computed on the basis of the real sample size
and readjusted I2r statistics
Studies Power

Small Effect
Scenario

Medium Effect
Scenario

Large Effect
Scenario

Heffron 2003 12.1% 49.2% 87.4%
Gibelli 2004 11.6% 46.5% 84.9%
Granschow 2005 18.0% 73.8% 98.6%
Schuller 2005 8.4% 26.9% 57.4%
Spada 2006 13.6% 56.4% 92.4%
Gros 2008 14.7% 61.4% 94.9%
I2r 0% (0; 62)% 44% (0; 78)% 68% (24; 86)%

when the size effect grows from being small to medium and then to large,
thereby increasing the adjusted weight w̃i.

5 What statistical power can tell us about

replicability in meta-analysis

The above comparison between the original meta-analysis by Chris et al. and
the approach we advocate well illustrates how the values of heterogeneity di-
verge when being computed with the adjusted indexes Qr and I2r as opposed
to the standard indexes Q and I2. That is just one possible example taken
from clinical research, yet our method can be applied virtually to any meta-
analysis even beside the context of evidence-based medicine, provided that
one can properly calculate the statistical power of the studies included in the
sample. In fact, we submit that our suggested way to quantify heterogeneity
being conceptually motivated by the importance of incorporating statistical
power is not only relevant to the philosophical foundations of statistics, but
it also provides a valuable tool in the assessment of meta-analysis to prac-
ticing statisticians dealing with those empirical sciences in which evidence
from various sources needs to be combined. Here, we wish to conclude our
discussion by returning to the replicability crisis, so as to explain the sense
in which our proposal can contribute to cope with it.

Recall that the problem of replicability in evidence-based medicine rests
on the fact that the results of different studies about the same clinical effect
fail to be similar. Allegedly, a high value of meta-analytical heterogeneity
indicates that the sample results are very diverse, and therefore they could
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Figure 2: Treatment effect on ARs estimated in the original meta-analysis
(A), adjusting the weights by the statistical a posteriori power under the
scenario of a small effect size (B), a medium effect size (C) and a large effect
size (D).

hardly be regarded as similar. The methodological issue how to quantify
heterogeneity thus becomes crucial in order to determine the extent to which
the effect under investigation can be said to be reliably detected across the
sample. In principle, the problem of replicability is resolved, or at least
assuaged, by reducing the degrees of heterogeneity across the sample. In this
respect, however, it should be made clear that the purpose is not to find a
measure of heterogeneity that just yields smaller values than the standard
indexes. Else, one could simply construct a programmatic measure having
the same mathematical form as (1) in such a way to assign conveniently
low weights wi’s to those studies whose effect size Ti largely deviates from
the mean effect size T̄ , thereby decreasing their contribution to the overall
weighted average. But that would of course be an ad hoc solution of the
problem of replicability. Instead, the purpose is to find a proper measure of
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heterogeneity grounded on relevant and conceptually sound considerations,
like the need of incorporating the statistical power of each individual study
as in our method, which can tell us in a reliable way whether or not the
results are (sufficiently) similar across the sample. So, rather than providing
a definite solution, our proposal aims at establishing some of the conditions
under which the problem of replicability would actually present itself or not.

For instance, in the concrete example from evidence-based medicine we
previously discussed, if the effect size is not large, our revised indexes yield
lower values of heterogeneity than the standard indexes in the original meta-
analysis by Crins et al. both in case (i) and case (ii). In fact, I2r even
vanishes for scenario (B). This is certainly a remarkable fact. Yet, even so,
we do not go as far as claiming that it implies that we resolved the problem
of replicability. Indeed, for the large size scenario (D) the adjusted values
are comparable to the original values, and they actually tend to be slightly
bigger. More generally, in a meta-analysis wherein the standard deviation
(Ti− T̄ )2 is rather significant for studies with great statistical power, both Qr

and I2r yield higher values than Q and I2, respectively, because πi is greater
than the conventional power π0 and hence the adjusted weights w̃i grow with
respect to the original weights wi. Accordingly, there arises the problem of
replicability, insofar as the sample exhibits a lot of meta-analytical hetero-
geneity. By neglecting statistical power, the standard indexes may instead
fail to recognize this fact, in that they underestimate the contributions of
the most reliable studies included in the sample when the latter detect an
effect size that is quite different from the mean effect size. By and large,
replicating studies with high statistical power is and should be more difficult
than replicating studies with low statistical power. In this regard, the mea-
sures of heterogeneity we constructed prove to be a more powerful resource
than the standard measures to identify the cases in which the requirement
of replicability is called into question in a meta-analysis. In other words, in-
cluding statistical power in the assessment of the degrees of meta-analytical
heterogeneity can tell us in a more effective way than the standard indexes
how serious the problem of replicability appears to be across a given selection
of studies.

6 Conclusion

In this paper, we have addressed the issue how to define a proper measure
of heterogeneity in a meta-analysis of multiple studies designed to detect
a certain effect E, which can be applied to concrete examples in evidence-
based medicine. This is a methodological issue connected with the problem
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of replicability of the experimental results, in so far as the degrees of het-
erogeneity in a sample of studies indicates the extent to which the results of
the latter can be regarded as similar, so as to comply with a basic desider-
atum for replicability. We have argued that meta-analytical heterogeneity
should take into account also the statistical power of the individual studies
in the meta-analysis. That has led us to revise the standard measures of het-
erogeneity, namely the Q and I2 indexes, in such a way to incorporate the
statistical power of each study into their adjusted weights w̃i, which rescale
the original weights wi by the ratio of the individual statistical power πi and
the minimal statistical power π0. Our revised measures of heterogeneity have
been labelled Qr and I2r indexes, respectively. According to them, studies
with high power contribute more than underpowered studies to the level of
meta-analytical heterogeneity, given a certain deviation of the detected effect
size with respect to the mean effect size of the sample. We have then applied
our proposed method to two published meta-analyses, and we have demon-
strated that the values of heterogeneity calculated for the revised indexes Qr

and I2r diverge from the values calculated for the standard indexes Q and I2.
We thus propose that, in general, all meta-analyses should consider the

a posteriori statistical power of individual studies in order to better evaluate
heterogeneity. In fact, with respect to the original I2 index, the revised
I2r index strengthens the proportional weights of statistically most reliable
studies, thereby improving the overall reliability of the pooled effect size.
Moreover, as our examples evidently show, it is crucial to indicate “the effect
size level”, namely small, medium, or large. For, if the original studies are
able to detect only a large effect of a treatment, the pooled effect size cannot
be generalized to small and medium effect size scenarios.
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