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ABSTRACT Satellite image time series (SITS) collected by modern Earth Observation (EO) systems
represent a valuable source of information that supports several tasks related to the monitoring of the
Earth surface dynamics over large areas. A main challenge is then to design methods able to leverage
the complementarity between the temporal dynamics and the spatial patterns that characterize these data
structures. Focusing on land cover classification (or mapping) tasks, the majority of approaches dealing with
SITS data only considers the temporal dimension, while the integration of the spatial context is frequently
neglected. In this work, we propose an attentive spatial temporal graph convolutional neural network that
exploits both spatial and temporal dimensions in SITS. Despite the fact that this neural network model is
well suited to deal with spatio-temporal information, this is the first work that considers it for the analysis of
SITS data. Experiments are conducted on two study areas characterized by different land cover landscapes
and real-world operational constraints (i.e., limited labeled data due to acquisition costs). The results show
that our model consistently outperforms all the competing methods obtaining a performance gain, in terms
of F-Measure, of at least 5 points with respect to the best competing approaches on both benchmarks.

INDEX TERMS Spatial Temporal Graph Convolutional Neural Network, Attention-based Neural Network,
Object-based image classification, Satellite Image Time Series, Land Cover classification, Deep Learning

I. INTRODUCTION

The Food and Agriculture Organization (FAO) of the United
Nations predicts that in order to meet the needs of the ex-
pected 3 billion population growth by 2050, food production
has to increase by 60% [1]. Therefore, accurately mapping
agricultural as well as general human activities over large ar-
eas is crucial for estimating food production across the globe
and, more generally, monitoring natural resources availability
in the context of climate changes [2].

Nowadays, modern Earth Observation (EO) missions al-
low to collect remote sensing images to support the mon-
itoring of the Earth surface dynamics over large areas. A
notorious example is the Copernicus programme with the
Sentinel mission that supplies freely accessible high res-
olution images (up to 10m) with high revisit time period
(every 5 or 6 days). This unprecedented amount of satellite
imagery can be arranged as satellite image time series (SITS)

and, apart from its clear value in monitoring agricultural and
natural resources, it can also be employed as a powerful tool
to support many other application domains like ecology [3],
mobility, health, risk assessment [4] and land management
planning [5].

Due to the increasing availability of SITS information,
one of the main challenges related to their exploitation to-
day is how to simultaneously leverage the complementarity
between temporal dynamics and spatial patterns character-
izing such data. To this end, machine learning and, more
recently, deep learning techniques are extensively adopted
in the context of SITS data classification, also referred as
land cover mapping [5], [6]. Nevertheless, a vast majority
of existing research studies concentrate their effort to cope
with the temporal dimension while the integration of the
spatial context surrounding a particular location is frequently
neglected.
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(b)

FIGURE 1: (a) A target segment (red node) with its as-
sociated spatial neighborhood set (blue nodes) and (b) the
multi-variate time series information associated to the target
node. The spatial neighborhood of a generic target node is
fixed over time while the target node information evolves
producing a multi-variate time series.

This is especially the case when SITS analysis is con-
ducted under the object-based image analysis (OBIA)
paradigm [7]. This paradigm is widely adopted in the remote
sensing community, and it is gaining increasing attention in
the context of high resolution satellite images analysis [5].
Conversely to the pixel-based analysis, OBIA considers seg-
ments (objects) as working units. Segments are typically
obtained via a segmentation process in which an image is
partitioned into clusters of similar neighboring pixels [8]
that depict visually perceptible “land units” within the image
scene and that can be associated to high level semantic
concepts. Due to this latter point, objects are, generally,
more simpler to interpret for an expert [7] and well adapted
for human level post-analysis. Moreover, from the image
segmentation a Region Adjacency Graph (RAG), modelling
the objects spatial interaction, can be extracted. In the RAG
structure, the objects are the nodes of the graph and an edge
exists between two nodes if the corresponding objects are
spatially adjacent. In addition, each object is characterized
by a multi-variate time series. Figure 1 depicts a node (red
point), its associated spatial neighborhood (blue points) and
the related multi-variate time series (Fig. 1b).

In the context of general spatio-temporal data analysis,
spatial temporal graph convolutional neural networks [9]
(STGCNNs) are attracting more and more attention thanks
to their ability to explicitly model both dimensions at once.
Despite STGCNNs being widely adopted to deal with spatio-

temporal tasks, such as traffic forecasting [10], flood fore-
casting [11] and video activity recognition [12], surprisingly,
to the best of our knowledge and according to a very recent
literature survey [9], no study has been conducted yet to
adopt such models in the context of satellite image time
series data analysis, by leveraging RAGs in the classification
process. This is probably due to the fact that an STGCNN
model initially developed for a particular task can not be
easily transferred to a different one. In addition, satellite
image scenes cover large areas thus resulting in RAGs with
(possibly) hundreds of thousands nodes. This fact limits the
adoption of standard STGCNN models that are based on prior
spectral graph signal processing operations, i.e., Laplacian
graph extraction [9].

To deal with the SITS land cover mapping task, with the
aim of explicitly integrating the segments spatial correlation
in the underlying analysis, we propose an attentive Spa-
tial Temporal Graph Convolutional Neural Network, named
STEGON . STEGON leverages attention at two different
stages. Firstly, the spatial neighborhood of a SITS segment is
automatically aggregated weighting the contribution of each
neighbor according to its importance. Secondly, an attention
mechanism combines the information coming from the target
SITS segment and its neighborhood.

Overall, the contributions of our work are as follows:

• We propose a novel spatial temporal graph convolu-
tional approach to deal with SITS land cover mapping
task.

• We equip STEGON with several attention modules,
allowing the model to automatically weight the contri-
bution of the spatial neighborhood at several stages of
the processing pipeline.

• We adopt spatial graph convolutions [9] to work di-
rectly on the raw data avoiding global graph analysis
like eigenvalues and/or eigenvectors computation; this
allows STEGON to scale up on real world large study
areas conversely to all the previous spatial temporal
graph CNN methods [9] .

• We perform extensive experiments on two different
benchmarks covering two large study areas; the results
confirm the quality of our model consistently with re-
spect to all the competing methods.

To validate our proposal, we consider benchmarks repre-
senting two different study areas exhibiting contrasted land
cover landscapes and state of the art machine learning and
deep learning approaches commonly employed in the task of
land cover mapping from SITS data.

The rest of the article is structured as follows: the literature
related to our work is introduced in Section II; Section III
introduces preliminary definitions about the land cover map-
ping task and the graph-based geographical area represen-
tation; Section IV describes the STEGON framework and
Section V describes the data and the considered study areas.
Experimental settings and results are detailed and discussed
in Section VI. Finally, Section VII concludes the work.
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II. RELATED WORK

1) Land cover mapping from multi-temporal satellite data

Land cover mapping from multi-temporal satellite data
constitutes a crucial task in order to monitor natural re-
sources [13] on the Earth surfaces and human settlement
evolution [14]. In [14] the authors propose an operational
framework to perform large scale land cover mapping at
national scale. The classification is achieved via the Random
Forest classifier that, nowadays, represents the common ap-
proach for land cover mapping on multi-temporal satellite
data. [15] and [16] deal with land usage and land cover
(LULC) mapping via recurrent neural networks approaches.
In [15], data are analyzed via Long Short Term Memory
(LSTM) while [16] tackles the LULC mapping problem
still considering recurrent neural network approaches but,
this time, the Gated Recurrent Unit (GRU) was preferred to
perform classification. Recently, [6] formalizes the use of one
dimensional (temporal) Convolutional Neural Networks for
satellite image time series classification. In this model, the
convolution is performed on the temporal dimensions of the
time series data with the aim of managing and modeling short
and long time dependencies. The conducted study highlights
the appropriateness of such approach with respect to the
previous proposed strategies in the context of LULC mapping
from multi-temporal satellite data.

2) Graph neural networks

Recently, graph convolutional networks (GCN) have shown
extraordinary performance on several graph structure tasks,
such as node classification and network representation [9].
GCNs are classified into spectral [17] and spatial [18] meth-
ods. Spectral methods define convolution on the spectral
domain. Many methods are derived from the work of [17].
ChebNet [19] is a powerful GCN model that uses the Cheby-
shev extension to reduce the complexity of Laplacians com-
putation. GCN [20] simplifies ChebNet to a more simple
form and achieves state-of-the-art performances on various
tasks. Despite the value of such family of GCNs, the spec-
tral methods require the computation of adjacency matrix
eigenvectors and eigenvalues since they are based on the
(normalized) Laplacian of the graph, which is challenging
and prohibitive to compute when the graph structure has hun-
dred of thousands nodes (e.g., in the case of graphs induced
by the segmentation of remote sensing data). The spatial
methods directly perform convolution on the graph nodes
and their neighbors. The GraphSAGE model [18] generates
embeddings by sampling and aggregating features from the
local neighborhood of a node. Graph Attention Networks
(GATs) [21] use self-attentional layers to assign different
weights to different nodes in a neighborhood. PinSage [22]
proposes a data efficient GCN strategy to combine random
walks and graph convolutions to process large-scale graph
for web recommendation.

III. PRELIMINARIES
In this section we provide the definition of the Land cover
mapping task and the graph representation we adopt to model
the remote sensing data.

A. LAND COVER MAPPING TASK
The Land Cover (LC) mapping task is defined as a multi-class
supervised classification problem. Given satellite images (re-
mote sensing) information covering a study area, referred as
X , X can be partitioned into two sets X = {Xl, Xu} where
Xl is the portion of the study area on which the ground truth
information Yl is available and Xu is the portion without
ground truth information. Usually, |Xl| << |Xu| where
the | · | symbol indicates the surface of the covered area.
The objective of the LC mapping task is to build a classifier
CL(Yl, Xl, Xu) → Yu which takes as input Yl, Xl and Xu

and predicts Yu, the classification of the unlabeled portion of
the study area. Finally, the LC mapping for the whole study
area is provided.

B. GRAPH REPRESENTATION OF THE GEOGRAPHICAL
AREA
Given a geographical area, through a segmentation process
we can derive a RAG (Region Adjacency Graph). An exam-
ple of RAG is depicted in Figure 2, the stage (b) illustrates a
segmentation result while stage (c) shows the corresponding
Region Adjacency Graph. More formally, considering the
scenario in which satellite image time series are involved,
a RAG is defined as a graph G = (V,E, ST ) where V is
the set of segments (nodes), E is the set of edges and ST is
a function that, given a segment, returns the corresponding
multi-variate time series information: ST (vi) ∈ RT×D

where T is the number of timestamps of the time series and
D is the number of features/dimensions on which the multi-
variate time series is defined on.

FIGURE 2: The Region Adjacency Graph extraction proce-
dure. Among the Sentinel-2 images time series, a) an image is
selected by the expert and b) the selected image is segmented
via the SLIC algorithm. Finally, c) the RAG is obtained by
the corresponding segmentation.

The set of edgesE is derived from the set of V considering
spatial adjacency (Figure 2). More in detail, for each vi, vj ∈
V that are spatially adjacent (segment vi spatially touch seg-
ment vj). Finally, we defineN(vi) as the set of neighborhood
segments of a node vi, where N(vi) = {vj |∃(vi, vj) ∈ E}
and |N(vi)| is the cardinality of such a set.
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IV. METHOD OVERVIEW
In this section we introduce STEGON , our attention-based
spatial convolutional graph neural network especially tai-
lored to deal with the land cover mapping task.

Figure 3 visually depicts the proposed framework. Given
a target segment with its spatial neighborhood set as input,
STEGON processes on one side the time series informa-
tion associated to the target segment (the red node) and,
on the other side the time series associated to the spatial
neighborhood set (the blue nodes). In both cases, a one
dimensional convolutional neural network is employed as
encoder network to extract the segment embeddings. This
encoder network operates on the temporal dimension of the
SITS data explicitly modeling the sequential information it
contains. For this encoder we use the one dimensional CNN
introduced in [23] as embedding extractor for the segment
SITS. Considering the neighborhood information, first the
same one dimensional CNN model is applied over all the
neighborhood segments then, the embeddings of the different
segments are aggregated together via a graph attention mech-
anism [21]. To summarize, in our framework, the temporal
and spatial information are not managed simultaneously but,
firstly the temporal dynamics is leveraged by means of one
dimensional CNN and, subsequently the spatial information
is integrated by means of the graph attention mechanism.

At this point, two embeddings are available: the target
segment embedding that contains information directly related
to the time series associated to the target segment, and
the neighborhood embedding that summarizes knowledge
regarding the spatial information surrounding the target seg-
ment. Since the two embeddings constitute complementary
information that permits to characterize the sample to clas-
sify, they are successively combined together by means of
a self-attention mechanism [24] providing a new representa-
tion, referred to as combined embedding. Finally, two fully
connected layers are employed on the Combined Embedding
to obtain the target segment classification. An additional
auxiliary classifier (white box on the right part of Figure 3)
is involved in the learning procedure with the aim to directly
retro-propagate the gradient error at the level of the combined
embedding in order to improve the model behavior.

A. TARGET SEGMENT EMBEDDING AND ATTENTIVE
SPATIAL NEIGHBORHOOD AGGREGATION
For the target segment embedding, that we name as htarget,
the one dimensional CNN presented in [23] is employed.

As regards the neighborhood embedding, we remind that
each target segment vi has an associated neighborhood set
N(vi) with varying size. To aggregate together such varying-
size information carried out by N(vi), we adopt a graph
attention mechanism [21] defined as follows:

hineigh = |N(vi)| ·
∑

vj∈N(vi)

αij · hvj
(1)

where vj is a segment in the set N(vi), hvj
is the vec-

tor embedding of the segment vj with dimension d. More
precisely, the same one dimensional CNN model, based on
the same set of learnable parameters, is employed over all
the segments vj ∈ N(vi). The segment embedding hvj

is multiplied by the attention coefficient αij that weights
the contribution of the segment vj ∈ N(vi) in the spa-
tial neighborhood aggregation. The aggregation is a convex
combination of the contributions of each vj ∈ N(vi) since∑|N(vi)|

j=1 αij = 1.
The result from the aggregation is finally multiplied by the

cardinality of N(vi). This is done to cope with the fact that
the original graph attention mechanism fails to distinguish
certain structures that can be distinguishable only by consid-
ering the cardinality of theN(vi) set. For this reason, directly
taking into account this information in the analysis mitigates
such phenomena and increases the discriminative power of
the graph attention mechanism as discussed in [25].

Regarding the attention parameters α, following [21], we
can define a generic αij as follows:

αij =
exp(LeakyReLU(aT [Whvi

||Whvj
]))∑

vk∈N(vi)
exp(LeakyReLU(aT [Whvi

||Whvk
]))

(2)

where matrixW ∈ Rd,d and vectors a ∈ R2∗d are parameters
learned during the process. LeakyReLU is the Leaky ReLU
non-linear activation function and the || symbol represents
matrix concatenation. The LeakyReLU activation function
is adopted following the original work on graph attention
mechanism proposed in [21].

Here we can observe that, differently from standard atten-
tion mechanism exploited in the signal processing fields [24],
the computation of αij is tightly related (or conditioned) to
the embedding hvi

of the target segment vi (Equation 2).
This stresses the fact that the attention computation, built
upon the underlying graph structure, is contextualised with
respect to the target segment information hvi

. The results of
this step is the spatial neighborhood embedding of the node
vi, referred as hneigh. We avoid to report the superscript i
to lighten the notation for the rest of the explanation. We
remind that the attention weight αij is time independent since
our framework, STEGON , firstly manages the temporal
dynamics by means of one dimensional CNNs and, only
subsequently, it deals with the spatial information by means
of a dedicated graph attention mechanism.

B. ATTENTIVE COMBINATION OF TARGET AND
NEIGHBORHOOD INFORMATION
Once the target segment embedding (htarget) and the spatial
neighborhood embedding (hneigh) are obtained, they are
successively combined by means of a self-attention mech-
anism [24] with the goal of automatically weighting the
contribution of the features extracted from the target seg-
ment as well as its spatial neighborhood. The output of
this step is a representation which we refer to as h̃. In the
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FIGURE 3: The STEGON architecture. The model has two branches: the top one is dedicated to analyze the spatial
neighborhood information via a graph attention mechanism, while the bottom one is devoted to analyze the target segment time
series. The embeddings extracted by the two branches are combined via self-attention to form the combined embedding that is
successively used to perform land cover classification. An additional auxiliary classifier is employed to directly retro-propagate
the error at the level of the combined embedding so as to increase the discrimination power of the learnt representation.

case of the combination of htarget and hneigh, the atten-
tion is not conditioned to any kind of information but it
must only combine the target segment embedding and the
neighborhood embedding together. To this end, we consider
the attention mechanism originally introduced in [24]. Given
H = {htarget, hneigh}, we attentively combine these two
embeddings as follows:

h̃ =
∑

l∈{target,neigh}

αl · hl (3)

where αl with l ∈ {target, neigh} is defined as:

αl =
exp(vTa tanh(Wa hl + ba))∑

l′∈{target,neigh} exp(v
T
a tanh(Wa hl′ + ba))

(4)

where matrix Wa ∈ Rd,d and vectors ba, va ∈ Rd are
parameters learned during the process. These parameters
allow to combine htarget and hneigh. The purpose of this
procedure is to learn weights αtarget and αneigh, and es-
timate the contribution of each of the embedding htarget
and hneigh. The SoftMax(·) function is used to normalize
weights α so that their sum is equal to 1. The result of this

attention-based aggregation is the final embedding h̃ that
integrates the information related to the SITS associated to
the target segment as well as the information available in the
neighborhood segments SITS of N(vi) set.

C. CLASSIFICATION STEP AND TRAINING PROCEDURE
The representation h̃ obtained by the attentive aggregation
of the target segment and its neighborhood is processed by
means of two fully connected (FC) layers so as to classify
the target segment. In our context we use two fully connected
layers, each consisting of 512 neurons. Each FC layer is
associated to a ReLU non-linearity and a batch normalization
layer in order to avoid weight oscillation and ameliorate
network training:

Cl(h̃) = SoftMax(W3BN(ReLU(W2(

BN(ReLU(W1h̃+ b1))) + b2)) + b3) (5)

where W1, W2, W3, b1, b2 and b3 are parameters learnt by
the model to process the attentive combined representation h̃,
with W3 ∈ Rd,|Y | and b3 ∈ R|Y | the parameters associated
to the output layers, thus showing a dimension equal to the
number of classes to predict. The model training is performed
end-to-end. Due to the fact that our classification is multi-
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class, we adopt standard categorical cross-entropy (CE) as
cost function.

We have empirically observed that optimizing only cate-
gorical cross-entropy by considering the output of the clas-
sification layer does not allow the network to learn effective
representations for the classification task, especially in the
case of small size benchmark. This is due to the way in which
the gradient flow back in the network and how the network
parameters are updated. For this reason, we have introduced
an additional auxiliary classifier to directly retropropagate er-
ror at the attentive aggregation level. Such auxiliary classifier
is only considered at training time and it is defined as follows:

Claux(h̃) = SoftMax(W
′

3h̃+ b
′

3) (6)

where W
′

3 and b
′

3 are the learnt parameters that allow us to
map h̃ to the auxiliary classification output.

The final loss function employed to learn the whole set of
parameters associated to STEGON is defined as:

L = CE(Y,Cl) + λCE(Y,Claux) (7)

where λ ∈ [0, 1] is an hyper-parameter that control the
importance of the auxiliary classification in the learning pro-
cess. We empirically set the value of such hyper-parameter
to 0.5. We remind that, at inference time, the output of
the auxiliary classifier Claux(h̃) is discarded and only the
decision obtained via the Cl(h̃) classifier is considered.

D. ARCHITECTURE DETAILS OF THE ONE
DIMENSIONAL CONVOLUTIONAL NEURAL NETWORK
The One Dimensional Convolutional Neural Networks we
leverage in our experimental evaluation is reported in Table 1.
We follow general principles applied in the design of Convo-
lutional Neural Networks [26], where the number of filters
along the network structure grows and the convolutional
operations are followed by Rectifier Linear Unit (ReLU),
Batch Normalization and Dropout. Our CNN1D is composed
by ten blocks. The first eight blocks include parameters
associated to Convolutional and Batch Normalization oper-
ations. The last two blocks do not have parameters, since
they consist in a Concatenation and Global Average pooling
layer, respectively. We adopt filters with a kernel size equals
to 3, except for block 7 and block 8 where convolution with
k = 1 are employed with the objective to learn per-feature
combinations. The ninth block concatenates the outputs of
blocks 7 and 8 along the filter dimension and the tenth
block computes the Global Average Pooling with the aim to
extract one value for each feature map by means of average
aggregation.

V. SATELLITE IMAGE TIME SERIES DATA AND GROUND
TRUTH
The analysis is carried out on the Reunion Island dataset (a
French Overseas department located in the Indian Ocean)
and the Dordogne dataset (a French department located in
the Southwest). The Reunion Island (resp. Dordogne) dataset

CNN1D

Block 1
Conv(nf=256, k=3, s=1, act=ReLU)
BatchNormalization()
DropOut()

Block 2
Conv(nf=256, k=3, s=1, act=ReLU)
BatchNormalization()
DropOut()

Block 3
Conv(nf=256, k=3, s=1, act=ReLU)
BatchNormalization()
DropOut()

Block 4
Conv(nf=256, k=3, s=1, act=ReLU)
BatchNormalization()
DropOut()

Block 5
Conv(nf=512, k=3, s=2, act=ReLU)
BatchNormalization()
DropOut()

Block 6
Conv(nf=512, k=3, s=1, act=ReLU)
BatchNormalization()
DropOut()

Block 7
Conv(nf=512, k=1, s=1, act=ReLU)
BatchNormalization()
DropOut()

Block 8
Conv(nf=512, k=1, s=1, act=ReLU)
BatchNormalization()
DropOut()

Block 9 Concatenation(Block 7, Block 8)
Block 10 GlobalAveragePooling()

TABLE 1: Architectures of the One Dimensional Convolu-
tional Neural Network (CNN1D) where nf are the number
of filters, k is the one dimensional kernel size, s is the value
of the stride while act is the nonlinear activation function.

consists of a time series of 21 (resp. 23) Sentinel-2 1 images
acquired between March and December 2017 (resp. between
January and December 2016). All the Sentinel-2 images we
used are those provided at level 2A by the THEIA pole 2 and
preprocessed in surface reflectance via the MACCS-ATCOR
Joint Algorithm [27] developed by the National Centre for
Space Studies (CNES). For all the Sentinel-2 images we only
considers band at 10m: B2,B3,B4 and B8 (resp. Blue, Green,
Red and Near-Infrared). A preprocessing was performed
to fill cloudy observations through a linear multi-temporal
interpolation over each band (cfr. Temporal Gapfilling, [14]).
Two additional indices: NDVI 3 (Normalized Difference Veg-
etation Index) and NDWI 4 (Normalized Difference Water
Index), are also calculated. Finally, each Sentinel-2 image
has a total of six channels. The spatial extent of the Reunion
Island dataset is 6 656 × 5 913 pixels corresponding to
3 935 Km2 whereas the extent of the Dordogne site 5 578
× 5 396 pixels corresponding to 3 010 Km2. Figure 4 and
Figure 5 depicts the Reunion Island and Dordogne study site,
respectively, with the associated ground truth polygons.

As regards the Reunion Island dataset [28], the ground
truth (GT) was built from various sources: (i) the Registre
Parcellaire Graphique (RPG) 5 reference data for 2014, (ii)
GPS records from June 2017 and (iii) visual interpretation
of very high spatial resolution (VHSR) SPOT6/7 images

1https://en.wikipedia.org/wiki/Sentinel-2
2Data are available at http://theia.cnes.fr
3https://en.wikipedia.org/wiki/Normalized\_difference\_vegetation\

_index
4https://en.wikipedia.org/wiki/Normalized\_difference\_water\_index
5RPG is a part of the European Land Parcel Identification System (LPIS),

provided by the French Agency for services and payment
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FIGURE 4: Location of the Reunion Island study site. The
RGB composite is a SPOT6/7 image upscaled at 10-m of
spatial resolution. The corresponding ground truth polygons
are overlaid on the image.

FIGURE 5: Location of the Dordogne study site. The RGB
composite is a Sentinel-2 image belonging to the considered
time series acquired on September 28, 2016. The ground truth
polygons are overlaid on the image.

(1,5-m) completed by a field expert with the knowledge of
territory to distinguish natural and urban areas.

Regarding the Dordogne dataset [29], the GT was obtained
via (i) the Registre Parcellaire Graphique (RPG) reference
data for 2014 as the Reunion Island dataset and (ii) the
Topographic database (BD-TOPO) 6 provided by the French
National Geographic Institute (IGN). For both datasets, the
GT comes in GIS vector file format containing a collection
of polygons each attributed with a unique land cover class
label.

In addition, to ensure a precise spatial matching with
image data, all geometries have been suitably corrected by
hand using the corresponding Sentinel-2 images as reference.
Successively, the GIS vector file containing the polygon in-
formation has been converted in raster format at the Sentinel-

6https://fr.wikipedia.org/wiki/BD_TOPO

2 spatial resolution (10m). Table 3 and Table 2 report the
ground truth information of the Reunion Island and Dor-
dogne study site, respectively,

TABLE 2: Characteristics of the Dordogne site ground truth

Label # Objects
Built up 849
Crops 1 554
Water 1 217
Forest 2 703
Moor 1 108

Orchards 1 099
Vines 1 389

9 919

TABLE 3: Characteristics of the Reunion-Island site ground
truth

Label # Objects
Sugar cane 2 190

Pasture and fodder 1 565
Market gardening 1 284
Greenhouse crops 339

Orchards 1 563
Wooded areas 2 741

Moor and Savannah 2 169
Rocks and bare soil 1 687

Relief shadows 560
Water 873

Urbanized areas 1 540
Total 16 511

To analyse data at object level and exploit their spatial
context, a segmentation was provided by field experts on
each study site, according to one of the Sentinel-2 images of
the time series that they considered pertinent for the adopted
nomenclature. The selected image was segmented using the
SLIC algorithm [8] available via the scikit-image toolkit [30].
The parameters were adjusted so that the segments obtained
fit, as close as possible, the field plot boundaries. From the
segmentation, a RAG (Region Adjacency Graph) is built with
the aim of highlighting spatial links explicitly and identifying
the spatial context (the direct neighbors) of each object
clearly. The RAG extraction procedure is visually depicted
in Figure 2.

A. REGION ADJACENCY GRAPH STATISTICS

The Reunion-Island dataset’s RAG has 59 335 nodes,
186 374 edges and an average degree of 6.28, whereas the
Dordogne dataset’s RAG has 103 514 nodes, 315 027 edges
and an average degree of 6.08. Moreover, considering the
adjacency graph, Figures 6a and 6b show the cumulative
distribution functions (in terms of number of neighbors) for
the Reunion-Island and Dordogne study site, respectively,
distinguishing between the whole set of segments (Nodes)
and the set of segments with associated label information
(Labelled Nodes). We can observe that the RAGs correspond-
ing to the study sites have some differences, the maximum
neighborhood size on the Reunion-Island is equal to 32 while
on Dordogne study site the maximum neighborhood has a
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(a)

(b)

FIGURE 6: Cumulative degree distribution of the Region
Adjacency Graph induced by the segmentation of the two
study area: (a) Reunion Island and (b) Dordogne. Nodes
curve represents the whole set of segments of the RAG, while
Labelled Nodes curve only covers the set of segments with
associated ground truth information.

size equals to 21. We can also note that the majority (at
least 98% of the objects considering both distributions) has a
number of neighbors no greater than 8 for the Reunion-Island
study site while, considering the Dordogne benchmark, the
same value is no greater than 10.

VI. EXPERIMENTS
To assess the quality of STEGON , we select a panel of
competitors exhibiting different and complementary charac-
teristics:

• Random Forest (RF [14]). This classifier is commonly
employed in the field of remote sensing for satellite
image time series classification.

• Multi Layer Perceptron (MLP). This is a simple neural
network model with two hidden fully-connected layers
with 512 neurons each and ReLU activation function.
Each fully-connected layer is followed by a batch nor-
malization and a dropout layer.

• One dimensional CNN (CNN1D). In this strategy, the
convolution operation is applied on the time dimension
to model the sequential information of the satellite im-
age time series data. This method can also be considered
as an ablation of STEGON where the spatial neighbor-
hood is not considered.

• Long-Short Term Memory (LSTM [31]). This is a deep
learning method based on the Recurrent Neural Net-
work (RNN) philosophy, where the temporal dimension
is explicitly managed via an internal gated mechanism.

• Gated Recurrent Unit model (GRU [32]). Another RNN
unit that differs from the LSTM approach due to a
reduced number of parameters and competitive perfor-
mances obtained in different sub-fields of signal pro-
cessing.

• Hierarchical object based RNN (Hob2srnn) proposed
in [33]. Such a method is an extension of the Recurrent
Neural Network architecture, equipped with an attention
mechanism, developed in the context of object-based
satellite image time series classification. Originally, the
approach was proposed for hierarchical classification of
multi-source SITS data, here, we adapt the method to fit
our scenario.

• Temporal Convolutional Neural Network (TempCNN)
introduced in [6]. This approach was recently intro-
duced in the field of remote sensing to deal with the
task of satellite image time series classification. More
in detail, it is based on temporal convolutional neural
network in which the convolutional operator is deployed
over the time dimension.

• Graph Attention Network (GAT [21]). This strategy
adopts the model proposed in [21] and it only consid-
ers the neighborhood information to classify the target
satellite image time series information. This method can
be seen as an ablation of STEGON where the target
segment time series branch is discarded.

• STEGONnoGAT . This strategy is an ablation of the
proposed STEGON where the contribution of the spa-
tial context is not aggregated via an attention mecha-
nism but each neighbour contributes uniformly to define
the neighborhood embedding.

• STEGONnoAux. This strategy is another variant of
STEGON , where the auxiliary classifier is discarded.
More in detail, concerning the loss function in Equa-
tion 7, the STEGON approach is trained with a value
of λ equals to 0.

LSTM, GRU, CNN and GAT are associated to a multi
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layer perceptron block (like the one previously described) to
perform SITS object classification; both LSTM and GRU
have a dimensionality of 512 hidden units. All the com-
petitors are evaluated under the object-based image analysis
framework. For each study site, we split the corresponding
data into three parts: training, validation and test set, with
an object proportion of 50%, 20% and 30% respectively.
Training data are used to learn the model, while validation
data are exploited for model selection. Finally, the model
that achieves the best performance on the validation set is
successively employed to perform the classification on the
test set. For time series data, all values are normalized per
band in the interval [0, 1].

The RF classifier is optimized by tuning two parameters:
the maximum depth of each tree and the number of trees
in the forest. We let the former parameter vary in the range
{20,40,60,80,100}, while for the latter we take values in the
set {100, 200, 300,400,500}. All the deep learning models
are trained using the Adam optimizer with a learning rate
equal to 1 × 10−4. The training process, for each model, is
conducted over 3 000 epochs with a batch size equals to 32.
The dropout parameter, for the training stage, is equal to 0.4.
In addition, in the graph attention mechanism, as previously
done in [21], we use the LeakyReLU non linear activation
function [34] with a slope equals to 0.3. For the STEGON
model, we consider a maximum neighborhood size equal to
8 (resp. 10) for the Reunion Island (resp. Dordogne) study
site according to the cumulative distribution function on the
neighborhood size reported in Section V. When a segment
has a number of neighbours bigger than the maximum neigh-
borhood size, we pick at random 8 (resp. 10) neighbors at
each training epoch for the Reunion Island (resp. Dordogne)
study site. The total number of trainable parameters for our
approach is 6 481 934.

The assessment of the model performances are done con-
sidering Accuracy, F-Measure and Kappa metrics [35]. To
reduce the bias induced by the train/ validation/ test split
procedure all the results are averaged over five different
random splits.

Experiments are carried out on a workstation with an
Intel(R) Xeon(R) W-2133 CPU@3.60GHz with 64 GB of
RAM and a GTX1080ti GPU. All the deep learning methods
are implemented using the Python Tensorflow library.

A. QUANTITATIVE EXPERIMENTAL RESULTS
Table 4 and Table 5 summarize the average quantitative per-
formances obtained by the different competing approaches
on the Reunion-Island and Dordogne datasets, respectively.
We can note that, according to the three evaluation met-
rics, STEGON clearly outperforms all the competitors
on both study sites. Regarding the best competing method
(CNN), our framework achieves more than 5 points of
gain in F-Measure, demonstrating the added value derived
by integrating the spatial surrounding information for the
land cover mapping task. In addition, the comparison be-
tween STEGON and its ablations demonstrates that: i)

automatically weighting, by means of the attention mecha-
nism, the importance of the spatial context is more effective
than an uniform weighting of all the neighborhood objects
(STEGON vs STEGONnoGAT ) and ii) integrating the
auxiliary classifier into the training stage (i.e., in order to
directly retropropagate the error at the attentive aggregation
level) allows to further improve the behavior of our frame-
work (STEGON vs STEGONnoAux).

Method F-Measure Kappa Accuracy
RF 85.49± 0.18 83.98± 0.19 85.78± 0.16

MLP 78.63± 0.31 76.55± 0.34 79.19± 0.34
CNN 88.15± 0.12 85.70± 0.14 88.17± 0.12
LSTM 87.46± 0.24 86.02± 0.31 87.56± 0.27
GRU 87.61± 0.14 86.15± 0.14 87.68± 0.12

Hob2srnn 82.17± 0.33 80.30± 0.35 82.49± 0.31
TempCNN 83.43± 0.20 81.61± 0.22 83.67± 0.19

GAT 90.64± 0.19 89.68± 0.21 90.83± 0.19

STEGONnoGAT 91.77± 0.00 90.78± 0.00 91.80± 0.00
STEGONnoAux 93.08± 0.24 92.27± 0.27 93.12± 0.24

STEGON 94.30± 0.16 93.63± 0.14 94.34± 0.12

TABLE 4: F-Measure, Kappa and Accuracy performances of
all the competing approaches on the Reunion-Island dataset.

Method F-Measure Kappa Accuracy
RF 80.98± 0.30 77.41± 0.37 81.23± 0.31

MLP 85.54± 0.48 82.58± 0.65 85.54± 0.56
CNN 86.07± 0.30 83.30± 0.35 86.08± 0.29
LSTM 84.81± 0.57 81.73± 0.63 84.74± 0.50
GRU 85.22± 0.25 82.28± 0.31 85.23± 0.25

Hob2srnn 83.18± 0.55 79.85± 0.63 83.21± 0.52
TempCNN 85.19± 0.14 82.36± 0.15 85.32± 0.13

GAT 81.74± 0.31 78.59± 0.28 82.22± 0.22

STEGONnoGAT 88.58± 0.00 86.31± 0.00 88.58± 0.00
STEGONnoAux 91.22± 0.33 89.51± 0.39 91.26± 0.33

STEGON 91.98± 0.33 90.42± 0.39 92.01± 0.32

TABLE 5: F-Measure, Kappa and Accuracy performances of
all the competing approaches on the Dordogne dataset.

Table 6 and Table 7 report the per class F-Measure ob-
tained by the different competing methods on the Reunion-
Island and the Dordogne study site, respectively.

Regarding the Reunion-Island study site (Table 6), we
can observe that STEGON consistently outperforms all the
competitors on all the land cover classes. The highest gains
are associated to the Greenhouse and Orchards land cover
classes with an improvement of almost 30 points and 12
points, respectively, over the CNN approach. Note that the
CNN approach can be seen as an ablation of our approach
that does not consider spatial neighborhood information. It
can also be noted how STEGON always improves upon the
performance of its other ablations (STEGONnoGAT and
STEGONnoAux). This confirms how the combination of
the graph attention mechanism and the auxiliary classifiers
both significantly contribute to the performance of the pro-
posed approach.

Concerning the Dordogne study site (Table 7), we can see
that STEGON achieves the best performances on 5 over 7
classes. On the two remaining classes it is the second best
method, showing comparable performances with respect to
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the best performing one (MLP). It can be noted how also
in this case STEGON outperforms all its ablation. Simi-
larly to what happens on Reunion-Island, also on Dordogne
STEGONnoAux always outperforms STEGONnoGAT ,
confirming the importance of the graph attention mechanism.

B. SENSITIVITY ANALYSIS REGARDING THE
ACTIVATION FUNCTION FOR THE GRAPH ATTENTION
MECHANISM AND THE HYPER-PARAMETER λ

In this section, we evaluate the sensitivity of our framework
STEGON w.r.t. two different internal aspects: i) the acti-
vation function associated to the graph attention mechanism
employed to aggregate the spatial information and ii) the
impact of the λ parameter associated to the auxiliary classi-
fier cost. For the first evaluation, beyond the LeakyReLU
activation function (that was originally proposed to equip
the graph attention mechanism [21]), we consider as addi-
tional option the widely adopted ReLU and Tanh activation
function. The latter one is the activation function that is
commonly used in standard attention mechanism [24]. For
the second experiments, we vary the λ parameters in the set
{0.1, 0.3, 0.5, 0.7, 0.9}.

Table 8 reports the performances of STEGON coupled
with different activation functions for the graph attention
mechanism. The subscript indicates which is the employed
activation function. We can observe that, on both bench-
marks, the LeakyReLU activation function achieves the best
average performances in terms of F-Measure, Kappa and
Accuracy. These results confirm the choice made by the
authors in [21] that equip the graph attention mechanism with
the LeakyReLU activation function.

Figure 7 depicts the sensitivity analysis of STEGON
w.r.t. the hyper-parameter λ (the importance related to the
auxiliary classifier loss). We can observe that, generally,
the proposed approach is quite stable regarding this hyper-
parameter. For the case of Reunion-Island, the performances,
in terms of F-Measure, varying between 93.95 (λ = 0.1)
to 94.30 (λ = 0.5) while, on the Dordogne benchmark,
performances varying between 91.56 (λ = 0.9) to 91.98
(λ = 0.5).

C. QUALITATIVE EXPERIMENTAL RESULTS
To further investigate the behavior of STEGON , we con-
duct two additional qualitative studies. First, we visualize
and compare the representation learnt by STEGON w.r.t.
the representations learnt by some of the competing deep
learning methods so as to analyze their internal behavior
and, second, we discuss a sample from the land cover map
generated by STEGON . We deploy such evaluations on the
Dordogne study site. Figure 8 depicts the visual projection
(via T-SNE [36]) of the embeddings extracted by the compet-
ing deep learning approaches. The Dordogne dataset includes
seven land cover classes, that are listed in the legend of the
figure with the associated color mapping. We can note that
STEGON (Figure 8f) clearly recovers a more visible cluster
structure with respect to the one exhibited by the embeddings

FIGURE 7: Sensitivity analysis of STEGON performances
varying the λ parameter in the value set {0.1, 0.3, 0.5,
0.7, 0.9} in terms of F-Measure over the two considered
benchmarks.

extracted by the competitors. We can also highlight that the
visual class separability (the cluster structure) is directly
proportional to the quantitative performance results reported
in Table 5. Similar qualitative behaviors are obtained on the
Reunion Island study site (results not shown).

(a) (b)

(c) (d)

(e) (f)

FIGURE 8: Visualization of the embeddings learnt by: (a)
MLP (b) CNN (c) LSTM (d) GRU (e) GAT (f) STEGON .
300 examples are sampled per class from the test set and the
T-SNE is used to obtain the two dimensional projection.

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3055554, IEEE Access

Su
ga

rC
an

e

Pa
st

ur
e

M
ar

ke
tg

.

G
re

en
ho

us
e

O
rc

ha
rd

s

W
oo

de
d

ar
ea

s

M
oo

r

R
oc

ks

R
el

ie
f s

.

W
at

er

U
rb

.a
re

as

RF 87.35 86.33 74.43 34.13 72.64 90.39 87.42 87.16 97.95 88.70 78.78
MLP 89.33 85.11 74.80 32.41 71.50 83.77 81.67 84.17 96.26 92.85 78.77
CNN 90.01 87.31 78.24 35.67 78.81 90.35 88.48 89.35 97.09 89.56 79.58
LSTM 90.22 85.64 76.78 33.58 78.58 88.34 87.55 88.04 92.21 91.55 78.36
GRU 90.33 86.28 76.34 33.62 78.97 89.18 88.43 87.05 92.81 88.72 78.63

Hob2srnn 87.51 79.48 67.69 28.62 69.62 88.34 85.25 91.39 97.06 93.25 76.74
TempCNN 88.33 82.79 74.05 32.34 72.74 88.42 84.56 91.43 97.49 94.74 76.21

GAT 83.70 82.80 74.75 50.35 75.57 90.16 89.26 93.25 93.00 89.37 78.82
STEGONnoGAT 93.73 91.35 81.99 57.01 86.26 96.12 95.36 97.03 98.03 95.10 85.33
STEGONnoAux 94.32 93.45 85.36 61.03 87.88 97.12 97.06 97.66 98.21 96.89 87.78

STEGON 95.46 94.45 87.90 64.85 91.03 97.43 97.58 98.54 98.45 97.08 89.65

TABLE 6: Per class F-Measure performances of the different competing methods considering the REUNION study site. Best
and second best performances are shown in bold face and underlined, respectively.

B
ui

lt
U

p

C
ro

ps

W
at

er

Fo
re

st

M
oo

r

O
rc

ha
rd

s

V
in

es

RF 84.38 79.72 86.74 87.27 65.02 68.82 85.34
MLP 92.02 81.48 93.83 88.93 70.05 78.32 90.31
CNN 87.22 84.99 91.29 90.29 74.83 79.22 88.13
LSTM 89.41 79.87 91.08 89.37 72.19 76.71 89.63
GRU 88.99 81.70 90.91 90.33 72.50 77.75 87.95

Hob2srnn 85.28 82.66 87.55 88.15 70.47 73.23 87.00
TempCNN 88.44 84.28 91.15 89.35 71.15 77.25 88.37

GAT 58.58 74.99 70.87 93.66 85.93 79.74 88.03
STEGONnoGAT 87.51 85.27 91.49 93.83 82.58 82.40 88.92
STEGONnoAux 89.62 87.81 93.21 95.98 89.16 84.75 91.75

STEGON 90.91 88.19 93.36 96.31 90.90 86.02 92.85

TABLE 7: Per class F-Measure performances of the different competing methods considering the Dordogne study site. Best
and second best performances are shown in bold face and underlined, respectively.

Reunion
Method F-Measure Kappa Accuracy

STEGONReLU 94.21± 0.14 93.55± 0.15 94.26± 0.13
STEGONTanh 93.68± 0.17 92.92± 0.19 93.70± 0.17

STEGONLeakyReLU 94.30± 0.16 93.63± 0.14 94.34± 0.12
Dordogne

Method F-Measure Kappa Accuracy
STEGONReLU 91.64± 0.30 90.01± 0.35 91.67± 0.29
STEGONTanh 91.21± 0.11 89.48± 0.14 91.23± 0.12

STEGONLeakyReLU 91.98± 0.33 90.42± 0.39 92.01± 0.32

TABLE 8: F-Measure, Kappa and Accuracy performances of
STEGON equipped with different activation functions to
deal with the computation of the graph attention mechanism.

Figure 9 depicts the output of our model on a portion of
the Dordogne study site. The top of the figure is a reference
Sentinel-2 image. Only RGB bands of the image are used for
visualization. The bottom of the figure reports the land cover
map produced by STEGON (and the associated legend)
corresponding to the area spanned by the Sentinel-2 extract.
We clearly observe that our approach correctly recovers the
river stream (blue color) crossing the image from left to right,
as well as the urbanized area (gray color) corresponding to a
city in the middle left part of the area. Similarly, STEGON

accurately classifies the vineyard area (magenta color) in the
bottom left part of the image.

To sum up, both quantitative and qualitative evaluations
demonstrate the effectiveness of STEGON with respect to
state of the art approaches. The obtained findings highlight
the benefit of simultaneously taking into account spatial and
temporal information included in SITS data, thus improving
the results on the land cover mapping task.

VII. CONCLUSION
Satellite image time series (SITS) data constitutes a valuable
source of information to assess the Earth surface dynamics.
Applications range from food production estimation to nat-
ural resources mapping and biodiversity monitoring. How to
get the most out of such rich information source, leveraging
simultaneously both spatial and temporal dimensions, is one
of the main current challenges in the remote sensing com-
munity. To tackle it, in this work we have presented a novel
attentive spatial temporal graph convolutional neural network
to analyze SITS data in the context of land cover mapping.
Our framework is equipped with a spatial attention mech-
anism that allows the network to automatically aggregate
the spatial context information surrounding a target segment.
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Reference Sentinel-2 image on the Dordogne study site

Land cover map produced by STEGON

FIGURE 9: Extract of the Sentinel-2 image (top of the image)
and corresponding extract of the land cover map generated by
STEGON with the associated legend (bottom of the image)
on a portion of the Dordogne study site.

Quantitative and qualitative evaluations demonstrate the ef-
fectiveness of our method with respect to state of the art com-
petitors that do not integrate the spatial dimension in their
analysis. We also underline that, to the best of our knowledge,
this is the first spatial temporal GCNN strategy especially
conceived to cope with the specific features characterizing
remote sensing data (i.e. scale up to large graphs). Due to
the promising performances we have obtained, we hope that
this work will stimulate the scientific community to further
investigate the interplay between spatial temporal GCNN
models and their quality, thus dealing with the analysis of
modern remote sensing data.
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