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Abstract
Large-scale consortium efforts such as Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) and other collab-
orative efforts show that combining statistical data from multiple independent studies can boost statistical power and achieve
more accurate estimates of effect sizes, contributing to more reliable and reproducible research. A meta- analysis would pool
effects from studies conducted in a similar manner, yet to date, no such harmonized protocol exists for resting state fMRI
(rsfMRI) data. Here, we propose an initial pipeline for multi-site rsfMRI analysis to allow research groups around the world to
analyze scans in a harmonized way, and to perform coordinated statistical tests. The challenge lies in the fact that resting state
fMRI measurements collected by researchers over the last decade vary widely, with variable quality and differing spatial or
temporal signal-to-noise ratio (tSNR). An effective harmonization must provide optimal measures for all quality data. Here we
used rsfMRI data from twenty-two independent studies with approximately fifty corresponding T1-weighted and rsfMRI datasets
each, to (A) review and aggregate the state of existing rsfMRI data, (B) demonstrate utility of principal component analysis
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(PCA)-based denoising and (C) develop a deformable ENIGMA EPI template based on the representative anatomy that incor-
porates spatial distortion patterns from various protocols and populations.

Keywords ENIGMAEPI template . Largemulti-site studies . Processing pipelines

Introduction

Changes in blood oxygenation level-dependent (BOLD) sig-
nal form the basis for most functional MRI studies (Bajaj et al.
2015a). In task and event related fMRI studies modest (2–5%)
changes in BOLD signal during periods of mental activity are
contrasted with baseline or control conditions. Likewise, fluc-
tuations in BOLD signal during rest reflect neuronal baseline
activity, representing the state of the brain in the absence of
goal-directed neuronal action and external input (Gusnard and
Raichle 2001; Peltier and Noll 2002). These slow fluctuations
occur in synchrony for functionally relevant networks across
different brain regions. Resting state fMRI (rsfMRI) studies
investigate large-amplitude, spontaneous low-frequency
(<0.1 Hz) fluctuations in the fMRI signal that are temporally
correlated across functionally related areas (Biswal et al.
1995; Fox and Raichle 2007; Margulies et al. 2007; Smith et
al. 2009; Bajaj et al. 2015b). Concerns have been raised about
some conclusions drawn from human neuroimaging studies in
general (Bustin 2014; Button et al. 2013; Russell 2013), fMRI
results in particular (Poldrack et al. 2017), and rsfMRI results
(Bajaj et al. 2016) pointing to low reliability and unclear re-
producibility of results. RsfMRI studies typically have less
statistical power than task or event related approaches
(Zhang et al. 2016) and may be more susceptible to this crit-
icism. One way to address low statistical power in scientific
research is through collection of larger samples. This may not
be feasible for neuroimaging studies owing to recruitment
constraints or financial limitations. An alternative approach
is the meta- or mega-analytic pooling of data from multiple
sites or studies. Enhancing Neuroimaging Genetics through
Meta-Analysis (ENIGMA) and other big data consortia use
this approach to boost statistical power and achieve more ac-
curate estimates of effect sizes, contributing to more reliable
and reproducible research (Thompson et al. 2014).

The growth of large-scale collaborative studies has led to
more highly powered studies with more reproducible effects,
also allowing “big data” analyses that draw on diverse datasets
collected worldwide (Choudhury et al. 2014; Poldrack and
Gorgolewski 2014; Zuo et al. 2014). One challenge in multi-
site neuroimaging research – such as that led by ENIGMA – is
to identify and homogenize phenotypes from images collected
with a wide array of imaging protocols and from subjects of
varying ages. One use of such data is for future genetic inves-
tigations, which have recently shown impressive results when
aggregating datasets from tens of thousands of subjects (Major

Depressive Disorder Working Group of the Psychiatric et al.
2013; Schizophrenia Working Group of the Psychiatric
Genomics 2014). Prior work of ENIGMA in this direction
led to development of imaging analyses pipelines to extract,
homogenize, and quality control standardized phenotypes
from structural T1-weighted (T1w) and diffusion tensor imag-
ing (DTI) (Jahanshad et al. 2013). This led to large genome-
wide association studies to uncover genetic loci associated
with MRI-based phenotypes including hippocampal volumes
(Bis et al. 2012; Stein et al. 2012; Hibar et al. 2017), intracra-
nial volumes (Ikram et al. 2012; Stein et al. 2012; Adams et al.
2016), and others (Hibar et al. 2015). Related large scale data
pooling of anatomical MRI scans led to the largest neuroim-
aging studies of major depression (Schmaal et al. 2016), bipo-
lar disorder (Hibar et al. 2016), schizophrenia (van Erp et al.
2016), obsessive compulsive disorder (Boedhoe et al. 2016),
attention deficit hyperactivity disorder (Hoogman et al. 2017),
and brain asymmetry (Guadalupe et al. 2017) in thousands of
subjects scanned worldwide.

Two major challenges in developing an analysis plan for
multi-site rsfMRI data include the diversity in the data collec-
tion protocols and the lack of a generalized analysis approach.
The first aim of this manuscript is to review available and
representative rsfMRI datasets, across ENIGMA and else-
where, and quantify their variability in terms of spatial reso-
lution, duration and signal to noise ratio (SNR), including
temporal-SNR (tSNR). The second aim of this manuscript is
to show the utility of principal component analysis (PCA)
based regression of Rician noise to improve the signal-to-
noise characteristics of rsfMRI images. Some rsfMRI proto-
cols such as that developed by the Human Connectome
Project push the limits of spatial and temporal resolutions
but are still limited by noise. SNR improvement using spatial
smoothing reduces in spatial specificity, and thus complicates
localization of effects in the rsfMRI/fMRI images. By
exploiting the redundancy in the temporal domain, we can
improve the SNR/tSNR without compromising the spatial
resolution.

Presently, many fMRI analysis pipelines require input from
multiple imaging modalities. For instance, a subject’s struc-
tural T1w scan may be required to regress out signal trends
from the cerebrospinal fluid (CSF) and cerebral white matter.
These signals are considered to have methodological or phys-
iological rather than neural origins, so they are regressed out
before analyzing cerebral connectivity. Likewise, T1w data is
sometimes used for anatomical registration to an atlas space,
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such as the ICBM152 template space (FMRIB Software
Library, FSL) (Jenkinson et al. 2012; Smith et al. 2004).
RsfMRI are collected using gradient echo planar imaging
(EPI) sequences, so they may suffer from geometrical distor-
tions, especially in areas of high susceptibility such as bone-
tissue interfaces. This limits the accuracy of spatial registra-
tion between functional and T1w data. Supplementary data
such as the ‘fieldmap’ or reversed-gradient scans are collected
to correct for such distortions (Cusack et al. 2003; Hutton et al.
2002). However, even with fieldmap-corrected EPI-to-T1 reg-
istration, residual misalignment between functional and T1w
images may interfere with the analyses (Villain et al. 2010).
The multi-modal approaches have further disadvantages for
multi-site analyses since the variability in supplementary data
such as the presence or absence of field mapping and the
variance in the quality of T1w data may influence the results
of the overall rsfMRI analysis. In the spirit of such multisite
ENIGMA analyses, here we propose a single-modality pipe-
line that only uses a deformable template and tissue classifi-
cation of rsfMRI data to achieve the same goal. This avoids
the pitfalls of potential site-to-site variances in T1w data anal-
yses and coregistration biases that can influence the rsfMRI
phenotypes. Here we use T1w data to make the ENIGMAEPI
template below, but T1w data is not used or needed to do
analyses with the template.

Detection of subtle fluctuations in neuronal activity-induced
BOLD signal in the presence of various sources of noise is one
of the central challenges in fMRI. It has led to an ongoing effort
to increase the spatial SNR and tSNR by optimizing data col-
lection and analysis parameters. The standard SNRmetric does
not capture the temporal noise characteristics of fMRI time
courses. Therefore, a tSNR metric is used to estimate the tem-
poral stability of the imaging signal. There are multiple ways to
quantify tSNR. This paper uses two approaches: one quantifies
tSNR by dividing themean signal intensity by its variation over
time; the second quantifies SNR by dividing the mean image
intensity over the time trace by the noise in the image (Bodurka
et al. 2007; Kruger and Glover 2001; Murphy et al. 2007;
Triantafyllou et al. 2005). tSNR gives an indication of fMRI
data quality and is a function of multiple protocol parameters
including magnetic field strength, flip angle, image resolution,
and echo time (Triantafyllou et al. 2005, 2006; Molloy et al.
2014). Several studies report that improved detection of stable
functional networks was associated with higher tSNR
(Gonzalez-Castillo et al. 2014; Molloy et al. 2014; Smith et
al. 2013; Welvaert and Rosseel 2013).

A fundamental problem in big data neuroimaging research
is achieving homogenization across diverse data collection
protocols. Spatial normalization is used in brain mapping to
reduce inter-individual anatomical variance by matching ho-
mologous spatial features of a source brain to those of a target
brain (Kochunov et al. 2001). Spatial normalization of each

subject’s brain to either an average or an individual target
brain (Lancaster et al. 1999; Woods 1996) or to a single
high-resolution MRI brain volume (Collins et al. 1995) inev-
itably leads to a bias in the quality of regional spatial normal-
ization, with good matching for some brains and poor
matching for others. One approach is to develop and evaluate
a deformable brain template, created from a group of individ-
ual brain images, to minimize target-selection bias. This tem-
plate based on deformation properties common to the group,
yields a common representative brain template for multi-site
statistical studies.

Here we develop a pipeline for multi-site rsfMRI analysis
pipeline to support imaging research conducted by multisite
efforts, such as participants in the ENIGMA consortium, al-
though it could be equally beneficial in other related research
efforts. In this study, we used twenty-two rsfMRI datasets that
included up to fifty representative T1/rsfMRI datasets per
study. We used this data to (i) demonstrate the utility of the
PCA-based denoising and (ii) develop a deformable
ENIGMA EPI atlas based on representative anatomy that in-
corporates spatial distortion patterns. This pipeline involves
the basic preprocessing steps to denoise and harmonize a va-
riety of resting state protocols; it serves as the basis for future
analysis plans to calculate resting state metrics, which may
include anything from independent components analysis
(Calhoun and Adali 2012) to regional correlational analyses
(Song et al. 2014) and beyond.

Methods

Study subjects and imaging protocols

Twenty-two T1/rsfMRI datasets were analyzed (Table 1).
Thirteen datasets were from ENIGMA sites; nine datasets
were publicly available and downloaded (one dataset from
Center of Biomedical Research Excellence (http://cobre.mrn.
org/phase1/; http://schizconnect.org; (Çetin et al. 2014) and
eight datasets from the Autism Brain Imaging Data
Exchange II (ABIDE II) (http://fcon_1000.projects.nitrc.org).

There were differences in technical parameters such as spa-
tial resolution, statistical data properties such as SNR and
tSNR, and variability in the supplemental data that was avail-
able. Different types of scanners: ten Siemens, six GE, and six
Philips were used to acquire the imaging data. The field
strength of twenty-one of the scanners was 3 T and one scan-
ner had the field strength of 1.5 T. Moreover, the rsfMRI
datasets used in this study had substantial variability in their
spatial (7.54 mm3–64.0 mm3) and temporal (720–3000 ms)
resolution, the number of volumes per study (85–1200) and
the total scan duration (3.8 min–14.8 min). The T1w data had
also variability in spatial resolution (0.343mm3–1.2 mm3) and
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image quality. Individual imaging protocols are described in
the Supplementary Material.

PCA denoising and tSNR calculation

PCA of a redundant M ×N data matrix, X, shows that most of
the signal-related variance is contained in a few components
whereas the noise is spread over all components; in each mea-
surement it is random, and will generally make all eigenvalues
nonzero. The contribution of noise to the histogram of the
covariance matrix eigenvalues becomes deterministic in the
limit of large M and N (Veraart et al. 2016b). The nonzero
eigenvalues are described by the Marchenko-Pastur (MP) dis-
tribution if the noise level is constant among all elements of X
(Marchenko and Pastur 1967):

ρ λð Þ ¼ λþ−λð Þ λ−λ−ð Þð Þ12
2πγλσ2

; λ− ≤λ≤λþ

and ρ(λ) ≡ 0 otherwise, where λ� ¼ σ2 1� ffiffiffi

γ
p� �

2 with γ

¼ M
N and N, M ≫ 1, and σ the noise standard deviation.

The shape and range of the distribution depends on
two parameters: γ and σ2. The upper edge λ+ of the
MP distribution distinguishes between noise and signifi-
cant signal-carrying principal components. In this
Marchenko-Pastur Principal Components Analysis
(MPPCA) denoising, recently applied to diffusion-
weighted MR images (Veraart et al. 2016a, b), we esti-
mate the noise level σ and the number of significant
signal components simultaneously and regress out eigen-
values that are related to noise. The denoising algorithm
does not alter the temporal domain trends. We first ap-
plied the MPPCA denoising algorithm to the rsfMRI data
and obtained filtered data, then calculated tSNR (Method
1: BtSNR test^) values before and after applying the
MPPCA denoising filter by dividing the data’s mean sig-
nal intensity by its variation over time. TSNR was then
compared between the cleaned and uncleaned data. We
evaluated how the MPPCA denoising effects vary as a
function of the following image acquisition parameters:
TR and voxel size (spatial resolution). In addition, we
also computed the SNR (Method 2: BSNR test^) before

Table 1 Demographic and imaging information are listed, for the datasets used in this study

Data sites Age range (years) Subjects No. of volumes Voxel size (mm3) TR (ms) Scanner Field strength

MarbG 18–55 25 M/25F 237 3.3 × 3.3 × 4.2 2000 Siemens 3 T

MuenG 19–62 25 M/25F 237 3.3 × 3.3 × 4.2 2000 Siemens 3 T

MPRC1 19–67 25 M/25F 150 3.44 × 3.44 × 4 2000 Siemens 3 T

MPRC2 16–66 25 M/25F 140 3.44 × 3.44 × 3.99 2210 Siemens 3 T

MPRC3 19–61 25 M/25F 444 1.72 × 1.72 × 4 2000 Siemens 3 T

VUMC1 22–70 25 M/25F 200 3.3 × 3.3 × 3 1800 GE-Signa HDxt 3 T

VUMC2 23–54 26 M/24F 200 3.3 × 3.3 × 3 1800 GE-Signa HDxt 3 T

COBRE 20–65 25 M/25F 150 3.75 × 3.75 × 4.55 2000 Siemens 3 T

GOBS 20–85 25 M/25F 150 1.72 × 1.72 × 3 3000 Siemens 3 T

ACP 16–77 26 M/24F 420 2 × 2 × 2 780 Siemens 3 T

HCP 22–35 25 M/25F 1200 2 × 2 × 2 720 Siemens 3 T

UCTSA 18–38 35 M/15F 138 3.1 × 3.1 × 3.5 2500 Siemens 3 T

CAMH 20–55 23 M/27F 212 3.125 × 3.125 × 4 2000 GE 3 T

ZHH 18–50 23 M/22F 212 3.125 × 3.125 × 4 2000 GE 3 T

ETH 13.8–30.7 37 M 210 3 × 3 × 3.3 2000 Philips Achieva 3 T

EUMC 6.2–10.7 40 M/10F 160 3.594 × 3.594 × 4 2000 GE-MR750 3 T

IPRDH 6.1–46.4 25 M/25F 85 3.594 × 3.594 × 4 2700 Philips Achieva 1.5 T

KKI 8–13 29 M/21F 156 2.67 × 2.67 × 3 2500 Philips Achieva 3 T

SDSU 7.4–18 41 M/9F 180 3.44 × 3.44 × 3.4 2000 GE-MR750 3 T

TCHS 10–20 42 M 210 3 × 3 × 3.55 2000 Philips Achieva 3 T

KUL 18–35 28 M 162 1.56 × 1.56 × 3.1 2500 Philips 3 T

BNI 18–64 50 M 120 3.75 × 3.75 × 4 3000 Philips Ingenia 3 T

Here, MarbG Marburg Germany, MuenG Muenster Germany, MPRC Maryland Psychiatric Research Center, VUMC VU University Medical Center,
GOBS Genetics of Brain Structure and Function study, COBRE Center Of Biomedical Research Excellence, ACPAmish Connectome Project, HCP
Human Connectome Project, UCTSA University of Cape Town, South Africa, CAMH Centre for Addiction and Mental Health, ZHH Zucker Hillside
Hospital, ETH Eidgenossische Technische Hochschule, EUMC Erasmus University Medical Centre, IPRDH Institut Pasteur and Robert Debre Hospital,
KKIKennedy Krieger Institute, SDSU San Diego State University, TCHS Trinity Centre for Health Sciences, KUL Katholieke Universiteit Leuven, BNI
Barrow Neurological Institute, M Male, F Female, TR repetition time
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applying the denoising filter as the ratio between the
mean signal and the estimated noise level (σ) ,
SNRbefore = mean signal/σ. This σ was provided as an
additional output parameter of the denoising algorithm.
The residual map (denoised data minus the original data)
singles out the noise that was removed during denoising,
and allows for the computation of SNR after denoising.
Here SNRafter = mean signal/σafter with (σafter)

2=σ2-vari-
ance (residuals).

Data preprocessing and template creation

Image preprocessing was carried out with FMRIB Software
Library (FSL) software (Jenkinson et al. 2012; Smith et al.
2004) and image registration was carried out using
Advanced Normalization Tools (ANTs) - an open source
and freely available software that is built on the widely used
Insight ToolKit platform (Avants et al. 2015; Yoo et al.
2002; Ibanez et al. 2002). We used the ANTs Symmetric
Normalization (SyN) algorithm (Avants et al. 2008) for non-
linear registration, as it has been shown to be robust (Klein
et al. 2009). For each individual from a study, an average
rsfMRI volume was calculated from all the available rsfMRI
volumes from that individual, and brain extraction was car-
ried out. The brain extracted average rsfMRI volume of each
dataset was nonlinearly registered to the corresponding brain
extracted T1w image using ANT’s antsRegistration using
the SyN transformation model according to the parameters
in Table S1. Then, the skull-stripped T1w image from each
individual subject was registered to a skull-stripped average
152 T1 (ICBM) brain template using FSL’s flirt. Brain ex-
traction was performed to avoid field of view discrepancies
between EPI and T1w images, which could result in severe-
ly misaligned images. The generated transformation matrix
(from individual T1w to ICBM) was used for registering the
resting state EPI image to the ICBM brain template. These
normalized EPI images from all subjects for the given study
we r e u s ed a s i npu t image s fo r u s i ng ANTs ’
antsMultivariateTemplateConstruction2.sh using the SyN
transformation and mutual information similarity metric,
based on the joint histogram entropy according to the pa-
rameters in Table S2. This script averaged all the inputs to
make an initial average target. Then, all brains were regis-
tered to the initial target. Then, those registered brains were
averaged and this became the new target. This process, after
many repetitions - here 7 times (default = 4) - produced an
image, the minimal deformation template, a representative
EPI template for the dataset from each study. Repeating
these steps for all 22 datasets, we obtained 22 representative
EPI template images. Taking these images as input images
for ANT’s antsMultivariateTemplateConstruction2.sh and
following the same above-mentioned procedures, we com-
puted the brain template, which we refer to from now on as

the ENIGMA EPI template. ENIGMA quality control pro-
tocols were implemented to flag outliers via visual inspec-
tion. This two-step procedure is similar to the two-step pro-
cedure used in the development of the ENIGMA multi-site
tensor based morphometry approach (Jahanshad et al. 2018).
A flow chart provided in the BResults^ section summarizes
the main steps used for creating the ENIGMA EPI template.

Ventricle overlap analysis

To evaluate the quality of the registration to the
ENIGMA EPI template, and compute the percentage
(%) ventricular overlap, we chose the two data subsets
from the ACP (Amish Connectome Project) site.
Individual FreeSurfer parcellated T1 images (aparc +
aseg.nii.gz) were resampled into the 2 × 2 × 2 mm3 space
of the EPI image. From these images, we derived ven-
tricular segmentations. We registered the individual sub-
jects’ rsfMRI data (average volume) to the ENIGMA EPI
template and ICBM template using FSL’s (Jenkinson et
al. 2012) (fsl.fmrib.ox.ac.uk/fsl) flirt and segmented them
into tissue classes using FSL’s fast. Using the segmented
EPI ventricular tissue masks, we found the number of
voxels that overlapped with the subjects’ ventricular
masks derived using the individual T1w FreeSurfer
parcellated images. Ventricle overlap was calculated
using the Dice overlap metric. 34 subjects not included
in the ACP study for representative EPI template creation
and 50 sub jec t s tha t were inc luded to c rea te
representative EPI brain template in ACP study were
used for this analysis.

Results

PCA-based denoising and tSNR maps

We calculated tSNR values at the voxel level, before and
after applying the MPPCA denoising filter to the rsfMRI
data. For a representative sample subject data from the
Human Connectome Project (HCP) study, we show the
tSNR maps for raw data (Fig. 1a) and filtered data (Fig.
1b). As a comparison, we applied Gaussian kernel
smoothing to the raw data to enhance the tSNR; we
found that Gaussian kernel smoothing, with σ=2 mm,
led to an average tSNR close to the tSNR after applying
the MPPCA denoising filter (Fig. 1c), though it intro-
duced a partial volume averaging effect along with com-
promised spatial resolution. The impact of the two
denoising techniques is shown on the visual-sensory net-
work extracted in the same sample subject using FSL-
Melodic approach (Beckmann and Smith 2004).
Following MPPCA filtering approach, the spatial
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structure of cortical network adherers to the cortical and
subcortical gray matter. Gaussian smoothing and associ-
ated partial voxel averaging artifact lead to a smoother
network pattern that encroaches in the cortical white mat-
ter and removal of the smaller nodes (Fig. 1d).

The average tSNR values were calculated from the raw
data before applying the MPPCA denoising filter and after
applying the MPPCA denoising filter (filtered data) from the
individual subjects for all datasets (shown in Fig. 2a). The
tSNR values increased significantly due toMPPCA denoising
filter, except for datasets from the CAMH (Centre for
Addiction and Mental Health), ZHH (Zucker Hillside
Hospital), and SDSU (San Diego State University) studies,
which on average increased but were not statistically signifi-
cant. The SNR values calculated as described in SNR test and
as shown in Fig. 2b improved significantly for all datasets
after applying the denoising filter. The higher tSNR and
SNR values after applying MPPCA denoising showed the
utility of this algorithm in enhancing the signal quality of the
rsfMRI data. For HCP dataset, the tSNR and SNR values

calculated from 9 min of scan time (labeled as ‘HCP9min’)
do not differ from those values calculated from the entire scan
time (14 min 24 s) (labeled as ‘HCP’) as shown in Fig. 2.

Figure 3 shows the variation of these tSNR values with the
rsfMRI data acquisition parameters. The tSNR values from
raw data showed a positive linear relation with TR (Fig. 3a),
and voxel size (Fig. 3b). Here, the positive linear relationship
between tSNR and TR is significant. The tSNR values from
denoised data showed a positive linear relation with TR (Fig.
3c), and voxel size (Fig. 3d). Here, the positive linear relation-
ship between tSNR and voxel size is significant. Figure 4
shows the relationship between SNR values, calculated using
Method 2, and rsfMRI acquisition parameters. The only sig-
nificant effect found was a positive linear relationship between
SNR values and voxel size for the denoised data.

ENIGMA EPI template creation

Figure 5 shows the representative EPI template image
for each of the 22 datasets used in our study. A flow

Fig. 1 Temporal signal-to-noise ratio (tSNR) maps from a representative
sample subject data from the HCP study. Maps shown are for raw data
(a), filtered data using the MPPCA filter (b), and applying Gaussian
kernel smoothing (σ=2 mm) on the raw data yielding the average tSNR

close to the tSNR of the filtered data using MPPCA filter (c). The impact
of the denoising on the state visual network demonstrated by localization
of the activity to the cortical gray matter in the MPPCA denoised data (e)
versus raw data (d) and Gaussian smooth data (f) in bottom row
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chart that summarizes the description of used methods
is shown in Fig. 6. These EPI template images were
used to create the overall ENIGMA EPI template,

shown in Fig. 7a. Tissue segmentation of this template
into tissue classes shows the ventricular structure (Fig.
7b–d).

Fig. 2 Average tSNR values for
rsfMRI datasets before and after
applying the MPPCA filter (raw
and denoised data). Here, tSNR
values were computed as tSNR=
mean signal intensity/variation
over time, as described in Method
1, (a). The SNR values (b) were
computed using Method 2,
described in text. The error bars
represent the standard error of the
mean

Fig. 3 Relation of tSNR (using
Method 1) with TR and spatial
volumes for rsfMRI datasets,
before (a–b) and after applying
MPPCA denoising filter (c–d).
The subplot marked with green
color indicates the significant
correlation between variables
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Ventricle overlap

We used individual subjects’ rsfMRI data, from a representa-
tive site – the ACP site - for the ventricle overlap calculation.
Using 34 individuals who were not used to create the EPI
representative template, the % ventricle overlap ranged from
16.6% - 45.2% when registering to the ICBM template and
27.5% - 73.8% when registering to the ENIGMA-EPI tem-
plate, with mean (± standard error of the mean) % overlap:
28.8 (± 1.3) and 49.4 (± 3.6), respectively. When the brains
were registered to ENIGMA EPI template, we found signifi-
cantly enhanced ventricular overlap than when using the reg-
istration to ICBM template (p < 10−9) (Fig. 8a). From the %
ventricular overlap calculation, we found the brains that were
used to create representative EPI brain template in ACP study
were not different from the brains that were not used to create
the representative ACP brain template when they were regis-
tered either to ICBM or to ENIGMA EPI template, as shown
in Fig. 8b.

Discussion

We used a diverse rsfMRI data from public repositories and/or
provided by ENIGMA members to develop a harmonized
preprocessing pipeline composed of two primary components.
First, we propose the use of a novel denoising approach and
second, we propose the registration to a deformable template,
which we created here from twenty-two diverse datasets and
refer to as the ENIGMA EPI template. These two preprocess-
ing steps serve as the preliminary steps in developing a

unimodality analytic pipeline to extract resting-state measure-
ments across multiple independent sites with diverse acquisi-
tion protocols.

We analyzed twenty-two representative independent
datasets to summarize the state of the existing rsfMRI data.
There was a considerable variability in the rsfMRI protocols
used across sites and studies. The datasets used had substantial
variability in their spatial and temporal resolution, the number
of volumes, and the total scan duration. The T1w data had also
variability in spatial resolution and image quality. The signal
to noise ratio (SNR) and temporal-SNR (tSNR) are two im-
portant quality parameters that describe a protocol’s ability to
provide detection of changes in BOLD signal versus noise,
especially in smaller brain structures. For instance, Murphy
and colleagues (Murphy et al. 2007) derived an approximate
relationship between tSNR, the size of the brain region and the
duration of an fMRI experiment necessary to detect a given
fMRI signal. This places an emphasis on choosing the correct
protocol parameters as a compromise between duration, spa-
tial resolution and sensitivity to neuronally induced BOLD
changes (Brooks et al. 2013). The SNR and tSNR are depen-
dent on the interaction between protocol parameters and the
methodological and physiological noise in the fMRI signal.
Sources of fMRI noise include physiological noise, such as
cardio-respiratory effects (Kruger and Glover 2001) and head
movement, physical noise, such as thermal noise from the
subject and electronics (Weisskoff 1996; Greve et al. 2011)
and external RF sources, and sequence-related artifacts such
as aliasing, slice crosstalk, truncation artifacts (Gibbs ringing)
and EPI ghosting (Heiland 2008). There is a complex interac-
tion between protocol parameters and noise in the images.

Fig. 4 Relation of SNR (using
Method 2) with TR and spatial
volumes for rsfMRI datasets,
before (a–b) and after applying
MPPCA denoising filter (c–d).
The subplot marked with green
color indicates the significant
correlation between variables
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Aside from the thermal noise, the fMRI noise is generally
heteroscedastic, nonstationary and temporally correlated
(Turner and Twieg 2005), due to underlying physiological
signal fluctuations (Biswal et al. 1995). Moreover, the SNR
will vary with sampling rate and spatial resolution, so we
should expect that the degree of correlation due to physiolog-
ical signal fluctuations will vary accordingly (Purdon and
Weisskoff 1998). For instance, reducing voxel size and repe-
tition time will reduce the contribution from physiological
signal fluctuations but will also reduce SNR and tSNR due
to higher physical noise. In these aggregated data, we demon-
strated that MPPCA denoising can improve SNR and tSNR
properties of the diverse data while maintaining spatial reso-
lution. In all datasets, we observed a positive correlation be-
tween SNR/tSNR and voxel sizes, and also between SNR/
tSNR and the repetition time of the image acquisition. The
smaller voxel sizes and shorter TR of the HCP dataset may
help reducing the influence of physiological signal fluctua-
tions, but it also led to lower tSNR than conventional proto-
cols. Larger voxels tend to smooth the anatomy in larger vol-
umes, so while the SNRmay be higher, there is a clear tradeoff
with level of detail and anatomical specificity.

There are multiple ways to improve both SNR and tSNR in
fMRI. Spatial smoothing such as Gaussian kernel filtering are
routinely used to improve both SNR and tSNR parameters but
at the expense of reducing spatial specificity (Molloy et al.
2014; Triantafyllou et al. 2006). Advanced denoising tech-
niques can improve SNR characteristics by taking advantage
of the spatial and temporal dimensions of the fMRI data (Du et
al. 2016). We tested a new PCA-based denoising technique to
reduce signal fluctuations rooted in thermal noise and hence
increase the tSNR without altering the spatial resolution (Fig.
1). The thermal noise-selective nature is based on data redun-
dancy in the PCA domain, using universal properties of the
eigenspectrum of random covariance matrices (Veraart et al.
2016b). The bulks of PCA eigenvalues arise due to noise and
can be approximated by the universal Marchenko-Pastur dis-
tribution (MPPCA). Marchenko-Pastur parameterization al-
lows us to estimate the noise level in a local neighborhood
based on the singular value decomposition of a matrix com-
bining neighborhood voxels (Veraart et al. 2016a). After re-
moving noise-only components, the resulting images show
enhanced SNR due to suppression of thermal noise compo-
nents of the signal. This denoising approach is free from the

Fig. 5 Representative brain template images for 22 datasets (~50 subjects are included in each dataset)
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limitations of the loss of spatial resolution of the image and
introduction of additional partial volume effects that lead to
complications in further quantitative analyses or to biases in
diffusion modeling (Veraart et al. 2016b). In addition, this
approach does not alter the resting state network activation
patterns as they are found from raw data. On the other hand,
spatial smoothing using a Gaussian kernel leads to partial
voxel averaging, spreading the activations across gray and
white matter regions and removing smaller nodes (Fig. 1d).
We observed a significant increase in SNR and tSNR charac-
teristics across the datasets. Suppression of thermal noise re-
duced the linear relationship between tSNR and TR. The lin-
ear relation between SNR/tSNR and voxel size remained as
expected.

We are developing a unimodal analysis workflow for
rsfMRI analysis. Some rsfMRI analysis pipelines are multi-
modal and rely on spatial co-alignment of subject’s structural
(T1w) and rsfMRI data for regressing of global connectivity
signal and region-of-interest (ROI) analyses in a common an-
atomical frame. Tissue segmentation of T1w data provides
spatial localization of the CSF-containing structures and cere-
bral white matter (WM) for regression of Bglobal connectivi-
ty” signal that is believed to convey signal from physiological
and/or methodological rather than neural origin (Hayasaka
2013). Likewise, T1w data is used to obtain anatomical

ROIs from population-based atlases to derive regional con-
nectivity metrics (Stanley et al. 2013). The disadvantage of
this approach for retrospective ENIGMA-type projects, is the
site-to-site variability in the quality of the T1w data and the
variance in registration quality between T1w and rsfMRI im-
ages in the presence of EPI shape distortions (Jezzard 2012).
Among the twenty-two datasets, only two, more modern
connectomics oriented protocols collected supplementary data
to correct EPI-related shape distortions. A recent study has
shown the registration of rsfMRI images to an EPI template
is better than the registration to T1w data for the same subject,
unless the EPI distortion data is collected, in which case the
two approaches are similar (Calhoun et al. 2017). There was
also a substantial variability in the quality of the T1w datasets
across studies. To minimize the potential for this variability to
influence the extraction of rsfMRI phenotypes, we developed
a deformable ENIGMA EPI template to serve the dual pur-
pose of regression of the global signal and offering a common
anatomical spatial reference frame. We show the use of de-
formable template greatly improves registration for individual
EPI images, including ventricular overlap, when compared to
the standard ICBM-152 template. The ENIGMAEPI template
incorporates the common shape distortions observed across
multisite EPI data as well as to serve as normalization target
for transformation to ICBM152 standard space.

Fig. 6 Flow chart that
summarizes the description of
used methods in ENIGMA rs-
fMRI protocol
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Registering the rsfMRI data with the brain template that has
better ventricle overlap to regress out the noise ultimately im-
proves the data quality. In our study, we found that the ventricle
overlap with the ENIGMA EPI template (~50%) was greatly
improved in comparison to the ventricle overlap with the
ICBM 152 template (~29%). For an independent data subset
from the ACP study, when EPI images were registered to the
ENIGMA EPI template, ventricle overlap (~ 50%) was greatly
improved in comparison to the ventricle overlap (~29%) when
EPI images were registered to the ICBM template.

With the advances in image registration methods and tech-
niques, they are widely used (Baloch and Davatzikos 2009;
Chen et al. 2008; Cheung and Krishnan 2009; Fedorov et al.
2011; Murphy et al. 2011; Rueckert et al. 1999; van Dalen et
al. 2004; Peyrat et al. 2010), leading to numerous new find-
ings in studies of brain and behavior (Bearden et al. 2007),
pathology, microscopy, surgical planning, and more (Chen et
al. 2008; Cheung and Krishnan 2009; Kikinis and Pieper
2011; Miller et al. 2005; Murphy et al. 2011; Peyrat et al.
2010; Shelton et al. 2005). The symmetric normalization
(SyN) algorithm used here was found to be one of the top-
ranking methods when Klein et al. (2009) applied and tested

Fig. 7 ENIGMA EPI brain
template (a) and segmented tissue
classes (b–d) for gray matter,
white matter and cerebrospinal
fluid respectively

Fig. 8 Percentage (%) ventricle overlap: (a) the overall average
ventricular overlap was improved significantly (p < 10−9) when the
individual subjects’ rsfMRI data was registered to ENIGMA EPI
template in comparison to ICBM template. These subjects were not
used in ACP study to create a representative brain template. (b) The
brains (N = 50) that were used in creation of the template (blue in color)
were not different from the brains (N = 34) that were not used in template
creation (red in color) in terms of the % ventricle overlap when computed
using ICBM and ENIGMA EPI template. Here, the error bar represents
the standard error of the mean
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14 nonlinear deformation algorithms to human brain MRI
registration. SyN also delivered the most consistently high
accuracy across subjects and label sets (Klein et al. 2009).
Symmetric approaches tend to outperform closely related
asymmetric methods in quantitative evaluation studies
(Avants et al. 2008; Beg and Khan 2007; Geng et al. 2009).
SyN treats both template and target symmetrically and image
features from the individual and template are used to drive the
mapping throughout the optimization (Avants et al. 2010).
Using 22 representative EPI brain template images as input,
we obtained the overall ENIGMA EPI template (Fig. 2a),
which, in turn, can be segmented into different tissue classes.

In summary, we are developing a pipeline for multi-site
rsfMRI data analysis that offers the opportunity to analyze
rsfMRI scans in a harmonized way, to extract comparable
measures and perform coordinated statistical tests. Using
rsfMRI data from twenty-two independent studies with ap-
proximately 50 corresponding T1w and rsfMRI datasets per
study, we reviewed and aggregated the state of existing
rsfMRI data. We first demonstrated the utility of the
MPPCA denoising filter to improve (t)SNR. We then devel-
oped a deformable ENIGMA EPI atlas in ICBM152 space
based on representative anatomy that incorporates the com-
mon shape distortions observed across multi-site EPI data.
With this, we showed better ventricular overlap and registra-
tion of rsfMRI data, which may be beneficial for future seed-
based and covariate analysis of the resulting data.
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