PHYSICAL REVIEW D 91, 114013 (2015)

Flexible parametrization of generalized parton distributions:
The chiral-odd sector
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We present a physically motivated parametrization of the chiral-odd generalized parton distributions.
The parametrization is an extension of our previous one in the chiral-even sector which was based on the
Reggeized diquark model. While for chiral-even generalized distributions a quantitative fit with uncertainty
estimation can be performed using deep inelastic scattering data, nucleon electromagnetic, axial and
pseudoscalar form factors measurements, and all available deeply virtual Compton scattering data, the
chiral-odd sector is far less constrained. While awaiting the analysis of measurements on pseudoscalar
mesons exclusive electroproduction which are key for the extraction of chiral-odd GPDs, we worked
out a connection between the chiral-even and chiral-odd reduced helicity amplitudes using parity
transformations. The connection works for quark-parton models including both scalar and axial vector
diquark models, and spectator models in general. This relation allows us to estimate the size of the various

chiral-odd contributions and it opens the way for future quantitative fits.
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I. INTRODUCTION

The proton’s transversity structure functions, s, or the
probability of finding a transversely polarized quark inside
a transversely polarized proton has notoriously been an
elusive quantity to extract from experiments. Being chirally
odd, it can be observed in either semi-inclusive deep
inelastic scattering (SIDIS) or in the Drell-Yan process
in conjunction with another chiral-odd partner. /,’s flavor
dependence and its behavior in xp;, and in the four-

momentum transfer, Q2, were obtained only relatively
recently from model dependent analyses of SIDIS experi-
ments in a limited kinematical range. Similarly, the various
related chiral-odd transverse momentum distributions
(TMDs) which are necessary to give a complete description
of the proton’s transverse structure [1,2], are hard to extract
from experiment (see [3] and references therein). In Ref. [4]
a new avenue to access transversity was suggested. It was
shown that a class of experiments including deeply virtual
7° production (DVz°P), and more generally deeply virtual
neutral pseudoscalar meson production [5], are directly
sensitive to the chiral-odd GPDs, /,, and the moments of
the chiral-odd TMDs representing their forward limits.
Deeply virtual Compton scattering (DVCS) and deeply
virtual meson production (DVMP) can be described within
QCD factorization, through the convolution of specific
generalized parton distributions (GPDs) and hard scattering
amplitudes. In DVCS and DVMP processes where no net
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helicity transfer occurs, one identifies four chiral-even
GPDs, H,E,H,E [6]. Four additional chiral-odd GPDs
are known to exist by considering twist-2 quark operators
that flip the net helicity by one unit, Hy, Er, H T ET [7.8].
All GPDs depend on two additional kinematical invariants
besides the parton’s light cone (LC) momentum fraction,
x, and the DVCS process’s four-momentum transfer, Q?,
namely r = A% where A = P — P’ is the momentum trans-
fer between the initial and final protons, and &, or the
fraction of LC momentum transfer, £ = A*/(P* + P'T)
(Fig. 1). The observables containing the various GPDs
are the so-called Compton form factors (CFFs), which are
convolutions over x of GPDs with the struck parton
propagator. The CFFs are complex quantities that depend
on &~ xpi/(2—xp;), t, and Q% In the forward limit
defined as r— 0, £ — 0, the spin conserving GPDs,

FIG. 1 (color online). Leading order amplitude for the DVCS/
DVMP processes described in the text. Crossed diagrams are not
shown in the figure.

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.91.114013
http://dx.doi.org/10.1103/PhysRevD.91.114013
http://dx.doi.org/10.1103/PhysRevD.91.114013
http://dx.doi.org/10.1103/PhysRevD.91.114013

GOLDSTEIN, HERNANDEZ, AND LIUTI

H(x,0,0;0%), H(x,0,0; Q?), and Hy(x,0,0; 0?) become
the PDFs, £ (x, 0?), g;(x, 0?), and h, (x, Q?), respectively.

In Ref. [4], after showing how DVz“P can be described in
terms of chiral-odd GPDs, we estimated all of their con-
tributions to the various observables with particular attention
to the ones which were sensitive to the values of the tensor
charge. A sound, fully quantitative model/parametrization
for chiral-odd GPDs was however missing. In this paper we
present such a model. We consider an extension of the
Reggeized diquark model which was already discussed in
detail in the chiral-even sector in Refs. [9,10]. Differently
from the chiral-even case where the GPDs integrate to the

nucleon form factors, and H and H have the PDFs fiand g
as their forward limits, very little can be surmised on the size/
normalization, and on the ¢ and x dependences of the chiral-
odd GPDs. Few constraints from phenomenology exist.
Namely H; becomes the transversity structure function, 4,
in the forward limit, and it integrates to the still unknown

tensor charge; the first moment of 2H 7+ E; can be
interpreted as the proton’s transverse anomalous magnetic

moment [11], and ET’S first moment is null [8,12].

Our approach allows us to overcome this problem and to
estimate more precisely the size of all the chiral-odd GPDs
since, owing to the parity and charge conjugation sym-
metries obeyed by the various helicity structures in the
Reggeized diquark model, we can write approximate
relations between the chiral-even and chiral-odd GPDs.

Although the ultimate goal is to determine the chiral-odd
GPDs from a global analysis on its own merit using all
of the pseudoscalar meson production data, a necessary
intermediate step is to gauge the various contributions to
the cross sections and asymmetries. This paper aims to be a
step in this direction.

A confirmation of the validity of our approach can be
seen in that using our method we obtain as a side result an
estimate of &, for the u and d quarks which is in line with
current experimental extractions.

A debatable question, and one that perhaps spurred an
additional analysis in Refs. [13,14], is how to treat the z°
production vertex. This is an important issue since the Q°
dependence of DVz°P largely depends on the description
of the process y*(¢qg) — #°, and experimental evidence to
date shows disagreement with theoretical predictions put
forth prior to Ref. [4]. Within a standard collinear factori-
zation scheme it was initially proposed that (i) factorization
in DVMP works rigorously for longitudinal virtual photon
polarization [15], the transverse polarization case being
yet unproven; (ii) the only coupling that survives at the
pion vertex in the large QO limit is of the type Yu¥s» the
other possible term « y5P, being suppressed. The resulting
amplitudes were written in terms of the chiral-even GPDs,
H and E.

In Ref. [4] we took a different approach. We first of
all assumed a form of factorization working for both
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longitudinal and transverse virtual photons. Factorization
for transverse polarization has in fact not been disproven
although a dedicated proof is missing." We then proposed
an alternative model to the standard one gluon exchange
model first adopted in DVz°P in Refs. [16-19], in con-
nection with collinear factorization for longitudinal virtual
photons. In our model outlined in Ref. [4], the form factor
of the outgoing pseudoscalar meson depends on the J©€
quantum numbers in the ¢-channel. These were first
introduced in the description of deeply virtual exclusive
processes in Refs. [20] and [21] for the chiral-even and
chiral-odd cases, respectively (for a detailed discussion of
JFC€ in deeply virtual exclusive processes see e.g. [22]). J©€
quantum numbers provide a way of counting the number
of generalized form factors contributing to the hadronic
tensor. In Ref. [4] we noticed that for pseudoscalar electro-
production one has at leading order J¢=1"",1%",
corresponding to either vector (V) or axial vector (A)
fermion-antifermion pairs. This, in turn, corresponds to
HHLe=38,,'P,. The transition from y*(gg) into #°
(JP€ = 0%") therefore corresponds to a change of orbital
angular momentum, AL =0 for the vector case, and
AL =1 for the axial vector. Our idea is to introduce
orbital angular momentum in the calculation of the one
gluon exchange mechanism for the transition form factor
by using a technique similar to the one first introduced in
[23] (see also [24]). By doing so we describe the pion
vertex with two form factors, an axial vector type, F4(Q?),
suppressed by O(1/Q?) with respect to the vector one,
Fy(Q?). The two form factors enter the helicity amplitudes
for the various processes in different combinations. This
gives rise to a more articulated form of the O dependence,
which is more flexible and apt to describe the features of
the data than the standard one. In particular we can now
understand and reproduce the persistence of a large trans-
verse component in the multi-GeV region.

Our paper is organized as follows: in Sec. II we present
our formalism and we outline the derivation of the helicity
amplitudes entering the cross section for DVz°P, including
both chiral-even and chiral-odd contributions; in Sec. III
we present our model relating the chiral-even to chiral-odd
GPDs; in Sec. IV we present our results for the various
observables; finally in Sec. V we draw our conclusions.

II. FORMALISM

We start by defining GPDs at twist-2 as the matrix
elements of the following projection of the unintegrated
quark-quark proton correlator (see Ref. [25] for a detailed
overview),

1Le:ading order factorization in the transverse channel is also
supported by a duality argument for the GPDs’ Regge term
prozposed in Ref. [10].

In what follows we can omit the Wilson gauge link without
loss of generality.
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r
Wi (x,&,1)

1 [dz
s
< (P, A’Iw(—i)l“w( )|P N

where I =y, yTys,ic'Tys(i = 1,2), and the target’s spins
are A, A’. For the chiral-odd case, I' = ic'*ys, WR, A Was
parametrized as [8]

ixP*z~

Wiy (x, & 1)

— % TP, A) (ia*er(x, £.1)
—I—%ET(L & 1)
+P+A’M2A+P’ o0
+% Er(x &, t)) UP,A).  (2)

As we will show below, the spin structures of GPDs that
are directly related to spin dependent observables are most
effectively expressed in term of helicity amplitudes, devel-
oped extensively for the covariant description of two body
scattering processes (for a detailed description of the
helicity amplitude formalism in deeply virtual scattering
processes see also Ref. [26]). Before proceeding with the
helicity amplitudes we introduce the kinematics.

A. Kinematics

The correlator in Egs. (1)—~(2) is expressed in terms of
kinematical variables defined in the “symmetric frame,”
where we define P = (P + P')/2, the average proton
momentum, and A =P —P'. P is along the z-axis with
momentum, P; ~ P*. The four-momenta LC components
[v= (v", v, 07), where v* = 1/v2(v, £ v3)] are

Symmetric

p= (Ptg—jﬂ)

A= <§<2P+),t2;i%,Ar>

P= ((1 + &Pt Ajzigp/+4,Ar/2>

P = ((1—5)}) ,%,—AT/Z). (3a)

The coordinates of the off-shell struck parton are
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(x+ &P k™ kr + Az /2),
((x =P K~ ky — Ap/2). (4)

k
k/

Another choice of frame is the “asymmetric frame,” where
P is longitudinal:
Asymmetric

. M?* + A3
P= (00 i)
_ (1=¢/2)M?* + A2)2
_(ops (SE/M 1 A3
a= (o S ) ®
and
k= (XP* k™, Kky),
K= ((X-0)P" K~ kr — Ag), (6)
where
t:to_Ai/(l_C)’ (7)

ty==CM?/(1-¢) = —48M*/(1-&). (8

The two frames are entirely equivalent and one can
connect to the other with simple transformations. We find
the asymmetric frame more useful when referring to the
partonic picture, while the symmetric frame is more
convenient for symmetry transformations and sum rules
derivations. In this paper we will use either notation
according to these criteria.

Other useful variables are

P _QZ(X - é)/gv
= (kK -q)*~Q*X/C,
g~ (Pq)/P* = Q*/(2(P").
The loop diagram in Fig. 1 integrated over the struck

quark’s momentum is performed using the varia-
bles: d*k = dktdk~d*k, = PtdXdk d*k, .

B. Helicity amplitudes

The connection of the correlator, Eq. (2), with the
helicity amplitudes proceeds by introducing [4,9]

fAA’ (1) = ng{y’o(X, £1,0%) ®@ Ay (X, C1), (9)

A

114013-3



GOLDSTEIN, HERNANDEZ, AND LIUTI

where the helicities of the virtual photon and the initial
proton are A,, A, and the helicities of the produced pion
and final proton are 0 and A’, respectively. Factorization
theorems at large Q” have been proven strictly for the
process y; p — Mp. Large transverse photon polarization
contributions have been however observed in the exper-
imental data. In a previous publication a possible scenario
beyond collinear factorization was introduced for y;p —
M p which involves directly the chiral-odd GPDs. In Eq. (9)

we describe the factorization into a “hard part,” A’VO for the
14

partonic subprocess y* + g — 7° 4+ ¢, and a “soft part”
given by the quark-proton helicity amplitudes, A/ . ; that
contain the GPDs.

1. Chiral-odd quark-proton helicity amplitudes, Ay »;

The amplitudes A,y », implicitly contain an integration
over the unobserved quark’s transverse momentum, kr,
and are functions of xz; = Q*/2Mv~{,t and Q*. The
convolution integral in Eq. (9) is given by @ [! co1dX,
as we explain in detail later on.

The connection with the correlator is carried out by
considering

dz= . pe -
141\%/’[”L = /EemP*z (P’,A’|O/1’/1(Z)|P’ A>|Z+:O,ZT:O’

(10)

0-.(2) = —iu‘/(— g) (6" - ia+2>w(§> (11)

0._(z) =iy (— %) 6+ + io*?)y (%) . (12)

where

By taking this into account in Eq. (2), and by adding and
subtracting the expressions corresponding to i = 1,2,
respectively, one obtains the expressions for the chiral-
odd helicity amplitudes in terms of GPDs [8,26],

to—t ~ 2 -
A++‘___\/1—§2{HT+O SHy— ¢ Er+ ¢ ET]

aM -2 T =g
1= -t~ 2/4 2 -
=g o et 5
(13a)
A+—,—+ —_ _e—i2¢ 1= 52 to
V1I=C1)—
— t2¢
- 1_(/2 Y L, (13b)
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oA/l — 1.~ ~
Apsp = 05— RHy + (1= §)(Er + Ep)]

:ez’zﬁ\/;oﬂ/l_t[HTju l_gfz(ETJrET)], (13c)

— ,iq \/ﬁ 2 E
=e /5407[2HT + (1 +&)(Er — Er)]

Cm y
oM TT1—¢)2

(E; —izr)], (134)

where the first (second) line in each equation uses the
symmetric (asymmetric) notation, ¢ is a phase given by

the azymuthal angle of the vector D with length |D| =

Vi, —1t/\/1 = 52 [26], and we have used the relations,

L g, nyieru(p, )

Pt = f(AS; + i612)85 _n

(14a)

_ PTA — ATPI
O(P )

REETY

U(P,A)

1
==

A,
+ (A + lAz) 5A A]

(14b)

_ AL — ATyl
TP, A % U(P,A)

— A . 5/72 03'iﬂ
_f[(2M+lA1 —ept 2M>5AA’

2
+% (AS; + i5i2)5A.—A’:|

(14c)

+pi _ p+.,i
U(p/,A/)wU(p, A)
{/2 A

A,
=/ {‘(1 —z/22M ZM) Oan

i (1 - g) (Asy + iaiz)éA._Al

(14d)

with f = T=C/(1-¢/2) = /1 =&
2. Hard process helicity amplitudes,

The subprocess y*q — n°q’ is shown in Fig. 2. For
chiral-odd coupling at the pion vertex it is given by
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FIG. 2 (color online). Hard scattering contribution, y*q — 7°q’;

¢ is the outgoing pseudoscalar meson distribution amplitude.

G = gLV (g a(k )y psulk. D)€

| 1
- 15
X(@—ie a-w)’ (15)

where the specific Q? dependence of the form factor
gr 4 (02)

is discussed in Ref. [4] and in Appendix A.
By using the relation
(k' 2y Tysu(k, 2)
= NN'Tr{(k + m)O, (K + m)y'ysy*}  (16)
where N =1//PT(X—¢) and N' =1/VXP" are the

quark spinors normalizations, and

Ops =~ (1+7°)(1 £7573) (17a)

. 1 .
Ouz =~ (I 4+7%)rs(r1Fir2) (17b)

we see that for transverse photon polarization, in the
Q? — oo limit, the only contributing amplitude is g/, ,

- K 0 o o
i %= KK = (W) + KK l(ef +iel). (18)

By evaluating K=¢~(1/3—1/2)=(Q?/2¢(P*)(¢/Q*CH)=
1/(2P")C", where the photon polarization vectors for q
along —7 are

et E\%m;;l,m)) (19)
&= ¢1sz<|q|;o,o,v> (20)
CHX.Q) = : (21)

“X—¢tie X—ie

one has
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gio = VX(X={)C. (22)
For longitudinal photon polarization,

4= oy K

oo = ok
+ (KK + K EH)O—i(1 < 2)]. (23)

[(kokll _ klk/o)eg)r

Similarly to Eq. (18) the last line was obtained in the
0? — oo limit, considering the dominant LC components.
By inserting all kinematical components, we have

o (K —iky)XPT 2w 1
900 = \/W \/@ZPJF
where we defined P = (Pq)/q” = Q*/2M{?, and

v = Q*/2M{. Notice that the energy term from the spinor
normalization, k", needs to be evaluated using its full form,

Ko = \/K?+ Kk} = \/K? + (X = )*P*2, in order to avoid
a singularity for X = { (see Appendix B). As a result,

I ¢vX —ip o+
Joo \/;\/((X—C)“r<kf>/(Q2/2M‘:2))1/2e

(25)

c* (24)

3. Convolution

The convolution in Eq. (9) yields the following decom-
position of the various helicity amplitudes,’

o =90 ®A 1y (26a)
1+o_ = 91+0_ @Ay (26b)
fio =90 ®A (26¢)
flo =9l0 ®A (26d)
00 =900 ®A _ —A_ ) (26¢)
(J)FOJr = ggo_ ® (Aps - —A_14), (26f)

where the four chiral-odd quark-proton helicity amplitudes,
Ay . enter. Notice that A, ,, A, ,  change sign
under parity while A__, ., A,__. do not change sign;
since g, also changes sign, then f7,", /75~ will not change
sign under parity, while f7;" and f{;” will change sign.

For a transverse photon, inserting the expressions for g,
and the A’s into Egs. (26) we obtain

*Notice the alternative use of notation in Ref. [4] and
references therein, namely, f| = f\,".f2=/flo.f3=/1>

fa=115-Fs=foo - fe = oo -
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o= gr 4 (Q)e Y2 — 4M [2HT +(1+&)(Er - E‘T)]

[ —7 1 ~
= gvoY(Q)e Z\/I ! Hy + é’/2( ST)],
(27a)
V.,odd A,odd
- 92°(0) ergﬂ (0) N
~ 2 ~
[HT+ 4M2tH E§ZST+1E€25T}
_ g0 + g (@) VT=T
o 2 1-¢/2
~ 2/4 2
[ty Ty =1Ly gsT} (@m)
1_3_ _ gx]‘; odd(Q) . g]\; odd(Q) e_i2¢ 62 4M2
gg Odd(Q) gXOdd( ) o—i20 V1I—=Cth—
- 2 1- g/z 4M2
(27¢)

fiv = g% (Q)e" *Vf{’,‘;’ 2y + (1= &)(Er + Ep)

= Qe oy + s (€ + )

(27d)

where Hy, etc., are the convolutions of the GPDs with
C*(X,¢), or the Compton form factors which at leading
order in PQCD are given by

FrlCot, 0%) = / i+¢ AXCTF(X..1,07)  (28)

where Fy = Hy, Ep. Hy, Er. gv° (9 and ¢p°Y(Q) are
given in Appendix D. These two distinct contributions arise
owing to the fact that, as observed in Ref. [4], the chiral-odd
coupling  y° contributes to z° electroproduction provided
one goes beyond a simple one gluon exchange description
of this vertex. In the #-channel picture, which has its roots in
a Regge analysis of this process [27], one separates the
JP€ = 17" and JP€ = 1"~ contributions to the amplitudes
for transverse and longitudinal virtual photons, respec-
tively, thus generating two different types of Q? depend-
ence at the 7° vertex. The result of our analysis is that,
differently from other treatments of pion electroproductlon
[16-19], relying solely on chiral-even GPDs, H.E, the
chiral-odd sector provides the dominant contribution.

For a longitudinal photon one has the convolution of g,
with the A helicity amplitudes,

PHYSICAL REVIEW D 91, 114013 (2015)

50 —i¢p Io—1
foo —g’,? dd(Q)e /207
X HT + 62 (C/‘T -+ g (Z:T (293)
2T -2
=0 e 1 B (ow)

(for this case, simpler expressions are obtained in sym-
metric notation).

C. Chiral-even sector

For completeness we also show results in the chiral-even
sector. The hard scattering amplitude reads,

! v - A
G = g2 (Q)egq [k, )ty pysulk, 2)lel d

< : : )

X | ——F—+7—

s — 1€ u-—1e

even Q2 / C— (30)

while the quark-proton helicity amplitudes are given by
[26]

 VTI=C(H+H /4E+E
A++'++_1—C/2< 2 T1-¢ 2 ) (31a)

 VI=((H-H (*/AE-E
A*‘**‘_1—§/2< 2 1-¢ 2 ) (31b)
N 2 .
A _ =—e Zjilt(E_lf/C/zE) (31c)
V1, 2 .
Ay oy = el o <E+IE/C/2E>. (31d)

Following from the chiral-even case [9], in z° electro-
production one obtains longitudinal photon amplitudes [19]

—.even —i C 1 V -
+-, _ i
w = Ao & O
V1 ~ -£%/4 -
it heven H £, 32b
” A T

where H., € are the corresponding Compton form factors.

III. EVALUATION OF CHIRAL-ODD GPDS IN
REGGEIZED DIQUARK MODEL

We now present our model for evaluating the chiral-odd
GPDs. We extend our Reggeized diquark model, which
was already configured for chiral-even GPDs, to the
chiral-odd sector. Model GPDs must satisfy the so-called
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polynomiality property which is a consequence of Lorentz
invariance of the nucleon matrix elements, and the pos-
itivity bound with respect to the forward limit (see Ref. [26]
for a review of these properties). While double distribution
based models satisfy polynomiality by definition, in our
model this has to be imposed as a constraint. As shown in
Refs. [9,10], our model was therefore constructed in such a
way as to satisfy this constraint. As shown in Ref. [9]
(Fig. 8) we verified that the first few moments of the
chiral-even GPDs are polynomials in &2, Notice that while
on one side polynomiality is only approximately satisfied
in our model, on practical terms this is a very good
approximation since the range in £ is kinematically limited
t0 [0, Enax) by the requirement that A2 > 0 in the definition
of t [Eq. (7)]. For instance one finds that for
t=-0.3,-0.5-0.8,—1.3 GeV?, & = 0.30,0.35,0.43,
0.52; i.e. £ is in a range where it is easy to fit the Mellin
moments to a polynomial form. We defined our approach
as a “flexible parametrization” in that, mostly owing to its
recursive feature, the different components can be effi-
ciently fitted separately as new data come in. The param-
eters were initially fixed by a fit applied recursively first to
PDFs, and to the nucleon form factors. The model was
shown to reproduce data on different observables in DVCS
(charge [28,29], longitudinal [30] and transverse [28,29]
single spin asymmetries). A comparison with data from the
more recent analysis has also been shown in Refs. [31,32].
Below we summarize the main steps in the model’s
construction, and we discuss its parameters. Recently
[10], we presented a new fit that uses the form factor
flavor separated data from Ref. [33]. We give the new
parameters’ values in Appendix C. A more detailed
description of the chiral-even sector and of the
Reggeization procedure can also be found in Ref. [10].

A. Light cone wave function definitions

The basic structures in our model are the quark-proton
scattering amplitudes at leading order with proton-quark-
diquark vertices given in Fig. 3. The quark parton helicity
amplitudes introduced in the previous section describe a
two body process, ¢'(k')P — q(k)P’, where g(k) corre-
sponds to the “struck quark” in Fig. 1. We adopt the
asymmetric system kinematics, Eqs. (5). The intermediate
diquark system, X, can have J* = 0F (scalar), or J* = 1*
(axial vector). Its invariant mass, My, varies in our model

k, A

— PN

P—k\

4

P — kX

FIG. 3 (color online). Vertex structures defining the spectator
model tree level diagrams.
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according to a spectral function, thus generating Regge
behavior at large M% [34]. We start from the region X > (.
At fixed My, the amplitudes read,

Scalar

AD, = / Pk, (K, PYprs(k P),  (33)
with vertex structures

u(k,A)U(P, )

¢A,/1(k’ P) = r(k> 12— m2 (34)
Bk, P) =) PEGEE o)

where we defined the proton-quark-diquark coupling as

k2_m2
r=g———1—. 36
9 @y (36)

This form is consistent with predictions from Dyson-
Schwinger on the proton quark-diquark vertex ([35] and
references therein).

Axial vector

et el ¢4 (k. P), (37)

1 *
A = / Lkl (K, P)
i/l

where 1" is the diquark’s helicity, which in our model is

taken as transverse only, and

i(k, A)y>y*U(P, \)
k2 — m?

Pk, P) =T'(k) (38)

UP', Ny yru(k', 1)

P (K. P) =T(R) =TT

(39)
Notice that the amplitudes, A,y 5y, are composed by the
following “building blocks,” or vertex structures connect-
ing the incoming and outgoing protons and quarks,

respectively (Fig. 3) as in Table L.
We obtain for S = 0,

¢ (k,P) = A(m + MX), (40a)
¢ (k. P) = A(ky + iky), (40b)
¢-—(k.P) = ¢, (k. P) (40¢)

TABLE 1. Vertex helicity combinations for scalar and axial
vector diquarks.

§S=0
TV

S=1
Py (e ey,
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¢ (k. P) = =g _(k. P). (40d)

For S = 1 the factorization of the vertices breaks: there is
angular momentum exchange between the lhs and rhs.
We find

ky — ik,

¢L(kP) = A=— (41a)
bl p) = ARy
¢ (k.P)=0 (41c)
¢7_(k,P) = —A(m + MX) (41d)
¢t (k,P) = —A(m+ MX) (41e)
¢~ (k,P) =0 (41f)
where
kz—mZZXMZ—l_XM§—m2— 1k—ix'

For (k,P) - (K,P), X->X =(X-¢{)/(1=¢) and
ki—ki=k—(1-X)/(1-¢{)A;, (i=1,2). Details of
the calculation are presented in Appendix D.

B. Chiral-odd GPDs from helicity amplitudes

The chiral-odd GPDs are obtained by inverting Eqgs. (13).
For simplicity we show results for { =0 (numerical
calculations in the rest of this paper were conducted using
the full { dependent expressions). One has

T2H7(X,0,1) + Ex(X,0,6)] = A, . +A_, __
T T
=AV A
T
+A Al

s

(42a)

Hp(X,0,0) =A\_+A_.
— A - A AT AT
(42b)
?Hp(X,0,1) = —A_, ,_
=Al  —Al AT AT

(42¢)

Er(X,0,0)=A,, _—A_,__=0 (42d)
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where 7 = \/f, —t/2M. Although we calculate the GPDs
using the helicity amplitudes, we illustrate the physical
meaning of each GPD (or combination of GPDs) in the
second lines where each equation represents the helicity
amplitudes in the two possible choices for transversity bases,
Ty, where the transverse spin is orthogonal to Ay (which
without loss of generality we can assume along the x-axis),
and Ty, where the transverse spin is along x. By inspecting
the spin content of the various equations we see that
Eq. (42a) has the same spin content of, and therefore reduces
in the forward limit to, the Boer Mulders function hlL [36];
Eq. (42b) gives transversity, h,; Eq. (42c) gives the first ky
moment of hi;; while E7(X, 0, ) decouples from the TMDs.

In Egs. (33), (37) we evaluated the quark-proton helicity

amplitudes AES}?M corresponding to the diquark spin

components, S =0,1. We then obtained the chiral-odd
GPDs from the amplitudes in Egs. (42). The GPDs for each
quark flavor are obtained from these equations, in turn, by
using the SU(4) symmetry of the proton wave function,

30 1

FTZEF(T)—EF(T> (43)
1

Fé=——FY, (44)

3

where F1 = {Hq,E%,fIqT,E%}, qg=u.d.

Next we consider Reggeization (see [37], Ch. 3 and
references therein); that is we extend the diquark model
formalism to low X by allowing the spectator system’s
mass to vary up to very large values. This is accomplished
by convoluting the GPD structures obtained in Eqgs. (42)
with a spectral function, p(M%), where M% is the specta-
tor’s mass,

(mg,M3)

FiX.C0) = N, A * a2 E M (X ¢ 1 M),

(45)

The spectral function was constructed in Refs. [9,10] so
that it approximately behaves as (Fig. 4)

- { (M3)"

(M M% — o
pP\Mx) = -
5(M5 = M3)

M% few GeV? (46)
where 0 < a < 1, and My is in the GeV range. Upon
integration over the mass in Eq. (45) one obtains the desired
X% behavior for small X, while for intermediate and large
X the integral is dominated by the 6 function, yielding a
result consistent with the diquark model (more details are
given in Ref. [10]).

Inserting p(M%) in Eq. (45) one obtains an expression
that we parametrized in a practical form as
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FIG. 4 (color online). The spectral function, p(M%), described
in Egs. (45) and (46). The inset shows the details of the behavior
at values of the spectator mass in the multi-GeV region.

(mq.MY)

Fi(X, 8. 1) w N X0t py (X, . t; My)

— RIU(X,C, )G (X, 8. 1) (47)

where o’

7(X) = a,(1 — X)Pa. The functions G%‘;qu and

RZZ'O/" are the quark-diquark and Regge contributions,
respectively.

In summary, the dominant components of the Reggeized
diquark model are quark-diquark correlations where
the diquark system now has both a finite radius and a
variable mass, My, differently from constituent type
models. At low mass values one recovers compact diquark
systems with spin J = 0%, 1. Using the SU(4) symmetry
the spin 0 and 1 components translate into different values
for the u and d quark distributions. More complex
correlations ensue at large mass values which are regulated
by the Regge behavior of the quark-proton amplitude,
o i\ta(t) — (]M%()a(t).4

C.O<X<¢(-E<x<§

In the ERBL region (0 < X < ¢, —£ < x < &) we adopt
a functional form that preserves the GPDs’ properties of

*The need for introducing a Regge term within the diquark
model for GPDs was realized in previous phenomenological
studies [38,39]. It stems from the observation that standard
diquark models cannot reproduce the behavior of the structure
functions at low x. While this might be of minor importance
in kinematical regions centered at relatively large x where most
data in the multi-GeV region are, it is, however, a necessary
contribution to obtain the normalization of the GPDs to the
proton form factors correctly. The Regge term is therefore an
essential ingredient in model building (see also discussions in
Refs. [10,40-42]).
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continuity at the crossover points (X = 0 and X = ¢{), and
polynomiality, i.e. the fundamental consequence of Lorentz
covariance by which the x"F, integrals (or the Mellin
moments) are required to be polynomials in & of order
n+ 1 (n even) [26]. The following symmetry relations for
x — —x are also imposed,

Fg(x.&1) = Fg(=x.&.1) (48)
Fy(x.610) = —Fg(-x.&1), (49)
where
Fy=F,(x.§) = Fg(x.%) (50)
F§ =Fy(x.&) + Fg(x.£), (51)
with
Fy(x,8) = =F,(=x,&)x < 0. (52)

F, corresponds to the flavor nonsinglet distribution, and
> oF ; to the flavor singlet. In the asymmetric system the
axis of symmetry is shifted to {/2 and one has, over the
[-1+ ¢, 1] region,

Fa(X.0.t) =F ({-X.(.1) (53)

FH(X.C.1) = —FH(( = X.C.1). (54)

Similarly to the light cone wave functions’ overlapping
representation [43,44] (see Ref. [26] for a detailed dis-
cussion), in our approach polynomiality and continuity at
x = ££ are not conditions built in to the model. These
conditions need to be satisfied by working out a mechanism
that produces a covariant result (and consequently poly-
nomiality [26]) from the behavior of the wave functions in
both the DGLAP and ERBL regions. As shown in [43,44]
the ERBL region admits a wave function representation
given by the overlap of wave functions with different
particle content. While general relations between light cone
wave functions in the two regions are not known, we
observe on one side that these can be explored by
implementing the equations of motion (see Refs. [26,45]
and in preparation), while on the other side, one can
perform practical calculations limited to the lowest Fock
states. In Ref. [46] for instance, a calculation of the valence
component was performed which displays polynomiality
within a simplified realization of the overlap formulas
(disregarding, however, the full spin content of the partons).
A version of this model including spin was instead
adopted in [47].

Here, with the aim of providing a parametrization for the
DVCS type experimental data, we match our covariant
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representation in the DGLAP region (Sec. III B), with the
following parametric form in the ERBL region,

FielX.0) = a (60X —a(E 00X + FE.C1) (59)
FieX.00)
= (GO = 3@ (GO + (€ DX+ d(C )
(56)

where we distinguish the two separate functional forms,
Fi ¢ respectively satisfying the symmetric, Eq. (53), and
antisymmetric, Eq. (54), conditions [see also Eqs. (45),
(46), Refs. [9,10]]. The coefficients a*({, 1), ¢(¢,t), and

|

NS.S
= | LD
=) pavss) oy

Tx-z (X, (1)

F1 satisfies all fundamental requirements, such as poly-
nomiality, positivity, symmetry at (x = 0, X = {/2), Her-
miticity, and time reversal invariance [a similar expression
was first derived for chiral-even GPDs where the helicity
amplitudes were evaluated according to Egs. (31)].

To fit the chiral-odd GPDs one faces, however, an
important practical problem: while various models, e.g.
our Reggeized diquark model, can be extended to the
chiral-odd sector as we explained in Secs. III A, III B
[Egs. (47), (57), (58)], and the ERBL region can be treated
as outlined in Sec. III C, both the forward limit and the
integral of the GPDs (providing the normalization to the
form factors in the chiral-even case, and the lowest order
polynomiality relation) are largely unknown. The only
constraints which can be obtained from independent
measurements are given by the transversity structure
function,

H7(X.0,0) = hy(X). (59)
by the model dependent relations with the Boer-Mulders,

hi(X), and hi;(X) functions, respectively given by [25]°

. r -~
i FEr(X.0.0) = iy (X) = [ ety (X k) (60)

2H;(X,0,1) + E(X,0,1) = hi-(X) = / Llphi (X, k),

(61)

>These are valid in spectator models such as the one presented
here.

Eq.(47)
Egs.(57a), (57b)

PHYSICAL REVIEW D 91, 114013 (2015)

d({, 1) are determined so that Fy_. satisfy both the
polynomiality property and continuity at the point X = ¢
(more details can be found in [9]).

The valence and sea quark contributions are then
obtained as

FEAX, 0 0) = Fy_(X.{,0) + Fx (X, {1)  (57a)

Fy (X, 0, 0) = Fy (X, {,1) = Fx_((X,{,1). (57b)

D. Parametric form: Discussion of parameters

By putting together the results from Secs. III B and III C
we obtain our final parametrization,

ifr<x<1
(58)
ifl-¢c<X<C(

and by the integration to form factors at ¢ = 0, giving the
tensor charge,

1
5q:/ dxH;(X,0,0). (62)
0

Since h; and the related chiral-odd functions are exactly the
observables that we want to determine using GPDs, these
constraints are not really useful quantitatively. They can
just be used as indications.

It is, however, important to be able to determine the size
of the various chiral-odd GPDs especially in the first steps
of the analysis of available 7 electroproduction data. The
data are in fact not sufficient at this stage, to fully discern
among the various possible contributions.

An alternative way to gauge the contribution of the
various chiral-odd GPDs in deeply virtual exclusive experi-
ments consists in exploiting parity relations among the
proton-quark-diquark vertex functions. As we explain in
the next section, these parity relations will allow us to
establish relations between the chiral-odd and chiral-even
GPDs, which are valid within the class of models including
the spectator/diquark models. By constraining the chiral-
odd GPDs using their chiral-even counterparts we will
be able to gauge the size of the GPDs contributions to
pseudoscalar electroproduction data. Before moving on to
the discussion of the parity relations, we end this section
by outlining the way our parametrization was worked out
in the chiral-even sector.

Our parametrization is written in the form given in
Eq. (58) for both the chiral-even and chiral-odd sectors. The
model’s parameters can be divided into three sets:
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(1) ag, M, mg, M§, N, (63a)
(2) ag. Py (63b)
(3)ag (¢.1),c(C.1).d(C. 1) (63c)

where g = u,d. Set 1 contributes to PDFs [i.e. they
determine the part of the GPD that survives when ¢ =
¢ =0e.g.in Eq. (47)]; set 2 determines the ¢ dependence
in Eq. (47), and set 3 determines the { dependence
(Sec. III C).

A fit using these sets of parameters in the chiral-even
sector was performed in Ref. [9].

Owing to the fact that we use a diverse body of data
which is divided into proton and deuteron DIS data (set 1),
proton and neutron electromagnetic and electroweak form
factor data (set 2), and DVCS data (set 3), we used a
recursive fitting procedure.

In the recursive fit we first obtained the parameters in set
1 from DIS data. Keeping these parameters fixed, we then
obtained the parameters of set 2 by fitting the electromag-
netic, axial and pseudoscalar nucleon form factors given by
the integrals over each GPD. The final step in the recursive
fit was done by fitting the { dependent parameters from set
3 to DVCS data from Hall B [30].

In the fitting procedure perturbative QCD (pQCD)
evolution was taken into account as follows: in a first
stage we used our PDFs’ functional forms, obtained by
setting t = 0, = 0 in our GPDs’ model equations, as the
initial values for the pQCD evolution equations. These PDF
forms were evolved to O values that are typical for DIS fits
by directly solving the DGLAP equations to next-to-
leading order (NLO) in x-space. The numerical value of
the initial scale is an additional parameter. We found that a
good fit of PDFs at Q7 in the multi-GeV region could be
obtained by choosing Q2 = 0.1 GeV?, consistently with
the previous analysis of Refs. [38,39]. This value is
expectedly low, as featured in many versions of the diquark
model (see e.g. Ref. [48]). This enabled us to fix the
parameters in (63a). Keeping these parameters fixed,
we next obtained the parameters in (63b) by taking
t #0,¢ = 0, and integrating our expressions to the nucle-
on’s electromagnetic form factors (see Ref. [10] for a more
detailed description). This step does not involve any Q2
dependence. Finally, keeping the parameters in (63a)—(63b)
fixed, we obtained the parameters in (63c) by comparing
our thus calculated GPD forms with their full X,{ and ¢
dependences to the DVCS data from Ref. [30]. At this stage
evolution of the X and ¢ dependent functions was per-
formed again, to the Q? range of the existing data. The
DGLAP equations for GPDs can be cast in a form similar to
the forward case with modified splitting functions [49,50].
We performed evolution at X > {, by solving these
DGLAP equations [49,50] at NLO in x-space. We did
not have to solve evolution equations explicitly at X < ¢.

PHYSICAL REVIEW D 91, 114013 (2015)

However, the parameters a*({,1), ¢({, 1), and d({,1)
become effectively O dependent as they get fixed Q2
for each value, producing different curves in the ERBL
region for every Q>

As new DVCS and meson electroproduction data
become available, it will be possible to perform a global
fit using simultaneously all sets of data. At the present
stage our approach provides a controlled procedure where
the various kinematical dependences can be more readily
tested.

E. Parity relations among amplitudes
in the diquark model

The parity relations for the vertices in Fig. 1 read,

P = (1) 3, (64)

For § = 0 the helicity structure of Fig. 1 corresponds to a
factorized form—the product of two independently varying
¢ functions—and, as shown in Eq. (64), these two
components transform under parity independently from
one another. The following relations hold between the
chiral-odd amplitudes and the chiral-even ones for S = 0,

0 0

Ai—-)i-,—— = AS--)F,++ (65a)
0 0)x%

A=Al (65b)
0 0)x

A(+z,++ = _A<—l,++' (65¢)

Notice that these relations are valid only if one of the two ¢
functions is real. By using parity symmetry one cannot
connect directly the chiral-odd amplitude A, _ _,, with its
chiral-even counterpart A, _ , _ since both involve complex
¢ functions. Physically this corresponds to the fact that
A, __, involves a double spin flip, and it must therefore
be proportional to A7 = (fy —1)(1 —¢), while A, _,_ is
nonflip. By evaluating A, _ _. directly one has

A0 = / Pk, (K. P, (k. P)

_ WYL [ g, kit (k)
1-X (k> = M3%)*(k? — M3)?
/1_

y / i$ k2 — XA k| cos g — 2k sin ¢
(K = M3)*(k* = M3)?

~ N ”1 1__XC / dk k|
—XA  k cos ¢
< | #ETigie (60
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where k3 =k} +k3, Al =A}+A} and X=
(I1=X)/(1=¢). One can in fact demonstrate that an
almost exact cancellation occurs between the terms o k%
and k3 2sin’¢. From the explicit expressions for the
integrals given in Appendix A of Ref. [9] we can see that
the angular integration gives rise to an extra factor of A .
A connection between the GPD I:IT and the chiral-even
ones can be found by using the results from Ref. [9];
expressing the quark proton helicity amplitudes in terms of
chiral-even GPDs, we therefore obtain

(0) th—t 1 1 X -
A = E - ((/2)E].
T AM T2 (1-¢/2)m+ wxr £~ (G/2E
(67)
For § = 1 we obtain
1 X+X g
AL = = A (68a)
Al =0 (68b)
72 +2
(1) <ki>/P (1)
A == A 68c
++,+ X/2 + <ki>/P+2 ++,—+ ( )
k2 /P+2 .
Al —— _(kD/PTm (68d)

X () PP

Notice that for X =, i.e. for the calculation of the
imaginary parts of the CFFs,

1 1

AS-')‘F,—— = _AS")'F,"F-F (69a)
1 1)«

A=Al (69b)
1 1)

As-l,++ = _A(—J)r,++’ (69¢)

we obtain the same relations as for the scalar diquark case.
Furthermore, the double helicity flip amplitude A, __,
vanishes to order A37. This can be understood when
considering the near collinear circumstance. For nucleon
to quark flipping helicity from +% to —% the diquark must
carry +1 near forward. That is rejoined by a near forward
quark of helicity —|—% to form a —|—% system in the near
forward case. That cannot happen unless there is highly
nonforward kinematics, because the helicity carried by the
diquark cannot be compensated. These simple relations are
a general feature of the axial diquark coupling, given that
we have omitted the helicity 0 component. The chiral-even
and chiral-odd helicity amplitudes in terms of GPDs were
given above.
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Using the parity relations between amplitudes in
Egs. (65), (68), we now give the functions F(TO)-(I)’
evaluated by inverting the expressions for the helicity
amplitudes in Egs. (13) (with full account of the ¢

dependence), for S = 0,

Ao~ _ ,lv (E<o> _g E<0>) (70a)
2 ~
E(]E)) o - 52 [E(O) 59) _ §2E(0)]
S et ()
(70b)
=822 82 N
=2 1-¢ KI—C/Q t
- (+25n) -] 70
o _HO+H" 2/4E0 4 E©)
HY = -
2 1-¢ 2
@A L0 A0=E2) )
(1-¢/2)(1-9"" 1-¢
B 21;1; % < E0) _ é; E(O)) (70d)
and for S =1,
aY=o (71a)
m _ =820 (0 82w
B = (e -

ol 22 0] i
~1_1—é’/2 - (1 _ 41/2 (1)
Fr=—_¢ {G<E -t

_a<E(1) +1 f/g/zé‘“)ﬂ (71c)
o HO LAY D B

Hy _G[ 2 -z 2
2 4 4 -
- f_/c:E;l> * 1Ci CE(TI) 710

where the various kinematical factors are
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The GPDs, F%, and F¢ are then calculated from F9. (70),
and F IT (71), using the SU(4) relations in Egs. (43) and (44),
respectively.

The fitting procedure of GPDs is quite complicated
owing to its many different steps. In Fig. 5 we summarize
with a flowchart the various steps described so far, i.e.,

E —0 =0 O2— 2 [
075 | =0, t=0, Q= 2 GeV' o

0.75 F E, E 1 -0

0.5 g g 302
0.25 /\ 2 *06

PRI R R | SRR RN BRI S
02 04 06 08 02 04 06 038
X X

FIG. 6 (color online).
£=0,1t=0, plotted vs X at fixed Q> =2 GeV?.

PHYSICAL REVIEW D 91, 114013 (2015)

Fix remaining parameters —{DVCS, DVMP

== ALy, Ac, ...

CFFs Aur, AuT, ALy

Flowchart for the GPD fitting procedure described in the text.

proceeding from left to right: (1) the construction of chiral-
odd helicity amplitudes; (2) the connection of these
amplitudes to the chiral-even ones using parity relations
within spectator models (curved upward arrow); (3) the
fixing of chiral-even parameters at an initial scale, 02,
using the nucleon form factors and PQCD evolution to
match DIS data; (4) the determination of chiral-odd GPDs
(dotted arrow in the figure); (5) the construction of the
corresponding Compton form factors, and of the pseudo-
scalar meson electroproduction observables.

In Fig. 6 we show both the chiral-even GPDs (left panel)
and the chiral-odd GPDs (right panel) evaluated using the
model described in this paper at { = 0, t = 0, plotted vs X
at fixed Q? = 2 GeV?. The chiral-even GPDs were already
evaluated in Ref. [9] by using the recursive fitting
procedure described above. Notice that as a byproduct
of our analysis we obtain an independent extraction of
H%(X,0,0; 0%) = h?(X, 0*) (upper panels). In Fig. 7 we
show transversity in more detail, compared with ¢{(X),

0.75 F  ©=0,t=0,Q’=2GeV* Hy ;
0.5¢E Hy g 1005
0.25 : 7 0
0f 2 3-0.05
0258000y b 1
1r 2 HU4ES - 2 HY+ES 1 1
0.5 f ;/\ 4 05
0;\\\|\\\ P \\\liwwwlwww‘\\.‘\‘\\\l: 0
0F ] 405
_15\/ E ] 0
2E e E ]
E T - =
'35_”@‘”H:\‘Hl"”l‘”HJ\H‘l’ 0.5
05F Ej - Eq 1 05
of : o
05 F - 405
C 1

PRI R S UE SRR i SiSNEI SN RS S
02 04 06 08 02 04 06 08
X X

The chiral-even (left panel) and chiral-odd GPDs (right panel) evaluated using the model described in the text at
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0.7 F Q’=2 GeV’ —  Soffer
0.6 ;* - xg¢
0.5 — xhpe
04
0.3 [
0.2
0.1 j
0 E
-0.1 ¢
0.1
-0
-0.1
02 F — xhg
— xgd
0.1 02 03 04 05 06 0.7 08 09 1
X
FIG. 7 (color online). The transversity function,

hy(x, Q%) = Hy(X,0,0, 0?), plotted along with theoretical errors
(hashed area) for the up (top panel) and down (bottom panel)
quarks. The theoretical uncertainties are propagated from the
parameters’ errors from PDF fits in the chiral-even sector.
The other curves in the figure represent the Soffer bound [52]
on the magnitude of %;, and the values of g‘,"‘], respectively
(adapted from Ref. [53]).

and the Soffer bound, f(X) + g;(X). It is interesting to
notice how from exclusive pseudoscalar electroproduc-
tion data we obtain an independent extraction of
this quantity. A more detailed description of the other
transversity functions including the first moment of
hi- = 2HY + E%, whose integral over X gives the trans-
verse anomalous magnetic moments [51], will be given

in [9].

3-0.5
= |
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10
-2
14
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02 04 06 08 02 04 06 08
X X
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FIG. 8 (color online).
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In Fig. 8 we show the t-dependent GPDs that enter the
helicity amplitudes evaluated in Sec. Il in a kinematical bin
(xp; = 0.13, 0% = 1.1 GeV?) consistent with the Jefferson
Lab kinematical coverage. The chiral-even GPDs are
shown in the left panel, and the chiral-odd GPDs in the
right panel.

In Fig. 9 we show the proton CFFs, Eq. (28), which enter
the y*p — #°p’ reaction. The flavor content of both the
chiral-even and chiral-odd GPDs follows from the SU(3)
flavor symmetry for the pseudoscalar meson octet. In
particular, for the chiral-odd sector we have

0 1
‘7:777" = \/E(eu]:?‘_ed]:?) (72)
1
Fi=—gleFi+eFi=2r)  (13)

where F2 :H",Eq,ﬁ",E‘;, and e,, g =u.,d,s, is the
quark’s charge. Notice, however, that in our calculations we
have set the s quark GPDs to zero.

F. t-channel analysis

It is of interest to separate the role of chiral-odd GPDs
from chiral-even GPDs in 7° electroproduction. It is widely
stated that the chiral-even H and E are the sole contribu-
tions to the longitudinal photon cross section. Yet the
t-channel decompositions for these suggest otherwise.
Let us examine this proposition. In order to match the
definite negative C-parity of the y*z°, the crossing and
spin symmetry behavior of the GPDs must be selected.
Furthermore the Dirac structure of the quark correlator
must have the negative parity structure guaranteed by a

1F o LA T
. £=0.13, Q*=1.1 GeV? 3 § 1005
-1 _ Ll "t‘=‘0'\1 ‘"‘1"1 \Gevl |_ T R B |_; 0.1
r 3 - 4 0.5
g 3 10
OF > 3025
L s F 14
i 0 3 05
10
: 305
1 | 1L 1 L I:
0.5
S
1 -0.5
1 | 11

S IR R R | S
02 04 06 08 0.2 04 0.6
X X

The chiral-even (left panel) and chiral-odd GPDs (right panel) evaluated using the model described in the text

plotted vs X at xz; = ¢ = 0.13, Q% =2 GeV?. The range in —7 is 0.1 < —7 < 1.1 GeV2. Curves with the largest absolute values

correspond to the lowest 7.
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Im H, o Re H

2 4r
4: Q’= 1.1 GeV? 3
2k xp;=0.13 2F
r 0F
0_ N B TR B B

3 Re 2 A +E,
10E Im2 H+E,

(9]

T

N AN
T

0_ImI:IT 0:_ReI:IT
10F 10 F
20F 20F
P N S
2F ImE, 4F ReE;
Y z\
2F r
b (1) = R R
0 0.5 1 1.5 0 0.5 1 1.5
-t (GeV?) -t (GeV?)

FIG. 9. Chiral-odd CFFs, Eqgs. (28), entering the process
y*p — 7°p’. From top to bottom ImH; (left), RNeHy (right);
Sm2Hy + &7 (left), Re[2Hy + &) (ight); ImHy (left),
ReHy (right); ImE; (left), ReEy (right). The various CFFs
are plotted vs —r for the kinematic bin xz; =0.13,
0% = 1.1 GeV>.

factor of y°, so only H and E contribute. The antisymmetric
combinations under x — —x have negative C-parity
[20-22]. Further analysis in Ref. [21] shows that the H
contains the series 277,47 7,..., while E
17,277,347 ...

Consider E first. Now an important observation is that
because of C-parity there is no 0~ z pole contribution to E.
It is expected from various model calculations that the

|

contains
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remaining contributions to E will be appreciably smaller
[13,54], although we see that for the antisymmetric cross-
ing combination there can be the quantum numbers of the
by, h, axial vector mesons. While the first moment of the
symmetric E (x,&,1) is the pseudoscalar form factor,
for the first moment of the antisymmetric E (x,&, 1) there
is no simple phenomenological connection, except to lattice
calculations of the generalized form factors. Nevertheless,
we will keep the possibility of an axial vector pole
contribution in mind below.

The contribution of H to the z° involves a series that
begins with 277, There are no known particle candidates for
that state, either isoscalar or isovector. If we consider the
Regge pole contributions to the antisymmetric H, then, the
trajectory would have to be lower than the well-established
trajectories and the first physical pole, far from the
scattering region. Note that the absence of a 0~ would
require a factor of a(z) in the overall Regge residue
(nonsense zero) for this case. Similar to E, the first moment
of the symmetric H(x, &, 1) + H(—x, 1) is the axial vector
form factor corresponding to the a; quantum numbers. But
the antisymmetric case does not have such an interpreta-
tion. The H(x,0,0) = ¢7(x), so it is known that ¥ cannot
be small at the boundary. For the process here, however,
the JP¢ =27~ will suppress the nonsinglet contribution
for small x and |¢|. The considerably smaller value of
the longitudinal cross section for z° corroborates this
conclusion.

IV. CROSS SECTIONS AND ASYMMETRIES

The various GPDs calculated in Sec. III enter the cross
section terms for z° electroproduction, which, using the
notation of Ref. [55] (based on [56]), can be defined as

d4
e F{[FUUT FeFyy L + ecos 20F52 4+ \/e(e + 1) cos pFS + hy/e(1 — €) sin pF07]
+S||[\/ﬁsm¢Fm¢—|—€Sln2¢Fm2¢ 4+ h(V1=€F,, + e(l =) cos pF?)]

_s, [sm<¢ $s) (Fn0o) | cpintd=do)y 4

€, . sin . . sin(3¢—ag
~(sin(p + o) ™" + sin(3 — gs) Fogp ™)

+ /e(T € (sin s F i + sin(2p = ) Fyyy ™)

+ SRV T =€ cos(gp — ps) Fr™) 1 /e(1 =€) (cos psFip s + cos(26 ¢S>Fz°;<2‘ﬁ‘¢s>>1} (74)

where S and S, refer to lab frame target polarization
parallel and perpendicular to the virtual photon direction,
h is the lepton beam helicity, ¢ is the azimuthal
angle between the lepton plane and the hadron

|

scattering plane, ¢g is the azimuthal angle of the
transverse spin vector S, and ¢ is the square of the
invariant momentum transfer between the initial and final
nucleon.
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The photon polarization parameter ¢, the ratio of longi-
tudinal photon and transverse photon flux, can be written in
terms of invariants as

2 21 _ -1
e—':1+2<1+”—>(4”——y—1) .5
AN 73)
I' is given by
_ a2y2(1 _xBj) (76)

N 27T)CBj(1 — €)Q2 ’

We also list for completeness the alternative notations
that are frequently used in the literature,

dO'T dGL
F =— =oy, F =—=o0,
uu.T dt T UU.L dt L
do do
cos¢ LT cos2¢p T
v T g T OLT, Fyy™ = dr orT>
; doy
Sin ¢ LT
FLU) = di =orr, etc. (77)

In order to predict/interpret experimental results on the
various cross section components and the asymmetries
constructed through them, it is important to devise a
scheme that helps us navigate through this elaborate set
of functions. For each observable (or set of observables),
we will show a decomposition in both the various ampli-
tudes and the various contributing GPDs. Physical infor-
mation will be more easily extracted this way, in cases

Im f/\\{\OAI
- Q’= 1.6 GeV?
2re Tl 1r Xgy=0.19 ¢
| ) E—————— |
'2;‘ flol 1t L
-0 : T
0.1 £ : |
E i /\
02 F o
-0.3 E . N | ‘f1‘o
0.15 o ~wew 02F
o - B
0 1 F - ]::; '0 T \: —————————————————————
02F ~o_ - -
0.4 oo
-0.05 L L | | B .

0 05 1 15 0 05 1 15
-t (GeV?) -t (GeV?)

FIG. 10 (color online).
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where one of the amplitudes (or one particular combination
of amplitudes) dominates.

We discuss in order: (i) the helicity amplitudes in terms
of chiral-odd GPDs; (ii) the various contributions to
Eq. (74) in terms of both helicity amplitudes and GPDs.

A. Helicity amplitudes as functions of GPDs

The helicity amplitudes are shown in Fig. 10 as a function
of —t, for xz; = 0.19, Q> = 1.6 GeV? (similar results are
obtained for the other kinematical bins in the range of
Jefferson Lab data [57]). The imaginary (real) parts are
displayed on the lhs (rhs). The different contributions from
the various chiral-odd GPDs are also shown in the figure.

We recall the structure of the transverse amplitudes,
Eq. (27),

1o A(zﬂT +(1=8E—-(1- f)gT) (78a)
_ to—t - & & -

i &M+ Hr g bt Tl (780)

i o« A2Hy (78c¢)

15 < AQHr + (1 + EEr + (1 + 6)&p). (784)

Regarding the GPD content of the amplitudes we can
deduce the following:

(1) All GPDs contributions should be considered sep-
arately. In particular, Hy, Hy, and E; are dominat-
ing; ET is nonzero in our model but small. Although
the combination ZIEIT + E; might be considered

Ref/\y’\oA
f- Q= 1.6 GeV*
2k, 777 -0y xy;=0.19 ‘
[} ) S 0 [-Femmdm g i
L A R
B e S 1 -1 , \1‘0‘ 1
0 —————
0.1 F flo* 2,7 -
02F L
03F e o o
04E T [ flo ..
B 2 e
0.15 Ffov — wetal | F
: - B e
0.1 - M T —
0.05 | Cu o2t -
0F r fo0
b -0.4
_ NI B B N B B
0.05 0 0.5 1 1.5 0 0.5 1 1.5
-t (GeV?) -t (GeV?)

Helicity amplitudes for both transverse photon polarization, Eqs. (27), and longitudinal photon polarization,

Egs. (29) plotted vs —1 for xz; = 0.19, 0? = 1.6 GeV?. The imaginary parts are displayed on the left panel, and the real parts on the

right panel.
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more fundamental in that its spin structure corre-
sponds to the Boer-Mulders function [11,12], and its
first moment yields the proton’s transverse anoma-
lous magnetic moment [11], Hy, and E; appear
separately, and multiplied by different factors in the
amplitudes. 2H7 + E7 should just be viewed as a
forward limit.

(2) The behavior of f{;" and f7; is determined by H
and E7. As a consequence of what we explained in
point (1), f75 is sensibly different from fj,", in
particular, because of the different multlphcatlve
factors, f15 < f1o"

(3) fiy is determined by Hy at small |¢|, and by E; at
large |1|.

(4) fio" is determined by H only, but it is small due to
the |¢| factor suppression.

5) The longitudinal photon contributions, fj, and

oo » are suppressed in the chiral-odd case.

B. Unpolarized target

The various terms describing scattering from an unpo-
larized target in Eq. (74) are written in terms of helicity
amplitudes, Egs. (27), as

1 o AN« A _ A/
FUU,T*E(F+++F11) z:(f+ flot + 0 fi)
A/
1
=5 PHIfic PSP l) (79)
600 _ : ?UU,T";SFUU,L 600;
o d00f, T 400 f
() [ Re C
S 200 F e 200 f
= [ L.
E  0F 0=
B C C
= -200 -200 f
-400 F400F
80F

60f
40| -
20

20F
40 F
-60
-80 F

2
Fyy (nb/GeV?)
=

FIG. 11 (color online).
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Fyyr = ZJHA* o =If P+ (80)
Fil = —NeFt = wZﬁN
=Re[(f1N) (f1o) = (fio) (fio)] (81)
g)lg/{/)—“\ (Flor +F) Eﬁez +AI +A/+foo i)
=NRe[(foo )" (fio TS0 )+ oo ) (fio = f10)]
(82)
Fii! = =Sm(F{f" + Fiy)
_ sz +A* +A’+f00 *flo)
Sm{(foo )" (fio +f10) + (foo ) (flo = f10)]
(83)

where the helicity amplitudes satisfy the following
parity relations, f_ﬁyoA/ [ng(=1)A=0+N] fﬁ%, with
the intrinsic parities factor given by #ng = (17,m,7)/
(n,n,)(=1)% "5 =575 = —1 [see Eq. (43) in Ref. [58]].

1. Cross section components

In Figs. 11-13 we show the unpolanzed Ccross section
components, Fyy 7+ eFyy . Fon®?, and Fi&? for the

600 _ : ? UU,T‘;SFUU,L 600
~% 400 Fy U 400 |
QO 200 F Ne 200 -
= N [ .-
E  0F 0Fr
= r r
= =200 200 f
400 F ' |-400F
—~ 80F 100}
z 0 of
o 40F EL
= 20E(]- -100}
E 0 i
3 20F ++ — & 200
€ 40F'el] Hy, Ey -300 ¢
2 .60F [T Hy g
= -80 _ 1 1 1 400 ] 1 1 1

o 05 1 15 0 05 1 15

Left: Unpolarized cross section components, Fyy 7+ eFyy, Fo'?, and Fi/ in the kinematical bin,

xg; = 0.13, 0? = 1.2 GeV?. The upper left panel shows all components along with the data from Ref. [57]. The other panels show the
contributions from the various helicity amplitudes. The right upper panel shows F 7 + €Fyy 1, and the contributions from f,", f15 .

an - imilarly, the lower left panel and the lower right panel show the contri utions of the various amplitudes to an
£ and f75; . Similarly, the lower left panel and the 1 ight panel show th ib f th plitudes to 5% and

Fcos 2¢

vu > respectively. Right: Same as left, displaying the GPDs’ components. The full curve is obtained by using only Er, the dashed

curves by including only 2H +
except for E7.

(1 £ &)Ey, the dot-dashed curve by including only Hy, and the dotted curve by including all GPDs,
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FIG. 12 (color online). Same as Fig. 11 for the kinematics xp; = 0.19, 0* = 1.6 GeV?.

kinematics: xp; =0.13, Q% =12 GeV? (Fig. 1),
xp; =0.19, Q* = 1.6 GeV?* (Fig. 12), and xp; = 0.28,
Q? = 2.2 GeV? (Fig. 13).

In the left panel we show how the various amplitudes
contribute to the cross sections’ components, going clock-
wise from the upper left corner:

Le

(i)ﬁthe unpolarized cross section components, F'yy 7+

eFyyr, For*?, and F5? in the kinematical bin,
xp; = 0.13, 0% = 1.2 GeV?, along with the data
from Ref. [57]

(ii) the contributions from the various helicity ampli-
tudes f|," (dashes), f{;, fio and fi; to
Fyyr+eFyyr;

600 ;_ — Fyyr+eFyy 600 ;_ Xp= 028
~% 400 | 400
O 200f 200 F
= r [
E  0F 0F
B F [ e £ o
& -200 ;+ -200 — ;13:
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400fF . laoof o B
80 100F ‘
“— 60 F T 0 e
7 40F N Y
o 20F /L -100F
2 0 F=rimme E
£ 20 ﬁ -200¢
5 A0k st [300E e it
oE e 40OF T e
) ‘ o T | | |

FIG. 13 (color online).

cos ¢,
(iii) the same for Fy;;";

(iv) the contributions of the combinations f7J " f7; and
W o FR.

In the right panel we show the GPD content of the
various cross sections’ components independently from
which amplitude they enter (clockwise from the upper left
corner):

Right

(i) the same as in the left panel (upper left);

(ii) the GPDs contributing to Fy, 7 +eFyyrs

COS

(iii) the GPDs contributing to F;;;

(iv) the GPDs contributing to Fso*?.
From (ii) left we see that Fy;; 7 + €Fyy ;18 dominated by
f1o (ow ) and f; (larger 7). By comparing with (ii) right
we see that H; dominates at low 7 but it is taken over by

600 ;_ — Fyyr+eFyy 600 ;
N% 400 h 400 4
3 200} 200 %o
= E [ e
E 0 0F
B r r
= -200 ,—+ -200

400F . laof

100 £

-100
200 F
-300

-400

2
Fuy (TL) (nb/GeV?)

Same as Fig. 11 for the kinematics xz; = 0.27, 0* = 2.2 GeV?.
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2H; + (1 & &)Ey at larger . This is consistent with the
behavior of the amplitudes displayed in Fig. 10. From (iii)

left we see that the dominant contributions to Feoy? are

given by f7; and f|,", although f7|; contributes at very
small z. By comparing with (ii) right in terms of GPDs Hy

dominates at low ¢ and 2H; =+ (1 + &)E; at larger t.

Finally, in (iv) left F$)5° is given by similar contributions

from all the amplitude combinations and it is therefore
harder to interpret. From (iv) right one can see that the

GPDs 2H = (1 + &)Ey and Hy contribute almost equally
in the whole 7 regime. _

The unpolarized sin ¢ modulation, FZ"Z,'/’ describes the
beam asymmetry, A;;, which is implicit in the term
involving 4 in Eq. (74),

Fsin(/z
Ay =+e(l—e) —EV 84
t ( ) Fyyr+eFyyr (&)
App is shown in Fig. 14 for two of the Jefferson Lab Hall B

kinematical bins along with the different amplitudes’

contributions, in this case the products: (f7;"fdo )

(f10"fo0 ) (10" foo) and (f{g"foo ). appearing in
Eq. (83). Notice that the longitudinally polarized ampli-
tudes receive contributions from both the chiral-even
and chiral-odd GPDs (see Sec. IIC). From the graph

0.15

E/ 7S~ =013, Q=11 GeVE  xy=0.19, Q= 1.6 GeV?
£/ - - F
0.1F :
0.05 m e S
2 0f + $ e M-
005 T ;
01F" :
-0.15 Eoo foot" £+
P \I‘\\\I\\\‘:\\‘I\\‘\I\\\\
0.15F Xy=013, Q*=11GeV? E xp=0.19, Q°= 1.6 GeV
0.1¢ g
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FIG. 14 (color online). Beam spin asymmetry, A; ;, plotted vs
—t for two different kinematics: Q% = 1.1 GeV?, xp; = 0.13
(left), and Q? = 1.6 GeV?, xp; = 0.19 (right). Experimental data
are from Ref. [59]. In the upper panels the different helicity
amplitude combinations contributing to A, Egs. (83), (84), are
shown. The full curve describes the result obtained including all
combinations. In the lower panels we show results obtained
including both the chiral-even and odd GPDs (full curve) com-
pared to results obtained using only the chiral-odd contribution
(dashes). We conclude that the chiral-even GPDs dominate this
observable.
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(lower panels) one can see a definite dominance of the
chiral-even GPDs. We deduce that A, is not favored for
the extraction of chiral-odd GPDs.

2. Q? dependence

In Fig. 15 we show the Q? dependence of the cross
section term, Fyy 1 + eFyyp [Egs. (79), (80)], plotted vs
Q% at t and xp; values corresponding to the data from
Ref. [57]. The full curve was calculated using the same
kinematics as the data for —z = 0.25 GeV? (calculations at
the other kinematical values give similar results and they
are not displayed for simplicity). The dashed curve was
obtained for one of the bins in ¢ at an average value of
xg; = 0.23. Our calculation shows that a straightforward
comparison with theory can be performed only in this
situation, i.e. at fixed xp;. While in order to unravel the 0?
dependence of the data a more complete coverage of phase
space is needed, our calculation suggests that the trend of
the available data does not contradict theoretical expect-
ations based on the Q? dependent kinematical factors
appearing in the expression for the cross section.

C. Longitudinal target polarization

For longitudinal target polarization,
Ful = =3m(Fi" = Fig)
~ Nk 4N A\x =N
:—sz{( 00 ) fio = (foo ) 1(“
A/

==3m(foo ) (fio = f10) + (oo ) (flo + f10)]

(85)
r ¢ ® t=0.175x2
600 [ + o t=0.250 X 1.5
: } o t=0.348
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SN . ! £=0.770
400 - \
£ f I ¢
2 300 [ L\/f
2 ’ Lt ¢
g ] ¢ ¢
S 0f ¢ w e .
N [ ~
[ L] ~ N
100 N S~ -
o [Xm 013 019022 027 034 037 - -
Eo-- Fixed XBJ:O.ZS
-100—_"ﬁ‘x‘l}j(‘)f\d‘a‘ta"\HH\HH\HH\HH
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FIG. 15 (color online). Cross section, oy + €6, = Fyyr +
¢Fyy [Eqs. (79), (80)], plotted vs Q* at ¢ and xp; values
corresponding to the data from Ref. [57].
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Fil]nLZtﬁ _\SmF;rJrl — —\SmeJFA/ +A’ ALL _ NS_:’:+ — Nz:— + N;j:+ - N;::_
st:+ + N.S‘Z:—
= —aml(fl ) (Frs) = () ()] (86 ey s
[(f]O ) (f10> <f10> (flO )} ( ) B 1_€2FLL N (1—€)COS¢FCOS¢
Fyur+eFyur Fyur+eFyur
Fip! =Ste(Fii - Fiy) ‘heZ TR e AT = A+ AS? cos ¢ (90)

_ +—\x N s
=Mel(f5)" (fig =10+ (o) (" +/79)] where N (,i) measures a right-handed (left-handed) lepton

(87) scatterlng on a proton with longitudinal spin, s, = +1/2.
The asymmetries A;;; and A, ; are shown in Flgs. 16 and 17
at Jefferson Lab kinematics [60,61].

1 Iy / , , smqﬁ
Fip==(Fif—F) = ( f+A f+A — Yy (Fig. 16, left), is dominated by the longitudinal
A ! 2%: 1010 components in a similar way as already seen for A,y
1 (Fig. 14). Therefore, for its description one needs to
= EH P+ =10 1P = o P (88)  consider simultaneously the chiral-even sector. We con-

clude that this quantity is harder to interpret theoretically
since chiral-even and chiral-odd components cannot be
disentangled in a model independent way. In our model
the chiral-even component dominates the longitudinal

contributions: goi = ’H: even 4 f‘H: Odd +O:t .even (see

Sec. I B). On the other s1de Aqm */ (right) is determined

There are several polarization asymmetries that can be
constructed. For an unpolarized lepton beam on a longi-
tudinally polarized target one has

Ay, = N =Ny by the chiral-odd amplitudes. Spec:1ﬁcally, we find that the
Ny +Ng__ contribution, /7,7, in Eq. (86) dominates, as expected,
e F D singFin?  csin2gpFin over the double flip term, fro‘.* 1o - As we can see from
= Four +eFuos + Foor+cFoos Eqgs. (27), (78), ~these amplitudes are almost entirely
S ' ’ determined by Hy and E;, through the combina-

= A7 sing + AP sin 2¢. (89)  tions 2, + (1 + &)Ey.

We conclude that A;;; allows for a clean extraction of the
For a longitudinally polarized lepton beam striking a  chiral-odd GPDs, Hy and E7.

longitudinally polarized target (relative to the virtual Ay and ASS? (Fig. 17), can be interpreted similarly to
photon direction) the asymmetry has two components, A y. From Egs. (87), (88) we see that A;; contains only
gi : Xp;= 0.25, Q%= 1.94 GeV> ] 0.3 ' xp;= 025, Q= 1.94 GeV?
G E LTI T T ——— s 02E
03F 7 E
E o027 0.1
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FIG. 16 (color online). Asymmetry, A;;;, components A};?, the first term in Eq. (89) (left), and A}};*/, the second term in the equation
(right), plotted vs —z. Top panels: Q> = 1.94 GeV?. Bottom panels: xp; = 0.25, and Q* = 2.85 GeV , xg; = 0.4. Also shown are the

contributions of the different helicity amplitudes’ combinations described in the text.
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FIG. 17 (color online).

PHYSICAL REVIEW D 91, 114013 (2015)
xp=0.25, Q°=1.94 GeV’
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Components of the asymmetry, A, ;, Eq. (90), plotted vs — at Jefferson Lab kinematics: Q%> = 1.94 GeV?,

xgj = 0.25, and 0% =2.85 GeV?, xpj = 0.4. The panel on the left shows the term constant in ¢, while the panel on the right shows the
cos ¢ modulation of the asymmetry. The solid curve represents the value of the asymmetry, while the other curves labeled in the panels
represent the contributions of the various helicity amplitudes to A;; (left) and to A; cwss (right).

chiral-odd GPDs, while AS}?, because of the longitudinal
photon contributions, contains both chiral-even and chiral-
odd terms. In our description, the chiral-even terms
dominate this quantity through the term [, /"
(Fig. 17, right). A straightforward interpretation is 1nstead
obtained for A;; where we can see that the term |f; |,
which is dominated by H7, determines the amplitude at low
t, while at large ¢ because of the form-factor-like falloff of
Hy with ¢, the contribution from |f7;"|?, determined by H
and Ep, takes over.

We conclude that A;; allows us to extract the chiral-odd
GPD, Hy, and therefore the tensor charge, at small ¢, and
I:IT and E; at larger t.

D. Transverse target polarization

We complete our discussion by listing the six structure
functions for the single transversely polarized target in
Eq. (74),

RSt Smlfl i 45 ) O
Fo ™ = 23mlf i '] (92)
N (93)
FGH0s) — | e (94)

Fols = —Qmlfis fo = i fah] (95)

in(2¢— % pb—
Fi]T((f) = [ 10 (J>ro++f10 f(;ro]’ (96)

and three for the longitudinally polarized lepton and
transversely polarized target in Eq. (74),

Fﬁ((ﬁ_%) = Relf\" f10 + 10 f1o] (97)
FCLO;¢S = —Ne| TOH (To_ - fro_* goﬂ (98)
Fig = delfi fa' + i fos) (99)

For target polarization we distinguish the polarization
that is both transverse to the photon direction and to the
hadron plane,

sin(¢—¢bs)
Fory ™

Ayr = (100)

Fyur+eFyur

(for the target polarized along the photon direction there
will be no asymmetry because of parity conservation). For
the target at rest, polarized along the incoming lepton
direction, there will be a component of nucleon polarization
transverse to the photon direction as well as transverse to
the nucleon plane. The same Ayy will be involved,
although modulated by the sine of the photon angle relative
to the lepton beam and the sin ¢.

We conclude this section by noting that transverse
asymmetries allow us to best single out the tensor charge
[4]; namely they are sensitive to the GPD Hr, at variance
with the quantities reported in detail in this paper which are
mostly sensitive to the GPDs Hy and Er. Both types of
measurements are therefore important for interpreting the
chiral-odd sector. For ease of presentation we will include
a detailed discussion of the transverse asymmetries’ terms
in a dedicated paper in preparation.

114013-21



GOLDSTEIN, HERNANDEZ, AND LIUTI
V. CONCLUSIONS AND OUTLOOK

Once we established that the transversity parton
distributions in the nucleon can be accessed through
deeply virtual exclusive pseudoscalar meson production,
which is sensitive to the chiral-odd transversity GPDs,
Hy, Eyp, IEIT, ET, we addressed the feasibility of an exper-
imental extraction.

A major goal of this work was to gauge the contributions
of the various GPDs to experimental observables, specifi-
cally in exclusive #° electroproduction. For chiral-odd
GPDs, contrary to the chiral-even case, a big piece of
information is missing in that their normalizations are not
linked by integral relations to specific nucleon form factors.
This hampers in particular in the determination of their ¢
dependence.

Given the structure of the spectator model, parametrized
as diquark amplitudes, there are relations between chiral-
even and chiral-odd amplitudes. We applied parity reflec-
tion to one set of the helicity dependent vertices—the
outgoing quark-diquark nucleon. A set of linear relations
results for the two possible diquark structures (scalar and
axial vector) which thereby relates the chiral-even helicity
amplitudes to the chiral-odd amplitudes. This has led us to
parametrizing the chiral-odd GPDs, normalized through the
chiral-even GPDs. By using the more extensive data-driven
determination of the chiral-even GPDs [9], we are therefore
able to provide the full kinematical dependence of all four
chiral-odd GPDs within a general class of models, namely
the quark-diquark, or spectator models.

This represents a consistent quantitative step with respect
to our previous work [4] where the normalizations in the
chiral-odd sector were estimated based on various Ansdtze.
In particular, only H; and the combination 2H r+Er
[11,51], which is related to the first moment of the Boer-

Mulders TMD [36], were considered while ET was set to
zero assuming a straightforward extrapolation of the sym-
metries in the Regge amplitudes for z° photoproduction.
A similar simplified approach was taken also in Ref. [14].

We see the results of our extended approach in relation to
the many measured and measurable observables for deeply
virtual pseudoscalar meson electroproduction. What is
especially gratifying is that certain asymmetries constrain
the GPDs well enough to separately determine H7, and
consequently transversity through the limit H(x, 0, 0), and
the combination 2Hy + (1 & £)Ey. Data show that trans-
verse virtual photons dominate the process at Jefferson Lab
kinematics. This is a strong marker for twist-3 contributions
to the hard scattering subprocess.

In upcoming work we have predictions for more pseu-
doscalar mesons observables including 5 [62], strange and
charmed mesons, as well as a refinement of the para-
metrization to be pursued, including the role of sea quarks.
We are considering the significance of the chiral-even/
chiral-odd duality. The extension of the notions of variable
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mass spectators to Wigner distributions and generalized
transverse momentum distributions is under way.

We complete our discussion by noting that the electro-
production of two vector mesons proposed to extract
the transversity GPD, Hy, is also, in principle, feasible
although with a doubling of the technical issues for the
method shown here [63,64].
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APPENDIX A: PION TRANSITION FORM
FACTORS

The hard part of y*p — z°p’ involves the y* + u(d) —
7° + u(d) amplitudes (Fig. 1). The z° vertex is described in
terms of distribution amplitudes (DAs) as follows:

Felrsd' ba(@) + 13’ ()}

where f, is the pion coupling; y, is a mass term that can
e.g. be estimated from the gluon condensate; ¢,(7) and

(A1)

¢,(,3)(1), 7 being the longitudinal momentum fraction, are
the twist-2 and twist-3 pion DAs, respectively describing
the chiral-even and chiral-odd processes.

The y#y> coupling produces the z°’s nonflip quark
vertex, which corresponds to a twist-2 contribution. This
contributes to the longitudinal photon case with no quark
helicity flip. The nonflip transverse photon contribution is
suppressed—twist-4. For transverse y* the quark can also
flip helicity in the near collinear limit. This is accomplished
through the vertex with y> coupling giving the same Q2
dependence as in the transverse photon, quark nonflip case.

Notice that (i) for the chiral-odd coupling the longitudinal
term is suppressed relative to the transverse one, already
at tree level; (ii) based on collinear factorization, the
chiral-even longitudinal term should be dominating. In what
follows we show, however, that by taking into account both
the GPD crossing properties, along with the corresponding
JPC quantum numbers in the z-channel, the allowed linear
combinations of chiral-even GPDs that contribute to the
longitudinal cross section terms are suppressed.

In addition to assessing the impact of the correct GPD
combinations to z¢ electroproduction, we also developed a
model for the hard vertex that takes into account the direct
impact of spin through different JPC sequencings [21].
According to the modified perturbative approach ([13] and
references therein), one has

A, 200 = / de / b F Ay*,z;o,z’(szT’ b)as(ur)

x expl-S]ihs(z.b) (A2)
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where F A0 1s the Fourier transform of the hard (one

gluon exchange) kernel; S is the Sudakov form factor; ¢, is
the pion distribution amplitude in impact parameter, b,
space; and pp is a renormalization scale.

Now consider the 7-channel perspective. There exist two
distinct series of JPC configurations in the #-channel,
namely the natural parity one (177,377...), labeled V,
and the unnatural parity one (17=,3%7...), labeled A. We
hypothesize that the two series will generate different
contributions to the pion vertex. We consider separately
the two contributions y*(¢g), — #° and y*(¢g), — n° to
the process in Fig. 1(b). What makes the two contributions
distinct is that, in the natural parity case (V), L is always the
same for the initial and final states, or AL = 0, while for
unnatural parity (A), AL = 1. We modeled this difference
by replacing Eq. (A2) with the following expressions
containing a modified kernel:

% ax = [ andy [ @bin(1.0)Fy o

x (Q x1, %3, b)ag(g) exp[=S]gheo (x1. b)

(A3)
Qﬁy*,,uo,,y = /dxldyl/dzbli’A(ylvb>~7:-Ar*,A;0,/l’
x (02, x1. %, b)as(ug) exp[=S]gh (x1. b)
(A4)
where
Falyi,b) = /dzkrh(ylb)ll/v(yhkﬂ- (AS)

Notice that we now have an additional longitudinal variable
and “wave function” in order to introduce the effect of
different L states. The higher order Bessel function
describes the situation where L is always larger in the
initial state. In impact parameter space this corresponds to
configurations of larger radius. The matching of the V and
A contributions to the helicity amplitudes is as follows:

i fro = g" flg <"+ fig «<g" —g*

APPENDIX B: HARD SCATTERING PROCESS
We first give details of the calculation of the hard

scattering amplitudes, g?’(f/,

g =910 =0 (Bla)

gio = KNN'[(¢""g" — g7 g°Tg" + ¢ T g7 g")
(P P = PP+ g ) kK
K

T (kK'Y + kT K] (e]' — ief ™)

Q

[kop't —

(B1b)
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. K
G0 =~
10 NS
— KNN' [(g}mngrgly _ glpg()+glu + gﬂJrgopgly)
R e A e N A e | | ST A
K

(k)

~
~

[kok't — (kk') + kT k) (e + ief') = 0.
(Blc)
We now turn to the longitudinal amplitude, g, ,
900 = KNN'[(¢°g" g™ = g"gg™ + ¢ g™ "
+g g7 g") = i(1 « 2)]kke)

K

N o (KK = KE2)el + (KK + KK e
—i(1 < 2)] (B2a)
900" = 0. (B2b)

Notice that in Egs. (24), (25) the following term appears:

(ky —iky) _ (K —iky) [k,
V koki) B k/O ko
_ (K} — ik3) ke,
=\ AT (B3)
PR 4 (x = g7 7\ ko

The first factor corresponds to sin ¢’ = k7P, i.e. of the angle
between the returning quark’s momentum, k' = k — A,
and the initial proton’s momentum, P, which lies along the
z-axis. With the choice of kinematical variables in this
paper, Pt = Q?/2M{?. The four-vector components, using
v=(v,;v,,03), are

K=(X-0PTK , (X=-¢)PT),  P=(P0,P").
In terms of these we define
k/
sin 9/ —_ | l| (B4)

VEE+ K
By inserting these expressions in gg; , Eq. (25), we have

4+— |k/L|

TP -0

VXX =0

1 +
@y B
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FIG. 18 (color online). The function sin @ (in green), where ¢’
[Eq. (B3)] is the angle between the returning quark’s momentum,
k', and the initial proton momentum, P, which is along the z-axis.
The black curve shows the approximated form obtained dis-
regarding £, , which is valid for X > ¢ (symbols shown to guide
the eye are in the points where the numerical calculation was
performed).

Two kinematical limits are relevant: (i) X = ¢, where the
quark is perpendicular to the z-axis, and sin® = 1;
(i) X#¢, |k | <P, where the denominator in
Eq. (B3) becomes ~P*(X — ). The two distinct limits
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are shown in Fig. 18, as a function of X, at fixed
k, =0.3 GeV.

APPENDIX C: CHIRAL-EVEN GPDS’ NEW SET
OF PARAMETERS

We give the complete set of chiral-even parameters. We
first performed a fit for t = =0, of the PDF global
parametrizations in the valence quark sector, and obtained
the parameters m,, M%, M{, and a, for all four GPDs, as
well as the normalization factors, A/ o for H ¢ and H q 91
Because we did not use the actual data at this stage, these
parameters assume the fixed values in Table II, with no
error bar. In the next step, we took ¢ # 0 and, by keeping the
first set of parameters fixed, we performed a fit of the
nucleon form factors. We obtained (i) the parameters o,
pg» and the normalization, N, for E, [10], by fitting the
proton and neutron electromagnetic form factors’ data
including the flavor separated form factors’ data from
Ref. [33] (note that the selection of data prior to the ones
in Ref. [33] is the same as in the previous analyses from
Refs. [9,38,39]); (ii) the parameters aﬁ], py» and the

normalizations for H q Eq by fitting available data on the
axial ([65] and references therein) and pseudoscalar [66]
form factors, respectively. Also shown in Table II is the
%%/Ngaa» Where Ng,, is the number of data for each
separate contribution to the fit. The new fit [10] to the
flavor separated data on the nucleon’s Dirac and Pauli form
factors from Ref. [33]—while keeping the parameters from
the PDFs’ fit fixed to their previously determined values
[9]—allowed us to sensibly reduce the error on the GPDs.

TABLE II. Parameters obtained from our recursive fitting procedure applied to H ¢ Eg H P and Eq, q=u,d.

Parameters H E H E

m, (GeV) 0.420 0.420 2.624 2.624
MY, (GeV) 0.604 0.604 0.474 0.474
MY (GeV) 1.018 1.018 0.971 0.971

a, 0.210 0.210 0.219 0.219

a, 1.814 +0.022 2.835 +0.051 1.543 4+ 0.296 5.130 £ 0.101
Pu 0.449 +0.017 0.969 + 0.031 0.346 4 0.248 3.507 £ 0.054
N, 2.043 1.803 0.0504 1.074
22/Naua 0.5 3.2 0.12 2.0

my (GeV) 0.275 0.275 2.603 2.603
M (GeV) 0.913 0.913 0.704 0.704
M¢ (GeV) 0.860 0.860 0.878 0.878

a, 0.0317 0.0317 0.0348 0.0348

a, 1.139 +0.056 1.281 +0.031 1.298 +0.245 3.385+0.145
Pa -0.113 +0.104 0.726 + 0.0631 0.974 4+ 0.358 2.326 +0.137
Ny 1.570 —2.800 —0.0262 —0.966
22/Naua 0.9 4.8 0.11 1.0
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APPENDIX D: KINEMATIC ROTATION FOR
LIGHT CONE WAVE FUNCTIONS WITH S =1

For § = 1 one must calculate the following structures for
spin nonflip,
a(k. £)ysy"U(P, £)e, (Px)
= % Tr{(P + m)(1 +y°)(1Fysys) (k + m)y'ys}
= % [Te{y y oy y"ys }+Te{y' ' r* }1P ke,

= (ie™ + @B g¥ — g g + g ¢ Prk,e, (D1)

and spin flip,
it(k, £)ysy*U(P. F)el (Px)
1 .
=3 TP +m)(L+7)rs(ri £ ir2) (K +m)y,rs}

M )
=7 Te{y°(y1 £ ir2)r*r* ke,

m .
+ 5 Ty (& ir)r"}Paeye (D2)
We performed the calculation in a frame which is rotated
with respect to the original one where P was lying along the
z-axis, so that Py is along the z-axis, and the polarization
vectors have the usual form

(+1)

e F1,i,0). (D3)

1
:\ﬁ(o’

The coordinates of the relevant four-vectors expressed as
v = (v3,v,), in the rotated frame are

Py = ((1-X)P*+,0) (D4a)
P = (P cosOy,—P" sin0y) (D4b)
k= (XP" cos(0+0x),XP" sin(0 + 0y)) (D4c)

where
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sinf = Ky (D5)
PHy/XT+ 12 /P72
k
sin@y = = (D6)

P =X) + K/ P

define the angle between the struck quark and the initial
proton, and the angle between the diquark and the initial
proton, respectively. The components in this frame,
expressed as v = (v, v, v, ), are

2
Py = ((1 - X)P*,ﬂ#ﬁ) (D7a)

2 2
PE<P+,M +P ki

2Pt \/(1—X)2+ki/P+2> (D7)

k

(XP+’m2+ki kJ_

IXP+ ’\/(1 —X)2 +ki/P+2>' (D7c¢)

For the rhs vertex one finds, similarly,

p=(a-or
- by = ) (D8a)
VI =X/ = + B /P
. " m? + kf
v= (-0
ks (D8b)

\/[(1 -X)/(1-0)P + ]}i/pﬂ)

where k = k — %A, and Pt = (Pq)/q~ = Q*/2M{?, as
in Eq. (24).

[1] P. Mulders and R. Tangerman, Nucl. Phys. B461, 197
(1996).

[2] M. Boglione and P. Mulders, Phys. Rev. D 60, 054007
(1999).

[3] V. Barone, F. Bradamante, and A. Martin, Prog. Part. Nucl.
Phys. 65, 267 (2010).

[4] S. Ahmad, G. R. Goldstein, and S. Liuti, Phys. Rev. D 79,
054014 (2009).

[5] S. Liuti and G. R. Goldstein, arXiv:1009.1334.

[6] X.-D. Ji, Phys. Rev. D 55, 7114 (1997).

[7] P. Hoodbhoy and X.-D. Ji, Phys. Rev. D 58, 054006 (1998).

[8] M. Diehl, Eur. Phys. J. C 19, 485 (2001).

[9] G.R. Goldstein, J. O. Hernandez, and S. Liuti, Phys. Rev. D
84, 034007 (2011).

[10] J. O. Gonzalez-Hernandez, S. Liuti, G.R. Goldstein, and

K. Kathuria, Phys. Rev. C 88, 065206 (2013).

114013-25


http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1016/0550-3213(95)00632-X
http://dx.doi.org/10.1103/PhysRevD.60.054007
http://dx.doi.org/10.1103/PhysRevD.60.054007
http://dx.doi.org/10.1016/j.ppnp.2010.07.003
http://dx.doi.org/10.1016/j.ppnp.2010.07.003
http://dx.doi.org/10.1103/PhysRevD.79.054014
http://dx.doi.org/10.1103/PhysRevD.79.054014
http://arXiv.org/abs/1009.1334
http://dx.doi.org/10.1103/PhysRevD.55.7114
http://dx.doi.org/10.1103/PhysRevD.58.054006
http://dx.doi.org/10.1007/s100520100635
http://dx.doi.org/10.1103/PhysRevD.84.034007
http://dx.doi.org/10.1103/PhysRevD.84.034007
http://dx.doi.org/10.1103/PhysRevC.88.065206

GOLDSTEIN, HERNANDEZ, AND LIUTI

[11] M. Burkardt, Phys. Lett. B 639, 462 (2006).

[12] M. Diehl and P. Hagler, Eur. Phys. J. C 44, 87 (2005).

[13] S. Goloskokov and P. Kroll, Eur. Phys. J. A 47, 112
(2011).

[14] S. Goloskokov and P. Kroll, Eur. Phys. J. C 65, 137
(2010).

[15] J.C. Collins, L. Frankfurt, and M. Strikman, Phys. Rev. D
56, 2982 (1997).

[16] L. Mankiewicz, G. Piller, and A. Radyushkin, Eur. Phys. J.
C 10, 307 (1999).

[17] L. Mankiewicz, G. Piller, and T. Weigl, Eur. Phys. J. C 5,
119 (1998).

[18] M. Vanderhaeghen, P. A. Guichon, and M. Guidal, Phys.
Rev. Lett. 80, 5064 (1998).

[19] M. Vanderhaeghen, P. A. Guichon, and M. Guidal, Phys.
Rev. D 60, 094017 (1999).

[20] Z. Chen and X.-d. Ji, Phys. Rev. D 71, 016003 (2005).

[21] G.R. Goldstein, J. O. G. Hernandez, and S. Liuti, J. Phys. G
39, 115001 (2012).

[22] P. Hagler, Phys. Lett. B 594, 164 (2004).

[23] A. V. Belitsky, X.-d. Ji, and F. Yuan, Phys. Rev. Lett. 91,
092003 (2003).

[24] A. Radyushkin, Phys. Rev. D 80, 094009 (2009).

[25] S. Meissner, A. Metz, and K. Goeke, Phys. Rev. D 76,
034002 (2007).

[26] M. Diehl, Phys. Rep. 388, 41 (2003).

[27] G. Goldstein and J. Owens, Phys. Rev. D 7, 865 (1973).

[28] A. Airapetian et al. (HERMES), J. High Energy Phys. 06
(2008) 066.

[29] A. Airapetian et al. (HERMES), J. High Energy Phys. 11
(2009) 083.

[30] F. Girod et al. (CLAS), Phys. Rev. Lett. 100, 162002 (2008).

[31] E. Seder, A. Biselli, S. Pisano, and S. Niccolai (CLAS),
Phys. Rev. Lett. 114, 032001 (2015).

[32] S. Pisano et al. (CLAS), Phys. Rev. D 91, 052014 (2015).

[33] G. Cates, C. de Jager, S. Riordan, and B. Wojtsekhowski,
Phys. Rev. Lett. 106, 252003 (2011).

[34] S.J. Brodsky, F. E. Close, and J. Gunion, Phys. Rev. D §,
1384 (1972).

[35] C.D. Roberts, arXiv:1203.5341.

[36] D. Boer and P. Mulders, Phys. Rev. D 57, 5780 (1998).

[37] J. Forshaw and D. Ross, Quantum Chromodynamics and
the Pomeron (Cambridge University Press, Cambridge,
England, 1997).

[38] S. Ahmad, H. Honkanen, S. Liuti, and S. K. Taneja, Phys.
Rev. D 75, 094003 (2007).

[39] S. Ahmad, H. Honkanen, S. Liuti, and S. K. Taneja, Eur.
Phys. J. C 63, 407 (2009).

[40] A. Radyushkin, Phys. Rev. D 83, 076006 (2011).

PHYSICAL REVIEW D 91, 114013 (2015)

[41] S.J. Brodsky, F.J. Llanes-Estrada, J. T. Londergan, and
A.P. Szczepaniak, arXiv:0906.5515.

[42] S.J. Brodsky, F.J. Llanes-Estrada, and A.P. Szczepaniak,
Phys. Rev. D 79, 033012 (2009).

[43] S.J. Brodsky, M. Diehl, and D.S. Hwang, Nucl. Phys.
B596, 99 (2001).

[44] S.J. Brodsky and D.S. Hwang, Nucl. Phys. B543, 239
(1999).

[45] G.R. Goldstein and S. Liuti, Int. J. Mod. Phys. Conf. Ser.
04, 179 (2011).

[46] S.J. Brodsky and F.J. Llanes-Estrada, Eur. Phys. J. C 46,
751 (20006).

[47] G.R. Goldstein and S. Liuti, Phys. Rev. D 80, 071501
(2009).

[48] A. Bacchetta, F. Conti, and M. Radici, Phys. Rev. D 78,
074010 (2008).

[49] 1. Musatov and A. Radyushkin, Phys. Rev. D 61, 074027
(2000).

[50] K.J. Golec-Biernat and A.D. Martin, Phys. Rev. D 59,
014029 (1998).

[51] M. Burkardt and G. Schnell, Phys. Rev. D 74, 013002
(20006).

[52] J. Soffer, Phys. Rev. Lett. 74, 1292 (1995).

[53] G.R. Goldstein and S. Liuti, Nuovo Cim CO035N2, 327
(2012).

[54] K. Goeke, M. V. Polyakov, and M. Vanderhaeghen, Prog.
Part. Nucl. Phys. 47, 401 (2001).

[55] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders,
and M. Schlegel, J. High Energy Phys. 02 (2007) 093.

[56] M. Diehl and S. Sapeta, Eur. Phys. J. C 41, 515 (2005).

[57] 1. Bedlinskiy et al. (CLAS Collaboration), Phys. Rev. Lett.
109, 112001 (2012).

[58] M. Jacob and G. Wick, Ann. Phys. (N.Y.) 7, 404
(1959).

[59] R. De Masi et al., Phys. Rev. C 77, 042201(R) (2008).

[60] A. Biselli et al., Jefferson Lab Experiment E-05-114,
2005.

[61] A. Kim and H. Avakian (CLAS), Proc. Sci., DIS2014
(2014) 208.

[62] G.R. Goldstein, J. O.G. Hernandez, and S. Liuti, arXiv:
1401.0438.

[63] D.Y. Ivanov, B. Pire, L. Szymanowski, and O. Teryaev,
Phys. Lett. B 550, 65 (2002).

[64] M. El Beiyad, B. Pire, M. Segond, L. Szymanowski, and S.
Wallon, Phys. Lett. B 688, 154 (2010).

[65] M. Schindler and S. Scherer, Eur. Phys. J. A 32, 429
(2007).

[66] T. Gorringe and H. W. Fearing, Rev. Mod. Phys. 76, 31
(2003).

114013-26


http://dx.doi.org/10.1016/j.physletb.2006.01.076
http://dx.doi.org/10.1140/epjc/s2005-02342-6
http://dx.doi.org/10.1140/epja/i2011-11112-6
http://dx.doi.org/10.1140/epja/i2011-11112-6
http://dx.doi.org/10.1140/epjc/s10052-009-1178-9
http://dx.doi.org/10.1140/epjc/s10052-009-1178-9
http://dx.doi.org/10.1103/PhysRevD.56.2982
http://dx.doi.org/10.1103/PhysRevD.56.2982
http://dx.doi.org/10.1007/s100529900045
http://dx.doi.org/10.1007/s100529900045
http://dx.doi.org/10.1007/s100529800829
http://dx.doi.org/10.1007/s100529800829
http://dx.doi.org/10.1103/PhysRevLett.80.5064
http://dx.doi.org/10.1103/PhysRevLett.80.5064
http://dx.doi.org/10.1103/PhysRevD.60.094017
http://dx.doi.org/10.1103/PhysRevD.60.094017
http://dx.doi.org/10.1103/PhysRevD.71.016003
http://dx.doi.org/10.1088/0954-3899/39/11/115001
http://dx.doi.org/10.1088/0954-3899/39/11/115001
http://dx.doi.org/10.1016/j.physletb.2004.05.014
http://dx.doi.org/10.1103/PhysRevLett.91.092003
http://dx.doi.org/10.1103/PhysRevLett.91.092003
http://dx.doi.org/10.1103/PhysRevD.80.094009
http://dx.doi.org/10.1103/PhysRevD.76.034002
http://dx.doi.org/10.1103/PhysRevD.76.034002
http://dx.doi.org/10.1016/j.physrep.2003.08.002
http://dx.doi.org/10.1103/PhysRevD.7.865
http://dx.doi.org/10.1088/1126-6708/2008/06/066
http://dx.doi.org/10.1088/1126-6708/2008/06/066
http://dx.doi.org/10.1088/1126-6708/2009/11/083
http://dx.doi.org/10.1088/1126-6708/2009/11/083
http://dx.doi.org/10.1103/PhysRevLett.100.162002
http://dx.doi.org/10.1103/PhysRevLett.114.032001
http://dx.doi.org/10.1103/PhysRevD.91.052014
http://dx.doi.org/10.1103/PhysRevLett.106.252003
http://dx.doi.org/10.1103/PhysRevD.5.1384
http://dx.doi.org/10.1103/PhysRevD.5.1384
http://arXiv.org/abs/1203.5341
http://dx.doi.org/10.1103/PhysRevD.57.5780
http://dx.doi.org/10.1103/PhysRevD.75.094003
http://dx.doi.org/10.1103/PhysRevD.75.094003
http://dx.doi.org/10.1140/epjc/s10052-009-1073-4
http://dx.doi.org/10.1140/epjc/s10052-009-1073-4
http://dx.doi.org/10.1103/PhysRevD.83.076006
http://arXiv.org/abs/0906.5515
http://dx.doi.org/10.1103/PhysRevD.79.033012
http://dx.doi.org/10.1016/S0550-3213(00)00695-7
http://dx.doi.org/10.1016/S0550-3213(00)00695-7
http://dx.doi.org/10.1016/S0550-3213(98)00807-4
http://dx.doi.org/10.1016/S0550-3213(98)00807-4
http://dx.doi.org/10.1142/S2010194511001681
http://dx.doi.org/10.1142/S2010194511001681
http://dx.doi.org/10.1140/epjc/s2006-02520-0
http://dx.doi.org/10.1140/epjc/s2006-02520-0
http://dx.doi.org/10.1103/PhysRevD.80.071501
http://dx.doi.org/10.1103/PhysRevD.80.071501
http://dx.doi.org/10.1103/PhysRevD.78.074010
http://dx.doi.org/10.1103/PhysRevD.78.074010
http://dx.doi.org/10.1103/PhysRevD.61.074027
http://dx.doi.org/10.1103/PhysRevD.61.074027
http://dx.doi.org/10.1103/PhysRevD.59.014029
http://dx.doi.org/10.1103/PhysRevD.59.014029
http://dx.doi.org/10.1103/PhysRevD.74.013002
http://dx.doi.org/10.1103/PhysRevD.74.013002
http://dx.doi.org/10.1103/PhysRevLett.74.1292
http://dx.doi.org/10.1016/S0146-6410(01)00158-2
http://dx.doi.org/10.1016/S0146-6410(01)00158-2
http://dx.doi.org/10.1088/1126-6708/2007/02/093
http://dx.doi.org/10.1140/epjc/s2005-02242-9
http://dx.doi.org/10.1103/PhysRevLett.109.112001
http://dx.doi.org/10.1103/PhysRevLett.109.112001
http://dx.doi.org/10.1016/0003-4916(59)90051-X
http://dx.doi.org/10.1016/0003-4916(59)90051-X
http://dx.doi.org/10.1103/PhysRevC.77.042201
http://arXiv.org/abs/1401.0438
http://arXiv.org/abs/1401.0438
http://dx.doi.org/10.1016/S0370-2693(02)02856-3
http://dx.doi.org/10.1016/j.physletb.2010.02.086
http://dx.doi.org/10.1140/epja/i2006-10403-3
http://dx.doi.org/10.1140/epja/i2006-10403-3
http://dx.doi.org/10.1103/RevModPhys.76.31
http://dx.doi.org/10.1103/RevModPhys.76.31

