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We give an interpretation of the u and d quarks contributions to the nucleon electromagnetic form factors for
values of the four-momentum transfer in the multi-GeV region where flavor separated data have been recently
made available. The data show, in particular, a suppression of d quarks with respect to u quarks at large
momentum transfer. This trend can be explained using a reggeized diquark model calculation of generalized
parton distributions, thus providing a correlation between momentum and coordinate spaces, both of which are
necessary to interpret the partonic substructure of the form factors. We extend our discussion to the second
moments of generalized parton distributions which are believed to contribute to partonic angular momentum.
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I. INTRODUCTION

A recent experimental analysis displays a flavor separation
of the nucleon elastic electromagnetic form factors [1]. The
study in [1] brings further and completes various previous
analyses nicely summarized in Ref. [2] (see in particu-
lar [3,4]). The data show a suppression of the contribution
of d quarks with respect to u quarks at large momentum
transfer. The suppression is observed in both the Dirac,
F

q=u,d
1 , and Pauli, F

q=u,d
2 , form factors. In particular, for

four-momentum transfer squared, 1.5 � −t � 4 GeV2, the d
quarks’ form factors fall as 1/(−t)2, while the u quarks’ fall
as 1/(−t).

A quantitative study connecting the fall-off of the form
factor with −t and the radii of partonic configurations in the
nucleon was performed in Ref. [5] where it was suggested that
a steeper slope of the d vs u contributions can be attributed
to the quark-diquark structure of the proton. In a nutshell,
according to [5] a struck d quark leaves behind a larger mass
axial-vector diquark and is therefore positioned further away,
in average, from the quark-diquark system’s center of mass as
compared to a struck u quark leaving behind a smaller mass
scalar diquark.

It is well known that a description of the relativistic
three-dimensional (3D) structure of hadrons in coordinate
space applies within a well-defined range of validity. In fact,
the most recent precise estimate given in [5] shows that
nucleon substructure up to ≈81% of the nucleon volume
can be accounted for at

√−t � 1 GeV. Away from the
nonrelativistic limit, the motion of the center of mass cannot be
separated straightforwardly from the relative motion (see the
review in [6]), and “recoil” corrections become important. In
Ref. [7] it was shown, however, that by adopting a light-front
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framework, where partons are specified by their “+” momen-
tum component [where we define, k± = (ko ± k3)/

√
2], and

by their transverse coordinate x, one obtains a relation between
the transverse parton density in coordinate space and the form
factors that is analogous to the nonrelativistic one. The reason
behind this simplification is that in the parton picture, or on
the light front, the subgroup of the Poincaré group that leaves
the x+ = 0 surface constant is isomorphic to the Galileian
group in the transverse plane. Based on this observation, Soper
introduced the impact parameter dependent parton distribution
functions [7], q(x,b) where x = k+/P + is the parton’s light
cone momentum fraction, and b (related to x [7]), defines its
transverse distance from the center of “+” momentum.

It was thanks to this step that, soon after the introduction of
generalized parton distributions (GPDs) [8–10], Burkardt [11]
suggested a connection between transverse coordinate depen-
dent parton densities and observables from deeply virtual
Compton scattering (DVCS) and related experiments. In
Ref. [11] the GPDs were shown to be the two-dimensional
(2D) Fourier transforms of the impact parameter dependent
parton distribution functions, q(x,b). Complementary infor-
mation was subsequently obtained in Ref. [12] where the
link between the 3D coordinate space density ρ(x−,b) to
the 2D, transverse density ρ(b), was defined, with ρ(b) =∫

dx q(x,b).
In this paper we study the flavor dependence of the form

factors by using the connection with GPDs provided by
the following sum rules [9] and Fourier transforms [11],
respectively,

F
q
1 (t) =

∫ 1

0
dxHq(x,ξ,t),

(1)

F
q
2 (t) =

∫ 1

0
dxEq(x,ξ,t),

Hq(x,0,t) =
∫

d2b ρq (x,b) eib·�⊥ ,

(2)

Eq(x,0,t) =
∫

d2b Eq (x,b) eib·�⊥ ,
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FIG. 1. (Color online) GPDs kinematics.

where Hq and Eq , q = u,d, are the GPDs,1 which depend on
the partons’ momentum fractions x = k̄+/P +, the skewness,
ξ = �+/2P +, and the invariant t = �2, � being the four-
momentum transfer between the initial and final proton (see
Fig. 1 and Refs. [14,15] for a review). Lorentz invariance
implies that the first moment of GPDs in the parton’s
longitudinal momentum fraction x, defining the form factors,
Eq. (1), is ξ independent.

GPDs describe hybrid properties of the deeply virtual struc-
ture of nucleons [14]. Equation (1), in particular, establishes a
connection between the deep inelastic structure and the form
factor of the proton. This information is contained in the
integrand, the GPD, which, it is important to stress, is itself an
observable that can be extracted from a different, independent,
set of measurements.2

By Fourier transforming Hq(x,0,t) in the variable �⊥ (t =
−�2

⊥), as in Eq. (2), one obtains a single-particle density, or a
diagonal object in impact parameter space, ρq(x,b) (similarly,
for Eq) [11]. We will therefore focus from now on, on the
zero skewness components of the GPDs although considering
models that satisfy the polynomiality property by construc-
tion. The formal backbone to this picture—the dominance
of the handbag diagram—is provided by well-established
factorization theorems [9,16]. QCD-based models giving an
interpretation of the parton correlators for both exclusive and
inclusive processes in terms of their dominant degrees of
freedom (e.g., quark or diquark correlations) are, however,
debatable. Reviews on both the history and the more recent
important developments on this longstanding issue, in the
elastic scattering sector, can be found, e.g., in Refs. [5,17,18].

Our analysis is based on the “flexible” parametrization
introduced in Ref. [13] where using a reggeized quark diquark
model we provided a quantitative fit the proton’s and neutron’s
electroweak form factors. The large number of parameters that
is necessary to fit GPDs was handled by using a recursive
procedure.

An essential component of our approach was using the
form factor data to constrain the t dependence of the GPDs,
as shown by Eq. (1) for the electromagnetic sector. We now
ask the question of what components of the nucleon’s partonic
substructure that characterize our model of GPDs, allow us to
reproduce the form factors to high accuracy.

To expound this question we proceed stepwise. Our paper is
organized as follows: In Sec. II we summarize our GPD model,

1Strictly the valence quarks GPDs, see, e.g., Ref. [13].
2More precisely GPDs are contained in the directly measurable

Compton factors [14,15].

FIG. 2. (Color online) Vertex structures defining the spectator
model tree-level diagrams.

focusing on those aspects that impact directly the form factor
flavor structure; in Sec. III we give an interpretation of the
form factors flavor dependence, and we present our prediction
for the GPDs second moments, Ju, and Jd ; in Sec. IV we draw
our conclusions.

II. REGGEIZED DIQUARK MODEL

In Refs. [13,19,20] we developed a quark diquark model
with the aim of interpreting DVCS data. The basic structures of
the model are the helicity quark-proton scattering amplitudes
at leading order with proton-quark-diquark vertices (Fig. 2).
The dominant components are quark-diquark correlations
where the diquark system has both a finite radius and
an invariant mass MX that varies according to a spectral
distribution, differently from most models where the recoiling
system’s mass is kept fixed [21,22]. The variable mass
diquark systems exhibit different structure as one goes from
low to high mass values: At low mass values one has a
simple two-quark system composed with spin J = 0+,1+,
whereas at large mass values more complex correlations
ensue which are regulated by the Regge behavior of the
quark-proton amplitude, ∝ ûα(t) = (M2

X)α(t)(Fig. 3). This
behavior, also known as reggeization (see Ref. [23], Chapter 3,
and references therein), is regulated by a spectral distribution,
ρ(M2

X). We will show how upon integration over the mass, the
spectral distribution yields on one side for small x the desired
x−α behavior, and on the other for intermediate and large x,
it is consistent with the diquark model.

The need for introducing a Regge term while applying
diquark models to GPDs was realized in previous phenomeno-
logical studies [19,20]. It was noticed that while it is a known
fact that the diquark model cannot produce a steep enough
increase of the structure functions at low x, and this might be of

FIG. 3. (Color online) (a) t-channel Reggeon exchange diagram;
(b) u-channel diquark exchange. The box has mass MX , with spectral
distribution ρ(M2

X) as described in the text.
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TABLE I. Parameters obtained from our recursive fitting procedure applied to Hq , Eq , q = u,d . We obtained α′
q , pq , by fitting the proton

and neutron electromagnetic form factors. Also shown are the χ2 values for the separate contributions to the fit.

Parameters H old data H Ref. [1] E old data E Ref. [1]

α′
u 1.889 ± 0.0845 1.814 ± 0.0220 2.811 ± 0.765 2.835 ± 0.0509

pu 0.551 ± 0.0893 0.449 ± 0.0170 0.863 ± 0.482 0.969 ± 0.0307
χ 2 0.8 0.9 0.7 4.8
α′

d 1.380 ± 0.145 1.139 ± 0.0564 1.362 ± 0.585 1.281 ± 0.0310
pd 0.345 ± 0.370 −0.113 ± 0.104 1.115 ± 1.150 0.726 ± 0.0631
χ 2 0.8 0.5 0.7 3.2

minor importance in kinematical regions centered at relatively
large x where most data in the multi-GeV region are; it is,
however, a necessary contribution to obtain the normalization
of the structure functions correctly. This observation becomes
important for GPDs where we require them to reproduce the
form factor’s behavior exactly through their normalization, or
first moment as given in Eq. (1). The Regge term is therefore
an essential ingredient in model building. The importance of
the Regge term was realized recently also in Refs. [24,25].
There, however, the more singular behavior is introduced with
a slightly different motive—it is required to model GPDs from
a single double distribution.

In practical terms, our reggeized diquark model depends
on a number of parameters that we divide into Regge and
pure diquark contributions. The parameters were fixed by a fit
applied recursively to PDFs from deep inelastic scattering data,
and to form factors and DVCS data from Jefferson Lab [26].
The model was subsequently compared to data on different
observables (charge and transverse single spin assymetries),
in a different kinematical regime from HERMES [27,28].
We define our parametrization as “flexible” in that, mostly
owing to its recursive feature, the different components can be
efficiently fitted separately as new data come in.

Summarizing, we consider Ref. [13] as the accomplishment
of a first phase in which we constructed a reggeized diquark
model which satisfies fundamental requirements, such as
polynomiality, positivity, crossing symmetries, hermiticity,
and time-reversal invariance. In the process, we studied the

behavior of the various parameters both for the forward limit
and for the integral relations including form factors, and
we reproduced a number of observables. Our main result is
summarized in Table I of Ref. [13] where an optimal set of
the parameters obtained from data available at the time of
publication was presented. While the parameters in the diquark
part of our model are essentially masses that have precise
definitions and boundaries for their values which have been
addressed extensively in the literature (see, for instance, [21]),
the physical origin of the t dependence stemming from the term
displaying Regge behavior was not sufficiently discussed. In
what follows we, therefore, contribute a discussion of this term.

The fitting procedure of GPDs is quite complicated because
of the presence of many different steps. In Fig. 4 we present
a flowchart that both summarizes and streamlines the various
steps described so far.

A. Description of parameters

Our GPD model can be summarized in the following
expression:

Fq(X,ζ,t) = NqG
M

q
�

M
q
X,mq

(X,ζ,t) R
αq,α′

q

pq
(X,ζ,t), (3)

where q = u,d, Fq ≡ Hq,Eq ; the functions G
M

q
�

M
q
X,mq

≡
H

M
q
�

M
q
X,mq

,E
M

q
�

M
q
X,mq

, and R
αq,α′

q

pq
≡ R

αq,α′
q

H (E),pq
, parametrize, respec-

tively, the quark-diquark and Regge contributions; X and ζ ,
the variables in the asymmetric system [14], are related to

FIG. 4. (Color online) Flowchart for the GPD fitting procedure described in the text.
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x and ξ by, X = (x + ξ )/(1 + ξ ), ξ = 2ζ/(2 − ζ ), however, here we are interested in the ζ = ξ = 0 ⇒ X = x limit. The diquark
components read

H
M

q
�

M
q
X,mq

= Nq

∫
d2k⊥
1 − x

[(mq + Mx)(mq + Mx) + k⊥ · k̃⊥][M2
q(x) − k2

⊥/(1 − x)
]2[M2

q(x) − k̃2
⊥/(1 − x)

]2 , (4a)

E
M

q
�

M
q
X,mq

= Nq

∫
d2k⊥
1 − x

−2M/�2
⊥[(mq + Mx)k̃⊥ · �⊥ − (mq + Mx)k⊥ · �⊥][M2

q(x) − k2
⊥/(1 − x)

]2[M2
q(x) − k̃2

⊥/(1 − x)
]2 , (4b)

where Nq is in GeV4, k̃⊥ = k⊥ − (1 − x)�⊥, M2
q(x) =

xM2 − x/(1 − x)Mq 2
X − M

q 2
� , M is the proton mass, mq is the

quark mass, Mq
X the diquark system’s mass (discussed below),

and finally M
q
� is the mass term defining the coupling at

the proton-quark-diquark vertex. Consistently with studies of
baryons in the context of the application of Dyson–Schwinger
equations in QCD ([29] and references therein), we chose the
coupling,

	 = gs

k2 − m2
q(

k2 − M
q 2
�

)2 , (5)

where k2 is the four-momentum square at the vertex (k2 → k′2
at the right-hand side vertex). To construct a flavor-dependent
diquark model we start from the quark proton helicity
amplitudes (Fig. 2), where the diquark can have spin S = 0,1.
Using the SU(4) symmetry relations we construct the u and
d components [13,57]. This step is described by the initial
flowchart bubbles in Fig. 4.

The Regge term is given by

R
αq,α′

q

pq
= x−[αq+α′

q (x)t], (6)

where

α′
q(x) = α′

q(1 − x)pq , (7)

α′
q and pq being parameters.

The nucleon Dirac and Pauli form factors were fitted with
our model by considering

F
p(n)
1 (t) =

∫
dxHp(n)(x,0,t)

= eu(d)

∫
dxHu(t) + ed(u)

∫
dxHd (t), (8)

F
p(n)
2 (t) =

∫
dxEp(n)(x,0,t)

= eu(d)

∫
dxEu(t) + ed(u)

∫
dxEd (t), (9)

where eu = 2/3, and ed = −1/3.
In the recursive fitting procedure adopted in [13], we first

set t = 0, and constrained the Regge parameter αq , all of
the mass parameters, and the normalization, by fitting the
expression in Eq. (4a) to valence PDF distributions (this step
includes perturbative QCD evolution). We took the same set
of parameters for the GPD E because its forward limit cannot
be constrained. By fixing these parameters, we obtained a total

number of five per quark flavor, consistent with modern PDFs
parametrizations ([30] and references therein). We then took
the integrals of Eqs. (4a) and (4b), which define the Dirac
and Pauli form factors, respectively, and fitted the remaining
parameters, α′

q and pq in the Regge term in Eq. (6), to the
available proton and neutron form factors [31–33,35,36].

The recursive fit we present here uses the same first step as in
Ref. [13], i.e., we repeated the fit keeping the PDFs parameters
fixed (central bubbles in Fig. 4). However, the parameters α′

q

and pq were constrained using only the form factors’ flavor
separated data from Ref. [1]. These data were extracted from
a selection of available data [4,34,42–45].3 The importance of
the analysis contributed in Ref. [1] is in the fact that, owing
to the availability of the recent neutron form factor data, the u
and d quarks components of the nucleon form factors could be
extracted up to large values of t in the few GeV region, using
the isospin symmetry decomposition formulas,

2Fu
1(2) = 2F

p
1(2) + Fn

1(2), (10a)

Fd
1(2) = 2Fn

1(2) + F
p
1(2), (10b)

where, as usual, Fu
1(2) and Fd

1(2) are the Dirac and Pauli u and
d quarks contributions to the proton form factor.4

In Table I we show the values of α′
q and pq , obtained using

both the old set of data and the data from Ref. [1].
The error analysis was performed using the Hessian

method, and we could therefore check the effect of correlations
between parameters. Because we fix the values of the PDF
parameters, only the form factor parameters pq and α′

q will
show the effect of correlations. We do find some degree of
correlation between these two parameters, that we plan to
study in more detail in future work including more flexible
parametrizations. To perform this type of analysis in a fully
quantitative way it will, however, be necessary to include also
experimental error correlations, which do not exist in most
cases in published form. We would like to point out that these
type of observations are now possible exactly because of the
precision attained using the flavor separated data. The new fit
displayed in Fig. 5 allowed us, in fact, to reduce the errors on

3Note that additional and new data sets exist to date that might be
significant for future studies of the connection between GPDs and
nucleon form factors which are, however, beyond the scope of this
paper [37–41].

4It should also be noticed that both trends appear by extrapolating
the widely used form factor parametrization by Kelly [46] to large t .
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FIG. 5. (Color online) (Right panel) Proton form factors t2F
q
1 (top) and κ−1

q t2F
q
2 (bottom) plotted vs −t , as obtained from our

parametrization using Eq. (3), by fitting the data preceding Ref. [1]. (Left panel) Same as right, but including the data from Ref. [1].
The parametrization’s error bands are from our GPD fit, and they reflect the errors on the parameters displayed in Table I, obtained without
taking into account parameters’ correlations. κu = 2.03, and κd = −1.67, are derived in terms of the proton and neutron anomalous magnetic
moments using isospin symmetry [cf. Eq. (10) at t = 0]. Experimental data on both panels are from Ref. [1].

the GPD parameters considerably. Notice that both the x and t
dependencies of the GPDs are affected by the change in α′

q and
pq . Changes occur in the x shapes of all four GPDs, Hu,d and
Eu,d , the GPDs’ largest variations being at large t and small x.

In summary, our model is given by the expressions in
Eqs. (3), (4a), (4b), and (6) and Ref. [13]. While the mass
parameters and the normalizations have been kept fixed to the
values given in Ref. [13], the parameters α′

q , pq have been
refitted using the new flavor separated data from Ref. [1], and
are listed in Table I.

B. Reggeization

Although the expression in Eq. (3) was purposely cast in
a simple enough form to be used in fits of data [13,19,20], it
can be considered a phenomenological realization of a more
elaborate model including diquark correlations through Regge
duality. As we explain below, α defines a Regge trajectory,
while α′ and p regulate the effect of Regge cuts, which in turn
can be interpreted as diquark correlations.

1. Regge factorization

To explain our model, and specifically the role of the Regge
parameters α, α′, and p5 we first illustrate the reggeization
procedure. We consider the spin-independent GPD, H , in
the forward limit, H (x,0,0) = f1(x), for simplicity, as a
function of a continuum of diquark masses. We follow the
procedure first outlined in Ref. [47], although we extend it to
all MX, including low values of the mass. The exact expression

5In this section we drop the q subscript for simplicity.

obtained using a fixed mass scalar diquark is given by

H
M�

MX,m(x,0,0) = N π

12

[
2(m + xM)2 + M2

(
x,M2

�,M2
X

)
M6

(
x,M2

�,M2
X

) ]

× (1 − x)4, (11)

where

M2
(
x,M2

�,M2
X

) = xM2 − x

1 − x
M2

X − M2
�.

We multiply this expression with a spectral density ρR(M2
X) of

the type shown in Fig. 6.
The spectral function was parametrized as

ρ
(
M2

X

) =
(
M2

X

)a

[1 + b(MX − MX)2]c
≡ (

M2
X

)a
B(MX), (12)

where c = a + 1 − α, and the quantity M2
X = M2

X/(1 GeV2)
is dimensionless. Schematically, we summarize the behavior
of ρ(M2

X) as

ρ
(
M2

X

) ≈
{ (

M2
X

)α−1
M2

X → ∞
δ
(
M2

X − M
2
X

)
M2

X few GeV2.
(13)

By integrating over M2
X one obtains that the Regge behavior

in x factors out, namely,

H (x,0,0) = N
∫ ∞

0
dM2

Xρ
(
M2

X

)
H

M�

MX,m(x,0,0) (14a)

= Nx−α

∫ ∞

0
dz zα−1B(z/x)HM�

MX,m(x,0,0) (14b)

≈ Nx−αH
M�

MX,m
(x,0,0), (14c)
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FIG. 6. (Color online) Integrand components in Eq. (14) plotted
vs M2

X . The various curves show the spectral function, ρ(M2
X),

defining the reggeization of the quark-proton scattering amplitude,
the contribution of H

M�
MX,m(x,0,0) at two values of x, x = 10−3 and

x = 0.3, and the product of ρ(M2
X) and H

M�
MX,m(x,0,0), Eq. (14), for

the same values of x. The inset highlights the low mass region.

where z = XM2
X. In Fig. 6 we also show the integrand in Eq. 14

as a function of M2
X (the inset was drawn to highlight the low

masses behavior). One can see the different behavior for small
and large values of x, the large x behavior being characterized
by a flatter slope in MX. Notice also that the integrands peak
at low MX (inset Fig. 6), the position of the peak being fixed
in a common mass range 1 � M2

X � 2.5 GeV2, despite the
wide variation in x values. As a consequence, once the Regge
behavior is factored out as in the second line of Eq. 14, an
integration over an almost “δ-like” peak remains, yielding the
last line of Eq. 14. In other words, the average of the weighted
integrand over the full range of z in Eq. (14a) is approximately
the integrand’s value at the peak of the spectral distribution in
Eq. (14c). Switching on the skewness and t dependencies in
Eq. 14, one obtains the result in Eq. (3), where Regge behavior
is cast in a factorized (Regge times diquark) form.

The function H in Eq. 14, obtained using both the factorized
ansatz [Eq. (14c)] and the full calculation, is shown in Fig. 7.
The figure demonstrates that the factorized form of Eq. (3)
can be taken for all values of x, thus extending the validity
of the original model of Ref. [47], in the hypothesis that
an appropriate form for the recoiling system’s invariant mass
spectral function is considered. In the diquark model part of
Eq. (3), H

M�

MX,m(X,0,t), MX ≈ MX, from Eqs. (12) and (13).
It is important to note that this model is in line with most

forms used for PDFs parametrizations, which also display
a factorized Regge term. The fact that the Regge term can
be factorized for all values of x does not imply that Regge
behavior can be extended to all values of x. The x dependence
away from small x is indeed quite different (see discussion
in [19]). In addition, the values of the Regge parameters
obtained from our fits do not coincide exactly with known
Regge trajectories owing to the fact that the diquark model

Regge Integral

Factorized form

x

H
(x

,0
,0

)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIG. 7. (Color online) Comparison between H (x,0,0) calculated
using the factorized ansatz in Eq. (3), and the full expression in Eq. 14.

provides a “tail” at small x that contributes to the slope.
This point was extensively discussed in Ref. [19] (see Fig. 12
in [19]).

2. Interpretation

The Regge term has different interpretations depending on
the kinematical regions considered. The different regions are
displayed in Fig. 8 where in the upper panel we show trajectory,

-5
-4
-3
-2
-1
0
1
2
3
4
5 x =0

x=0.1
x=0.5
x=0.9
Regge cut, Ref.23

 +
 

'(
x)

t

-t (GeV2)

R
p  

'(x
, t

)
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-6 -5 -4 -3 -2 -1 0 1

FIG. 8. (Color online) Combined x and t dependencies of the
Regge contribution in our model [Eq. (6) and discussion in text].
(Upper panel) Trajectories with x-dependent parameters from our
model. The dot-dashed line is a comparison with the softening of
the slope first suggested in Refs. [48,49]. (Lower panel) Regge term,
Eq. (6), obtained using the trajectories shown in the upper panel.
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FIG. 9. Parton content of Regge exchanges. (a) Regge exchange
with no interactions [Fig. 5(a)]; (b) Regge cut with partonic structure
corresponding to a diquark correlation.

α + α′(x) t , plotted vs t for different values of x, while in the
lower panel we show the Regge term, Eq. (6), correspondingly
obtained using the trajectories from the upper panel. In our
calculation we consider two main regions:

ξ = ζ = 0, t → 0.
Equation 14 can be generalized straightforwardly from t =

0 to arbitrary small t < 0, noticing that the integrals are done at
fixed t . So long as α + α′(1 − x)p t remains positive, i.e., for
−t < α/α′(x), the physical interpretation remains unaltered
because the behavior of the M2

X spectrum does not change
considerably [this occurs for t � 0.5 GeV2; see Fig. 5(a)].
This is the region spanned in DVCS-type experiments, where
the reaction’s four-momentum transfer Q2 ≈ (few GeV2), and
−t < 1 GeV2.

ξ = ζ = 0, t �= 0, t � s,u.
Larger, but not asymptotic, negative t can still be consistent

with Regge behavior. In fact, the x dependence of α′(x)
becomes important in this kinematical region. This is a
consequence of Regge cuts [48,49]. More specifically, the
linear Regge trajectory gets modified because of multiple
interactions. The first interaction is given by the exchange
of two pomerons which modifies the slope in x−(α+α′t)

because of the presence of the second pomeron.6 The next
interaction modifies the slope a bit more. The following
multiple interactions eventually produce the flattening of the
slope. This is used to extend the theory far from t = 0.

In summary, the x dependence of the slope parameter, α +
α′(x)t , is such that it softens the decreasing behavior of the
trajectory with negative t with respect to the standard Regge
behavior described by α + α′(0)t (blue curve in the figure).
The behavior with t is illustrated in Fig. 5(a) where one can see
that the slope in t of the exponent, α + α′(x)t , decreases with x
eventually flattening out. The dot-dashed curve was obtained
in a calculation from Refs. [48,49] including the effect of
multiple interactions and Regge cuts which is well reproduced
by our form.

The partonic structure that gives rise to the Regge behavior
discussed so far is represented in Fig. 9. Figure 9(a) describes a
simple Reggeon exchange while Fig. 9(b) exhibits a Regge cut,
or a reinteraction. Notice that the nonplanar structure of this
graph allows us to interpret the Regge behavior in this region
as given by coupling of diquarks to the virtual photon. Our
proposed picture therefore connects with the one considered
in the Poincaré covariant Dyson-Schwinger equation (DSE)

6As a reminder ŝ(α+α′t) → x−(α+α′t).

approach of Refs. [5,50], including both dressed quark and
diquark components coupling to the virtual photon.

Finally, we note that including skewness, i.e., (ξ,ζ ) �= 0, is
more complicated, as singularities at the crossover point, X =
ζ (x = ξ ), might arise. This issue was extensively discussed
recently in Ref. [24] in the context of double distributions (see
also [25]), although in the t = 0 limit. Our results in this paper,
however, do not depend on the ζ �= 0 case: We interpret the
form factors using the zero skewness section of GPDs, which
allows for a clear interpretation in b space, as we explain in
what follows.

In conclusion, with a viable model in hand we can now
examine the role and the interplay of its different components
in interpreting a variety of experimental data. In particular,
because the t dependence arises naturally in our model, namely
it is not superimposed ad hoc, we can understand what features
of the GPDs can simultaneously fit the PDFs and feed into
the form factors. Why can, for instance, our flexible model
reproduce the flavor dependence of the nucleon form factors?
Which components are dominant—Regge or diquark—and for
what values of t? What aspect of the nucleon substructure can
this be traced back to?

III. INTERPRETATION OF FLAVOR DEPENDENCE

To study the interplay between single quark scattering and
the reinteraction terms (Regge cuts), and to ascertain whether
either component can by itself drive the t dependence, we
define starting from Eqs. (3)–(6), the following additive form:

Hq(X,ζ,t) = H
q
diq+R + H

q
R,

(15)
Eq(X,ζ,t) = E

q
diq+R + E

q
R,

where

H
q
diq+R = N q

diq+R H
M

q
�

M
q
X,mq

R
αq

H,pq
,

(16)
E

q
diq+R = N q

diq+R E
M

q
�

M
q
X,mq

R
αq

E,pq
,

H
q
R = N q

diq+R R
α′

q

H,pq
, E

q
R = N q

diq+R R
αq

E,pq
, (17)

with

N q
diq+R = (

1/R
αq,α′

q

H (E),pq
+ 1/H (E)

M
q
�

M
q
X,mq

)−1
. (18)

Notice that in the Regge term Eq. (6), we separated out the
noninteracting, and interacting components (Figs. 8 and 9),
which are defined from

R
αq,α′

q

H (E),pq
(x,t) = R

αq

H,pq
(x) R

α′
q

H (E),pq
(x,t). (19)

Using Eqs. (16) and (17), the flavor dependent Dirac and
Pauli form factors can, respectively, be written as

F
q
1 =

∫ 1

0
dx

(
H

q
diq+R + H

q
R

)
, (20)

F
q
2 =

∫ 1

0
dx

(
E

q
diq+R + E

q
R

)
, (21)

In what follows we give an interpretation of the behavior
seen in [1] that at the largest t of the experiment the
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FIG. 10. (Color online) Components of the GPD Hu (upper panels) and Hd (lower panels) contributing to the form factor, F
q
1 , q = u,d ,

for −t = 0.03 GeV2 (left), and −t = 2.5 GeV2 (right). Separately displayed are the diquark plus t-independent Regge contribution, and the
t-dependent Regge contribution which effectively takes into account Regge cuts, or diquark correlations (Figs. 8 and 9).

contribution of the d quark is suppressed relative to u, for
both F1 and F2.

A. Momentum space analysis

In Fig. 10 we show the components of the GPD Hq con-
tributing to the form factor, Fq

1 , q = u,d, for t = −0.03 GeV2,
and t = −2.5 GeV2. We display separately the diquark plus
t-independent Regge contribution, and the t-dependent Regge
contribution which effectively takes into account Regge cuts,
or diquark correlations [Eqs. (16) and (17)]. One can see that
for both the u and d quarks, diquark correlations dominate
over the diquark component at large x. Notice that at large
t the u quarks behave differently from the d quarks in that
both the single quark scattering and the diquark correlation
contributions are shifted to higher values of x for the u
quarks. In other words, the u quarks are governed by higher
x components. To test the consequence of this feature on the

form factors flavor dependence, in Fig. 11 we show

t2F
q,xMAX
1 = t2

∫ xMAX

0
dx

(
H

q
diq + H

q
R

)
, (22)

κ−1
q t2F

q,xMAX
2 = κ−1

q t2
∫ xMAX

0
dx

(
E

q
diq + E

q
R

)
, (23)

for different values of xMAX < 1. The values of xMAX reported
in the figure are xMAX = 0.3,0.6,0.8. One can see that the d
quark form factor saturates at smaller xMAX, as expected from
Fig. 11. Therefore, we conclude that for both the u and d quark,
integrating over the peak given by diquark correlations (second
peak in Fig. 11) is important. The form factors’ behavior at
t in the multi-GeV region is governed in our model by re-
interactions.

This can also be seen in Figs. 12 and 13 where the single
quark, and rescattering contributions to the form factors are
presented along with the total contribution. In Fig. 13 one has
a better view of the small t behavior.
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FIG. 11. (Color online) Contribution of various x components to
the proton form factors t2F

q
1 (top) and κ−1

q t2F
q
2 (bottom) plotted vs

−t , obtained from our parametrization (Fig. 8). The u quarks are
plotted to the left and the d quarks to the right. The different lines
correspond to xMAX = 0.3,0.6,0.8 [Eqs. (22) and (23)] as indicated
on the upper left figure.

1. Summary

To summarize, we notice first of all that in our diquark
model the t dependence of both GPDs and the form factors
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FIG. 12. (Color online) t2F
q
1 , q = u,d (above) and κ−1

q t2F
q
2 (be-

low) plotted vs −t , as obtained from our parametrization using Eq. (3).
Experimental data from Ref. [1]. The dotted lines correspond to the
diquark contribution, Eq. (16); the dashed lines correspond to the
Regge contribution, Eq. (17).
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FIG. 13. (Color online) Form factors, F
q
1 (above) and κ−1

q F
q
2

(below). u and d quarks contributions displayed in the left and
right panels, respectively. The dotted lines correspond to the diquark
contribution, Eq. (16); the dashed lines correspond to the Regge
contribution, Eq. (17).

originates from two contributions describing scattering from a
single quark [including a single Regge exchange dominating
low x and t ≈ 0; Figs. 1 and 9(a)], and diquark correlations
[Fig. 9(b)] which we effectively take into account through
Regge re-interactions, or Regge cuts. The latter appear
only through the reggeization procedure. The single quark
scattering terms involve, therefore, both a fixed mass diquark
contribution, Eq. (4) and the t-independent Regge term,
≈x−αq , in Eq. (6).

An important outcome of our analysis is that the re-
interaction components are necessary for a quantitative de-
scription of the form factors in a wide range of t . At low t
single quark scattering dominates Fu

1 as expected (Fig. 13),
while for Fd

1 the contributions of the Regge re-interactions
and single quark terms are comparable.

Scattering from a single, noninteracting u or d quark leaves
either a ud diquark with spin S = 0,1, or a uu diquark
system with spin S = 1 as spectators. The angular momentum
structure of the JP = 0+ (scalar) and JP = 1+ (axial vector)
configurations allows us to obtain distinct predictions for the
u and d quarks contributions using an SU(4) symmetric wave
function for the proton,

Fu(X,ζ,t) = 3
2FS=0(X,ζ,t) + 1

2FS=1(X,ζ,t), (24)

Fd (X,ζ,t) = FS=1(X,ζ,t). (25)

After performing the azimuthal angle integration in Eqs. (4a)
and (4b) one can see that two �T dependent terms survive
in the numerator for H , while E depends on �T only in the
denominator. This yields a steeper t dependence in the Pauli
form factor. The flavor dependence of both the Dirac and Pauli
form factors is governed by the precise values of the masses
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TABLE II. Values of the quark and diquark masses in GeV calculated in several models. The quark masses values in [5] correspond to the
constituent quarks limit in this model.

Reference : mass (GeV) mu Mu
X=ud (J = 0+) md Md

X=uu(J = 1+) Mu
X=ud (J = 1+)

GGL [13] 0.420 0.604 0.275 0.913 0.604
Cloet et al. [5] 0.33 0.7–0.8 0.33 0.9–1.0 0.9–1.0
BCR [21] 0.3 0.822 0.3 0.890 1.492

entering the term,

M2
q(x) = xM2 − x

1 − x
M

q 2
X − M

q 2
� ,

in Eqs. (4a) and (4b).
The masses values obtained in different diquark mod-

els [5,13,21], are reported in Tables II and III. In Table II
we show the quark and diquark masses. In Table III we show
the value of the diquark form factor mass term, M

q
�, Eq. (5),

along with the corresponding radii calculated as [5],

r
q
diq =

√
6

M
q
�

. (26)

The diquark form factor used in our model, Eq. (5), plotted
vs k ≡ k⊥, for the different flavor components is shown in
Fig. 14. We notice only a slight flavor dependence of these
terms. This trend can be seen also by comparing the value of
the radii in Table III.

From Table II one can see that for all models we find that
Mu

X � Md
X. This produces in turn, a slightly steeper fall with

t for the d quarks than for the u quarks, occurring in a similar
way for both F

q
1 and F

q
2 .

The behavior of the fixed mass diquark term can be seen
in Fig. 12 where the single quark scattering contribution was
plotted separately from the rescattering term. In this respect,
our findings are in agreement with the trend for the flavor
dependence of the form factors predicted in Ref. [5]. However,
to quantitatively explain the difference in the u and d quarks’
behavior we emphasize that one needs to go beyond single
quark scattering and consider diquark correlations and Regge
re-interactions. The latter allow the Regge term to be present
at larger t . In fact, as shown in Fig. 8, the diquark correlations
and Regge cuts extend, in fact, the validity of the Regge model
to this region [48,49]. At large t , in the multi-GeV region, the
form factors are dominated by the large x components of the
GPDs, Fig. 11 (see also Refs. [51,52]).

Notice also that in our model the d quark form factor is
not predicted to become negative when extrapolated to larger
momentum, while a flattening of its slope in −t occurs.

B. Scale dependence

GPDs are dynamical quantities that depend on the value
of the scale Q2 of the deep inelastic process that is used to
measure contrarily to their first moments which are given by
the form factors. The form factors connect to GPDs at any value
of the scale. It is therefore important to determine whether the
flavor dependence interpreted so far in terms of their partonic
substructure at the initial scale Q2

o changes with the scale.
This can be evaluated by using the perturbative QCD (PQCD)
evolution equations for the GPDs at a given order [53,54]. In
our model we use the expressions for the kernels at leading
order (LO) with �

Nf =4
QCD = 0.215, and Q2

o ≈ 0.1 GeV2. Results
of PQCD evolution are given in Figs. 15 and 16. In Fig. 16, in
particular, we show the ratio,

Rq = F
q
1 (t,xMAX; Q2)

F
q
1 (t)

, (27)

where

F
q
1 (t,xMAX; Q2) =

∫ xMAX

−1
dx Hq(x,0,t ; Q2), (28)

q = u,d. From Fig. 15 one can see that although accounting
for the Q2 dependence of the GPDs changes the shape of
the curves in a predictable way, i.e., moving “strength” to
lower values of x, this does not affect the flavor dependence
interpretation of the different components of our model which
keeps on being valid at larger scales. In other words, the two
peaks describing the single quark scattering and interactions
persist, and they are located at different x values for the u and d
quarks, respectively. One can see this also from Fig. 16 where
the d quarks ratio saturates faster then the u quarks’, the latter
being dominated by higher x components (Fig. 11). However,
Fig. 16 also shows that both the u and d quarks form factor
components are governed by increasingly lower x components
as the scale of the process increases. The dynamical properties
of GPDs should be taken into account to connect them to form
factors.

TABLE III. Values of the diquark masses cutoffs in GeV and corresponding diquark configurations radii in fm, as calculated in several
models.

Reference Mud
� (J = 0+) rud (f m) Muu

� (J = 1+) ruu (fm) Mud
� (J = 1+) rud (fm)

GGL [13] 1.018 0.330 0.860 0.390 0.860 0.390
Cloet et al. [5] 0.479 0.7 – – 0.419 0.8
BCR [21] 0.609 0.551 0.376 0.892 0.716 0.469

065206-10



INTERPRETATION OF THE FLAVOR DEPENDENCE OF . . . PHYSICAL REVIEW C 88, 065206 (2013)

u Dirac
d Dirac
u Pauli
d Pauli

t=-2 GeV2

k (GeV)

(k
,t)

10
-4

10
-3

10
-2

10
-1

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

FIG. 14. (Color online) Diquark vertex function contributions to
the Dirac and Pauli form factors obtained by integrating Eq. (5) over
x at fixed t = −2 GeV2, plotted vs k ≡| k⊥ |.

C. Transverse space analysis

All of the questions discussed in the previous sections
impact the transverse radial dependence that can be deduced
from GPD based analyses. The connection between form
factors and Fourier transforms of GPDs was studied quan-
titatively in Refs. [12,55,56]. In particular, in Ref. [56] a
partonic interpretation was given of the negative central charge
density of the neutron in terms of the correlation between the
dominance of d quarks at large x and their transverse radii.

-t= 0.03 GeV2

Q2= Qo
2 GeV2

Q2= 4 GeV2

d quark

x

G
P

D

-0.1
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0.1

0.2
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10
-2
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1

FIG. 15. (Color online) GPD xHd (x,0,t ; Q2) plotted vs x, for
t = −0.03 GeV2, and two values of the process’ scale: Q2 = 4 GeV2

and Q2
o = 0.1 GeV2. The diquark + Regge and the Regge re-

interactions terms are shown separately, following the notation of
Fig. 10. Analogous results are obtained for F u

1 , and for the Pauli form
factors.

In what follows we study the flavor dependence of the
transverse densities obtained from the form factors, Eq. (2),
using our model. More detailed studies addressing also the Q2

dependence in transverse coordinates space will be considered
in [57].

The Fourier transforms of GPDs with respect to �⊥ define
the parton density distributions at a transverse position b
for a given longitudinal momentum fraction x, namely two-
dimensional distributions in the transverse plane with respect
to the proton’s direction of motion. We can therefore connect
each form factor component to hadronic distances from the
proton’s center of momentum defined as [56],

〈b2〉q1 =
∫ 1

0
dx

∫
d2b

(2π )2
ρ

q
1 (x,b) b2

=
∫ 1

0
dx

∫
d2b

(2π )2

[ ∫
d2�⊥

[
H

q
diq(x,0,�2

⊥)

+H
q
R(x,0,�2

⊥)
]
eib·�⊥

]
b2

= 〈b2〉q1 diq + 〈b2〉q1 R, (29)

〈b2〉q2 =
∫ 1

0
dx

∫
d2b

(2π )2
ρ

q
2 (x,b) b2

=
∫ 1

0
dx

∫
d2b

(2π )2

[ ∫
d2�⊥

[
E

q
diq(x,0,�2

⊥)

+E
q
R(x,0,�2

⊥)
]
eib·�⊥

]
b2

= 〈b2〉q2 diq + 〈b2〉q2 R. (30)

In Fig. 17 we show the density integrated over x,

ρ
q
1(2)(b) =

∫ 1

0
dx ρ

q
1(2)(x,b), (31)

for all components. In Table IV we show the values of the radii,
b

q
1(2) diq(R) = [〈b2〉q1(2) diq(R)]

1/2, for the single mass diquark
(diq) and reggeized (R) components in our model.

From Table IV and Fig. 17 one can see that in average,
the u quark transverse distance is smaller than the d quark’s,
thus confirming a picture similar to the one proposed in [5]
although using different symmetry properties because the radii
there include also the longitudinal spatial component. Based
on our previous discussion, one can easily relate the values in
Table IV to the transverse momentum distribution, regulated
by the vertex function in Eq. (5), which is displayed in Fig. 14.
We conclude that although a space coordinates description
gives us very useful information [12,22], it is probably too
simplistic to give an interpretation of the flavor dependence in
terms of average quark distances inside the proton, essentially
from re-interactions (as, in fact, also noticed in [5]). The
effect of re-interactions is, however, very interesting to explore
in itself because it allows us to estimate the distance of a
nonpointlike two-quark hadronic component containing either
the struck u or d quark from the proton’s center of momentum.
Our analysis points at interesting differences in the flavor
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FIG. 16. GPD xHd (x,0,t ; Q2) plotted vs x, for t = −0.03 GeV2, and two values of the process’ scale: Q2 = 4 GeV2 and Q2
o = 0.1 GeV2.

The diquark + Regge and the Regge re-interactions terms are shown separately, following the notation of Fig. 10.

dependence behavior of the Dirac vs Pauli form factors. The
behavior of the form factors at larger t is reflected in the
behavior of ρ as b → 0. In particular, we notice that the data on
F2 at intermediate t show a smaller relative deviation of the d
quarks from the u quarks, or a harder d quark component. This
behavior reflects, in turn, the impact of the large x components
that is seen in Fig. 11. Future data at larger momentum transfer
will help validating this interpretation. A more detailed study

that emphasizes the correlations between x components and
coordinate space will be pursued in future studies [57].

D. Flavor dependent angular momentum

Finally, using the parameters from our analysis of the
flavor dependence of the proton form factors we can make
a prediction for the values of the quarks total angular
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FIG. 17. (Color online) (Upper panels) Transverse space parton density distribution, ρ1(b), integrated over x, plotted vs the transverse
space coordinate b for the Dirac form factor, displaying all components of our model (right, u quarks; left, d quarks). (Lower panels) Same as
upper panels, for the Pauli form factor.
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TABLE IV. Radii in fm per quark flavor, GPD type, and model
components as described in the text. The notation is b

q
1(2) diq ≡

[〈b2〉q
1(2) diq ]1/2, b

q
1(2) R ≡ [〈b2〉q

1(2) R]1/2, b
q
1(2) ≡ [〈b2〉q

1(2)]
1/2.

Flavor b
q
1 diq b

q
1 R b

q
1 b

q
2 diq b

q
2 R b

q
2

u 0.475 0.385 0.612 0.527 0.447 0.691
d 0.450 0.425 0.619 0.745 0.463 0.877

momentum, Jq , q = u,d. Jq is defined in Ji’s sum rule as [9]

Jq = 1

2

∫ 1

−1
dx x(Hq(x,0,0; Q2) + Eq(x,0,0; Q2)), (32)

and the quarks orbital angular momentum obtained as

Lq = Jq −
∫ 1

−1
dx H̃q(x,0,0; Q2), (33)

where Q2 is the process’ scale. Our results obtained evolving
all GPDs at leading order [13] are shown in Figs. 18 and 19
and in Table V. The model dependence in various calculations
arises entirely from the GPD E, because the second moment
of H is precisely constrained by deep inelastic scattering
measurements. It is interesting to notice a discrepancy with
the analysis of Ref. [58] where similar constraints from the
nucleon form factors were used. We conclude that even if
the new precise measurements of the form factors reduce
the uncertainty in the GPDs, to obtain angular momentum,
direct measurement of E through DVCS-type experiments is
mandatory.

IV. CONCLUSIONS

In conclusion, we used a GPD-based approach as a way to
understand the behavior of the u and d quark components of
the nucleon form factors. The GPDs were evaluated using a
reggeized quark-diquark model whose parameters are fixed to
simultaneously fit the deep inelastic limit, the nucleon form

Ju

Jd

Lu

Ld

Q2 (GeV2)

J q

-0.4

-0.2

-0

0.2

0.4

0.6

10
-1

1 10

Ju

Jd

Ld

FIG. 18. (Color online) Quarks angular momentum, Jq , and or-
bital angular momentum, Lq , plotted vs the scale Q2.

Q2 = 4 GeV2

This paper
Bacchetta Radici
Lattice (2010)
Diehl Kroll
Thomas

Ju

J d

-0.2

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15 0.2 0.25 0.3 0.35 0.4 0.45

FIG. 19. (Color online) Ju vs Jd at Q2 = 4 GeV2 obtained from
our parametrization which is constrained by the flavor separated Dirac
and Pauli form factors, compared to other determinations including
theoretical uncertainty: A similar analysis in Ref. [58], the model
calculation in Ref. [59] (on the interpretation of this point see,
however, discussion in [60]), the model dependent analysis including
transverse momentum distributions (TMDs) data of Ref. [61], and
the most recent lattice QCD evaluation [62,63].

factors, and DVCS data. A unified picture of the Regge and
diquark contributions can be given using duality arguments.
The Regge terms include a component that corresponds to
diquark correlations in the nucleon.

Reggeization, through a spectral distribution, ρ(M2
X), for

the diquark system’s mass, accounts for the more complex
correlations that appear at large mass values of the diquark
system. Reggeization is the source of diquark correlations in
our model. At low mass values the diquark system behaves as
two quarks with spin J = 0+,1+, and scattering occurs from
a single quark within the impulse approximation.

A first outcome is that the new highly precise form
factor data produce much improved constraints on our GPD
parameters. The interpretation of the flavor dependence of the
data lies in the nonperturbative structure of both the Regge and
quark-diquark terms. It is a subtle combination of effects that
cannot be ascribed to a single, simply motivated mechanism.

In a quark-diquark scattering picture flavor dependence
arises from the difference in masses between the axial vector
(dominating the d quarks) and the scalar (dominating the u
quark) diquark components, which in turn define different
size average radii for the two flavors. However, we found out
that diquark re-scattering mechanisms are important, being
responsible for a further shift to large x values which occurs
in different proportions for the u and the d quarks. This in turn
can be explained in terms of the types of t-channel quantum
numbers (or reggeons, according to a duality picture) being
exchanged, rather than directly in terms of mass values. In
connecting to GPDs it is important to take into account the
scale dependence of the process. We found that although
through PQCD evolution the form factors expectedly relate
to larger x components of the GPDs at low Q2 than at larger
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TABLE V. Values of angular momentum, Ju and Jd , at Q2 = 4 GeV2, obtained in various approaches: Our parametrization which is
constrained by the flavor separated Dirac and Pauli form factors, compared to other determinations including theoretical uncertainty: from a
similar analysis in Ref. [58], from a model calculation [59], from a model dependent analysis including transverse momentum distributions
(TMDs) data [61], and from the most recent lattice QCD evaluation [62,63].

Reference This paper LHPC [62] Thomas [59] TMDs [61] Diehl & Kroll [58]

u 0.286 ± 0.011 0.236 ± 0.0018 0.390 ± 0.035 0.214
+0.009
−0.013

0.230
+0.009
−0.024

d −0.049 ± 0.007 0.006 ± 0.0037 −0.09 ± 0.01 −0.029
+0.021
−0.008

−0.004
+0.010
−0.016

Q2, this trend occurs similarly for the u and d quarks, and it
is therefore not flavor dependent.

Through the concept of GPDs the Regge and diquark
mechanisms are realized correspondingly in coordinate space,
in the transverse plane where our description reflects the
behavior of the form factors. In the GPD picture one can
also study the internal spatial distribution and size of these
components.

Finally, by fixing the GPD parameters using the flavor
separated form factor data we could improve on our estimate
of the values of their second moment, which measures the
proton’s angular momentum.

The newly available flavor separated form factor data at
large t stimulated this work. Further studies exploring a
possibly important role of diquark and few-parton correlations
inside the proton will be carried out in the near future.
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