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Preface

This book was written to answer one question
“Does a recursion theorist dare to write a book
on model theory?”

Gerald E. Sacks
Saturated Model Theory (1972)

These are the notes of a course that I have given for a few years in Amsterdam and
many more in Turin. Since then they have grown and other chapters will be added
soon. Find the most recent version in

https://github.com/domenicozambella/creche

" A warning sign in the margin indicates that the notation is nonstandard. Occasion-
ally, the whole exposition is substantially nonstandard. Below are a few examples.

. Fraïssé limits are presented in a general setting that accommodates a large va-
riety of examples (and I’ll add a few more). This setting is used, for example,
to discuss saturation.

. Quantifier elimination for ACF and Hilbert’s Nullstellensatz are presented in
more detail than is usual. (This may annoy some readers, but I hope it will help
others.)

. The proof of the Omitting Types Theorem uses a model theoretic construction
which highlights the analogy with the Kuratowski-Ulam Theorem.

. Imaginaries and the eq-expansion are introduced from the (equivalent) dual
perspective that the canonical name of a definable set is the set itself.

. Ramsey’s Theorem is derived from the existence of coheir sequences. This is
not the shortest proof, but it is an instructive application of coheirs.

. Along the same lines we prove the theorems of Hindman and of Hales-Jewett.
This is an instructive application of the uniqueness of coheir extensions.

. Lascar and Kim-Pillay types are introduced in a slightly unconventional way.

. Newelski’s Theorem on the diameter of Lascar types is proved in an elementary
self-contained way.

. Stability and NIP are introduced very briefly. We only discuss the properties of
externally definable sets, which we identify with approximable sets.

Torino, June 2019
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Chapter 1

Preliminaries and notation

This chapter introduces the syntax and semantic of first order logic. We assume
that the reader has at least some familiarity with first order logic.

The definitions of terms and formulas we give in Section 3 and 5 are more formal
than is required in subsequent chapters. Our main objective is to convince the
reader that a rigorous definition of language and truth is possible. However, the
actual details of such a definition are not relevant for our purposes.

1 Structures

A (first order) language L (also called signature) is a triple that consists of

1. a set Lfun whose elements are called function symbols;

2. a set Lrel whose elements are called relation symbols;

3. a function that assigns to every f ∈ Lfun, respectively r ∈ Lrel, non-negative
integers n f and nr that we call arity of the function, respectively relation, sym-
bol. We say that f is an n f -ary function symbol, and similarly for r. A 0-ary
function symbol is also called a constant.

Warning: it is customary to use the symbol L to denote both the language and
the set of formulas (to be defined below) associated to it. We denote by |L| the
cardinality of Lfun ∪ Lrel ∪ω. Note that, by definition, |L| is always infinite.

A (first order) structure M of signature L (for short L-structure) consists of

1. a set that we call the domain or support and denote by the same symbol M
used for the structure as a whole;

2. a function that assigns to every f ∈ Lfun a total map f M : Mn f → M ;

3. a function that assigns to every r ∈ Lrel a relation rM ⊆ Mnr .

We call f M, respectively rM, the interpretation of f , respectively r, in M.

Recall that, by definition, M0 = {∅}. Therefore the interpretation of a constant c is
a function that maps the unique element of M0 to an element of M. We identify cM

with cM(∅).

We may use the word model as a synonym for structure. But beware that, in some
contexts, the word is used to denote a particular kind of structure.

If M is an L-structure and A ⊆ M is any subset, we write L(A) for the language
obtained by adding to Lfun the elements of A as constants. In this context, the
elements of A are called parameters. There is a canonical expansion of M to an
L(A)-structure that is obtained by setting aM = a for every a ∈ A.

1.1 Example The language of additive groups consists of the following function sym-
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bols:

1. a constant (that is, a function symbol of arity 0) 0

2. a unary function symbol (that is, of arity 1) −

3. a binary function symbol (that is, of arity 2) + .

In the language of multiplicative groups the three symbols above are replaced by
1, −1, and · respectively. Any group is a structure in either of these two signa-
tures with the obvious interpretation. Needless to say, not all structures with these
signatures are groups.

The language of (unitary) rings contains all the function symbols above except −1.
The language of ordered rings also contains the binary relation symbol <. �

The following example is less straightforward. The reason for the choice of the
language of vector spaces will become clear in Example 1.9 below.

1.2 Example Let F be a field. The language of vector spaces over F , which we denote
by LF, extends that of additive groups by a unary function symbol k for every k ∈ F.

Recall that a vector space over F is an abelian group M together with a function
µ : F×M→ M satisfying some properties (that we assume well-known, see Exam-
ple 2.4). To view a vector space over F as an LF-structure, we interpret the group
symbols in the obvious way and each k ∈ F as the function µ(k, -). �

The languages in Examples 1.1 and 1.2, with the exception of that of ordered rings,
are functional languages, that is, Lrel = ∅. In what follows, we consider two im-
portant examples of relational languages, that is, languages where Lfun = ∅.

1.3 Example The language of strict orders only contains a binary relation symbol, usu-
ally denoted By <. The language of graphs, too, only contains a binary relation
symbol (for which there is no standard notation). �

2 Tuples

A sequence is a function a : I → A whose domain is a linear order I,<I . We may
use the notation a = 〈ai : i ∈ I〉 for sequences. A tuple is a sequence whose domain
is an ordinal, say α, then we write a = 〈ai : i < α〉. When α is finite, we may also
write a = a0, . . . , aα−1 The domain of the tuple a, the ordinal α, is denoted by |a|
and is called the length of a. If a is surjective, it is said to be an enumeration of A.

If J ⊆ I is a subset of the domain of the sequence a = 〈ai : i ∈ I〉, we write a�J
for the restriction of a to J. When J is well ordered by <I , e.g. when a is a tuple or
when J is finite, we identify a�J with a tuple. This is the tuple 〈ajk : k < β〉 where
〈jk : k < β〉 is the unique increasing enumeration on J.

" Sometimes (i.e. not always) we may overline tuples or sequences as mnemonic.
When a tuple c̄ is introduced, we write ci for the i-th element of c̄. and c�J for the
restriction of c̄ to J ⊆ |c̄|. Note that the bar is dropped for ease of notation.

The set of tuples of elements of length α is denoted by Aα . The set of tuples of
length < α is denoted by A<α . For instance, A<ω is the set of all finite tuples of
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elements of A. When α is finite we do not distinguish between Aα and the α-th
Cartesian power of A. In particular, we do not distinguish between A1 and A.

If a, b ∈ Aα and h is a function defined on A, we write h(a) = b for h(ai) = bi. We
often do not distinguish between the pair 〈a, b〉 and the tuple of pairs 〈ai, bi〉. The
context will resolve the ambiguity.

Note that there is a unique tuple of length 0, the empty set ∅, which in this context
is called empty tuple. Recall that by definition A0= {∅} for every set A. Therefore,
even when A is empty, A0 contains the empty string.

We often concatenate tuples. If a and b are tuples, we write a b or, equivalently, a, b .

3 Terms

Let V be an infinite set whose elements we call variables. We use the letters x, y,
z, etc. to denote variables or tuples of variables. We rarely refer to V explicitly, and
we always assume that V is large enough for our needs.

We fix a signature L for the whole section.

1.4 Definition A term is a finite sequence of elements of Lfun ∪V that are obtained inductively
as follows:

o. every variable, intended as a tuple of length 1, is a term;

i. if f ∈ Lfun and t is a tuple obtained by concatenating n f terms, then f t is a term. We
write f t for the tuple obtained by prefixing t by f .

We say L-term when we need to specify the language L. �

Note that any constant f , intended as a tuple of length 1, is a term (by i, the term
f is obtained concatenating n f = 0 terms and prefixing by f ). Terms that do not
contain variables are called closed terms.

The intended meaning of, for instance, the term ++ x y z is (x + y) + z. The first
expression uses prefix notation; the second uses infix notation. When convenient,
we informally use infix notation and add parentheses to improve legibility and
avoid ambiguity.

The following lemma shows that prefix notation allows to write terms unambigu-
ously without using parentheses.

1.5 Lemma (unique legibility of terms) Let a be a sequence of terms. Suppose a can be ob-
tained both by concatenating the terms t1, . . . , tn and by concatenating the terms s1, . . . , sm.
Then n = m and si = ti.

Proof By induction on |a|. If |a| = 0 than n = m = 0 and there is nothing to prove.
Suppose the claim holds for tuples of length k and let a = a1, . . . , ak+1. Then a1 is
the first element of both t1 and s1. If a1 is a variable, say x, then t1 and s1 are the
term x and n = m = 1. Otherwise a1 is a function symbol, say f . Then t1 = f t̄
and s1 = f s̄, where t̄ and s̄ are obtained by concatenating the terms t′1, . . . , t′p and
s′1, . . . , s′p. Now apply the induction hypothesis to a2, . . . , ak+1 and to the terms
t′1, . . . , t′p, t2, . . . , tn and s′1, . . . , s′p, s2, . . . , sm. �
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If x = x1, . . . , xn is a tuple of distinct variables and s = s1, . . . , sn is a tuple of
terms, we write t[x/s] for the sequence obtained by replacing x by s coordinatewise.
Proving that t[x/s] is indeed a term is a tedious task that can be safely skipped.

If t is a term and x1, . . . , xn are (tuples of) variables, we write t(x1, . . . , xn) to declare
that the variables occurring in t are among those that occur in x1, . . . , xn. When a
term has been presented as t(x, y), we write t(s, y) for t[x/s].

Finally, we define the interpretation of a term in a structure M. We begin with closed
terms. These are interpreted as 0-ary functions, i.e. as elements of the structure.

1.6 Definition Let t be a closed L(M) term. The interpretation of t , denoted by tM , is defined
by induction of the syntax of t as follows.

i. if t = f t̄, where f ∈ Lfun and t̄ is a tuple obtained by concatenating the terms
t1, . . . , tn f , then tM = f M(tM

1 , . . . , tM
n f
).

Note that in i we have used Lemma 1.5 in an essential way. In fact this ensures that the
sequence t̄ uniquely determines the terms t1, . . . , tn f . �

The inductive definition above is based on the case n f = 0, that is, the case where
f a constant, or a parameter. When t = c, a constant, t̄ is the empty tuple, and so
tM = cM(∅), which we abbreviate as cM. In particular, if t = a, a parameter, then
tM = aM = a.

Now we generalize the interpretation to all (not necessarily closed) terms. If t(x) is
a term, we define tM(x) : M|x| → M to be the function that maps a to t(a)M.

4 Substructures
In the working practice, a substructure is a subset of a structure that is closed under
the interpretation of the functions in the language. But there are a few cases when
we need the following formal definition.

1.7 Definition Fix a signature L and let M and N be two L-structures. We say that M is a
substructure of N, and write M ⊆ N , if

1. the domain of M is a subset of the domain of N

2. f M = f N � Mn f for every f ∈ Lfun

3. rM = rN ∩Mnr for every f ∈ Lrel.

Note that when f is a constant 2 becomes f M = f N , in particular the substructures
of N contains at least all the constants of N.

If a set A ⊆ N is such that

1. f N [An f ] ⊆ A for every f ∈ Lfun

then there is a unique substructure M ⊆ N with domain A, namely, the structure
with the following interpretation

2. f M = f N � An f (which is a good definition by the assumption on A);

3. rM = rN ∩ Anr .

It is usual to confuse subsets of N that satisfy 1 with the unuque substructure they
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support.

It is immediate to verify that the intersection of an arbitrary family of substruc-
tures of N is a substructure of N. Therefore, for any given A ⊆ N we may define
the substructure of N generated A as the intersection of all substructures of N that
contain A. We write 〈A〉N . The following easy proposition gives more concrete
representation of 〈A〉N

1.8 Lemma The following hold for every A ⊆ N

1. 〈A〉N =
{

tN : t a closed L(A)-term
}

2. 〈A〉N =
{

tN(a) : t(x) an L-term and a ∈ A|x|
}

3. 〈A〉N =
⋃

n∈ω

An, where A0 = A

An+1 = An ∪
{

f N(a) : f ∈ Lfun, a ∈ A
n f
n

}
. �

1.9 Example Let L be the language of groups. Let N be a group, which we consider
as an L-structure in the natural way. Then the substructures of N are exactly the
subgroups of N and 〈A〉N is the group generated by A ⊆ N. A similar claim is true
when LF is the signature of vector spaces over some fixed field F. The choice of the
language is more or less fixed if we want that the algebraic and the model theoretic
notion of substructure coincide. �

5 Formulas

Fix a language L and a set of variables V as in Section 3. A formula is a finite
sequence of symbols in Lfun ∪ Lrel ∪ V ∪ { .

=,⊥,¬,∨, ∃}. The last set contains the
logical symbols that are called respectively
.
= equality ⊥ contradiction ¬ negation

∨ disjunction ∃ existential quantifier.

Syntactically, .
= behaves like a binary relation symbol. So, for convenience set n .

= =

2. However .
= is considered as a logic symbol because its semantic is fixed (it is

always interpreted in the diagonal).

The definition below uses the prefix notation which simplifies the proof of the
unique legibility lemma. However, in practice we always we use the infix nota-
tion: t .

= s, ϕ ∨ ψ, etc.

1.10 Definition A formula is any finite sequence is obtained with the following inductive pro-
cedure

o. if r ∈ Lrel ∪ {
.
=} and t is a tuple obtained concatenating nr terms then r t is a formula.

Formulas of this form are called atomic;

i. if ϕ e ψ are formulas then the following are formulas: ⊥, ¬ ϕ, ∨ ϕ ψ, and ∃x ϕ, for
any x ∈ V. �

We use L to denote both the language and the set of formulas. We write Lat for the
set of atomic formulas and Lqf for the set of quantifier-free formulas i.e. formulas

9



where ∃ does not occur.

The proof of the following is similar to the analogous lemma for terms.

1.11 Lemma (unique legibility of formulas) Let a be a sequence of formulas. Suppose a can
be obtained both by the concatenation of the formulas ϕ1, . . . , ϕn or by the concatenation of
the formulas ψ1, . . . , ψm. Then n = m and ϕi = ψi. �

A formula is closed if all its variables occur under the scope of a quantifier. Closed
formulas are also called sentences. We will do without a formal definition of occurs
under the scope of a quantifier which is too lengthy. An example suffices: all occur-
rences of x are under the scope a quantifiers in the formula ∃x ϕ. These occurrences
are called bonded. The formula x .

=y ∧ ∃x ϕ has free (i.e., not bond) occurrences of
x and y.

Let x is a tuple of variables and t is a tuple of terms such that |x| = |t|. We
write ϕ[x/t] for the formula obtained substituting t for all free occurrences of x,
coordinatewise.

We write ϕ(x) to declare that the free variables in the formula ϕ are all among those
of the tuple x. In this case we write ϕ(t) for ϕ[x/t].

We will often use without explicit mention the following useful syntactic decompo-
sition of formulas with parameters.

1.12 Lemma For every formula ϕ(x) ∈ L(A) there is a formula ψ(x ; z) ∈ L and a tuple of
parameters a ∈ A|z| such that ϕ(x) = ψ(x ; a). �

Just as a term t(x) is a name for a function t(x)M : M|x| → M, a formula ϕ(x) is a
name for a subset ϕ(x)M⊆ M|x| which we call the subset of M defined by ϕ(x) . It
is also very common to write ϕ(M) for the set defined by ϕ(x). In general sets of
the form ϕ(M) for some ϕ(x) ∈ M are called definable.

1.13 Definitionof truth For every formula ϕ with variables among those of the tuple x we
define ϕ(x)M by induction as follows

o1. (
.
= t s)(x)M =

{
a ∈ M|x| : tM(a) = sM(a)

}
o2. (r t1 . . . tn)(x)M =

{
a ∈ M|x| : 〈tM

1 (a), . . . , tM
n (a)〉 ∈ rM

}
i0. ⊥(x)M = ∅

i1.
(
¬ξ
)
(x)M = M|x| r ξ(x)M

i2.
(
∨ ξ ψ

)
(x)M = ξ(x)M ∪ ψ(x)M

i3.
(
∃y ϕ

)
(x)M =

⋃
a∈M

(
ϕ[y/a]

)
(x)M

Condition i2 assumes that ξ and ψ are uniquely determined by ∨ ξ ψ. This is a guaranteed
by the unique legibility o formulas, Lemma 1.11. Analogously, o1 e o2 assume Lemma 1.5.

10



The case when x is the empty tuple is far from trivial. Note that ϕ(∅)M is a subset
of M0 = {∅}. Then there are two possibilities either {∅} or ∅. We wil read
them as two truth values: True and False, respectively. If ϕM = {∅} we say that
ϕ is true in M , if ϕM = ∅, we say that ϕ is false M . We write M � ϕ , respectively
M 2 ϕ . Or we may say that M models ϕ , respectively M does not model ϕ . It is
immediate to verify at

ϕ(M) =
{

a ∈ M|x| : M � ϕ(a)
}

.

Note that usually, we say formula when, strictly speaking, we mean pair that consists
of a formula and a tuple of variables. Such pairs are interpreted in definable sets
(cfr. Definition 1.13). In fact, if the tuple of variables were not given, the arity of the
corresponding set is not determined.

In some contexts we also want to distinguish between two sorts of variables that
play different roles. Some are placeholder for parameters, some are used to define
a set. In the the first chapters this distinction is only a clue for the reader, in the last
chapters it is an essential part of the definitions.

1.14 Definition A partitioned formula (strictly speaking, we should say a 2-partitioned for-
mula) is a triple ϕ(x ; z) consisting of a formula and two tuples of variables such that the
variables occurring in ϕ are all among x, z. �

We use a semicolon to separate the two tuples of variables. Typically, z is the
placeholder for parameters and x runs over the elements of the set defined by the
formula.

6 Yet more notation

Now we abandon the prefix notation in favor of the infix notation. We also use the
following logical connectives as abbreviations

> stands for ¬⊥ tautology

ϕ ∧ ψ stands for ¬
[
¬ϕ ∨ ¬ψ

]
conjunction

ϕ→ ψ stands for ¬ϕ ∨ ψ implication

ϕ↔ ψ stands for
[
ϕ→ ψ

]
∧
[
ψ→ ϕ

]
bi-implication

ϕ↔/ ψ stands for ¬
[
ϕ↔ ψ

]
exclusive disjunction

∀x ϕ stands for ¬∃x¬ ϕ universal quantifier

We agree that → e ↔ bind less than ∧ e ∨. Unary connnectives (quantifiers and
negation) bind stronger then binarary connectives. For example

∃x ϕ ∧ ψ → ¬ξ ∨ ϑ reads as
[[
∃x ϕ

]
∧ ψ

]
→

[[
¬ξ
]
∨ ϑ
]

We say that ∀x ϕ(x) and ∃x ϕ(x) are the universal, respectively, existential closure
of ϕ(x). We say that ϕ(x) holds in M when its universal closure is true in M. We
say that ϕ(x) is consistent in M when its existential closure is true in M.

The semantic of conjunction and disjunction is associative. Then for any finite set
of formulas {ϕi : i ∈ I} we can write without ambiguities
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∧
i∈I

ϕi
∨
i∈I

ϕi

When x = x1, . . . , xn is a tuple of variables we write ∃x ϕ or ∃x1, . . . , xn ϕ for
∃x1 . . . ∃xn ϕ. With first order sentences we are able to say that ϕ(M) has at least
n elements (also, no more than, or exactly n). It is convenient to use the following
abbreviations.

∃≥nx ϕ(x) stands for ∃x1, . . . , xn

[ ∧
1≤i≤n

ϕ(xi) ∧
∧

1≤i<j≤n
xi ˙6=xj

]
.

∃≤nx ϕ(x) stands for ¬∃≥n+1x ϕ(x)

∃=nx ϕ(x) stands for ∃≥nx ϕ(x) ∧ ∃≤nx ϕ(x)

1.15 Exercise Let M be an L-structure and let ψ(x), ϕ(x, y) ∈ L. For each of the follow-
ing conditions, write a sentence true in M exactly when

a. ψ(M) ∈
{

ϕ(a, M) : a ∈ M
}

;

b.
{

ϕ(a, M) : a ∈ M
}

contains at least two sets;

c.
{

ϕ(a, M) : a ∈ M
}

contains only sets that are pairwise disjoint. �

1.16 Exercise Let M be a structure in a signature that contains a symbol r for a binary
relation. Write a sentence ϕ such that

a. M � ϕ if and only if there is an A ⊆ M such that rM ⊆ A×¬A.

Remark: ϕ assert an asymmetric version of the property below

b. M � ψ if and only if there is an A ⊆ M such that rM ⊆ (A×¬A) ∪ (¬A× A).

Assume M is a graph, what required in b is equivalent to saying that M is a bipartite
graph, or equivalently that it has chromatic number 2 i.e., we can color the vertices
with 2 colors so that no two adjacent vertices share the same color. �
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Chapter 2

Theories and elementarity

1 Logical consequences

A theory is a set T ⊆ L of sentences. We write M � T if M � ϕ for every ϕ ∈ T. If
ϕ ∈ L is a sentence we write T ` ϕ when

M � T ⇒ M � ϕ for every M.

In words, we say that ϕ is a logical consequence of T or that ϕ follows from T. If
S is a theory T ` S has a similar meaning. If T ` S and S ` T we say that T and S
are logically equivalent. We may say that T axiomatizes S (or vice versa).

We say that a theory is consistent if it has a model. With the notation above, T is
consistent if and only if T 0 ⊥ .

The closure of T under logical consequence is the set ccl(T) which is defined as
follows:

ccl(T) =
{

ϕ ∈ L : sentence such that T ` ϕ
}

If T is a finite set, say T =
{

ϕ1, . . . , ϕn
}

we write ccl(ϕ1, . . . , ϕn) for ccl(T). If
T = ccl(T) we say that T is closed under logical consequences.

The theory of M is the set of sentences that hold in M and is denoted by Th(M) .
More generally, if K is a class of structures, Th(K) is the set of sentences that hold
in every model in K. That is

Th(K) =
⋂

M∈K
Th(M)

The class of all models of T is denoted by Mod(T) . We say that K is axiomatizable if
Mod(T) = K for some theory T. If T is finite we say that K is finitely axiomatizable.
To sum up

Th(M) =
{

ϕ : M � ϕ
}

Th(K) =
{

ϕ : M � ϕ for all M ∈ K
}

Mod(T) =
{

M : M � T
}

2.1 Example Let L be the language of multiplicative groups. Let Tg be the set contain-
ing the universal closure of following three formulas

1. (x · y) · z = x · (y · z);

2. x · x−1 = x−1 · x = 1;

3. x · 1 = 1 · x = x.

Then Tg axiomatizes the theory of groups, i.e. Th(K) for K the class of all groups.
Let ϕ be the universal closure of the following formula
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z · x = z · y → x = y.

As ϕ formalizes the cancellation property then Tg ` ϕ, that is, ϕ is a logical conse-
quence of Tg. Now consider the sentence ψ which is the universal closure of

4. x · y = y · x.

So, commutative groups model ψ and non commutative groups model ¬ψ. Hence
neither Tg ` ψ nor Tg ` ¬ψ. We say that Tg does not decide ψ. �

Note that even when T is a very concrete set, ccl(T) may be more difficult to grasp.
In the example above Tg contains three sentences but ccl(Tg) is an infinite set con-
taining sentences that code theorems of group theory yet to be proved.

2.2 Remark The following properties say that ccl is a finitary closure operator.

1. T ⊆ ccl(T) (extensive)

2. ccl(T) = ccl
(
ccl(T)

)
(idempotent)

3. T ⊆ S ⇒ ccl(T) ⊆ ccl(S) (increasing)

4. ccl(T) =
⋃ {

ccl(S) : S finite subset of T
}

. (finitary)

Properties 1-3 are easy to verify while 4 requires the compactness theorem. �

In the next example we list a few algebraic theories with straightforward axiomati-
zation.

2.3 Example We write Tag for the theory of abelian groups which contains the univer-
sal closure of following

a1. (x + y) + z = y + (x + z);

a2. x + (−x) = 0;

a3. x + 0 = x;

a4. x + y = y + x.

The theory Tr of (unitary) rings extends Tag with

a5. (x · y) · z = x · (y · z);

a6. 1 · x = x · 1 = x;

a7. (x + y) · z = x · z + y · z;

a8. z · (x + y) = z · x + z · y.

The theory of commutative rings Tcg contains also com of examples 2.1. The theory
of ordered rings Tor extends Tcr with

o1. x < z → x + y < z + y;

o2. 0 < x ∧ 0 < z → 0 < x · z. �

The axiomatization of the theory of vector spaces is less straightforward.

2.4 Example Fix a field F. The language LF extends the language of additive groups
with a unary function for every element of F. The theory of vector fields over F
extends Tag with the following axioms (for all h, k, l ∈ F)
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m1. h (x + y) = h x + h y

m2. l x = h x + k x, where l = h +F k

m3. l x = h (k x), where l = h ·F k

m4. 0F x = 0

m5. 1F x = x

The symbols 0F and 1F denote the zero and the unit of F. The symbols +F and ·F
denote the sum and the product in F. These are not part of LF, they are symbols we
use in the metalanguage. �

2.5 Example Recall from Example 1.3 that we represent a graph with a symmetric
irreflexive relation. Therefore theory of graphs contains the following two axioms

1. ¬r(x, x);

2. r(x, y)→ r(y, x). �

Our last example is a trivial one.

2.6 Example Let L be the empty language The theory of infinite sets is axiomatized
by the sentences ∃≥nx (x = x) for all positive integer n. �

2.7 Exercise Prove that ccl(ϕ ∨ ψ) = ccl(ϕ) ∩ ccl(ψ). �

2.8 Exercise Prove that T ∪ {ϕ} ` ψ then T ` ϕ→ ψ. �

2.9 Exercise Prove that Th(Mod(T)) = ccl(T). �

2 Elementary equivalence

The following is a fundamental notion in model theory.

2.10 Definition We say that M and N are elementarily equivalent if

ee. N � ϕ ⇔ M � ϕ, for every sentence ϕ ∈ L.

In this case we write M ≡ N . More generally, we write M ≡A N and say that M and N
are elementarily equivalent over A if the following hold

a. A ⊆ M ∩ N

ee’. equivalence ee above holds for every sentence ϕ ∈ L(A). �

The case when A is the whole domain of M is particularly important.

2.11 Definition When M ≡M N we write M � N and say that M is an elementary substructure
of N. �

In the definition above the use of the term substructure is appropriate by the follow-
ing lemma.
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2.12 Lemma If M and N are such that M ≡A N and A is the domain of a substructure of M
then A is also the domain a substructure of N and the two substructures coincide.

Proof Let f be a function symbol and ler r be a relation symbol. It suffices to prove
that f M(a) = f N(a) for every a ∈ An f and that rM ∩ Anr = rN ∩ Anr .

If b ∈ A is such that b = f Ma then M � f a = b. So, from M ≡A N, we obtain
N � f a = b, hence f N a = b. This proves f M(a) = f N(a).

Now let a ∈ Anr and suppose a ∈ rM. Then M � ra and, by elementarity, N � ra,
hence a ∈ rN . By symmetry rM ∩ Anr = rN ∩ Anr follows. �

It is not easy to prove that two structures are elementary equivalent. A direct
verification is unfeasible even for the most simple structures. It will take a few
chapters before we are able to discuss concrete examples.

We generalize the definition of Th(M) to include parameters

Th(M/A) =
{

ϕ : sentence in L(A) such that M � ϕ
}

.

The following proposition is immediate

2.13 Proposition For every pair of structures M and N and every A ⊆ M ∩ N the following
are equivalent

a. M ≡A N;

b. Th(M/A) = Th(N/A);

c. M � ϕ(a) ⇔ N � ϕ(a) for every ϕ(x) ∈ L and every a ∈ A|x|.

d. ϕ(M) ∩ A|x| = ϕ(N) ∩ A|x| for every ϕ(x) ∈ L. �

If we restate a and c of the proposition above when A = M we obtain that the
following are equivalent

a’. M � N;

c’. ϕ(M) = ϕ(N) ∩M|x| for every ϕ(x) ∈ L.

Note that c’ extends to all definable sets what Definition 1.7 requires for a few basic
definable sets.

2.14 Example Let G be a group which we consider as a structure in the multiplicative
language of groups. We show that if G is simple and H � G then also H is simple.
Recall that G is simple if all its normal subgroups are trivial, equivalently, if for
every a ∈ Gr {1} the set

{
gag−1 : g ∈ G

}
generates the whole group G.

Assume H is not simple. Then there are a, b ∈ H such that b is not the product of
elements of

{
hah−1 : h ∈ H

}
. Then for every n

H � ¬∃x1, . . . , xn
(
b = x1ax−1

1 · · · xnax−1
n
)

By elementarity the same hold in G. Hence G is not simple. �

2.15 Exercise Let A ⊆ M ∩ N. Prove that M ≡A N if and only if M ≡B N for every
finite B ⊆ A. �

2.16 Exercise Let M � N and let ϕ(x) ∈ L(M). Prove that ϕ(M) is finite if and only if
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ϕ(N) is finite and in this case ϕ(N) = ϕ(M). �

2.17 Exercise Let M � N and let ϕ(x, z) ∈ L. Suppose there are finitely many sets of
the form ϕ(a, N) for some a ∈ N|x|. Prove that all these sets are definable over M. �

2.18 Exercise Consider Zn as a structure in the additive language of groups with the
natural interpretation. Prove that Zn 6≡ Zm for every positive integers n 6= m. Hint:
in Zn there are at most 2n elements that are not congruent modulo 2. �

3 Embeddings and isomorphisms

Here we prove that isomorphic structures are elementarily equivalent and a few
related results.

2.19 Definition An embedding of M into N is an injective map h : M→ N such that

1. a ∈ rM ⇔ ha ∈ rN for every r ∈ Lrel and a ∈ Mnr ;

2. h f M(a) = f N(h a) for every f ∈ Lfun and a ∈ Mn f .

Note that when c ∈ Lfun is a constant 2 reads h cM = cN . Therefore that M ⊆ N if and
only if idM : M→ N is an embedding.

An surjective embedding is an isomorphism or, when domain and codomain coincide, an
automorphism. �

Condition 1 above and the assumption that h is injective can be summarized in the
following

1’. M � r(a) ⇔ N � r(ha) for every r ∈ Lrel ∪ {=} and every a ∈ Mnr .

Note also that, by straightforward induction on syntax, from 2 we obtain

2’ h tM(a) = tN(h a) for every term t(x) and every a ∈ M|x|.

Combining these two properties and a straightforward induction on the syntax give

3. M � ϕ(a) ⇔ N � ϕ(ha) for every ϕ(x) ∈ Lqf and every a ∈ M|x|.

Recall that we write Lqf for the set of quantifier-free formulas. It is worth noting
that when M ⊆ N and h = idM then 3 becomes

3’ M � ϕ(a) ⇔ N � ϕ(a) for every ϕ(x) ∈ Lqf and for every a ∈ M|x|.

In words this is summarized by saying that the truth of quantifier-free formulas is
preserved under sub- and superstructure.

Finally we prove that first order truth is preserved under isomorphism. We say that
a map h : M → N fixes A ⊆ M (pointwise) if idA ⊆ h. An isomorphism that fixes
A is also called an A-isomorphism.

2.20 Theorem If h : M→ N is an isomorphism then for every ϕ(x) ∈ L

# M � ϕ(a) ⇔ N � ϕ(ha) for every a ∈ M|x|

In particular, if h is an A-isomorphism then M ≡A N.
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Proof We proceed by induction of the syntax of ϕ(x). When ϕ(x) is atomic # holds
by 3 above. Induction for the Boolean connectives is straightforward so we only
need to consider the existential quantifier. Assume as induction hypothesis that

M � ϕ(a, b) ⇔ N � ϕ(ha, hb) for every tupla a ∈ M|x| and b ∈ M.

We prove that # holds for the formula ∃y ϕ(x, y).

M � ∃y ϕ(a, y) ⇔ M � ϕ(a, b) for some b ∈ M

⇔ N � ϕ(ha, hb)for some b ∈ M (by induction hypothesis)

⇔ N � ϕ(ha, c) for some c ∈ N (⇐ by surjectivity)

⇔ N � ∃y ϕ(ha, y). �

2.21 Corollary If h : M→ N is an isomorphism then h
[
ϕ(M)

]
= ϕ(N) for every ϕ(x) ∈ L. �

We can now give a few very simple examples of elementarily equivalent structures.

2.22 Example Let L be the language of strict orders. Consider intervals of R (or in Q)
as structures in the natural way. The intervals [0, 1] and [0, 2] are isomorphic, hence
[0, 1] ≡ [0, 2] follows from Theorem 2.20. Clearly, [0, 1] is a substructure of [0, 2].
However [0, 1] � [0, 2], in fact the formula ∀x (x≤1) holds in [0, 1] but is false in
[0, 2]. This shows that M ⊆ N and M ≡ N does not imply M � M.

Now we prove that (0, 1) � (0, 2). By Exercise 2.15 above, it suffices to verify that
(0, 1) ≡B (0, 2) for every finite B ⊆ (0, 1). This follows again by Theorem 2.20 as
(0, 1) and (0, 2) are B-isomorphic for every finite B ⊆ (0, 1). �

For the sake of completeness we also give the definition of homomorphism.

2.23 Definition A homomorphism is a total map h : M→ N such that

1. a ∈ rM ⇒ ha ∈ rN for every r ∈ Lrel and a ∈ Mnr ;

2. h f M(a) = f N(h a) for every f ∈ Lfun and a ∈ Mn f .

Note that only one implication is required in 1. �

2.24 Exercise Prove that if h : N → N is an automorphism and M � N then h[M] � N. �

2.25 Exercise Let L be the empty language. Let A, D ⊆ M. Prove that the following are
equivalent

1. D is definable over A;

2. either D is finite and D ⊆ A, or ¬D is finite and ¬D ⊆ A.

Hint: as structures are plain sets, every bijection f : M→ M is an automorphism. �

2.26 Exercise Prove that if ϕ(x) is an existential formula and h : M → N is an embed-
ding then

M � ϕ(a) ⇒ N � ϕ(ha) for every a ∈ M|x|.

Recall that existential formulas as those of the form ∃y ψ(x, y) for ψ(x, y) ∈ Lqf.
Note that Theorem 10.7 proves that the property above characterizes existential
formulas. �
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2.27 Exercise Let M be the model with domain Z in the language that contains only the
symbol + which is interpreted in the usual way. Prove that there is no existential
formula ϕ(x) such that ϕ(M) is the set of odd integers. Hint: use Exercise 2.26. �

2.28 Exercise Let N be the multiplicative group of Q. Let M be the subgroup of those
rational numbers that are of the form n/m for some odd integers m and n. Prove
that M � N. Hint: use the fundamental theorem of arithmetic and reason as in
Example 2.22. �

4 Quotient structures

The content of this section is mainly technical and only required later in the course.
Its reading may be postponed.

If E is an equivalence relation on N we write [c]E for the equivalence class of c ∈ N.
We use the same symbol for the equivalence relation on Nn defined as follow: if
a = a1, . . . , an and b = b1, . . . , bn are n-tuples of elements of N then a E b means
that ai E bi holds for all i. It is easy to see that b1, . . . , bn ∈ [a, ..., an]E if and only if
bi ∈ [ai]E for all i. Therefore we use the notation [a]E for both the equivalence class
of a ∈ Nn and the tuple of equivalence classes [a1]E, . . . , [an]E.

2.29 Definition We say that the equivalence relation E on a structure N is a congruence if for
every f ∈ Lfun

c1. a E b ⇒ f N a E f Nb;

When E is a congruence on N we write N/E for the a structure that has as domain the set
of E-equivalence classes in N and the following interpretation of f ∈ Lfun and r ∈ Lrel:

c2. f N/E[a]E =
[

f N a
]

E ;

c3. [a]E ∈ rN/E ⇔ [a]E ∩ rN 6= ∅.

We call N/E the quotient structure. �

By c1 the quotiont structure is well defined. The reader will recognize it as a familiar
notion by the following proposition (which is not required in the following and
requires the notion of homomorphism, see Definition 2.23. Recall that the kernel of
a total map h : N → M is the equivalence relation E such that

a E b ⇔ ha = hb

for every a, b ∈ N.

2.30 Proposition Let h : N → M be a surjective homomorphism and let E be the kernel of h.
Then there is an isomorphism k that makes the following diagram commute

N M

N/E

h

π
k
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where π : a 7→ [a]E is the projection map. �

" Quotients clutter the notation with brackets. To avoid the mess, we prefer to reason
in N and tweak the satisfaction relation. Warning: this is not standard (though it is
what we all do all the time, informally).

Recall that in model theory, equality is not treated as a all other predicates. In fact,
the interpretation of equality is fixed to always be the identity relation. In a few
contexts is convinient to allow any congruence to interprete equality. This allows to
work in N while thinking of N/E.

We define N/E �* to be N � but with equality interpreted with E. The proposition
below shows that this is the same thing as the regular truth in the quotient structure,
N/E �.

2.31 Definition For t2, t2 closed terms of L(N) define

1∗ N/E �* t1 = t2 ⇔ tN
1 E tN

2

For t a tuple of closed terms of L(N) and r ∈ Lrel a relation symbol

2∗ N/E �* r t ⇔ tN E a for some a ∈ rN

Finally the definition is extended to all sentences ϕ ∈ L(N) by induction in the usual way

3∗ N/E �* ¬ϕ ⇔ not N/E �* ϕ

4∗ N/E �* ϕ ∧ ψ ⇔ N/E �* ϕ and N/E �* ψ

5∗ N/E �* ∃x ϕ(x) ⇔ N/E �* ϕ(a) for some a ∈ N. �

Now, by induction on the syntax of formulas one can prove �* does what required.
In particular, N/E �* ϕ(a)↔ ϕ(b) for every a E b.

2.32 Proposition Let E be a congruence relation of N. Then the following are equivalent for
every ϕ(x) ∈ L

1. N/E �* ϕ(a);

2. N/E � ϕ
(
[a]E

)
. �

5 Completeness

A theory T is maximally consistent if it is consistent and there is no consistent
theory S such that T ⊂ S. Equivalently, T contains every sentence ϕ consistent with
T, that is, such that T ∪ {ϕ} is consistent. Clearly a maximally consistent theory is
closed under logical consequences.

A theory T is complete if cclT is maximally consistent. Concrete examples will be
given in the next chapters as it is not easy to prove that a theory is complete.

2.33 Proposition The following are equivalent

a. T is maximally consistent;

b. T = Th(M) for some structure M;

c. T is consistent and ϕ ∈ T or ¬ϕ ∈ T for every sentence ϕ.
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Proof To prove a⇒b, assume that T is consistent. Then there is M � T. Therefore
T ⊆ Th(M). As T is maximally consistent T = Th(M). Implication b⇒c is imme-
diate. As for c⇒a note that if T ∪ {ϕ} is consistent then ¬ϕ 6∈ T therefore ϕ ∈ T
follows from c. �

The proof of the proposition below is is left as an exercise for the reader.

2.34 Proposition The following are equivalent

a. T is complete;

b. there is a unique maximally consistent theory S such that T ⊆ S;

c. T is consistent and T ` Th(M) for every M � T;

d. T is consistent and T ` ϕ o T ` ¬ϕ for every sentence ϕ;

e. T is consistent and M ≡ N for every pair of models of T. �

2.35 Exercise Prove that the following are equivalent

a. T is complete;

b. for every sentence ϕ, o T ` ϕ o T ` ¬ϕ but not both.

By contrast prove that the following are not equivalent

a. T is maximally consistent;

b. for every sentence ϕ, o ϕ ∈ T o ¬ϕ ∈ T but not both.

Hint: consider the theory containing all sentences where the symbol ¬ occurs an
even number of times. This theory is not consistent as it contains ⊥. �

2.36 Exercise Prove that if T has exactly 2 maximally consistent extension T1 and T2
then there is a sentence ϕ such that T, ϕ ` T1 and T,¬ϕ ` T2. State and prove the
generalization to finitely many maximally consistent extensions. �

6 The Tarski-Vaught test

There is no natural notion of smallest elementary substructure containing a set of
parameters A. The downward Löwenheim-Skolem, which we prove in the next
section, is the best result that holds in full generality. Given an arbitrary A ⊆ N we
shall construct a model M � N containing A that is small in the sense of cardinality.
The construction selects one by one the elements of M that are required to realise
the condition M � N. Unfortunately, Definition 2.11 supposes full knowledge of
the truth in M and it may not be applied during the construction. The following
lemma comes to our rescue with a property equivalent to M � N that only mention
the truth in N.

2.37 Lemma(Tarski-Vaught test) For every A ⊆ N the following are equivalent

1. A is the domain of a structure M � N;

2. for every formula ϕ(x) ∈ L(A), with |x| = 1,

N � ∃x ϕ(x) ⇒ N � ϕ(b) for some b ∈ A.
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Proof 1⇒2

N � ∃x ϕ(x) ⇒ M � ∃x ϕ(x)

⇒ M � ϕ(b) for some b ∈ M

⇒ N � ϕ(b) for some b ∈ M.

2⇒1 Firstly, note that A is the domain of a substructure of N, that is, f N a ∈ A for
every f ∈ Lfun and every a ∈ An f . In fact, this follows from 2 with f a = x for ϕ(x).

Write M for the substructure of N with domain A. By induction on the syntax we
prove that for every ξ(x) ∈ L

M � ξ(a) ⇔ N � ξ(a) for every a ∈ M|x|.

If ξ(x) is atomic the claim follows from M ⊆ N and the remarks underneath Defini-
tion 2.19. The case of Boolean connectives is straightforward, so only the existential
quantifier requires a proof. So, let ξ(x) be the formula ∃y ψ(x, y) and assume the
induction hypothesis holds for ψ(x, y)

M � ∃y ψ(a, y) ⇔ M � ψ(a, b) for some b ∈ M

⇔ N � ψ(a, b) for some b ∈ M

⇔ N � ∃y ψ(a, y).

The second equivalence holds by induction hypothesis, in the last equivalence we
use 2 for the implication⇐. �

2.38 Exercise Prove that, in the language of strict orders, Rr{0} � R andRr{0} 6' R. �

7 Downward Löwenheim-Skolem

The main theorem of this section was proved by Löwenheim at the beginning of the
last century. Skolem gave a simpler proof immediately afterwards. At the time, the
result was perceived as paradoxical.

A few years earlier, Zermelo and Fraenkel provided a formalization of set the-
ory in a first order language. The downward Löwenheim-Skolem theorem implies
the existence of an infinite countable model M of set theory: this is the so-called
Skolem paradox. The existence of M seems paradoxical because, in particular, a
sentence that formalises the axiom of power set holds in M. Therefore M contains
an element b which, in M, is the set of subsets of the natural numbers. But the set
of elements of b is a subset of M, and therefore it is countable.

In fact, this is not a contradiction, because the expression all subsets of the natural
numbers does not have the same meaning in M as it has in the real world. The notion
of cardinality, too, acquires a different meaning. In the language of set theory, there
is a first order sentence that formalises the fact that b is uncountable: the sentence
says that there is no bijection between b and the natural numbers. Therefore the
bijection between the elements of b and the natural numbers (which exists in the
real world) does not belong to M. The notion of equinumerosity has a different
meaning in M and in the real world, but those who live in M cannot realise this.

2.39 Downward Löwenheim-Skolem Theorem Let N be an infinite structure and fix some
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set A ⊆ N. Then there is a structure M of cardinality ≤ |L(A)| such that A ⊆ M � N.

Proof Set λ = |L(A)|. Below we construct a chain 〈Ai : i < ω〉 of subsets of N. The
chain begins at A0 = A. Finally we set M =

⋃
i<ω Ai. All Ai will have cardinality

≤ λ so |M| ≤ λ follows.

Now we construct Ai+1 given Ai. Assume as induction hypothesis that |Ai| ≤ λ.
Then |L(Ai)| ≤ λ. For some fixed variable x let 〈ϕk(x) : k < λ〉 be an enumeration
of the formulas in L(Ai) that are consistent in N. For every k pick ak ∈ N such that
N � ϕk(ak). Define Ai+1 = Ai ∪ {ak : k < λ}. Then |Ai+1| ≤ λ is clear.

We use the Tarski-Vaught test to prove M � N. Suppose ϕ(x) ∈ L(M) is consistent
in N. As finitely many parameters occur in formulas, ϕ(x) ∈ L(Ai) for some i.
Then ϕ(x) is among the formulas we enumerated at stage i and Ai+1 ⊆ M contains
a solution of ϕ(x). �

We will need to adapt the construction above to meet more requirements on the
model M. To better control the elements that end up in M it is convenient to add
one element at the time (above we add λ elements at each stage). We need to
enumerate formulas with care if we want to complete the construction by stage λ.

2.40 Second proof of the downward Löwenheim-Skolem Theorem From set theory we
know that there is a bijection π : λ2 → λ such that j, k ≤ π(j, k) for all j, k < λ.
Suppose we have defined the sets Aj for every j ≤ i and let 〈ϕj

k(x) : k < λ〉 be an
enumeration of the consistent formulas of L(Aj). Let j, k ≤ i be such that π(j, k) = i.

Let b be a solution of the formula ϕ
j
k(x) and define Ai+1 = Ai ∪ {b}.

We use Tarski-Vaught test to prove M � N. Let ϕ(x) ∈ L(M) be consistent in N.
Then ϕ(x) ∈ L(Aj) for some j. Then ϕ(x) = ϕ

j
k for some k. Hence a witness of ϕ(x)

is enumerated in M at stage π(j, k) + 1. �

2.41 Exercise Assume L is countable and let M � N have arbitrary (large) cardinality.
Let A ⊆ N be countable. Prove there is a countable model K such that A ⊆ K � N
and K ∩M � N (in particular, K ∩M is a model). Hint: adapt the construction used
to prove the downward Löwenheim-Skolem Theorem. �

8 Elementary chains

An elementary chain is a chain 〈Mi : i < λ〉 of structures such that Mi � Mj
for every i < j < λ. The union (or limit) of the chain is the structure with as
domain the set

⋃
i<λ Mi and as relations and functions the union of the relations

and functions of Mi. It is plain that all structures in the chain are substructures of
the limit.

2.42 Lemma Let 〈Mi : i ∈ λ〉 be an elementary chain of structures. Let N be the union of the
chain. Then Mi � N for every i.

Proof By induction on the syntax of ϕ(x) ∈ L we prove

Mi � ϕ(a) ⇔ N � ϕ(a) for every i < λ and every a ∈ M|x|i

As remarked in 3’ of Section 3, the claim holds for quantifier-free formulas. In-
duction for Boolean connectives is straightforward so we only need to consider the
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existential quantifier

Mi � ∃y ϕ(a, y) ⇒ Mi � ϕ(a, b) for some b ∈ Mi.

⇒ N � ϕ(a, b) for some b ∈ Mi ⊆ N

where the second implication follows from the induction hypothesis. Vice versa

N � ∃y ϕ(a, y) ⇒ N � ϕ(a, b) for some b ∈ N

Without loss of generality we can assume that b ∈ Mj for some j ≥ i and obtain

⇒ Mj � ϕ(a, b) for some b ∈ Mj

Now apply the induction hypothesis to ϕ(x, y) and Mj

⇒ Mj � ∃y ϕ(a, y)

⇒ Mi � ∃y ϕ(a, y)

where the last implication holds because Mi � Mj. �

2.43 Exercise Let 〈Mi : i ∈ λ〉 be an chain of elementary substructures of N. Let M be
the union of the chain. Prove that M � N and note that Lemma 2.42 is not required. �

2.44 Exercise Give an alternative proof of Exercise 2.41 using the downward Löwenheim-
Skolem Theorem (instead of its proof). Hint: construct two countable chains of
countable models such that Ki ∩ M ⊆ Mi � N and A ∪ Mi ⊆ Ki+1 � N. The
required model is K =

⋃
i∈ω Ki. In fact it is easy to check that K ∩M =

⋃
i∈ω Mi. �
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Chapter 3

Ultraproducts

In these notes we only use ultraproducts to prove the compactness theorem. Since
a syntactic proof of the compactness theorem is also given, this chapter is, strictly
speaking, not required. However, the importance of ultraproducts transcends its
application to model theory.

1 Filters and ultrafilters

The material in this section will appear again in a more general setting in Chapter 5.

Let I be any set. A filter on I (or a filter of P(I) ), is a non empty set F ⊆ P(I) such
that for every a, b ∈ P(I):

f1 a ∈ F and a ⊆ b ⇒ b ∈ F

f2 a ∈ F and b ∈ F ⇒ a ∩ b ∈ F

A filter F is proper if F 6= P(I), equivalently if ∅ /∈ F. Otherwise it is improper.
By f1 above, F is proper if and only if ∅ /∈ F. A filter F is principal if F = {a ⊆ I :
b ⊆ a} for some set b ⊆ I. When this happens, we say that {b} generates F. When
I is finite every filter F is principal and generated by {∩F}. Non-principal filters
on I exist as soon as I is infinite. In fact, if I is infinite it is easy to check that the
following is a filter:

F =
{

a ⊆ I : a is cofinite in I
}

.

where cofinite (in I) means that I r a is finite. This is called the Fréchet filter on I .
The Fréchet filter is the minimal non-principal filter.

A proper filter F is maximal if there is no proper filter H such that F ⊂ H. A proper
filter F is an ultrafilter if for every a ⊆ I

a /∈ F ⇒ ¬a ∈ F where ¬a = I r a .

Below we prove that the ultrafilters are exactly the maximal filters.

3.1 Exercise Let I be infinite. Prove that every non-principal ultrafilter on I contains
Fréchet’s filter. Show that this does not hold for plain filters. �

Let B ⊆ P(I). Then the filter generated by B is the intersection of all the filters that
contain B. It is easy to check that the intersection of a family of filters is a filter,
so the notion is well defined. The following easy proposition gives a workable
characterization of the filter generated by a set.

3.2 Proposition The filter generated by B is
{

a ⊆ I :
⋂

C ⊆ a for some finite C ⊆ B
}

. �

We say that B has the finite intersection property if
⋂

C 6= ∅ for every finite C ⊆ B.
The following proposition is immediate.
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3.3 Proposition The following are equivalent:

1. the filter generated by B is non principal;

2. B has the finite intersection property. �

A proper filter F is prime if for every a, b ⊆ I.

a ∪ b ∈ F ⇒ a ∈ F or b ∈ F

Prime filters coincide with maximal filters. However, in Chapter 5, we introduce a
more general context where primality is distinct from maximality.

3.4 Proposition For every filter F on I, the following are equivalent:

1. F is a maximal filter;

2. F is a prime filter;

3. F is an ultrafilter.

Proof 1⇒2. Suppose a, b /∈ F, where F is maximal. We claim that a ∪ b /∈ F. By
maximality, there is a c ∈ F such that a ∩ c = b ∩ c = ∅. Therefore (a ∪ b) ∩ c = ∅.
Hence a ∪ b /∈ F.

2⇒3. It suffices to note that I = a ∪ ¬a ∈ F.

3⇒1. If a /∈ F, where F is an ultrafilter, then ¬a ∈ F and no proper filter contains
F ∪ {a}. �

3.5 Proposition Let B ⊆ P(I) have the finite intersection property. Then B is contained in a
maximal filter.

Proof First we prove that the union of a chain of subsets of P(I) with the finite
intersection property has the finite intersection property. Let B be such a chain and
suppose for a contradiction that

⋃
B does not have the finite intersection property.

Fix a finite C ⊆ ⋂B such that
⋂

C = ∅. As C is finite, we have C ⊆ B for some B ∈
B. Hence B does not have the finite intersection property, which is a contradiction.

Now apply Zorn’s lemma to obtain a B ⊆ P(I) which is maximal among the sets
with the finite intersection property. It is immediate that B is a filter. �

3.6 Exercise Prove that all principal ultrafilters are generated by a singleton. �

2 Direct products

In this and in the next section 〈Mi : i ∈ I〉 is a sequence of L-structures. (We are
abusing of the word sequence, since I is only a set.) The direct product of this
sequence is a structure denoted by

∏
i∈I

Mi (below this product is denoted by N ).

and defined by conditions 1-3 below. If Mi = M for all i ∈ I, we say that N is a
direct power of M and denote it by MI .

The domain of N is the set containing all functions
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1. â : I →
⋃
i∈I

Mi

â : i 7→ âi ∈ Mi

We do not distinguish between tuples of elements of N and tuple-valued functions.
For instance, the tuple â = 〈â1 . . . ân〉 is identified with the function â : i 7→ âi =
〈â1i, . . . , âni〉. On a first reading of what follows, it may help to pretend that all
functions and relations are unary.

The interpretation of f ∈ Lfun is defined as follows:

2.
(

f N â
)
i = f Mi (âi) for all i ∈ I.

The interpretation of r ∈ Lfun is the product of the relations rMi , that is, we define

3. â ∈ rN ⇔ âi ∈ rMi for all i ∈ I.

The following proposition is immediate.

3.7 Proposition If =,∧, ∀, ∃ are the only logical symbol that occur in ϕ(x) ∈ L, then for
every â ∈ N|x|

] N � ϕ(â) ⇔ Mi � ϕ(âi) for all i ∈ I.

Proof By induction on syntax. First note that we can extend 2 to all terms t(x) as
follows:

2′.
(
tN â
)
i = tMi (âi) for all i ∈ I.

Combining 3 and 2′ gives that for every r ∈ Lrel ∪ {=} and every L-term t(x)

3′. N � rtâ ⇔ Mi � rtâi for all i ∈ I.

This shows that ] holds for ϕ(x) atomic. Induction for the connectives ∧, ∀ ed ∃ is
immediate. �

A consequence of Proposition 3.7 is that a direct product of groups, rings or vector
spaces is a structure of the same sort. However, a product of fields is not a field.

3 Łoś’s Theorem

Assume the notation of the previous sections. In particular, 〈Mi : i ∈ I〉 is a se-
quence of structures and N is the direct product of this sequence.

Let F be a filter on I. We define the following congruence on N (see Definition 2.29):

â ∼F ĉ ⇔
{

i ∈ I : âi = ĉi
}
∈ F .

To check that ∼F is indeed a congruence, first we need to check that it is an equiv-
alence relation. Reflexivity and symmetry are immediate, and transitivity follows
from f2 in Section 1. Then we check that ∼F is compatible with the functions of L,
that is, that c1 of Definition 2.29 is satisfied. This follows from f1 in Section 1.

For brevity, we write N/F for N/∼F and [â]F for [â]∼F . We write N/F �* ϕ(â) for
N/F � ϕ([â]F), though a more formal interpretation of �* is given in Definition 2.31.

The structure N/F is called the reduced product of the structures 〈Mi : i ∈ I〉 or,
when Mi = M for all i ∈ I, the reduced power of M. When F is an ultrafilter we
say ultraproduct, respectively ultrapower.
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It is worth highlighting the following proposition which is a special case of Łoš’s
Theorem below (but it is does not require F to be an ultrafilter).

3.8 Proposition Let r ∈ Lrel. Let t(x) be tuple of terms of length nr, the arity of r. Then for
every â ∈ N|x| and every filter F the following are equivalent

1. N/F �* r t(â);

2.
{

i : Mi � r t(âi)
}
∈ F.

Proof 1⇒2 Assume 1. Then, by 2* of Definition 2.31, there is a b̂ ∼ tN(â) such that
N � r b̂. Therefore Mi � r b̂i for all i ∈ I. But b̂ ∼ t(â) means that

{
i : b̂i = t(âi)

}
is

in F and 2 follows.

2⇒1 Assume 2. Then, in particular, Mi � r t(âi) for some i ∈ I. Pick one of such i,
say i0. Now let b̂ ∈ N be as follows

b̂i =

{
t(âi) if Mi � r t(âi)
t(âi0) otherwise.

Then b̂ ∼ t(âi). By construction, Mi � r b̂i for all i ∈ I. Therefore 1 follows from 2*
of Definition 2.31. �

3.9 Łoś’s Theorem Let ϕ(x) ∈ L and let F be an ultrafilter on I. Then for every â ∈ N|x| the
following are equivalent:

1. N/F �* ϕ(â) (see Definition 2.31);

2.
{

i : Mi � ϕ(âi)
}
∈ F.

Proof We proceed by induction on the syntax of ϕ(x). If ϕ(x) is equality, then
equivalence holds by definition of ∼. If ϕ(x) is of the form r t(x) for some tuple of
terms t(x) and r ∈ Lrel then 1⇔2 is Proposition 3.8.

We prove the inductive step for the connectives ¬, ∧, and the quantifier ∃. We
begin with ¬. This is the only place in the proof where the assumption that F is an
ultrafilter is required. By the inductive hypothesis,

N/F �* ¬ϕ
(
â
)
⇔

{
i : Mi � ϕ(âi)

}
/∈ F

So, as F is an ultrafilter

⇔
{

i : Mi � ¬ϕ(âi)
}
∈ F .

Now consider ∧. Assume inductively that the equivalence 1⇔2 holds for ϕ(x) and
ψ(x). Then

N/F �* ϕ
(
â
)
∧ ψ

(
â
)
⇔

{
i : Mi � ϕ(âi)

}
∈ F and

{
i : Mi � ψ(âi)

}
∈ F .

As filters are closed under intersection, we obtain

⇔
{

i : Mi � ϕ(âi) ∧ ψ(âi)
}
∈ F .

Finally, consider ∃y. Assume inductively that the equivalence 1⇔2 holds for ϕ(x, y).
Then

N/F �* ∃y ϕ
(
â, y
)
⇔ N/F �* ϕ

(
â, b̂
)

for some b̂ ∈ N

⇔
{

i : Mi � ϕ(âi, b̂i)
}
∈ F for some b̂ ∈ N.

We claim this is equivalent to

⇔
{

i : Mi � ∃y ϕ(âi, y)
}
∈ F.
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The⇒ direction is trivial. For⇐, we choose as b̂ a sequence that picks a witness of
Mi � ∃y ϕ(âi, y) if it exists, and some arbitrary element of Mi otherwise. �

Let aI denote the element of MI that has constant value a. The following is an
immediate consequence of Łoś’s theorem.

3.10 Corollary For every a ∈ M

MI/F �* ϕ(aI) ⇔ M � ϕ(a) . �

We often identify M with its image under the embedding h : a 7→ [aI ]F, and say
that MI/F is an elementary extension of M.

The following corollary is an immediate consequence of the compactness theorem
that we prove in the next chapter. The construction in the proof uses ultrapowers.

3.11 Corollary Every infinite structure has a proper elementary extension.

Proof Let M be an infinite structure and let F be a non-principal ultrafilter on ω. It
suffices to show that h[M], the image of the embedding defined above, is a proper
substructure of Mω/F. As M is infinite, there is an injective function d̂ ∈ Mω. Then
for every a ∈ M the set

{
i : d̂ i = a

}
is either empty or a singleton and, as F is non

principal, it does not belong to F. So, by Łoš Theorem, we have Mω/F �* d̂ 6= aI

for every a ∈ M, that is, [d̂ ]F /∈ h[M]. �

3.12 Exercise Consider N as a structure in the language of strict orders. Let F be a
non-principal ultrafilter on ω. Prove that in Nω there is a sequence 〈âi : i ∈ ω〉 such
that Nω/F � [âi+1]F < [âi]F. �

3.13 Exercise Let I be the set of integers i > 1. For i ∈ I, let Zi denote the additive
group of integers modulo i, and let N denote the product ∏

i∈I
Zi. Prove that, if F is

a non-principal ultrafilter on I,

1. for some F, N/F does not contain any element of finite order;

2. for some F, N/F has some elements of order 2;

3. for all F, N/F contains an element of infinite order;

4. for some F, N/F � ∀x ∃y my = x for every integer m > 0;

5. for some F, N/F contains an element â such that N/F � ∀x mx 6= â for every
positive integer m. �
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Chapter 4

Compactness

We present two proofs of the compactness theorem. The first is syntactic, the second
uses ultrapowers.

Somewhat surprisingly, the compactness theorem is not strictly required for the
next few chapters (only from Chapter 9). So the reading of this chapter may be
postponed.

1 Compactness via syntax

Here we prove the compactness theorem using the so-called Henkin method. We
divide the proof in two steps. Firstly, we observe that when the language is rich
enough to name witnesses of all existential statements of the theory, these witnesses
(Henkin constants) form a canonical model. Secondly, we show that we can add the
required Henkin constants to any finitely consistent theory.

4.1 Definition Fix a language L. Assume for simplicity that formulas use only the connectives
∧, ¬ and ∃. We say that T is a Henkin theory if for all formulas ϕ and ψ

0. ϕ ∈ T ⇒ ¬ϕ /∈ T

1. ¬¬ϕ ∈ T ⇒ ϕ ∈ T

2. ϕ ∧ ψ ∈ T ⇒ ϕ ∈ T and ψ ∈ T

3. ¬(ϕ ∧ ψ) ∈ T ⇒ ¬ϕ ∈ T or ¬ψ ∈ T

4. ∃x ϕ ∈ T ⇒ ϕ[x/a] ∈ T for some closed term a

5. ¬∃x ϕ ∈ T ⇒ ¬ϕ[x/a] ∈ T for all closed terms a.

Moreover, the following holds for all closed terms a, b, c

a. a .
=a ∈ T

b. a .
=b ∈ T ⇒ b .

=a ∈ T

c. a .
=b, b .

=c ∈ T ⇒ a .
=c ∈ T

d. a .
=b, ϕ[x/a] ∈ T ⇒ ϕ[x/b] ∈ T. �

Fix a theory T and let M be the structure that has as domain the set of closed terms.
Define for every relation symbol r

rM =
{
〈a1, . . . , an〉 ∈ Mn : r(a1, . . . , an) ∈ T

}
,

where n is the arity of r. Define for every function symbol f

f M =
{
〈t, a1, . . . , an〉 ∈ Mn+1 : t = f a1 . . . an

}
.

where n is the arity of r. An easy proof by induction shows that tM = t for all
closed terms t.
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Finally, let E be the relation on M that holds when a .
=b ∈ T.

4.2 Lemma The relation E is a congruence on M (as defined in Section 2.4).

Proof Axioms a-c ensure that E is an equivalence. We claim that that E is a con-
gruence. This is immediate for unary functions: apply e to the formula f x .

= f a. In
general the claim is easily proved by induction on the arity of f . �

Condition 0 is the only negative requirement of Definition 4.1 (it requires that T
does not contain some formula). By condition 0, Henkin theories do not contain
any blatant inconsistency. Surprisingly, this is all what is needed for the existence
of a model.

4.3 Theorem If T is Henkin theory then M/E � T.

Proof By induction on the complexity of the formula ϕ in T we prove that

1. ϕ ∈ T ⇒ M/E �* ϕ for the notation cf. Definition 2.31

2. ¬ϕ ∈ T ⇒ M/E �* ¬ϕ

Induction is immediate by 1-5 of Definition 4.1. Hence we only need to verify the
claim for atomic formulas. Consider first the formula ϕ = (t1

.
=t2) where the ti are

closed terms. By the definition of M, for every closed term t we have tM = t so
claim 1 is clear. As for 2, suppose M/E �* t1

.
=t2, that is t1Et2. Then t1

.
=t2 ∈ T and

¬t1
.
=t2 /∈ T follows from axiom 0.

Now assume ϕ = rt for a relation r and a tuple of closed terms t. The argument is
similar: 1 is immediate; to prove 2 suppose that M/E �* rt. Then tEs ∈ rM for some
tuple of closed terms s. Then rs ∈ T, and by d rt ∈ T. Finally from 0 we obtain
¬rt /∈ T. �

4.4 Proposition If every finite subset of T has a model then there is a Henkin theory T′ con-
taining T. The theory T′ may be in an expanded language L′.

Proof Set λ = |L|. Let 〈ci : i < λ〉 be some constants not in L. Let Li be the language
with constants among c�i. Fix a variable x and an enumeration 〈ϕi(x) : i < λ〉 of
the formulas in Lλ. Suppose that the enumeration is such that ϕi(x) ∈ Li.

We now construct a sequence of finitely consistent Li-theories Ti. If α is 0 or a limit
ordinal we define

Tα = T ∪
⋃
i<α

Ti.

As for successor ordinals, let Si be a maximally finitely consistent set of Li-formulas
containing Ti. (Here we use Zorn’s lemma, but see the remark below.) It is imme-
diate that Si satisfies all requirements in Definition 4.1 but possibly for 4.

Now, if ∃x ϕi(x) ∈ Si set Ti+1 = Si ∪
{

ϕ[x/ci]
}

. As ci does not occur in Si, it is
evident that Ti+1 is finitely consistent.

Recall that we assumed ∃x ϕi(x) ∈ Li. Then, either ∃x ϕi(x) ∈ Ti+1 or it is not
finitely consistent with Ti+1. Hence stage i settle requirement 4 in Definition 4.1 as
far as ϕi(x) is concerned.

At stage λ all possible counterexamples to 4 have been ruled out, then T′ = Tλ is
the required Henkin theory. �
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A theory T is finitely consistent if all its finite subsets are consistent. The following
theorem is an immediate corollary of the proposition above.

4.5 Compactness Theorem If T is finitely consistent then T is consistent. �

4.6 Remark To keep the proof above short, we applied Zorn’s lemma. This is not
strictly necessary. In fact, if we are given a finitely consistent theory T. We can
extend T to a theory S that meets Definition 4.1, up to condition 4, by adding sys-
tematically all required formulas. The procedure is effective, hence Zorn’s lemma
is not required.

It is interesting to consider the case when T is finite. Assume also (though this
is not really necessary) that the language contains finitely many symbols and no
functions other then constants. Then the construction in Proposition 4.4 is an ef-
fective procedure that produces in ω steps a model of T. At each step Tn is finite
and contains only subformulas of formulas in T or variant on these obtained by
substituting constants for variables.

Now suppose instead that we start with an inconsistent T. The procedure above has
to come to a halt at same (finite) stage because a model of T does not exist. When
the procedure halts, we end up with a finite sequence of finite theories T0, . . . , Tn
where T0 = T and Tn contains some blatant inconsistency (i.e. ϕ and ¬ϕ). Many
have interpreted T0, . . . , Tn as a formal proof of the inconsistency of T.

All this has little or no interest to model theory. But it highlights a fascinating
phenomenon. When we say that T is inconsistent, we say that no structure models
T. This expression uses a (meta linguistic) universal quantifier that ranges over the
class of all structures. Yet this is equivalent to an expression that merely asserts the
existence of a finite sequence of finite theories. �

2 Compactness via ultraproducts

Recall that a theory is finitely consistent if all its finite subsets are consistent. The
following theorem is the fiat lux of model theory.

4.7 Compactness Theorem Every finitely consistent theory is consistent.

Proof Let T be a finitely consistent theory.

We claim that the structure N/F which we define below is a model of T. Let I
be the set of consistent sentences I in the language L. For every ξ ∈ I pick some
Mξ � ξ. For any sentence ϕ ∈ L we define

Xϕ =
{

ξ ∈ I : ξ ` ϕ
}

.

Clearly ϕ is consistent if and only if Xϕ 6= ∅. Moreover Xϕ∧ψ = Xϕ ∩ Xψ. Hence,
as T is finitely consistent, the set B =

{
Xϕ : ϕ ∈ T

}
has the finite intersection

property. Therefore B extends to an ultrafilter F on I. Define

N = ∏
ξ∈I

Mξ .

We claim that N/F � T. By Łoš Theorem, for every sentence ϕ ∈ L
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N/F � ϕ ⇔
{

ξ : Mξ � ϕ
}
∈ F .

By the definition of F, for every ϕ ∈ T, the set Xϕ ⊆
{

ξ : Mξ � ϕ
}

belongs to F.
Therefore N/F � T, et lux fuit. �

The compactness theorem can be formulated in the following apparently stronger
way.

4.8 Corollary If T ` ϕ then there is some finite S ⊆ T such that S ` ϕ.

Proof Suppose S 0 ϕ for every finite S ⊆ T. Then for every finite S ⊆ T there
is a model M � S ∪ {¬ϕ}. In other words, T ∪ {¬ϕ} is finitely consistent. By
compactness T ∪ {¬ϕ} hence T 0 ϕ. �

4.9 Exercise Let Φ ⊆ L be a set of sentences and suppose that ` ψ ↔ ∨
Φ for some

sentence ψ. Prove that there is a finite Φ0 ⊆ Φ such that ` ψ↔ ∨
Φ0. �

4.10 Exercise Let C be a class of structures. Let Th(C) =
{

ϕ | M � ϕ for all M ∈ C
}

be
the theory of C. Prove the following are equivalent

1. N � Th(C);

2. N is elementarily equivalent to an ultraproduct of elements of C.

3 Upward Löwenheim-Skolem

Recall that a type is a set of formulas. When we present types we usually declare
the variables that may occur in it – we write p(x) , q(x) , etc. where x is a tuple of
variables. When x is the empty tuple, p(x) is just a theory. We identify a finite types
with the conjunction of the formulas contained in it.

We write M � p(a) if M � ϕ(a) for every ϕ(x) ∈ p. We say that a is a solution
or a realization of p(x). An equivalent notation is M, a � p(x) or, when M is clear
from the context, a � p(x) . We say that p(x) is consistent in M it has a solution in
M. In this case we may write M � ∃x p(x) . We say that p(x) is consistent if it is
consistent in some model.

We say that a type p(x) is finitely consistent if all its finite subsets are consistent. If
its finite subsets are all consistent in the same model M, we say that p(x) is finitely
consistent in M . The following theorem shows that the latter notion, which is trivial
for theories, is very interesting for types.

4.11 Compactness Theorem for types Every finitely consistent type p(x) ⊆ L is consistent.
Moreover, if p(x) ⊆ L(M) is finitely consistent in M then it is realised in some elementary
extension of M.

Proof Let L′ be the expansion of L obtained by adding the fresh symbols c, a tuple
of constants of the same length as x. Then p(c) is a finitely consistent theory in the
language L′. By the compactness theorem there is an L′-structure N′ � p(c). Let N
be the reduct of N′ to L, that is, the L-structure with the same domain and the same
interpretation as N′ on the symbols of L. Note that, though the constants c are not
in L, the elements of the tuple cN′ remain in N. Then N, cN′ � p(x).

33



As for the second claim, let a be an enumeration of M. We can assume that p(x)
has the form p′(x ; a) for some p′(x ; z) ⊆ L. Define

q(z) =
{

ϕ(z) : M � ϕ(a)
}

Clearly, p′(x ; z) ∪ q(z) is finitely consistent. Then, by the first part of the proof, it is
realized in some model N by some c′, a′ ∈ N|x,z|. Let h = {〈a, a′〉}. Then for every
ϕ(z) ∈ L we have

M � ϕ(a) ⇔ ϕ(z) ∈ q ⇔ N � ϕ(ha).

In the last equivalence, ⇐ holds because q(z) is complete. (Using a term that will
be introduced only in Section 5.4, this shows that h : M → N is an elementary
embedding.)

By the remarks after Definition 2.19, h : M → N is an embedding. Hence the
equivalence above prove that h[M] � N. So the theorem follows by identifying M
with h[M]. �

The following corollary is historically important.

4.12 Upward Löwenheim-Skolem Theorem Every infinite structure has arbitrarily large
elementary extensions.

Proof Let x = 〈xi : i < λ〉 be a tuple of distinct variables, where λ is an arbitrary
cardinal. The type p(x) =

{
xi 6= xj : i < j < λ

}
is finitely consistent in every

infinite structure and every structure that realises p has cardinality ≥ λ. Hence the
claim follows from Theorem 4.11. �

4 Finite axiomatizability

A theory T is finitely axiomatizable if ccl(S) = ccl(T) for some finite S. The follow-
ing theorem shows that we can restrict the search for S to the subsets of T.

4.13 Proposition For every theory T the following are equivalent

1. T is finitely axiomatizable;

2. there a finite S ⊆ T such that S ` T.

Proof Only 1⇒2 requires a proof. If T is finitely axiomatizable, there is a sentence
ϕ such that ccl(ϕ) = ccl(T). Then T ` ϕ ` T. By Proposition 4.8 there is a finite
S ⊆ T such that S ` ϕ. Then also S ` T. �

If L is empty, then every structure is a model. The theory of infinite sets is the set
of sentences that hold in every infinite structure.

4.14 Example The theory of infinite sets is not finitely axiomatizable. Define

T∞ =
{
∃≥nx (x = x)

}
: n ∈ ω

}
Every infinite set is a model of T∞ and, vice versa, every model of T∞ is is an infinite
set. Then ccl(T∞) is the theory of infinite sets. Suppose for a contradiction that T∞

is finitely axiomatizable. By Proposition 4.13, ∃≥nx(x = x) ` T∞ for some n. Any
set of cardinality n + 1 proves that this is not the case. �
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The following is a less trivial example. It proves a claim we made in Exercise 1.16.

4.15 Example Let Tgph be the theory of graphs, as in Example 2.5. Let K be the follow-
ing class of structures

K =
{

M � Tgph : rM ⊆ (A×¬A) ∪ (¬A× A) for some A ⊆ M
}

.

We prove that K is axiomatizable but not finitely axiomatizable: K = Mod(T) for
some theory T, but any such T is not finite.

A path of length n in M is a sequence c0, . . . , cn ∈ M such that M � r(ci, ci+1) for
every 0 ≤ i < n. A path is closed if c0 = cn. We claim that the following theory
axiomatizes K.

T =

{
¬∃x0, . . . x2n+1

[
2n∧

i=0

r(xi, xi+1) ∧ x0 = x2n+1

]
: n ∈ ω

}
.

In words, T says that all closed paths have even length. Inclusion K ⊆ Mod(T) is
clear, we prove Mod(T) ⊆ K. Let M � T and let Ao ⊆ M contain exactly one point
for every connected component of M. Define

A =

{
b : M � ∃x0, . . . , x2n

[
2n−1∧
i=1

r(xi, xi+1)∧ a=x0 ∧ x2n=b

]
, a ∈ Ao, n ∈ ω

}
.

We claim that rM ⊆ (A× ¬A) ∪ (¬A× A), hence M ∈ K. We need to verify that
if r(b, c) then neither b, c ∈ A nor b, c ∈ ¬A. Suppose for a contradiction that
r(b, c) and b, c ∈ A (the case b, c ∈ ¬A is similar). As b and c belong to the same
connected component, there are two paths b0, . . . , b2n and c0, . . . , c2m that connect
a = b0 = c0 ∈ Ao to b = b2n and c = c2m. Then a, b1, . . . , b2n, c2m, . . . , c1, a is a closed
path of odd length. A contradiction.

We now prove that K is not finitely axiomatizable. By Proposition 4.13 it suffices to
note that no finite S ⊆ T axiomatizes K. �
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Chapter 5

Types and morphisms

In Section 1 and 2 we introduce distributive lattices and prime filters and prove
Stone’s representation theorem for distributive lattices. In Section 3 we discuss lat-
tices that arise from sets of formulas and their prime filters (prime types). These
sections are mainly required for the discussion of Hilbert’s Nullstellensatz in Sec-
tion 8.7 below.

There is a lot of notation in this chapter. The reader may skim through and return
to it when we refer to it.

1 Semilattices and filters

A preorder is a set P with a transitive and symmetric relation which we usually
denote by ≤. If A, B ⊆ P we write A ≤ B if a ≤ b for every a ∈ A and b ∈ B. We
write a ≤ B and A ≤ b for {a} ≤ B and A ≤ {b} respectively.

Quotienting a preorder by the equivalence relation

a ∼ b ⇔ a ≤ b and b ≤ a

gives a (partial) order. We often do not distinguish between a preorder and the
partial order associated to it. Preorders are very common; here we are interested in
the one induced by the relation of logical consequence

ϕ ≤ ψ ⇔ ϕ ` ψ,

or, more generally, by the relation of logical consequence over a theory T , that is

ϕ ≤ ψ ⇔ T ∪ {ϕ} ` ψ.

A partial order P is a lower semilattice if for each pair a, b ∈ P there is a maximal
element c such that c ≤ {a, b}. We call c the meet of a and b. The meet is unique
and is denoted by a ∧ b . Dually, a partial order is an upper semilattice if for each
pair of elements a and b there is a minimal element c such that {a, b} ≤ c. This c is
called the join of a and b. The join is unique and is denoted by a ∨ b . A lattice is
simultaneously a lower and an upper semilattice.

An element c such that c ≤ P is called a lower bound or a bottom. An element
such that P ≤ c is called an upper bound or a top. Lower and upper bounds are
unique and will be denoted by 0, respectively 1. Other symbols common in the
literature are ⊥ , respectively > . A semilattice is bounded if it has both an upper
and a lower bound.

For the rest of this section we assume that P is a bounded lower semilattice.

The meet is associative and commutative

(a ∧ b) ∧ c = a ∧ (b ∧ c)

a ∧ b = a ∧ b.
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Hence we may unambiguously write a1 ∧ · · · ∧ an. When C ⊆ P is finite, we write
∧C for the meet of all the elements of C. We agree that ∧∅ = 1.

In an upper semilattice, the dual properties hold for the join. We write ∨C for the
join of all elements in C and we agree that ∨∅ = 0.

A filter of P is a non-empty set F ⊆ P that satisfies the following for all a, b ∈ P

f1. a ∈ F and a ≤ b ⇒ b ∈ F

f2. a, b ∈ F ⇒ a ∧ b ∈ F.

We say that F is a proper filter if F 6= P, equivalently if 0 /∈ F. We say that F is
principal if F =

{
b : a ≤ b

}
for some a ∈ P. More precisely, we say that F is the

principal filter generated by a . A proper filter F is maximal if there is no filter H
such that F ⊂ H ⊂ P.

We say that a filter F is maximal relative to c if c /∈ F and c ∈ H for every H ⊃ F. So,
a filter F is maximal if it is maximal relative to 0. We say that F is relatively maximal
when it is maximal relative to some c.

For B ⊆ P we define the filter generated by B to be the intersection of all the filters
containing B. It is easy to verify that this is indeed a filter. When B is a finite set,
the filter generated by B is the principal filter generated by ∧B. In general we have
the following.

5.1 Proposition For every B ⊆ P, the filter generated by B is the set{
a : ∧C ≤ a for some finite non-empty C ⊆ B

}
. �

This has the following important consequence.

5.2 Proposition Let B ⊆ P and let c ∈ P. If ∧C 6≤ c for every finite non-empty C ⊆ B, then
B is contained in a maximal filter relative to c.

Proof Let F be the set of filters F such that B ⊆ F and c /∈ F. By Proposition 5.1,
F is non-empty. It is immediate that F is closed under unions of arbitrary chains.
Then, by Zorn’s lemma, F has a maximal element. �

5.3 Exercise Prove that the following are equivalent

1. F is maximal relative to c;

2. for every a /∈ F there is d ∈ F such that d ∧ a ≤ c. �

5.4 Exercise (A generalization of the exercise above.) Let B ⊆ P and let c ∈ P be
such that ∧C 6≤ c for every finite non-empty C ⊆ B. Prove that the following are
equivalent

1. B is a maximal filter relative to c;

2. a /∈ B ⇒ b ∧ a ≤ c for some b ∈ B. �

5.5 Exercise Let F ⊆ P be a non-principal filter. Is F always contained in a maximal
non-principal filter ? �
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2 Distributive lattices and prime filters

Let P be a lattice. We say that P is distributive if for every a, b, c ∈ P

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

Throughout this section we assume that P is a bounded distributive lattice.

A proper filter F is prime if for every a, b ∈ P

a ∨ b ∈ F ⇒ a ∈ F or b ∈ F.

5.6 Proposition Every relatively maximal filter of P is prime.

Proof Let F be maximal relative to c and assume that a /∈ F and b /∈ F. Then, by
Exercise 5.3, there are d1, d2 ∈ F such that d1 ∧ a ≤ c and d2 ∧ b ≤ c. Let d = d1 ∧ d2.
Then d ∧ a ≤ c and d ∧ b ≤ c and therefore (d ∧ a) ∨ (d ∧ b) ≤ c. Hence, by distributivity,
d ∧ (a ∨ b) ≤ c. Then a ∨ b /∈ F. �

The Stone space of P is a topological space that we denote by S(P) . The points of
S(P) are the prime filters of P. The closed sets of the Stone topology are arbitrary
intersections of sets of the form

[a]P =
{

F : prime filter such that a ∈ F
}

.

for a ∈ P. In other words, the sets above form a base of closed sets of the Stone
topology. Using 1 and 3 in the following proposition the reader can easily check
that this is indeed a base for a topology.

5.7 Proposition For every a, b ∈ P we have

1.
[
0
]
P

= ∅;

2.
[
1
]
P

= S(P);

3.
[
a
]
P
∪
[
b
]
P

=
[
a ∨ b

]
P

;

4.
[
a
]
P
∩
[
b
]
P

=
[
a ∧ b]P.

Proof The verification is immediate. Only 3 requires that the filters in S(P) are
prime. �

The closed subsets of S(P) ordered by inclusion form a distributive lattice. The
following is a representation theorem for distributive lattices.

5.8 Theorem The map a 7→ [a]P is an embedding of P in the lattice of the closed subsets of
S(P). In particular

1. 0 7→ ∅;

2. 1 7→ S(P);

3. a ∨ b 7→
[
a
]
P
∪
[
b
]
P

;

4. a ∧ b 7→
[
a
]
P
∩
[
b
]
P

.

Proof It is immediate that the map above preserves the order and Proposition 5.7
shows that it preserves the lattice operations. We prove that the map is injective. Let
a 6= b, say a � b. We claim that

[
a
]
P
*
[
b
]
P

. There is a filter F that contains a and is
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maximal relative to b. By Proposition 5.6 such an F is prime. Then F ∈ [a]Pr [b]P. �

5.9 Theorem With the Stone topology, S(P) is a compact space.

Proof Let 〈[ai]P : i ∈ I〉 be basic closed sets such that for every finite J ⊆ I

a.
⋂
i∈J

[ai]P 6= ∅.

We claim that

b.
⋂
i∈I

[ai]P 6= ∅.

By 4 of Proposition 5.7 and a we obtain that ∧C � 0 for every finite C ⊆ {ai : i ∈ I}.
By Proposition 5.2, there is a maximal (relative to 0) filter containing {ai : i ∈ I}. By
Proposition 5.6, such filter is prime and it belongs to the intersection in b. �

Let a, b ∈ P. If a ∧ b = 0 and a ∨ b = 1, we say that b is the complement of a (and
vice versa). The complement of an element need not exist. If the complement exists
it is unique, the complement of a is denoted by ¬a .

5.10 Lemma Let U ⊆ S(P) be a clopen set. Then U = [a]P for some a ∈ P, and ¬a exists.

Proof As both U and S(P)rU are closed, for some sets A, B ⊆ P⋂
x∈A

[x]P = U

⋂
y∈B

[y]P = S(P)rU.

By compactness, that is Theorem 5.9, there are some finite A0 ⊆ A and B0 ⊆ B such
that ⋂

x∈A0

[x]P ∩
⋂

y∈B0

[y]P = ∅

Let a = ∧A0 and b = ∧B0. From claim 4 of Proposition 5.7 we obtain [a]P ∩ [b]P = ∅.
Therefore U ⊆ [a]P ⊆ S(P)r [b]P ⊆ U. Hence U = [a]P and b = ¬a. �

A Boolean algebra is a bounded distributive lattice where every element has a com-
plement. In a Boolean algebra, the sets [a]P are clopen and they form also a base of
open set of the topology of S(P). A topology that has a base of clopen sets is called
zero-dimensional. By the following proposition the Stone topology of a Boolean
algebra is Hausdorff.

A proper filter of a Boolean algebra is an ultrafilter if either a ∈ F or ¬a ∈ F for
every a.

5.11 Proposition Let P be a Boolean algebra. Then the following are equivalent

1. F is maximal;

2. F is prime;

3. F is an ultrafilter.

Proof Implication 2⇒ 3 is obtained observing that a ∨ ¬a ∈ F. The rest is immedi-
ate. �
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5.12 Exercise Prove that the stone topology on S(P) has a base of open compact sets. �

5.13 Exercise Suppose we had defined S(P) as the set of relatively maximal filters.
What could possibly go wrong ? �

3 Types as filters

This section we work with a fixed set of formulas ∆ all with free variables among
those of some fixed tuple x . In this section we do not display x in the notation.
Subsets of ∆ are called ∆-types.

We associate to ∆ a bounded lattice P(∆) . This is the closure under conjunction
and disjunction of the formulas in ∆ ∪ {⊥,>}. The (pre)order relation in P(∆) is
given by

ψ ≤ ϕ ⇔ T ∪ {ψ} ` ϕ,

for some fixed theory T. In this section, to lighten notation, we absorb T in the
symbol `. If p is a ∆-type we denote by 〈p〉P the filter in P(∆) generated by p.

5.14 Lemma For every ∆-type p

〈p〉P =
{

ϕ ∈ P(∆) : p ` ϕ
}

.

In particular p is consistent if and only if 〈p〉P is a proper filter.

Proof Inclusion ⊆ is clear. Inclusion ⊇ is a consequence of the Compactness The-
orem. In fact p ` ϕ implies that ψ ` ϕ for some formula ψ that is conjunction of
formulas in p. Then ϕ ∈ 〈p〉P follows from ψ ∈ 〈p〉P and ψ ≤ ϕ. �

We say that p ⊆ ∆ is a principal ∆-type if 〈p〉P is a principal. The following lemma
is an immediate consequence of the Compactness Theorem. Note that in 3 the
formula ϕ is arbitrary, possibly not even in P(∆).

5.15 Lemma For every ∆-type p the following are equivalent

1. p is principal;

2. ψ ` p ` ψ for some formula ψ (here ψ is any formula, it need not be in ∆);

3. ϕ ` p where ϕ is conjunction of formulas in p. �

Proof Implications 1⇒2 is immediate by Lemma 5.14. To prove 2⇒3 suppose ψ `
p ` ψ. Apply compactness to obtain a formula ϕ, conjunction of formulas in p,
such that ϕ ` ψ. Implications 3⇒1is trivial. �

5.16 Definition We say that p ⊆ ∆ is a prime ∆-type if 〈p〉P is a prime filter. We say that p
is a complete ∆-type if 〈p〉P is a maximal filter. �

Though in general neither ∆ nor P(∆) are closed under negation, Lemma 5.14 has
the following consequence.

5.17 Proposition For every consistent ∆-type p the following are equivalent

1. p is complete;
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2. p is consistent and either p ` ϕ or p ` ¬ϕ for every formula ϕ ∈ ∆.

Proof 2⇒1. Assume 2. As p is consistent, 〈p〉P is a proper filter. To prove that it is
maximal suppose ϕ /∈ 〈p〉P. Then p 0 ϕ and from 2 it follows that p ` ¬ϕ. Hence
no proper filter contains p ∪ {ϕ}.

1⇒2. As 〈p〉P is proper, p is consistent. Suppose p 0 ϕ. Then ϕ /∈ 〈p〉P and, as
〈p〉P is maximal, p∪{ϕ} generates the improper filter. Then p∪{ϕ} is inconsistent.
Hence p ` ¬ϕ. �

Given a model M and a tuple c ∈ M|x| the ∆-type of c in M is the sets

∆-tpM(c) =
{

ϕ(x) ∈ ∆ : M � ϕ(c)
}

When the model M is clear from the context we omit the subscript. When x and c
are the empty tuple, we write Th∆(M) for ∆- tpM(c).

5.18 Lemma For every ∆-type p the following are equivalent

1. p is prime;

2. p ∪
{
¬ϕ : ϕ ∈ ∆ such that p 0 ϕ

}
is consistent;

3.
{

ϕ ∈ ∆ : p ` ϕ
}

= ∆- tpM(c) for some model M and some tuple c ∈ M|x|.

Proof Implications 2⇒3⇒1 are clear, we prove 1⇒2. By compactness if the type
in 2 is inconsistent then there are finitely many formulas ϕ1, . . . , ϕn ∈ ∆ such that
p 0 ϕi and

p `
n∨

i=1

ϕi.

hence p is not prime. �

The following corollary is immediate. When it comes to verifying that a given
∆-type is prime, it simplifies the proof.

5.19 Corollary For every ∆-type p the following are equivalent

1. p is prime;

2. p `
n∨

i=1

ϕi ⇒ p ` ϕi for some i ≤ n, for every n and every ϕ1, . . . , ϕn ∈ ∆. �

The set ∆ above contains only formulas with variables among those of the tuple x.
In the following it is convenient to consider sets ∆ that are closed under substitution
of variables with any other variable. The set of prime ∆-types is denoted by S(∆) ,
and we write Sx(∆) when we restrict to types in with variables among those of the
tuple x.

The most common ∆ used in the sequel is the set of all formulas in L(A) and the
underlying theory is Th(M/A) for some given model M containing A. In this case
we write tpM(c/A) for ∆- tpM(c) or, when A is empty, tpM(c) . The set Sx(∆) is
denoted by Sx(A). The topology on Sx(A) is generated by the clopen[

ϕ(x)
]

=
{

p ∈ Sx(A) : ϕ(x) ∈ p
}

.

Sometimes ∆ is the set of all formulas of a given syntactic form. Then we use some
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more suggestive notation that we summarize below.

5.20 Notation The following are some of the most common ∆-types and ∆-theories

1. at-tp(c) , That(M) when ∆ = Lat

2. at±-tp(c) , That±(M) when ∆ = Lat±

3. qf-tp(c) , Thqf(M) when ∆ = Lqf.

Clearly, the types/theories in 2 and 3 are equivalent. Most used is the theory
That±(M/M) which is called the diagram of M and has a dedicated symbol: Diag(M) . �

5.21 Remark Let A ⊆ M ∩ N. The following are equivalent

1. N � Diag〈A〉M;

2. 〈A〉M is a substructure of N. �

4 Morphisms

First we set the meaning of the word map..

5.22 Definition A map consists a triple f : M→ N where

1. M is a set (usually a structure) called the domain of the map;

2. N is a set (usually a structure) called the codomain the map;

3. f is a function with domain of definition dom f ⊆ M and image img f ⊆ N.

By cardinality of f : M→ N we understand the cardinality of the function f . �

If dom f = M we say that the map is total ; if img f = N we say that it is surjective.
The composition of two maps and the inverse of a map are defined in the obvious
way.

5.23 Definition Let ∆ be a set of formulas with free variables in the tuple x = 〈xi : i < λ〉. The
map h : M→ N is a ∆-morphism if it preserves the truth of all formulas in ∆. By this we
mean that

p. M � ϕ(a) ⇒ N � ϕ(ha) for every ϕ(x) ∈ ∆ and every a ∈ (dom h)|x|.

Notation: if a is the tuple 〈ai : i < λ〉 then ha is the tuple 〈hai : i < λ〉. �

When ∆ = L we will say elementary map for ∆-morphism. When ∆ = Lat we say
partial homomorphism and when ∆ = Lat± we say either partial embedding or
partial isomorphism. The reason for the latter name is explained in Remark 5.24.

It is immediate to verify that a partial embedding which is total is an embedding
(so, there is not conflict with Definition 2.19 above). Similarly, a partial embedding
which is total and surjective is an isomorphism. The precise connection between
partial and total homo/iso-morphisms is discussed in following remark.

5.24 Remark For every map h : M→ N the following are equivalent

1. h : M→ N is a partial isomorphism;
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2. there is an isomorphism k : 〈dom h〉M → 〈img h〉N that extends h.

Moreover, k unique. The equivalence holds replacing isomorphism by homomor-
phism (in which case in 2 we obtain an surjection). The extension k is obtained
defining k

(
t(a)

)
= t(ha).

A similar fact holds for partial homomorphims if we replace isomorphism by epi-
morphism, i/e/ surjective (partial) homomorphism. �

We use ∆-morphisms to compare, locally, two structures. There are different ways
to do this, in the proposition below we list a few synonymous expressions. But first
some more notation. When x is a fixed tuple of variables, a ∈ M|x| and b ∈ N|x| we
write

M, a V∆ N, b if M � ϕ(a)⇒ N � ϕ(b) for every ϕ(x) ∈ ∆.

M, a ≡∆ N, b if M � ϕ(a)⇔ N � ϕ(b) for every ϕ(x) ∈ ∆.

The following equivalences are immediate and will be used without explicit refer-
ence.

5.25 Proposition For every given set of formulas ∆ and every map h : M → N the following
are equivalent

1. h : M→ N is a ∆-morphism;

2. M, aV∆ N, ha for every a ∈ (dom h)|x|;

3. ∆- tpM(a) ⊆ ∆- tpN(ha) for every a ∈ (dom h)|x|;

4. N, ha � p(x) for every a ∈ (dom h)|x| and p(x) = ∆- tpM(a). �

5.26 Remark Condition p in Definition 5.23 apply to tuples x of any length, in particular
to the empty tuple. In this case ϕ(x) is a sentence, a ∈ (dom h)0 = {∅} is the empty
tuple, and p asserts that Th∆(M) ⊆ Th∆(N). When h = ∅ this is actually all that p
says. In fact ∅|x| = ∅ unless |x| = 0. Still, Th∆(M) ⊆ Th∆(N) may be a non trivial
requirement. �

5.27 Definition We call Th∆(M) the ∆-theory of M. We say that the theory T is ∆-complete
if Th∆(M) = Th∆(N) for all M, N � T. In other words, for any pair of models of T, the
empty map ∅ : M → N is a ∆-morphism. When T is Lat± -complete we say that T decides
the characteristic of its models (by analogy with rings and fields). Note that when T decides
the characteristic of its models, we have 〈∅〉M ' 〈∅〉N for all M, N � T. �

We conclude this section with a couple of propositions that break Theorem 2.20
into parts. More interestingly, in Chapter 10 we shall prove a sort of converse of
Propositions 5.29 and 5.30.

It is interesting to note that there is a relation between certain properties of ∆-morphisms
and the closure of ∆ under logical connectives. When C ⊆ {∀, ∃,¬,∨,∧} is a set of
connectives, we write C∆ for the closure of ∆ with respect to the connectives in C.
We write ¬∆ for the set containing the negation of the formulas in ∆. Warning: do
not confuse ¬∆ with {¬}∆. Up to logical equivalence {¬}∆ = ∆ ∪ ¬∆.

It is clear that ∆-morphisms are {∧,∨}∆-morphisms.
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5.28 Proposition For every given set of formulas ∆ and every injective map h : M → N the
following are equivalent

a. h : M→ N is a ¬∆-morphism;

b. h−1 : M→ N is a ∆-morphism. �

5.29 Proposition For every set of formulas ∆, every ∆-embedding h : M→ N is a {∃}∆-mor-
phism.

Proof Formulas in {∃}∆ have the form ∃y ϕ(x, y) where y is a finite tuples of vari-
ables and ϕ(x, y) ∈ ∆. For every tuple a ∈ (dom h)|x| we have:

M � ∃y ϕ(a, y) ⇒ M � ϕ(a, b) for b ∈ M|y|

⇒ N � ϕ(ha, hb)

⇒ N � ϕ(ha, c) for c ∈ N|y|

⇒ N � ∃y ϕ(ha, y).

Note that the second implication requires the totality of h : M → N which guaran-
tees that ϕ(a, y) has a solution in dom h. �

When h : M → N is injective the following is a corollary of Propositions 5.28
and 5.29. The general proof is the ‘dual’ of that of Propositions 5.29.

5.30 Proposition For every set of formulas ∆, every surjective ∆-morphism h : M → N is a
{∀}∆-morphism. �
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Chapter 6

Some relational structures

In the first section we prove that theory of dense linear orders without endpoints is
ω-categorical. That is, any two such countable orders are isomorphic. This is an
easy classical result of Cantor. In this chapter we examine Cantor’s construction (a
so-called back-and-forth construction) in great detail. In the second section we apply
the same technique to prove that the theory of the random graph is ω-categorical.

1 Dense linear orders

The language of strict orders, which in this section we denote by L, contains only a
binary relation symbol <. A structure M of signature L is a strict order if it models
(the universal closure of) the following formulas

1. x 6< x irreflexive;

2. x < z < y → x < y transitive.

Note that the following is an immediate consequence of 1 and 2.

x < y → y 6< x antisymmetric.

We say that the order is total or linear if

li. x < y ∨ y < x ∨ x = y linear or total.

An order is dense if

nt. ∃x, y (x < y) non trivial;

d. x < y → ∃z (x < z < y) dense.

We need to require the existence of two comparable elements, then d implies that
dense orders are in fact infinite. We say that the ordering has no endpoints if

e. ∃y (x < y) ∧ ∃y (y < x) without endpoints.

We denote by Tlo the theory strict linear orders and by Tdlo the theory of dense
linear orders without endpoints. Clearly, these are consistent theories: Q with the
usual ordering is a model of Tdlo.

We introduce some notation to improve readability of the proof of the following
theorem. Let A and B be subsets of an ordered set. We write A < B if a < b for
every a ∈ A and b ∈ B. We write a < B e A < b for {a} < B, respectively A < {b}.
Let M � Tlo. Then M � Tdlo if and only if for every finite A, B ⊆ M such that A < B
there is a c such that A < c < B. In fact axiom d is evident and axioms nt and e are
obtained taking replacing A and/or B by the empty set.

Now we prove the first of a series of lemmas that we call extension lemmas. Re-
call that in the language of strict orders an injective map k : M → N is a partial
isomorphism if
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M � a < b ⇔ N � ka < kb for every a, b ∈ dom k.

(When M, N � Tlo the direction⇒ suffices.)

6.1 Lemma Fix M � Tlo and N � Tdlo. Let k : M → N be a finite partial isomorphism and
let b ∈ M. Then there is a partial isomorphism h : M→ N that extends k and is defined in
b.

Proof Given a finite partial isomorphism k : M→ N define

A− =
{

a ∈ dom(k) : a < b
}

;

A+ =
{

a ∈ dom(k) : b < a
}

.

The sets A− and A+ are finite and partition dom k, and A− < A+. As k : M → N
is a partial isomorphism, k[A−] < k[A+]. Then in N there is an element c such
that k[A−] < c < k[A+]. It is easy to check that setting h = k ∪

{
〈b, c〉

}
gives the

required extension. �

The following is an equivalent version of Lemma 6.1.

6.2 Corollary Let M � Tlo be countable and let N � Tdlo. Let k : M → N be a finite partial
isomorphism. Then there is a (total) embedding h : M ↪→ N that extends k.

Proof Let 〈ai : i < ω〉 be an enumeration of M. Define by induction a chain of finite
partial isomorphisms hi : M → N such that ai ∈ dom hi+1. The construction starts
with h0 = k. At stage i + 1 we chose any finite partial isomorphism hi+1 : M → N
that extends hi and is defined in ai. This is possible by Lemma 6.1. In the end we
set

h =
⋃
i∈ω

hi.

It is immediate to verify that h : M ↪→ N is the required embedding. �

6.3 Exercise Prove that the extension Lemma 6.1 characterizes models of Tdlo among
models of Tlo. That is, if N is a model of Tlo such that the conclusion of Lemma 6.1
holds, then M � Tdlo. �

We are now ready to prove that any two countable models of Tdlo are isomorphic
which is a classical result of Cantor’s. Actually what we prove is slightly more
general than that. In fact Cantor’s theorem is obtained from the theorem below by
setting k = ∅, which we are allowed to, because all models have the same empty
characteristic (cfr. Remark 5.26).

6.4 Theorem Every finite partial isomorphism k : M → N between countable models of Tdlo
extends to an isomorphism g : M ∼→ N.

The following is the archetypal back-and-forth construction. It is important to note
that it does not mention linear orders at all. It only uses the extension Lemma 6.1.
The same construction can be applied in many other contexts where an extension
lemma holds (cfr. Theorem 7.6).

Proof Let 〈ai : i < ω〉 and 〈bi : i < ω〉 be enumerations of M and N respectively.
We define by induction a chain of finite partial isomorphisms gi : M→ N such that
ai ∈ dom gi+1 and bi ∈ img gi+1. In the end we set
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g =
⋃
i∈ω

gi

We begin by letting g0 = k. The inductive step consists of two half-steps that we call
the forth step and back step. In the forth step we define gi+1/2

such that ai ∈ dom gi+1/2
.

In the back step to define gi+1 such that bi ∈ img gi+1.

By the extension lemma 6.1 there is a finite partial isomorphism gi+1/2
: M→ N that

extends gi and is defined in ai. Now apply the same lemma to extend
(

gi+1/2

)−1 :
N → M to a finite partial isomorphism (gi+1)

−1 : N → M defined in bi. �

Let λ be an infinite cardinal. We say that a theory is λ-categorical if any two models
of T of cardinality λ are isomorphic. From Theorem 6.4, taking k = ∅, we obtain
the following.

6.5 Corollary The theory Tdlo is ω-categorical. �

We also obtain that Tdlo is a complete theory. This is consequence of the following
general fact.

6.6 Proposition If T has no finite models and is λ-categorical for some λ ≥ |L|, then T is
complete.

Proof Let M and N be any two models of T. Applying the upward and/or down-
ward Löwenheim-Skolem theorem, we may assume they both have cardinality λ.
Note that here we use that N and N are both infinite and that λ ≥ |L|. Hence
M ' N and in particular M ≡ N. �

6.7 Exercise Prove that Tdlo is not λ-categorical for any uncountable λ. �

6.8 Exercise Prove that, in the language of strict orders, Q � R. �

6.9 Exercise Let L be the language of strict orders expanded with countably many
constants

{
ci : i ∈ ω

}
. Let T be the theory that extends Tdlo by the axioms ci < ci+1

for all i. Prove that T is complete. Find three non isomorphic countable models of
this theory. For a suitably chosen model N of T, prove the statement in Lemma 6.1,
where M any model of T. �

6.10 Exercise Show that in Theorem 6.6 the assumption λ ≥ |L| is necessary. (Hint:
let ν be an uncountable cardinal. The language contains only the ordinals i < ν

as constants. The theory T says that there are infinitely many elements and either
i = 0 for every i < ν, or i 6= j for every i < j < ν. Prove that T is ω-categorical but
incomplete.) �

2 Random graphs

Recall that the language of graphs, which in this section we denote by L, contains
only a binary relation r. A graph structure of signature L such that

1. ¬r(x, x) irreflexive;
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2. r(x, y)→ r(y, x) symmetric.

An element of a graph M is called a vertex or a node. An edge is an unordered
pair of vertices {a, b} ⊆ M such that M � r(a, b). In words we may say that a is
adjacent to b.

A random graph is a graph that also satisfies the following axioms for every n

nt. ∃x, y (x 6= y) non trivial;

rn.
n∧

i,j=1

xi 6= yj → ∃z
n∧

i=1

[
r(xi, z) ∧ ¬r(z, yi) ∧ z 6= yi

]
for every n ∈ Z+.

The theory of graphs is denoted by Tgph and the theory of random graphs is de-
noted by Trg . The scheme of axioms rn plays the same role as density in the previous
section. It says that given two disjoint sets A+ and A− of cardinality ≤ n there is a
vertex z that is adjacent to all vertices in A+ and to no vertex in A−. We explicitly
required that z /∈ A−, by 1 it is clear that z /∈ A+.

Strictly speaking, the axioms rn do not mention the cases when A+ or A− are empty.
But as it is evident that random graphs are infinite, we can deal with them by adding
redundant elements.

The following is the analogous of Lemma 6.1 for random graphs. Recall that in the
language of graphs a map k : M→ N is a partial isomorphism if it is injective and

M � r(a, b) ⇔ N � r(ka, kb) for every a, b ∈ dom k.

6.11 Lemma Fix M � Tgph and N � Trg. Let k : M → N be a finite partial isomorphism and
let b ∈ M. Then there is a partial isomorphism h : M→ N that extends k and is defined in
b.

Proof The structure of the proof is the same as in Lemma 6.1, so we use the same
notation. Assume b /∈ dom k and define

A+ =
{

x ∈ dom k : M � r(x, b)
}

e A− =
{

y ∈ dom k : M � ¬r(y, b)
}

.

These two sets are finite and disjoint, then so are k[A+] and k[A−]. Then there is a
c /∈ img k such that ∧

a∈A+

r(ka, c) ∧
∧

a∈A−
¬r(ka, c).

As k[A+] ∪ k[A−] = img k, it is immediate to verify that h = k ∪
{
〈b, c〉

}
is the

required extension. �

Some readers may doubt that Trg is consistent.

6.12 Proposition There exists a random graph.

Proof The domain of N is the set of natural numbers. Let N � r(n, m) hold if the
n-th prime number divides m or, conversely, the m-th prime number divides n. �

The same proof as that of Corollary 6.2 gives the following.

6.13 Corollary Let M � Tgph be countable and let N � Trg. Let k : M → N be a finite partial
isomorphism. Then there is a (total) embedding h : M ↪→ N that extends k. �
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The proof of Theorem 6.4 gives the following theorem and its corollary.

6.14 Theorem Every finite partial isomorphism k : M → N between models of Trg of the same
cardinality extends to an isomorphism g : M ∼→ N. �

6.15 Corollary The theory Trg is ω-categorical (and therefore complete). �

6.16 Exercise Let a, b, c ∈ N � Trg. Prove that r(a, N) = r(b, N) ∩ r(c, N) occurs only in
the trivial case a = b = c. �

6.17 Exercise Let N � Trg prove that for every b ∈ N the set r(b, N) is a random graph.
Is every random graph M ⊆ N of the form ϕ(N) for some ϕ(x) ∈ L(N) ? �

6.18 Exercise Let N be free union of two random graphs N1 and N2. That is, N =

N1 t N2 and rN = rN1 t rN2 . By t we denote the disjoint union. Prove that N is
not a random graph. Show that N1 is not definable without parameters (assume
|N1| = |N2| = ω, otherwise the proof is longer). Write a first order sentence ψ(x, y)
true if x and y belong to the same connected component of N. Axiomatize the class
K of graphs that are free union of two random graphs. �

6.19 Exercise Prove that Trg is not λ-categorical for any uncountable λ. Hint: prove that
there is a random graph N of cardinality λ where every vertex is adjacent to < λ

vertices. Compare it with its complement graph (the graph that has edges between
pairs that are non adjacent in N). �

6.20 Exercise Prove that Trg is not finitely axiomatizable. Hint: given a random graph
N and a set P of cardinality n + 1 show that you can add edges to M t P and make
it satisfy axiom rn but not rn+1. �

6.21 Exercise Let N � Trg and let ϕ(x) ∈ L(N), where |x| = 1. Prove that for some
finite sets A, B, C, D ⊆ N the following holds in N

ϕ(x) ↔
∧

a∈A
r(x, a) ∧

∧
b∈B

¬r(x, b) ∧ x ∈ C ∧ x /∈ D. �

6.22 Exercise (Peter J. Cameron) Prove that for every infinite countable graph M the
following are equivalent

1. M is either random, complete or empty (i.e. rM = ∅);

2. if M1, M2 ⊆ M are such that M1 tM2 = M, then M1 ' M or M2 ' M.

Hint: for 2⇒1 first show that if r(a, M) = ∅ for some a ∈ M then the graph is null
and if {b} ∪ r(b, M) = M for some b, then the graph is complete. Clearly, 2 implies
that any finite partition of M contains an element isomorphic to M. Then the claim
above generalizes as follows: if there is a finite A such that

⋂
a∈A r(a, M) = ∅ then

M is the empty graph and if there is a finite B such that
⋃

b∈B r(b, M) = M then M
is the complete graph.

Suppose M is not a random graph. Fix some finite, disjoint A and B such that no
c satisfies both r(A, c) = A and r(B, c) = ∅. Let M1 = {c : r(A, c) 6= A} and
M2 = ¬M1. Now note that
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⋂
a∈A

r(a, M1) = ∅ and
⋃

b∈B

r(b, M2) = M2. �

3 Notes and references

We refer the reader to [2] for a well-written accessible survey on the amazing model
theoretic properties of the random graph.
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Chapter 7

Rich models

We introduce Fraïssé limits, also known as homogeneous-universal or generic struc-
tures, which here we call rich models, after Poizat. Rich models generalize the
examples in Chapters 6 and the many more to come.

Elimination of quantifiers is briefly discussed at the end of Section 1. For the time
being we identify quantifier elimination with the property that says that all partial
isomorphisms are elementary maps. Proofs are easier with this notion in mind.
The equivalence of this property with its syntactic counterpart is only proved in
Chapter 10, when the reader is more familiar with arguments of compactness.

1 Rich models.

We now define categories of models and partial morphisms. These are example of con-
crete categories as intended in category theory. However, apart from the name,
in what follows we dispense with all notions of category theory as they would
make the exposition less basic than intended (without providing additional techni-
cal tools).

A category (of models and partial morphisms) is a class M which is disjoint union
of two classes: Mob and Mhom . The first is the class of objects and contains struc-
tures with a common signature L which we call models. The second is the class
of morphisms and contains (partial) maps between models. We require that the
identity maps are morphisms and that composition of two morphism is again mor-
phism. This makes M a well-defined category.

For example, M could consist of all models of some theory T0 and of all partial iso-
morphisms between these. Alternatively, as morphisms we could take elementary
maps between models. On a first reading the reader may assume M is as in one of
the two examples above. In the general case we need to make some assumptions
on M.

7.1 Definition For ease of reference we list together all properties required below

c1. the (partial) identity map idA : M→ M is a morphism, for any A ⊆ M;

c2. if k′ : M→ N is a morphism for every finite k′ ⊆ k, then k : M→ N is a morphism.

c3. morphisms are invertible maps and the inverse of a morphism is a morphism;

c4. morphisms preserve the truth of Lat -formulas;

c5. if M is a model and N ≡ M, then also N is a model;

c6. every elementary map between models is a morphism. �

The connected component of a model M is the subclass of models N such that there
is any morphism with domain M and codomain N (or vice versa, by c3). By axiom
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c1 the restriction of a morphism is a morphism, therefore M and N are in the same
connected component if and only if the empty map ∅ : M → N is a morphism.
If the whole category M consists of one connected component we say that M is
connected.

We call c2 the finite character of morphisms. Note that it implies the following

c7. if ki : M→ N is a chain of morphisms, then
⋃
i<λ

ki : M→ N is a morphism.

Notably, the following two definitions require c3. The generalization to non injec-
tive morphisms is not straightforward (in fact, there are two generalizations: pro-
jective and inductive). These generalizations are not very common and will not be
considered here.

7.2 Definition Assume that M satisfies c1-c3 of Definition 7.1. We say that a model N is
λ-rich if for every model M, every b ∈ M and every morphism k : M → N of cardinality
< λ there is a c ∈ N such that k ∪ {〈b, c〉} : M → N is a morphism. We say that N is
rich if it is λ-rich for λ = |N|. When Mob = Mod(T0) for some theory T0 and Mhom is
clear from the context, we say rich model of T0 . �

Rich models are also called Fraïssé limits or homogeneous-universal for a reason that
will soon be clear; they are also called generic. Unfortunately these names are either
too long or too generic, so we opt for the less common term rich that was proposed
by Poizat.

The following two notions are closely connected with richness.

7.3 Definition Assume that M satisfies c1-c3 of Definition 7.1. We say that a model N is
λ-universal if for every model M of cardinality ≤ λ in the same connected component
as N there is an embedding k : M ↪→ N. We say that a model N is λ-homogeneous if
every k : N → N of cardinality < λ extends to a bijective morphism h : N ∼→ N (an
automorphism when c4 below holds).

Note that the larger Mhom, the stronger notion of homogeneity. When Mhom contains all
partial isomorphisms between models (the largest class of morphisms considered here), it is
common to say λ-ultrahomogeneous for λ-homogeneous.

As above, when λ = |N| we say universal , homogeneous and ultrahomogeneous. �

In Section 6.1 we implicitly used Mob = Mod(Tlo) and partial isomorphisms as
Mhom. In Section 6.2 we used Mob = Mod(Tgph) and again partial isomorphisms as
Mhom. Corollary 6.2 proves that every model of Tdlo is ω-rich. Corollary 6.13 claims
the analogous fact for Trg.

In the following we frequently work under the following assumption (even when
not all properties are strictly necessary).

7.4 Assumption Assume |L| ≤ λ and suppose that M satisfies c1-c6 of Definition 7.1

The assumption on the cardinality of L is necessary to apply the downward Löwenheim-
Skolem Theorem when required.

7.5 Proposition (Assume 7.4) The following are equivalent
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1. N is a λ-rich model;

2. for every model M of cardinality ≤ λ and every morphism k : M → N of cardinality,
say < λ there is a embedding h : M ↪→ N that extends k.

Proof Closure under union of chains of morphisms, which is ensured by c7, im-
mediately yields 1⇒2. As for implication 2⇒1 we only need to consider the case
λ < |M|. Let k : M → N be a morphism of cardinality < λ and b ∈ M. By the
downward Löwenheim-Skolem theorem there is an M′ � M of cardinality λ con-
taining dom k ∪ {b}. Let h : M′ ↪→ N be the embedding obtained from 2. By c4, the
map h : M→ N is a composition of morphisms, hence a morphism. �

The following theorem subsumes both Theorem 6.4 and Theorem 6.14.

7.6 Theorem (Assume 7.4) Let M and N be two rich models of the same cardinality λ. Then
every morphism k : M→ N of cardinality < λ extends to an isomorphism.

Proof When λ = ω, we can take the proof of Theorem 6.4 and replace partial isomor-
phism by morphism and the references to Lemma 6.1 by references to Proposition 7.5.
As for uncountable λ, we only need to extend the construction through limit stages.
By c7 we can simply take the union. �

7.7 Corollary (Assume 7.4) All rich models of cardinality λ in the same connected component
are isomorphic. �

It is obvious that rich models are universal. By Theorem 7.6, rich models they are
homogeneous. These two notions are weaker than richness. For instance, when M

is as in Section 6.2, the countable graph with no edge is trivially ultrahomogeneous
but it is not universal and a fortiori not rich. On the other hand if we add to a
countable random graph an isolated point we obtain a universal graph which is
not ultrahomogeneous. However, when taken together, these two properties are
equivalent to richness.

7.8 Theorem (Assume 7.4) The following are equivalent:

1. N is rich;

2. N is homogeneous and universal.

Proof Implication 1⇒2 is clear as noted above, so we prove 2⇒1. We use the
characterization of richness given in Proposition 7.5. Let k : M→ N be a morphism
such that |k| < |N| and |M| ≤ |N|. As N is universal, there is a total morphism
f : M ↪→ N. By c3 the map k ◦ f−1 : N → N is a morphism of cardinality < |N|. By
homogeneity it has an extension to an automorphism h : N ∼→ N. It is immediate
that h ◦ f : M ↪→ N is the required extension of k. �

7.9 Exercise Let N be the structure obtained by adding to a countable random graph
an isolated point. Show that N is homogeneous if morphisms are elementary maps
but it is not if morphisms are simply partial isomorphisms. �

A consequence of Theorem 7.6 is that morphisms between rich models of the same
cardinality are elementary maps. However, the theorem gives no information when
the models have different cardinality nor when they are merely λ-rich. This case is
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dealt with by next theorem, arguably the main result of this section.

To test the theorem below in a simple case we propose the following exercise.

7.10 Exercise Every partial isomorphism k : M → N between models of Tdlo (or mod-
els of Trg) is an elementary map. Hint: use downward Löwenheim-Skolem and
Theorem 6.4. �

2 The theory of rich models and quantifier elimination

Let λ ≥ |L| be given. The theory of the rich models of M is the set T1 of sentences
that hold in all λ-rich models. The theorem below proves that T1 is complete as
soon as M is connected.

7.11 Theorem (Assume 7.4) Every morphism between λ-rich models is elementary. In partic-
ular, λ-rich models in the same connected component are elementary equivalent.

Proof Let k : M → N be a morphism between rich models. It suffices to prove that
every finite restriction of k is elementary. By c2, we may as well assume that k itself
is finite. It suffices to construct M′ � M and N′ � N together with a morphism
h : M → N that extends k and maps M′ bijectively to N′. Then by c6 the map
h : M′ ∼→ N′ is the composition of morphisms, hence it is a morphism. Finally, by
c4, it is an isomorphism, in particular an elementary map.

In general, richness is not preserved under elementary equivalence. Therefore M′

and N′ need to be constructed simultaneously with h. We define a chain of functions
〈hi : i<λ〉 such that hi : M→ N are morphisms and in the end we set

h =
⋃
i<λ

hi, M′ = dom h, N′ = img h.

We interweave the usual back-and-forth-argument with the Löwenheim-Skolem
construction 2.40 in order to obtain M′ � M and N′ � N.

The chains start with h0 = k. At limit stages we take the union. Now assume
we have hi. Let ϕ(x) ∈ L(dom hi) be some formula consistent in M and pick a
solution b ∈ M. By λ-richness there is a c ∈ N such that hi ∪ {〈b, c〉} : M → N is a
morphism. Let hi+1/2

= hi ∪ {〈b, c〉}.

Finally, as in the proof of Theorem 6.4, we extend hi+1/2
to obtain hi+1. the same

procedure with the roles of M and N inverted and with h−1
i+1/2

for hi.

In the end we obtain M′ � M if all formulas ϕ(x) ∈ L(M′) are considered. A similar
consideration holds for N′. This is achieved using the same dovetail enumeration
as in our second proof the downward Löwenheim-Skolem Theorem 2.40. �

Assume for simplicity that M is connected. Then all λ-rich models belong to
Mod(T1) for some complete theory T1. It is interesting to ask if the converse is
true: if T1 is the theory of the λ-rich models of M, do all models in Mod(T1) are
rich? The answer is affirmative when λ = ω and T1 is either Tdlo or Trg, but this is
not always the case, see Example 7.15 for an easy to grasp counterexample. But in
fact, any non λ-categorical theory counterexamples.

7.12 Remark Assume 7.4) Assume M is connected. Let T1 be the theory of the rich
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models of M. If every model of T1 is λ-rich then T1 is λ-categorical. (This is a
conseguence of Corollary 10.13) �

A very interesting interesting variant of the question asked above is considered in
Theorem 9.9 where it is related to an important phenomenon that we now indro-
duce.

First, to have a concrete example at hand, we instantiate Theorem 7.11 with the two
categories used in Chapter 6.

7.13 Corollary Partial isomorphisms between models of Tdlo and between models of Trg are
elementary maps. �

When partial isomorphism between models of a given theory T coincide with ele-
mentary maps, it is always by a fundamental reason. Let us introduce some termi-
nology. Let T be a consistent theory. We say that T has (or admits) elimination of
quantifiers if for every ϕ(x) ∈ L there is a quantifier-free formula ψ(x) ∈ Lqf such
that

T ` ψ(x)↔ ϕ(x).

We will discuss general criteria for elimination of quantifiers in Chapter 10. Here
we report without proof the following theorem.

7.14 Theorem The following are equivalent

1. T has elimination of quantifiers;

2. every partial isomorphism between models T is an elementary map. �

" This theorem will be proved only in Chapter 10, see Exercise 10.4 or Corollary 10.12.
For the time being we do not need the syntactic version of elimination of quantifiers,
so when saying that T has quantifier elimination we intend 2 of the theorem above.
For instance we rephrase Corollary 7.13 above by saying that Tdlo and Trg have
elimination of quantifiers.

In the next chapter we introduce important examples of ω-rich models that do not
have an ω-categorical theory. These are algebraic structures (groups, fields etc.)
hence more complex than pure relational structures. So, we conclude this section
with an example of this phenomenon in an almost trivial context.

7.15 Example Let L contain a unary predicate rn for every positive integer n. The theory
T0 contains the axioms ¬∃x

[
rn(x) ∧ rm(x)

]
for n 6= m and ∃≤nx rn(x) for every n.

Work in the the category of models of T0 and partial isomorphisms. Let T1 be the
theory that extends T0 with the axioms ∃=nx rn(x) for every n. Let q(x) be the type{
¬rn(x) : n ∈ ω

}
. There are models of T1 that do not realize q(x), hence T1 is not

ω-categorical. It is easy to verify that the following are equivalent.

1. N is an ω-rich model;

2. N � T1 and q(N) is infinite.

The reader may use Theorem 7.11 and Compactness Theorem for Types 4.11 to
prove that T1 is complete and has elimination of quantifiers. It is also easy to verify
that every uncountable model of T1 is rich and consequently that T1 is uncountably
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categorical. �

7.16 Exercise Let T0 and M be as in Example 7.15 except that we restrict the language
to the relations r0, . . . , rn for a fixed n. Do ω-rich models of T0 exist? Is their theory
ω-categorical? What if we add to T0 the axiom r0(x) ∨ · · · ∨ rn(x) ? �

7.17 Exercise The language contains only the binary relations < and e. The theory T0
says that < is a strict linear order and that e is an equivalence relation. Let M

consists of models of T0 and partial isomorphisms. Do rich models exist? Can
we axiomatize their theory? If so, does it have elimination of quantifiers? Is it
λ-categorical for some λ? �

7.18 Exercise The language contains only two binary relations. The theory T0 says
that they are equivalence relations. Let M consists of models of T0 and partial
isomorphisms. Do rich models exist? Can we axiomatize their theory? If so, does it
have elimination of quantifiers? Is it λ-categorical for some λ? �

7.19 Exercise In the language of graphs let T0 say that there are no cycles (equivalently,
there is at most one path between any two nodes). In combinatorics these graphs
are called forests, and their connected components are called trees. Let M consists of
models of T0 and partial isomorphisms. Do rich models exist? Can we axiomatize
their theory? If so, does it have elimination of quantifiers? Is it λ-categorical for
some λ? �

7.20 Exercise Assuming Theorem 7.14, prove that the following are equivalent

1. T has elimination of quantifiers;

2. every finite partial isomorphism between models T is an elementary map. �

3 Weaker notions of universality and homogeneity

We want to extend the equivalence in Theorem 7.8 to λ-rich models. For that we
need to weaken the notions of λ-homogeneity. This section is more technical and
could be skipped at a first reading.

7.21 Definition We say that a structure N is weakly λ-homogeneous if for every b ∈ N ev-
ery morphism k : N → N of cardinality < λ extends to one defined in b. The term
back-and-forth λ-homogeneous is also used. �

The following easy exercise on back-and-forth is required in the sequel.

7.22 Exercise (Assume 7.4) Prove that any weakly λ-homogeneous structure of cardi-
nality λ is homogeneous. �

7.23 Lemma (Assume 7.4) Let N be a weakly λ-homogeneous model. Let A ⊆ N have cardi-
nality ≤ λ and let k : N → N be a morphism of cardinality < λ. Then there is a model
M � N containing A and an automorphism h : M ∼→ M that extends k.
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Proof Similar to the proof of Theorem 7.11. We shall construct simultaneously a
chain 〈Ai : i < λ〉 of subsets of N and a chain functions 〈hi : i < λ〉, such that
hi : N → N are morphisms. In the end we will set

M =
⋃
i<λ

Ai and h =
⋃
i<λ

hi

The chains start with A0 = A ∪ dom k ∪ img k and h0 = k. As usual, at limit
stages we take the union. Now we consider successor stages. At stage i we fix
some enumerations of Ai and of Lx(Ai), where |x| = 1. Let 〈i1, i2〉 be the i-th pair
of ordinals < λ. If the i2-th formula in Lx(Ai1) is consistent in N, let a be any
of its solutions. Also let b be the i2-th element of Ai1 . Let hi+1 : N → N be a
minimal morphism that extends hi and is such that b ∈ dom hi+1 ∩ img hi+1. Define
Ai+1 = Ai ∪

{
a, hi+1b, h−1

i+1b
}

. �

7.24 Theorem (Assume 7.4) For every model N the following are equivalent

1. N is λ-rich;

2. N is λ-universal and weakly λ-homogeneous.

Proof Implication 1⇒2 is clear. To prove 2⇒1 we generalize the proof of Theo-
rem 7.8. We assume 2 fix some morphism k : M → N of cardinality < λ and let
b ∈ M. By λ-universality and the downward Löwenheim-Skolem theorem, there
is a morphism f : M → N with domain of definition dom k ∪

{
b
}

. The map
f ◦ k−1 : N → N has cardinality < λ and, by Lemma 7.23, it has an extension to
an automorphism h : N′ ∼→ N′ for some N′ � N containing img k ∪ img f . Then
h ◦ f : M→ N extends k and is defined on b. �

4 The amalgamation property

In this section we discuss conditions that ensure the existence of rich models.

We say that M has the amalgamation property if for every pair of morphisms f1 :
M → M1 and f2 : M → M2 there are two of embeddings g1 : M1 ↪→ N and
g2 : M2 ↪→ N such that g1 ◦ f1 (a) = g2 ◦ f2 (a) for every a in the common domain
of definition, dom( f1) ∩ dom( f2).

M1

M N

M2

g1f1

f1 g2

As we assume that morphisms are invertible, we may express the amalgamation
property in a more concise form. Namely, for every morphism k : M → N there is
morphism g : M′ → N′ such that the following diagram commutes

N

M N′
idNk

g

It is convenient to use the following terminology. We write M ≤ N for M ⊆ N and
idM : M ↪→ N is a morphism. We say that k : M → N extends to g : M′ → N′ if
k ⊆ h, M ≤ M′, and N ≤ N′.
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7.25 Proposition Assume c3, then the following are equivalent

1. M has the amalgamation property;

2. every morphism k : M→ N extends to an embedding g : M ↪→ N′.

Proof 1⇒2 Given k : M → N, the amalgamation property yields the following
commutative diagram which can be simplified to the diagram at the right

N

M N′

M

g1
k

idM g2

N

M N′

g1
k

g2

Up to isomorphism we can assume g2 = idM, i.e. that N ≤ N′. Hence g2 : M ↪→ N′

is the required extension of k : M→ N.

2⇒1 Let f1 : M→ M1 and f2 : M→ M2 be given. Let k = f2 ◦ f−1
1 : M1 → M2 and

let g : M1 ↪→ N′ be the extension ensured by 2. Then we obtain

M1

M N′

M2

f2◦ f−1
1

gf1

f2 idM2

as required. �

We say that 〈Mi : i < λ〉 is a ≤-chain if Mi ≤ Mj for all i < j < λ. For the next
theorem to hold we need the following property:

7.26 Definition We say that M is closed under union of ≤-chains if

c8. if 〈Mi : i < λ〉 is a ≤-chain, then Mi ≤
⋃
j<λ

Mj for all i < λ. �

The following is a general existence theorem for rich models. This general form
requires large cardinalities. We leave to the reader to verify that if the number if
finite morphisms is countable (up to isomorphism) then countable rich models exit.

7.27 Theorem Assume 7.4. Assume further c8 and that M has the amalgamation property. Let
λ be such that |L| < λ = λ<λ. Then there is a rich model N of cardinality λ.

Proof We construct N as union of a ≤-chain of models 〈Ni : i < λ〉 such that
|Ni| = λ. Let N0 be any model of cardinality λ. At stage i + 1, let f : M→ Ni be the
least morphism (in a well-ordering that we specify below) such that | f | ≤ |M| < λ

and f has no extension to an embedding f ′ : M ↪→ Ni. Apply the amalgamation
property to obtain an total morphism f ′ : M ↪→ N′ that extends f : M→ Ni. By the
downword Löwenheim-Skolem Theorem we may assume |N′| = λ. Let Ni+1 = N′.
At limit stages take the union.

The well-ordering mentioned needs to be chosen so that in the end we forget no-
body. So, first at each stage we well-order the isomorphism-type of the morphisms
f : M → Ni such that f ≤ |M| < λ. Then the required well-ordering is obtained by
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dovetailing all these well-orderings. The length of this enumeration is at most λ<λ,
which is λ by hypothesis.

We check that N is rich. Let f : M → N be a morphism and | f | < |M| ≤ λ. As
|L| < λ we can approximate M with an elementary chain of structures of cardinality
< λ. Hence we may as well assume that | f | ≤ |M| < λ. The cofinality of λ is larger
than | f |, hence img f ⊆ Ni for some i < λ. So f : M → Ni is a morphism and at
some stage j we have ensured the existence of an embedding of f ′ : M ↪→ Nj+1 that
extends f . �

7.28 Proposition Let M consist of all structures of some fixed signature and the elementary
maps between these. Then M has the amalgamation property.

Proof Let k : M → N be an elementary map. Let a enumerate dom k and let b
enumerate M. Let p(x ; z) = tpM(b ; a). The type p(x ; a) is consisent in M, in
particular, it is finitely consistent and, by elementarity, p(x ; ka) is finitely consistent
in N. By the compactness theorem, there is N′ � N such that N′ � p(c ; ka) for
some c ∈ N′|x| . Hence g = {〈b, c〉} : M → N′ is the required elementary map that
extends k : M→ N. �

59



Chapter 8

Some algebraic structures

The main result in this chapter is Corollary 8.26, the elimination of quantifiers in
algebraically closed fields, which in algebra is called Chevalley’s Theorem on con-
structible sets. From it we derive Hilbert’s Nullstellensatz 8.26. Finally, we isolate
the model theoretic properties of those types that correspond to the algebraic no-
tions of prime and radical ideal of polynomials.

The first sections of this chapter are not a pre-requisite for Sections 4 –7, at the cost
of a few repetitions in the latter.

8.1 Notation Recall that when A ⊆ M we denote by 〈A〉M the substructure of M
generated by A. Then 〈A〉M ⊆ N is equivalent to N � Diag 〈A〉M. The diagram of
a structure has been defined in Notation 5.20.

In this chapter, whenever some A ⊆ M � T are fixed, by model we mean super-
structures of 〈A〉M that models T. The notions of logical consequence, consistency,
completeness, etc. are modified accordingly, and we write ` for T ∪Diag〈A〉M ` .

We say that a type p(x) is trivial if ` p(x). �

1 Abelian groups

The language L is that of additive groups. The theory Tag of abelian groups is
axiomatized by the universal closure of the usual axioms

a1 (x + y) + z = y + (x + z);

a2 x + (−x) = (−x) + x = 0;

a3 x + 0 = 0 + x = x;

a4 x + y = y + x.

Let x be a tuple of variables of length α, an ordinal. We write Lter,x for the set
of terms t(x) with free variables among x. On this set we define the equivalence
relation

t(x) ∼ s(x) = Tag ` t(x) = s(x).

We define the group operations on Lter,x/∼ in the obvious way. We denote by Z⊕α

the set of tuples of integers of length α that are almost always 0. The group oper-
ations on Z⊕α are defined coordinate-wise. The following immediate proposition
implies in particular that Lter,x/∼ is isomorphic to Z⊕α.

8.2 Proposition Let A ⊆ M � Tag. Then for every formula ϕ(x) ∈ Lat(A) there are n ∈ Z⊕α

and c ∈ 〈A〉M such that

` ϕ(x) ↔ ∑
i<α

nixi = c.
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where n = 〈ni : i < α〉 and x = 〈xi : i < α〉. �

Proof Up to equivalence over Tag the formula ϕ(x) has the form s(x) = t(a) for
some parameter-free terms s(x) and t(z). Over Diag 〈A〉M, we can replace t(a) with
a single c ∈ 〈A〉M and write s(x) as the linear combination shown above. �

8.3 Definition Let M � Tag. For A ⊆ M and c ∈ M, we say that c is independent from A if
〈A〉M ∩ 〈c〉M =

{
0
}

. Otherwise we say that c is dependent from A. The rank of M is the
least cardinality of a subset A ⊆ M such that all elements in M are dependent from A. We
denote it by rank(M) . �

Note that when M is a vector space the condition 〈A〉M ∩ 〈c〉M =
{

0
}

is equivalent
to saying that c is not a linear combination of vectors in A. Then rank M coincides
with the dimension of M. In fact, what we do here for abelian groups could be
easily generalized to D-modules, where D is any integral domain, and in particular
to vector spaces. In practice, it is more convenient to use the following syntactic
characterization of independence.

An element c of an abelian group is a torsion element if nc = 0 for some positive
integer.

8.4 Proposition Let A ⊆ M � Tag. Suppose that c ∈ M is not a torsion element. Then the
following are equivalent

1. c is independent from A;

2. p(x) = at-tpM(c/A) is trivial (see Notation 8.1).

Proof 1⇒2 By Proposition 8.2, formulas in p(x) may be assumed to have the form
nx = a for some integer n and some a ∈ 〈A〉M. As this formula is satisfied by c
then a ∈ 〈A〉M ∩ 〈c〉M. Hence a = 0. As c is not a torsion element, n = 0 and the
equation is trivial.

2⇒1 If 〈A〉M ∩ 〈c〉M 6=
{

0
}

then nc = a for some a ∈ 〈A〉M r {0} and some
positive integer n. Then c satisfies the non trivial equation nx = a. �

8.5 Remark Let k : M → N be a partial embedding and let a be an enumeration of
dom k. We claim that k ∪

{
〈b, c〉

}
: M → N is a partial embedding for every b ∈ M

and c ∈ N that are independent from a, respectively ka. In fact, it suffices to check
that M, b, a ≡at N, c, ka. Suppose ϕ(x ; z) ∈ Lat is such that M � ϕ(b ; a). Then by
independence ϕ(x ; a) is trivial, i.e.

Tag ∪ Diag〈a〉M ` ϕ(x ; a).

As 〈a〉M and 〈ka〉N are isomorphic structures

Tag ∪ Diag〈ka〉N ` ϕ(x ; ka).

Therefore N � ϕ(c ; ka). This proves M, b, a Vat N, c, ka.

As the same assumptions apply to k−1 : N → M, we also have M, b, a Wat N, c, ka. �
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2 Torsion-free abelian groups

The theory of torsion-free abelian groups extends Tag with the following axioms
for all positive integers n

tf nx = 0→ x = 0.

We denote this theory by Ttfag . It is not difficult to see that in a torsion-free abelian
group every equation of the form nx = a has at most one solution.

8.6 Proposition Let M � Ttfag be uncountable. Then rank M = |M|.

Proof Let A ⊆ M have cardinality < |M|. We claim that M contains some element
that is independent from A. It suffices to show that the number of elements that are
dependent from A is < |M|. If c ∈ M is dependent from A then, by Proposition 8.7,
it is a solution of some formula Lat(A). As there is no torsion, such a formula has
at most one solution. Therefore the number of elements that are dependent from A
is at most |Lat(A)|, that is max

{
|A|, ω

}
. If M is uncountable the claim follows. �

8.7 Proposition Let A ⊆ M � Ttfag. Let p(x) = at±-tp(b/A), where b ∈ M. Then one of
the following holds

1. b is independent from A;

2. M � ϕ(b) for some ϕ(x) ∈ Lat(A) such that ` ϕ(x)→ p(x).

Note the similarity with Example 7.15, where the independent type is q(x) and the
isolating formulas are the ri(x).

It is important to observe that the set A above may be infinite. This is essential to
obtain Corollary 8.11, and it is one of the main differences between this example
and the examples encountered in Chapter 6.

Proof If b is dependent from A, then b satisfies a non trivial atomic formula ϕ(x)
which we claim is the formula required in 2. It suffices to show that ϕ(x) implies
a complete Lat±(A)-type. Clearly this type must be p(x). Let ϕ(x) have the form
nx = a for some n ∈ Zr {0} and a ∈ 〈A〉M r {0}. We show that for every m ∈ Z
and every c ∈ 〈A〉M one of the following holds

a. ` nx = a→ mx = c;

b. ` nx = a→ mx 6= c.

Suppose not for a contradiction that neither a nor b holds and fix models N1, N2
and some bi ∈ Ni such that

a′. N1 � nb1 = a and N1 � mb1 6= c;

b′. N2 � nb2 = a and N2 � mb2 = c.

From b′ we infer that N2 � ma = nc. As N1 is torsion-free, from a’ we infer that
N1 � ma 6= nc. But ma = nc is a formula with parameters in 〈A〉M, so it should
have the same truth value in all superstructures of 〈A〉M, a contradiction. �
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3 Divisible abelian groups

The theory of divisible abelian groups extends Ttfag with the following axioms for
all integers n 6= 0

div y 6= 0→ ∃x nx = y.

We denote this theory by Tdag .

8.8 Proposition Let A ⊆ M � Ttfag and let ϕ(x) ∈ Lat(A), where |x| = 1, be consistent.
Then N � ∃x ϕ(x) for every model N � Tdag.

Note that in the proposition above consistent means satisfied in some M′ such that
〈A〉M ⊆ M′ � Ttfag.

The claim in the proposition holds more generally for all ϕ(x) ∈ Lqf and also when
x is a tuple of variables. This follows from Lemma 8.10, whose proof uses the
proposition.

Proof We can assume that ϕ(x) has the form nx = a for some n ∈ Z and some
a ∈ 〈A〉M. If n = 0, then a = 0 since ϕ(x) is consistent, and the claim is trivial. If
n 6= 0 then by consistency a 6= 0, hence a solution exist in N by axiom div. �

8.9 Exercise Prove a converse of Proposition 8.8. Let A ⊆ N � Tag and let x be a
single variable. Prove that if N � ∃x ϕ(x) for every consistent ϕ(x) ∈ Lat(A), then
N � Tdag. �

We are ready to prove that divisible abelian groups of infinite rank are ω-rich.

8.10 Lemma Let k : M → N be a partial isomorphism of cardinality < λ, where M � Ttfag
and N � Tdag is a model of rank ≥ λ. Then for every b ∈ M there is c ∈ N such that
k ∪
{
〈b ; c〉

}
: M→ N is a partial isomorphism.

Proof Let a be an enumeration of dom k and let p(x ; z) = at±-tp(b ; a). The required
c has to realize p(x ; ka). We consider two cases. If b is dependent from a, then
Proposition 8.7 yields a formula ϕ(x ; z) ∈ Lat such that

i. ` ϕ(x ; a)→ p(x ; a)

ii. ϕ(x ; a) is consistent.

By isomorphism, i and ii hold with a replaced by ka. Then by Proposition 8.8 the
formula ϕ(x ; ka) has a solution c ∈ N.

The second case, which has no analogue in Lemma 6.1, is when b is independent
from a. Then by Remark 8.5 we may choose c to be any element of N independent
from ka. Such an element exists because N has rank at least λ. �

8.11 Corollary Every uncountable model of Tdag is rich in the category of models of Ttfag and
partial isomorphisms. In particular Tdag is uncountably categorical, complete, and has
quantifier elimination.

Proof Any uncountable N � Tdag has rank |N|, therefore it is rich by Lemma 8.10;
categoricity and completeness follow. As for quantifier elimination, let k : M → N
is a partial isomorphism between models of Tdag. If M � M′ and M � N′ are ele-
mentary superstructures of uncountable cardinality then k : M′ → N′ is elementary

63



by Theorem 7.11 and this suffices to conclude that k : M→ N is elementary. �

8.12 Exercise Prove that every model of Tdag is ω-ultrahomogeneous (independently of
cardinality and rank). �

4 Commutative rings

In this section L is the language of (unital) rings. It contains two constants 0 and
1 the unary operation − and two binary operations + and ·. The theory of rings
contains the following axioms

a1-a4 as for abelian groups

r1 (x·y)·z = y·(x·z),

r2 1·x = x·1 = x,

r3 (x + y)·z = x·z + y·z,

r4 z·(x + y) = z·x + z·y.

All the rings we consider are commutative

c x·y = y·x.

We denote the theory of commutative rings by Tcr .

In what follows the theory Tcr ∪Diag〈A〉M, for some M clear from the context, is
implicit in the sense of Notation 8.1. So it is important to remember that Diag〈A〉M
is not trivial even when A = ∅. In fact, Diag〈∅〉M determines the characteristic of
the models.

Let A ⊆ M � Tcr and let x be a tuple of variables. We write Lter,x(A) for the set of
terms t(x) with free variables among x and parameters in A. On this set we define
the equivalence relation

t(x) ∼ s(x) = ` t(x) = s(x).

On Lter,x(A)/∼we define the ring operations in the obvious way so that Lter,x(A)/∼
is a commutative ring. We denote by A[x] the set of polynomials with variables
among x and parameters in 〈A〉M. The ring operations on A[x] are defined as
usual. The following proposition (which is clear, but tedious to prove) implies in
particular that Lter,x(A)/∼ is isomorphic to A[x]. For simplicity we state it only for
|x| = 1.

8.13 Proposition Let A ⊆ M � Tcr and let x be a single variable. Then for every formula
ϕ(x) ∈ Lat(A) there is a unique n < ω and a unique tuple 〈ai : i ≤ n〉 of elements of
〈A〉M such that an 6= 0 and

` ϕ(x) ↔ ∑
i≤n

aixi = 0. �

The integer n in the proposition above is called the degree of ϕ(x) .

8.14 Definition Let A ⊆ M � Tcr. We say that an element b ∈ M is transcendental over A
if the type p(x) = at-tpM(b/A) is trivial (see Notation 5.20 and 8.1). Otherwise we say
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that b is algebraic over A. The transcendence degree of M is the least cardinality of a subset
A ⊆ M such that all the elements of M are algebraic over A. �

8.15 Remark Remark 8.5 holds here with ‘independent’ replaced by ‘transcendental’
and Tag replaced by Tcr. �

5 Integral domains

Let a ∈ M � T. We say that a is a zero divisor if a b = 0 for some b ∈ Mr {0}.
An integral domain is a commutative ring without zero divisors. The theory of
integral domains contains the axioms of commutative rings and the following

nt. 0 6= 1

id. x·y = 0 → x = 0 ∨ y = 0.

We denote the theory of integral domains by Tid .

For a prime p, we define the theory Tp
id , which contains Tid and the axiom

chp. 1 + . . . (p times) · · ·+ 1 = 0.

The theory T0
id contains the negation of chp for all p. Note that all models of Tp

id
have the same characteristic in the model theoretic sense defined in 5.27. In the
remaining section we work in the category of models of Tid with partial embeddings
as morphisms. This category consists of countably many connected components
each containing all models of Tp

id for some p.

8.16 Proposition Let M � Tid be uncountable. Then M has transcendence degree |M|.

Proof In an integral domain every polynomial has finitely many solutions and there
are |L(A)| polynomials over A. �

8.17 Proposition Let A ⊆ M � Tid. For b ∈ M let p(x) = at±-tp(b/A). Then one of the
following holds

1. b is transcendental over A;

2. M � ϕ(b) for some ϕ(x) ∈ Lat(A) such that ` ϕ(x)→ p(x).

Note the similarity with Example 7.15, where the transcendental type is q(x) and
the isolating formulas are the ri(x).

As in Proposition 8.7, the set A may be infinite. This is essential to obtain Corol-
lary 8.20.

Proof Suppose b is not transcendental, i.e. it satisfies a non trivial atomic formula.
Let ϕ(x) ∈ Lat(A) be a non trivial formula with minimal degree such that ϕ(b). We
prove that ϕ(x) implies a complete Lat±(A)-type. Clearly this type must be p(x).
We prove that for any ξ(x) ∈ Lat(A) one of the following holds

1. ` ϕ(x)→ ξ(x)

2. ` ϕ(x)→ ¬ξ(x).

Let us write a(x) = 0 and a′(x) = 0 for the formulas ϕ(x) and ξ(x), respectively.
If 〈A〉M is a field, choose a polynomial d(x) of maximal degree such that for some
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polynomials t(x) and t′(x) the following hold

a. d(x) t(x) = a(x)

a′. d(x) t′(x) = a′(x),

If 〈A〉M is not a field, polynomials d(x), t(x) and t′(x) as above exist with coeffi-
cients in the field of fractions of 〈A〉M. Then a and a’ hold up to a factor in 〈A〉M
which we absorb in a(x) and a′(x).

From a we get d(b) = 0 or t(b) = 0. In the first case, as a(x) has minimal degree,
we conclude that t(x) is constant. This implies that any zero of a(x) is also a zero
of a′(x), that is, it implies 1.

Now suppose t(b) = 0. Then the minimality of the degree of a(x) implies that
d(x) = d, where d is a nonzero constant. If 〈A〉M is a field, apply Bézout’s identity
to obtain two polynomials c(x) and c′(x) such that d = a(x)c(x) + a′(x)c′(x). Then
a(x) and a′(x) have no common zeros, and 2 follows. If 〈A〉M is not a field, we use
Bézout’s identity in the field of fractions of 〈A〉M and, for some d′ ∈ 〈A〉M r

{
0
}

,
obtain d′d = a(x)c(x) + a′(x)c′(x). Then we reach the same conclusion. �

6 Algebraically closed fields

Let a, b ∈ M � Tid. We say that b is the inverse of a if a·b = 1. A field is a com-
mutative ring where every non-zero element has an inverse. The theory of fields
contains Tid and the axiom

f. ∃y
[
x 6= 0 → x·y = 1

]
.

Fields are structures in the signature of rings: the language contains no symbol for
the multiplicative inverse. So, substructures of fields are merely integral domains.

The theory of algebraically closed field, which we denote by Tacf , also contains the
following axioms for every positive integer n

ac. ∃x
(

xn + zn−1xn−1 + · · ·+ z1x + z0 = 0
)

The theory Tp
acf is defined in analogy to Tp

id in the previous section.

8.18 Proposition Let A ⊆ M � Tid and let ϕ(x) ∈ Lat(A), where |x| = 1, be consistent.
Then N � ∃x ϕ(x) for every model N � Tacf.

Note that in the proposition above consistent means satisfied in some M′ such that
〈A〉M ⊆ M′ � Tid.

The claim in the proposition holds more generally for all ϕ(x) ∈ Lqf when x is a
tuple of variables. This follows from Lemma 8.19 whose proof uses the proposition.

Proof Up to equivalence ϕ(x) has the form anxn + · · · + a1x + a0 = 0 for some
ai ∈ 〈A〉N . Choose n minimal. If n = 0 then a0 = 0 by the consistency of ϕ(x) and
the claim is trivial. Otherwise an 6= 0 and the claim follows from f and ac. �

8.19 Lemma Let k : M → N be a partial isomorphism of cardinality < λ, where M � Tid and
N � Tacf has transcendence degree ≥ λ. Then for every b ∈ M there is c ∈ N such that
k ∪
{
〈b, c〉

}
: M→ N is a partial isomorphism.
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The following is the proof of Lemma 8.10 which we repeat here for convenience.

Proof Let a be an enumeration of dom k and let p(x ; z) = at±-tpM(b ; a). The re-
quired c has to realize p(x ; ka). We consider two cases. If b is algebraic over a, then
Proposition 8.17 yields a formula ϕ(x ; z) ∈ Lat such that

i. ϕ(x ; a)→ p(x ; a)

ii. ϕ(x ; a) is consistent.

By isomorphism i and ii hold with a replaced by ka. Then by Proposition 8.18 the
formula ϕ(x ; ka) has a solution in c ∈ N.

The second case, which has no analogue in Lemma 6.1, is when b is transcendental
over a. Then by Remark 8.15 we may choose c to be any element of N transcendental
over ka. This exists because N has transcendence degree ≥ λ. �

Below few important consequences of this lemma.

8.20 Corollary Work in the category of models of Tid with partial embeddings as morphisms.
Then the following are equivalent

1. N is a λ-rich model

2. N � Tacf and has transcendence degree ≥ λ

Proof Implication 2⇒ 1 is an immediate consequence of Lemma 8.19.

In every connected component there is an M � Tacf of cardinality λ and transcen-
dence degree λ (by Proposition 8.16 when λ > ω, by compactness for λ = ω). As
proved above, M is rich and therefore elementarily equivalent to any λ-rich model
N in the same connected component. This proves 1⇒ 2. �

8.21 Corollary The theory Tacf has elimination of quantifiers.

Proof Let k : M → N be a partial embedding between models of Tacf. Let M′

and N′ be elementary superstructures of M and N respectively of sufficiently large
cardinality. As M′ and N′ are rich, k : M′ → N′ is elementary by Theorem 7.11.
Hence k : M→ N is also elementary. �

8.22 Corollary The theories Tp
acf are complete and uncountably categorical (i.e. λ-categorical for

every uncountable λ)

Proof Two models of Tp
acf belong to the same connected component. Then, as ev-

ery uncountable model of Tp
acf is rich, uncountable categoricity and completeness

follow. �

8.23 Exercise Prove that every model of Tacf is ω-ultrahomogeneous (independently of
cardinality and transcendence degree). �

7 Hilbert’s Nullstellensatz

In this section we fix a tuple of variables x and a subset A of an integral domain.
We denote by ∆(A) the set of formulas of the form t(x) = 0 where t(x) is a term
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with parameters in A. So ∆(A)-types are (possibly infinite) systems of polynomial
equations with coefficients in 〈A〉M.

For convenience we define the closure of p(x) under logical consequences as follows

ccl p(x) =
{

t(x) = 0 : p(x) ` t(x)=0
}

Remember that we always work under the assumptions made in Notation 8.1. In
particular, in this section we work over the theory Tid ∪ Diag〈A〉M. In general,
closure under logical consequences is an elusive notion. Hence Propositions 8.24
and 8.25 are useful because they give a model theoretical, respectively algebraic,
characterization of ccl p(x).

8.24 Proposition Let A ⊆ M � Tid and let p(x) be a ∆(A)-type. Fix some N of sufficiently
large cardinality such that 〈A〉M ⊆ N � Tacf. Then

ccl p(x) =
{

t(x) = 0 : N � ∀x
[
p(x)→ t(x)=0

]}
.

The cardinality of N is the proposition is sufficiently large when |A| < |N| and
|x| ≤ |N|; note that here x has possibly infinite length. In Corollary 8.26 below we
will considerably strengthen this proposition for finite x.

Proof Only the inclusion ⊇ requires a proof. Suppose t(x)=0 /∈ ccl p(x). As p(x)∧
t(x) 6= 0 is consistent, there is a model M′ such that M′ � p(a) ∧ t(a) 6= 0 for some
a ∈ M′ |x|. Then there is a partial isomorphism h : M′ → N that extends idA and
is defined on a, provided N is large enough to accommodate a. This implies that
p(x) ∧ t(x) 6= 0 has a solution in N. Hence t(x) does not belong to the set on the
r.h.s. �

Recall that A[x] denotes the ring of polynomials with variables in x and coefficients
in 〈A〉M. We identify ∆(A) nd A[x] in the obvious way. Consequently, a ∆(A)-type
p(x) is identified with a set of polynomials p ⊆ A[x]. For p ⊆ A[x] we write
rad p for the radical ideal generated by p , that is, the intersection of all prime ideals
containing p. When p = rad p, we say that p is a radical ideal. Recall from algebra
that if p ⊆ A[x] is an ideal then

# rad p =
{

t(x) : tn(x) ∈ p for some positive integer n
}

.

An identity that justifies the name.

8.25 Proposition Let A ⊆ M � Tid and let p(x) be a ∆(A)-type. Then ccl p(x) ' rad p.

The proposition holds with a similar proof for the broader class of rings without
nilpotent elements. (Which does not come as a surprise.)

Proof (⊇) We claim that ccl p(x) is an ideal. In fact, for every pair of L(A)-terms
t(x) and s(x)

t(x) = 0 ` s(x)t(x) = 0

s(x) = t(x) = 0 ` s(x) + t(x) = 0

Moreover, as integral domains do not have nilpotent elements

tn(x) = 0 ` t(x) = 0

By # above, ccl p(x) is a radical ideal which proves ccl p(x) ⊇ rad p.
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(⊆) We fix some t(x) /∈ rad p and prove that p(x) ∧ t(x) 6= 0 is consistent. Let q
be some prime ideal containing p such that t(x) /∈ q. As q is prime, the ring A[x]/q
is an integral domain. The polynomials that vanish in A[x]/q at x + q are exactly
those in q. Hence A[x]/q witnesses the consistency of p(x) ∧ t(x) 6= 0. �

When x is a finite tuple of variables, we can extend the validity of Proposition 8.24
to the case A = M = N.

8.26 Corollary (Hilbert’s Nullstellensatz) Let N � Tacf and let p(x), where |x| < ω, be a
∆(N)-type. Then

rad p ' ccl p(x) =
{

t(x) = 0 : N � ∀x [p(x)→ t(x) = 0]
}

.

Proof Let N′ be a large elementary extension of N. By Proposition 8.24, the claim
holds for N′. By Hilbert’s Basis Theorem, the ideal generated by p is finitely gen-
erated hence p(x) is equivalent to a formula (cfr. Exercise 8.29). Therefore, by ele-
mentarity, the claim holds for N. �

Hilbert’s Nullstellensatz comes in two variants. The one in Corollary 8.26 is some-
times referred to as the strong Nullstellensatz. The weaker variant is stated in Exer-
cise 8.28.

We conclude this section by showing that the notions of primeness for types and
ideals coincide (if we restrict to types closed under logical consequences).

8.27 Proposition Let A ⊆ M � Tid and let p(x) be a ∆(A)-type closed under logical conse-
quences. Then the following are equivalent

1. p(x) is a prime ∆(A)-type;

2. p is a prime ideal.

Proof 1⇒2 Assume 1 and suppose that the polynomial t(x) · s(x) belongs to p.
Clearly, over Tid ∪Diag〈A〉M we have ` t(x) · s(x) = 0→ t(x) = 0 ∨ s(x) = 0. As
p(x) is a prime ∆(A)-type, p(x) ` t(x) = 0 or p(x) ` s(x) = 0. As the type p(x) is
closed under logical consequences, t(x) ∈ p or s(x) ∈ p.

2⇒1 Assume p is a prime ideal and for some ti(x) = 0 ∈ ∆(A)

p(x) `
n∨

i=1

ti(x) = 0.

Then

p(x) `
n

∏
i=1

ti(x) = 0

Since p(x) is closed under logical consequences, and p is a prime ideal, ti(x) ∈ p for
some i. Hence p(x) contains the equation ti(x) = 0. By Corollary 5.19 this suffices
to prove that p(x) is a prime ∆(A)-type. �

8.28 Exercise Let N � Tacf and let p(x) be a ∆(N)-type where |x| < ω. Prove that the
following are equivalent

1. p is a proper ideal;

2. p(x) has a solution in N. �
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8.29 Exercise Let A ⊆ M � Tid and let p(x) be a ∆(A)-type. Prove that the following
are equivalent

1. p(x) is a principal ∆(A)-type;

2. the ideal generated by p is finitely generated. �
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Chapter 9

Saturation and homogeneity

The first two section introduce saturation and homogeneity and Section 3 presents
the notation we shall use in the following chapters when working inside a monster
model.

1 Saturated structures

Recall that a type p(x) ⊆ L(M) is finitely consistent in M if every conjunction of
formulas in p(x) has a solution in M. When A ⊆ M we write Sx(A) for the set of
types whose variables are in x which are complete and finitely consistent in M. We
never display M in the notation as it will always be clear from the context. When
A is empty it usual to write Sx(T) for Sx(A) where T = Th(M). We write S(A) for
the union of Sx(A) as x ranges over all tuples of variables. Similarly for S(T).

The following remark will be used in the sequel without explicit reference.

9.1 Remark Let k : M → N be an elementary map and let a be an enumeration of
dom k. Let p(x ; z) ⊆ L. If p(x ; a) is finitely consistent in M, then p(x ; k a) is finitely
consistent in N. (We can drop finitely in the antecedent but not in the consequent.) �

9.2 Definition Let x be a single variable and let λ be an infinite cardinal. We say that a
structure N is λ-saturated if it realizes every type p(x) such that

1. p(x) ⊆ L(A) for some A ⊆ N of cardinality < λ;

2. p(x) is finitely consistent in N.

We say that N is saturated if it is λ-saturated and |N| = λ.

9.3 Exercise Suppose |L| ≤ ω and let M be an infinite structure. Then for every
non-principal ultrafilter F on ω the structure Mω/F is a ω1-saturated elementary
superstructure of M.

Hint: the notation is as in Chapter 3. Let |x| = 1 and |z| = ω. It suffices to consider
types of the form p(x ; ĉ) where p(x ; z) =

{
ϕi(x ; z) : i < ω

}
⊆ L and ĉ ∈ (Mω)|z|.

Without loss of generality we can also assume that ϕi+1(x ; z) → ϕi(x ; z), and that
all formulas ϕi(x ; ĉ) are consistent in Mω.

Let 〈Xi : i < ω〉 be a strictly decreasing chain of elements of the ultrafilter such that
Xi+1 ⊆

{
j : M � ∃x ϕi(x, ĉj)

}
. Let â ∈ Mω be such that ϕi(âj, ĉj) holds for every

j ∈ Xi r Xi+1. Then â realizes p(x). �

We shall see that some theories have saturated models that are relatively small in
size. However, the existence of saturated models of arbitrary theories is problem-
atic. The following theorem states the existence of a saturated model of cardinality
λ whenever |L| < λ = λ<λ. The existence of cardinals of this kind is independent
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of ZFC. If the generalized continuum hypothesis (GCH) holds, every successor car-
dinal is such that λ = λ<λ. Without GCH, every inaccessible cardinal has this
property. Both GCH and the existence of inaccessible cardinals are not generally
accepted axioms.

Nevertheless, saturated models are widely used in model theory, without any wor-
ries about their existence. In fact, if consistency is an issue, they can be replaced by
models that are both λ-saturated and λ-homogeneous (see next section) for some
less problematic large cardinal λ. This is well known, so complications are com-
monly avoided by simply assuming that saturated models exist.

If T is the theory of the ring Z, or any other sufficiently expressive theory, then one
can prove that the cardinality λ of any saturated model of T is such that λ = λ<λ.
As the existence of cardinals with this property has to be assumed as an extra axiom,
one could simply assume the existence of saturated models and skip the proof of
the following theorem.

9.4 Theorem Assume |L| < λ where λ is such that λ<λ = λ. Then every structure M of
cardinality ≤ λ has a saturated elementary extension of cardinality λ.

Proof Without loss of generality, we can assume that M has cardinality λ. We
construct an elementary chain 〈Mi : i < λ〉 of models of cardinality λ. The chain
starts with M and is the union at limit stages. Given Mi we choose as Mi+1 any
model of cardinality λ that realizes all types in Sx(A) for all A ⊆ Mi of cardinality
< λ. The required Mi+1 exists because there are at most 2|L(A)| ≤ λ<λ = λ types in
Sx(A) and there are λ<λ = λ sets A.

Let N be the union of the chain. We check that N is the required extension. Let
p(x) ∈ S(A) for some A ⊆ N of cardinality < λ. As λ<λ = λ implies in particular
that λ is a regular cardinal, A ⊆ Mi for some i < λ. Then Mi+1 realizes p(x), and
so does N, by elementarity. �

9.5 Remark The reader who did not read Section 7.1 may replace 2 in the theorem
below with the following (and forget about M).

2′ for every b ∈ M, every elementary map k : M → N of cardinality < λ has an
extension defined on b;

9.6 Theorem Assume |L| ≤ λ and let N be an infinite structure. Let M be the category (see
Section 7.1) that consists of models of a complete theory T and elementary maps between
these. Then the following are equivalent

1 N is a λ-saturated structure;

2 N is a λ-rich model;

3 N realizes all types p(z) ⊆ L(A), with |z| ≤ λ and |A| < λ, finitely consistent in N.

Note that it is the completeness of T which makes the category M connected.

Proof 1⇒2. Let k : M → N be an elementary map of cardinality < λ. It suffices
to show that for every b ∈ M there is a c ∈ N such that k ∪

{
〈b, c〉

}
: M → N is an

elementary map. Let a be an enumeration of dom k and define p(x ; z) = tpM(b ; a).
As p(x ; a) is finitely consistent in M then p(x ; k a) is finitely consistent in N. The
required c is any element of N such that N � p(c ; k a). Such a c exists by saturation
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because |a| < λ.

2⇒3. Let p(z) be as in 3. By the compactness theorem N � K � p(a) for some
model K and a ∈ K|z|. By the downward Löwenheim-Skolem theorem there is a
model A, a ⊆ M � K of cardinality ≤ λ. (Here we use |L|, |A|, |z| ≤ λ.) By 2, there
is an elementary embedding h : M ↪→ N that extends idA. (Here we use |A| < λ.)
Finally, as M � p(a), elementarity yields N � p(h a).

3⇒1. Trivial. �

Two saturated structures of the same cardinality are isomorphic as soon as they are
elementarily equivalent (i.e. as soon as ∅ : M → N is an elementary map.) In fact,
from Theorems 9.6 and 7.6 we obtain the following (reference to Theorems 7.6 may
be avoided with an easy back-and-forth construction).

9.7 Corollary Every elementary map k : M→ N of cardinality < λ between saturated models
of the same cardinality λ extends to an isomorphism. �

As it turns out, we already have many examples of saturated structures.

9.8 Corollary The following models are ω-saturated

1 models of Tdlo;

2 models of Trg;

3 models of Tdag with infinite rank;

4 models of Tacf with infinite degree of transcendence.

Countable models of Tdlo and Trg and uncountable models of Tdag or Tacf are saturated.

Proof By quantifier elimination embeddings coincide with elementary embeddings.
Then saturation is proved applying Theorem 9.6 and the extension lemmas proved
in Chapter 6 and 8. �

The following is a useful test for quantifier elimination.

9.9 Theorem Assume |L| ≤ λ. Consider the category that consists of models of some theory
T0 and partial isomorphism. Suppose λ-rich models exist and denote by T1 their theory.
Then the following are equivalent

1. every λ-saturated model of T1 is λ-rich;

2. T1 has elimination of quantifiers.

Proof 2⇒1. Let N � T1 be λ-saturated. Fix a partial isomorphism k : M → N of
cardinality < λ, some b ∈ M and let p(x ; z) = qf-tpM(b ; a), where a enumerates
dom k. The type p(x ; k a) is realized in any λ-rich model N′ that contains 〈k a〉N .
By 2, N ≡ka N′, so p(x ; k a) is finitely consistent in N. By saturation, it is realised
by some c ∈ N. Then k ∪ {〈b, c〉} : M→ N is the required extension.

1⇒2. Let k : M→ N be a finite partial isomorphism between models of T. We claim
that it is an elementary map. Let M′ � M and N′ � N are λ-saturated models of
equal cardinality. As these are λ-rich, k : M′ → N′ extends to an isomorphism
h : M′ ∼→ N′ and the claim follows. �
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9.10 Exercise Let L = {<} and let N be a ω1-saturated extension of Q. Prove that there
is an embedding f : R→ N. Is it elementary? Can it be an isomorphism? �

2 Homogeneous structures

Definition 7.3 introduces the notions of universal and homogeneous structures in a
general context. When the morphisms of the underlying category are the elemen-
tary maps, we refer to these notions as elementary homogeneity and elementary
universality. However, one often omits to specify elementary. We repeat Defini-
tion 7.3 in this specific case.

9.11 Definition A structure N is (elementarily) λ-universal if every M ≡ N of cardinality
≤ λ there is an elementary embedding h : M ↪→ N. We say universal if it is λ-universal
and of cardinality λ.

We say that N is (elementarily) λ-homogeneous if every elementary map k : N → N
of cardinality < λ extends to an automorphism. We say that N is homogeneous if it is
λ-homogeneous and of cardinality λ. �

As saturated structures are rich, the following theorem is an instance of Theo-
rem 7.8.

9.12 Theorem For every structure N of cardinality ≥ |L| the following are equivalent

1. N is saturated;

2. N is elementarily universal and homogeneous. �

Given A ⊆ N we denote by Aut(N/A) the group of A-automorphisms of N. That
is the group of automorphisms that fix A point-wise. Let a be a tuple of elements
of N. The orbit of a over A in N is the set

ON(a/A) =
{

f a : f ∈ Aut(N/A)
}

When the model N is clear from the context we omit the subscript.

Orbits in a homogeneous structure are particularly interesting. The following propo-
sition is immediate but its importance cannot be overestimated.

9.13 Proposition Let N be a λ-homogeneous structure. Let A ⊆ N have cardinality < λ and
let a ∈ N<λ. Then ON(a/A) = p(N), where p(x) = tpN(a/A). �

Finally, we want to extend the equivalence in Theorem 9.12 to λ-saturated struc-
tures. For this we only need to apply Theorem 7.24.

When the morphisms of the underlying category are the elementary maps, it is
usual to replace the notion of λ-universal (cfr. Definition ??) with the following.

9.14 Definition We say that N is weakly λ-saturated if N realizes every type p(x) ⊆ L, where
|x| ≤ λ, that is finitely consistent in N. �

In fact, by the Löwenheim-Skolem theorem the two notions are equivalent.
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9.15 Proposition The following are equivalent

1. N weakly λ-saturated;

2. N is λ-universal. �

The following is an instance of Theorem 7.24 that the reader may prove directly as
an exercise.

9.16 Corollary Let |L| ≤ λ. The following are equivalent

1. N is λ-saturated;

2. N is weakly λ-saturated and weakly λ-homogeneous. �

9.17 Exercise Let M be an arbitrary structure of cardinality larger than |L|. Prove that
M has an ω-homogeneous elementary extension of the same cardinality. �

9.18 Exercise Let M and N be elementarily homogeneous structures of the same cardi-
nality λ. Suppose that M � ∃x p(x) ⇔ N � ∃x p(x) for every p(x) ⊆ L such that
|x| < λ. Prove that the two structures are isomorphic. �

9.19 Exercise Let L be a language that extends that of strict linear orders with the con-
stants {ci : i ∈ ω}. Let T be the theory that extends Tdlo with the axioms ci < ci+1
for every i ∈ ω. Prove that T has elimination of quantifiers and is complete (it can
be deduced from what is known of Tdlo). Exhibit a countable saturated model and
a countable model that is not homogeneous. �

3 The monster model

In this section we present some notation and terminology frequently adopted when
dealing with a complete theory T. We fix a saturated structure U of cardinality
larger than |L|. We assume U to be large enough that among its elementary sub-
structures we can find any model of T we might be interested in. This structure is
called the monster model. We denote by κ the cardinality of U. When appropriate,
we assume κ to be inaccessible.

Some terms acquire a slightly different meaning when working inside a monster
model.

truth we say that ϕ(x) holds if U � ∀x ϕ(x) and similarly for other
expressions such as p(x)→ ¬q(x) or ∃y p(x, y) etc., which are
neither first-order formulas nor types;

consistency we say that ϕ(x) is consistent if U � ∃x ϕ(x); the consistency
of a type p(x) or expressions such as those above is defined
similarly;

small/large cardinalities smaller than κ are called small;

models are elementary substructure of U of small cardinality they are
denoted by the letters M and N;
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parameters are always in U; the symbols A, B, C, etc. denote sets of pa-
rameters of small cardinality; calligraphic letters as A, B, C,
etc. are used for sets of arbitrary cardinality;

tuples have length < κ unless otherwise specified;

global types are complete finitely consistent types over U; the set of global
types is denoted by S(U);

formulas have parameters in U unless otherwise specified;

definable sets are sets of the form ϕ(U) for some formula ϕ(x) ∈ L(U); we
may say A-definable if ϕ(x) ∈ L(A);

type-definable sets are sets of the form p(U) for some p(x) ⊆ L(A) where, as the
symbol suggests, A has small cardinality;

types of tuples we write tp(a/A) for tpU(a/A) and a ≡A b for U, a ≡A U, b;

orbits of tuples under the action of Aut(U/A) are denoted by O(a/A).

Let x be a tuple of variables. For any fixed A ⊆ U we introduce a topology on
U|x| that we call the topology induced by A or, for short, A-topology. (This is non
standard terminology, not to be confused with the logic A-topology in Section 14.4.)
The closed sets of the A-topology are those of the form p(U) where p(x) ⊆ L(A) is
a type over A.

For ϕ(x) ∈ L(A) the sets of the form ϕ(U) are clopen in this topology (and vice
versa by Proposition 9.20). They form both a base of closed sets and base of open
sets, which makes these topologies zero-dimensional. By saturation, the topology
induced by A is compact. Actually, saturation is equivalent to the compactness of
all these topologies as A ranges over the sets of small cardinality.

These topologies are never T0 as any pair of tuples a ≡A b have exactly the same
neighborhoods. Such pairs always exist by cardinality reasons. However it is im-
mediate that the topology induced on the quotient U|x|/ ≡A is Hausdorff (this is
the so-called Kolmogorov quotient). Indeed, this quotient corresponds to Sx(A) with
the topology introduced in Section 5.3.

The following proposition is an immediate consequence of compactness. When
A = B it says that the topology induced by A is normal: any two closed sets are
separated by open sets. It could be called mutual normality (not a standard name)
because the two closed sets belong to different topologies and the separating sets
are each found in the corresponding topology.

9.20 Proposition(mutual normality) Let p(x) ⊆ L(A) and q(x) ⊆ L(B) be such that
p(x) → ¬q(x). Then there are a conjunction ϕ(x) of formulas in p(x) and a conjunc-
tion ψ(x) of formulas in q(x) such that ϕ(x)→ ¬ψ(x).

Proof The assumptions say that p(x) ∪ q(x) is inconsistent (i.e. not realized in U).
Then the formulas ϕ(x) and ψ(x) exist by compactness (i.e. saturation). �

9.21 Remark There are many forms in which the proposition above can be applied.
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For instance, assuming for brevity that p(x) and q(x) are closed under conjunc-
tions,

a. if p(x)↔ ¬q(x) then p(x)↔ ϕ(x) for some ϕ(x) ∈ p(x);

b. if p(x)↔ ψ(x) for some ψ(x) ∈ L(U) then p(x)↔ ϕ(x) for some ϕ(x) ∈ p;

c. if p(x)→ ψ(x) for some ψ(x) ∈ L(U) then ϕ(x)→ ψ(x) for some ϕ(x) ∈ p;

d. if p(x)→
∨

ψ∈Ψ
ψ(x), where |Ψ| < κ, then p(x)→

n∨
i=1

ψi(x) for some ψi ∈ Ψ. �

9.22 Remark A definable set has the form ϕ(U ; b) for some formula ϕ(x ; z) ∈ L and
some b ∈ U|z|. If f ∈ Aut(U) then

f
[
ϕ(U ; b)

]
=

{
f a : ϕ(a ; b), a ∈ U|x|

}
=

{
f a : ϕ( f a ; f b), a ∈ U|x|

}
= ϕ(U ; f b).

Hence automorphisms act on definable sets in a very natural way. Their action on
type-definable sets is similar. �

We say that a set D ⊆ U|x| is invariant over A if f [D] = D for every f ∈ Aut(U/A)

or, equivalently, if O(a/A) ⊆ D for every a ∈ D. By homogeneity this is equivalent
to requiring that

q(x) → x ∈ D

for every q(x) = tp(a/A) and a ∈ D.

Proposition 9.25 below is an important fact about invariant type-definable sets. It
may clarify the proof to consider first the particular case of definable sets.

9.23 Proposition For every ϕ(x) ∈ L(U) the following are equivalent

1. ϕ(x) is equivalent to some formula ψ(x) ∈ L(A);

2. ϕ(U) is invariant over A.

We give two proofs of this theorem as they are both instructive.

Proof 1⇒2 Obvious.

2⇒1 From 2 and homogeneity we obtain

ϕ(x) ↔
∨

q(x)∈Q

q(x)

where Q is the set of the types in Sx(A) such that q(x) → ϕ(x). By compactness,
we can rewrite this equivalence

ϕ(x) ↔
∨

ϑ(x)∈Θ

ϑ(x)

where Θ is the set of the formulas in L(A) such that ϑ(x) → ϕ(x). The latter
equivalence says that ¬ϕ(x) is equivalent to a type over A. Again by compactness
we obtain

ϕ(x) ↔
n∨

i=1

ϑi(x)
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for some formula ϑi(x) ∈ L(A). �

Second proof of Proposition 9.23 2⇒1 Let ϕ(U ; b), where ϕ(x ; z) ∈ L, be a set
invariant over A. Let p(z) = tp(b/A). As f [ϕ(U ; b)] = ϕ(U ; f b) for every f ∈
Aut(U/A), homogeneity and invariance yield

p(z) → ∀x
[
ϕ(x ; z)↔ ϕ(x ; b)

]
.

By compactness there is a formula ϑ(z) ∈ p such that

ϑ(z) → ∀x
[
ϕ(x ; z)↔ ϕ(x ; b)

]
.

Hence ϕ(U ; b) is defined by the formula ∃z
[
ϑ(z) ∧ ϕ(x ; z)

]
, which is a formula in

L(A) as required. �

9.24 Exercise Let ϕ(x) ∈ L. Prove that the following are equivalent

1. ϕ(x) is equivalent to some ψ(x) ∈ Lqf;

2. ϕ(a)↔ ϕ( f a) for every partial isomorphism f : U→ U defined in a.

Use the result to prove Theorem 7.14 for T complete. �

9.25 Proposition Let p(x) ⊆ L(B). Then the following are equivalent

1. p(x) is equivalent to some type q(x) ⊆ L(A);

2. p(U) is invariant over A.

We give two proofs of this theorem. The second one requires Proposition 9.26 below.

Proof 1⇒2 Obvious.

2⇒1 It suffices to show that for every formula ψ(x) ∈ p(x) there is a formula
ϕ(x) ∈ L(A) such that p(x) → ϕ(x) → ψ(x). Fix ψ(x) ∈ p(x). By invariance, any
q(x) ∈ S(A) consistent with p(x) implies p(x), hence

p(x) →
∨

q(x)→ψ(x)

q(x) → ψ(x)

where q(x) above range over all types in Sx(A). By compactness we can rewrite
this equivalence as follows

p(x) →
∨

ϑ(x)→ψ(x)

ϑ(x) → ψ(x)

where ϑ(x) ranges over all formulas in L(A). Applying mutual normality (Propo-
sition 9.20) to the first implication we obtain a finite number of formulas ϑi(x) such
that

p(x) →
n∨

i=1

ϑi(x) → ψ(x).

This completes the proof. �

The following easy proposition is very useful. Its proof is left to the reader. Note
that it would not hold without saturation. For a counter example consider R as a
structure in the language of strict orders and let q(x, y) = tp(0, 1/A), where

A =
{

1 +
1

n + 1
: n ∈ ω

}
.
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By quantifier elimination, 0 ≡A 1 but R, 1 2 ∃y q(x, y). However, in any sufficiently
saturated elementary extension of R, we have 1 2 ∃y q(x, y).

9.26 Proposition Let p(x ; z) ⊆ L(A). There is a type q(x) ⊆ L(A) such that

U � ∀x
[
∃z p(x ; z) ↔ q(x)

]
.

The theorem holds also when x and z have length κ.

Proof It is easy to verify that the equivalence above holds if

q(x) =
{
∃z ϕ(x ; z) : ϕ(x ; z) conjunction of formulas in p(x ; z)

}
. �

As an application we give a second proof of the proposition above.

Second proof of Proposition 9.25 2⇒1 Write p(x) as the type q(x ; b) for some
q(x ; z) ⊆ L and some b ∈ U|z|. Let s(z) = tp(b/A). By invariance and homogeneity
the types q(x ; f b) for f ∈ Aut(U/A) are all equivalent. Therefore

p(x) ↔
∨

f∈Aut(U/A)

q(x ; f b)

p(x) ↔
∨

c≡A b

q(x ; c)

↔ ∃z
[
s(z) ∧ q(x ; z)

]
.

Hence, by Proposition 9.26, p(x) is equivalent to a type over A. �

9.27 Exercise Let p(x) ⊆ L(A), with |x| < ω. Prove that if p(U) is infinite then it has
cardinality κ. Show that this may not be true if x is an infinite tuple (i.e., p(U) may
be infinite and of cardinality < κ|x|). �

9.28 Exercise Let ϕ(x, y) ∈ L(U). Prove that if the set
{

ϕ(a,U) : a ∈ U|x|
}

is infinite
then it has cardinality κ. Does the claim remain true with a type p(x, y) ⊆ L(A) for
ϕ(x, y)? �

9.29 Exercise Let ϕ(x ; y) ∈ L(U). Prove that the following are equivalent

1. there is a sequence 〈ai : i ∈ ω〉 such that ϕ(U ; ai) ⊂ ϕ(U ; ai+1) for every i < ω;

2. there is a sequence 〈ai : i ∈ ω〉 such that ϕ(U ; ai+1) ⊂ ϕ(U ; ai) for every i < ω. �

9.30 Exercise Prove that R, 1 2 ∃y q(x, y), as claimed before Proposition 9.26. �
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Chapter 10

Preservation theorems

In this chapter we present a few results dating from the 1950s that describe the re-
lationship between syntactic and semantic properties of first-order formulas. These
results characterize the classes of formulas that preserved under various sorts of
morphisms. Criteria for quantifier-elimination follow from these theorems, see for
instance the frequently used back-and-forth method of Corollary 10.13.

1 Lyndon-Robinson Lemma

We refer the reader to Exercise 9.24 for a simpler version of the main result in this
section, the Lyndon-Robinson Lemma. In fact, under the additional assumption of
completeness, Lemma 10.3 is essentially the same as the claim in Exercise 9.24.

However, we are interested in criteria for quantifier elimination, e.g. Corollary 10.12
below. We often need to prove quantifier elimination in order to prove complete-
ness. Therefore any assumption of completeness would make criteria for quantifier
elimination less applicable.

In this section T is a consistent theory without finite models and ∆ is a set of formu-
las closed under renaming of variables. At a first reading the reader is encouraged
to assume that ∆ is Lat.

10.1 Definition If C ⊆ {∀, ∃,¬,∨,∧} is a set of connectives, we write C∆ for the closure of ∆
with respect to all connectives in C. We may write ∆± for {¬}∆. �

Recall that ∆-morphism is a map k : M→ N that preserves the truth of formulas in
∆. It is immediate that ∆-morphism are automatically {∧∨}∆-morphisms. As ∆ is
closed under renaming of variables, {∃}∆-morphism are {∃∧∨}∆-morphisms and
similarly {∀}∆-morphism are {∀∧∨}∆-morphisms.

Below we use the following proposition without further reference.

10.2 Proposition Fix M � T and b ∈ M|x|. Let q(x) = ∆- tpM(b). Then for every ϕ(x) ∈ L
the following are equivalent

1. N � ϕ(k b) for every k : M→ N � T that is a ∆-morphism defined in b;

1′. N � ϕ(c) for every N � T such that N, cV∆ M, b.

2. T ` q(x)→ ϕ(x).

Proof 1⇔1′ In fact, the difference is just in the notation.

2⇒1 Immediate.

1⇒2 Negate 2, then there are N � T and c ∈ N|x| such that q(c)∧¬ϕ(c). Therefore
the map k : M→ N, where k = {〈b, c〉}, contradicts 1. �
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The following is sometimes referred to as the Lyndon-Robinson Lemma.

10.3 Lemma For every ϕ(x) ∈ L the following are equivalent

1. ϕ(x) is equivalent over T to a formula in {∧∨}∆;

2. ϕ(x) is preserved by ∆-morphisms between models of T.

Proof 1⇒2 Immediate.

2⇒1 We claim that 2 implies

# T ` ϕ(x) ↔
∨ {

p(x) ⊆ ∆ : T ` p(x)→ ϕ(x)
}

.

The implication← is clear. To verify the implication→, let M � T and let b ∈ M|x|

be such that M � ϕ(b). From 2 it follows that ϕ(x) satisfies 1 of Proposition 10.2.
Therefore T ` q(x)→ ϕ(x) for q(x) = ∆- tp(b). Hence q(x) is one of the types that
occur in the disjuction in # which therefore is satisfied by b.

From # and compactness we obtain

T ` ϕ(x) ↔
∨ {

ψ(x) ∈ {∧}∆ : T ` ψ(x)→ ϕ(x)
}

.

Applying compactness again allows us to replace the infinite disjunction above with
a finite one and prove 2. �

The following exercise is immediate but it is arguably the most important result of
this chapter.

10.4 Exercise Prove Theorem 7.14, that is, that for every theory T the following are
equivalent

1. T has elimination of quantifiers;

2. every partial isomorphism between models T is an elementary map. �

In the rest of these section we ...

10.5 Proposition Let N be λ-saturated and let k : M → N be a ∆-morphism of cardinality
< λ. Then the following are equivalent

1. k : M→ N is a {∃}∆-morphism;

2. for every b ∈ M some {∃}∆-morphism h : M→ N defined in b extends k;

3. for every b̄ ∈ Mω some ∆-morphism h : M→ N defined in b̄ extends k.

Proof 1⇒2 Let a enumerate dom k. Define p(x ; z) = {∃}∆- tpM(b ; a). By 1,
p(x ; ka) is finitely consistent in N. By saturation there is a c ∈ N that realizes
p(x ; ka). Therefore, h : M→ N where h = k ∪ {〈b, c〉}, witnesses 2.

2⇒3 Iterate ω-times the extension in 2.

3⇒1 Let a enumerate dom k and let |z| = |a|. Formulas in {∃}∆ with free variables
among z are of the form ∃x̄ ϕ(x̄ ; z) where ϕ(x̄ ; z) is in ∆ and x̄ is some fixed tuple
of length ω. Assume M � ∃x̄ ϕ(x̄ ; a) and let b̄ be such that M � ϕ(b̄ ; a). By 3, we
can extend k to some ∆-morphism h : M → N defined in b̄. Then N � ϕ(hb̄ ; ha)
and therefore N � ∃x̄ ϕ(x̄ ; ka). �

Iterating the lemma above we obtain the following.
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10.6 Corollary Let N be λ-saturated and let |M| ≤ λ. Let k : M → N be a ∆-morphism of
cardinality < λ. Then the following are equivalent

1. k : M→ N is a {∃}∆-morphism;

2. k : M→ N extends to an {∃}∆-embedding;

3. k : M→ N extends to an ∆-embedding. �

The following theorem is often paraphrased as follows: a formula is existential if
and only if (its truth) is preserved under extensions of structures.

10.7 Theorem For every ϕ(x) ∈ L the following are equivalent

1. ϕ(x) is equivalent over T to a formula in {∃∧∨}∆;

2. ϕ(x) is preserved by ∆-embedding between models of T.

Proof 1⇒2 Immediate.

2⇒1 Negate 1. By the Lyndon-Robinson Lemma 10.3 there is a {∃}∆-morphism
k : M → N between models of T that does not preserve ϕ(x). We can assume
that N is λ-saturated for some sufficiently large λ. By Corollary 10.6 there is a
∆-embedding h : M ↪→ N that extends k and contradicts 2. �

A dual version of the results above is obtained replacing embeddings by epimor-
phisms, i.e. surjective (partial) homomorphisms, and {∃} by {∀}. If ∆ contains the
formula x = y and is closed under negation, then k : M → N is a ∆-morphism if
and only is k−1 : N → M is a ∆-morphism. In this case the dual version follows
from what proved above. Without these assumptions the results need a similar but
independent proof.

10.8 Proposition Let M be λ-saturated and let k : M → N be a ∆-morphism of cardinality
< λ. Then the following are equivalent

1. k : M→ N is a {∀}∆-morphism;

2. for every c ∈ N some {∀}∆-morphism h : M→ N extends k and c ∈ img h;

3. for every c ∈ Nω some ∆-morphism h : M→ N extends k and c ∈ (img h)ω.

We write ¬∆ for the set containing the negation of the formulas in ∆. Warning: do
not confuse ¬∆ with {¬}∆.

Proof Left as an exercise for the reader. Hint: to prove implication 1⇒2 define
p(x, y) = ¬{∀}∆- tpN(ka, c), where a is a tuple that enumerates dom k. From 1
obtain that p(a, y) is finitely consistent in M. Then proceed as in the proof of
Proposition 10.5. �

10.9 Corollary Let M be λ-saturated and let |N| ≤ λ. Let k : M → N be a ∆-morphism of
cardinality < λ. Then the following are equivalent

1. k : M→ N is a {∀}∆-morphism;

2. k : M→ N extends to an {∀}∆-epimorphism;

3. k : M→ N extends to an ∆-epimorphism. �
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Finally we obtain the following.

10.10 Theorem The following are equivalent

1. ϕ(x) is equivalent to a formula in {∀∧∨}∆;

2. every ∆-epimorphism between models of T preserves ϕ(x). �

2 Quantifier elimination by back-and-forth
We say that T admits (or has) positive ∆-elimination of quantifiers if for every for-
mula ϕ(x) in {∃ ∀∧∨}∆ there is a formula ψ(x) in {∧∨}∆ such that

T ` ϕ(x)↔ ψ(x).

When ∆ is closed under negation the attribute positive becomes irrelevant and will
be omitted. When ∆ is Lat± or Lqf, we simply say that T admits elimination of
quantifiers. This is by far the most common case.

Quantifier elimination is often used to prove that a theory is complete because it
reduces it to something much simpler to prove. The following is an immediate
consequence of the definition above with x replaced by the empty tuple.

10.11 Remark If T has elimination of quantifiers then the following are equivalent

1. T decides all quantifier free sentences;

2. T is complete.

Hence a theory with quantifier elimination is complete if it decides the characteris-
tic, see Definition 5.26). �

The following is a consequence of Lemma 10.3.

10.12 Corollary The following are equivalent

1. T has ∆-elimination of quantifiers;

2. every ∆-morphism between models of T is both a {∃}∆ and a {∀}∆-morphism.

Proof 1⇒2 Immediate.

2⇒1 We prove by induction of syntax that ∆-morphism preserve the truth of all
formulas in {∃ ∀∧∨}∆, this suffices by Lemma 10.3. Induction for the connectives
∨ and ∧ is trivial. So assume as induction hypothesis that the truth of ϕ(x, y) is
preserved. By Lemma 10.3 ϕ(x, y) is equivalent to a formula in {∧∨}∆, hence by 2
the truth of ∃y ϕ(x, y) and ∀y ϕ(x, y) is preserved. �

Condition 2 of the corollary above may be difficult to verify directly. The following
corollary of Proposition 10.5 and 10.8 gives a back-and-forth condition with is easier
to verify.

10.13 Corollary Let |L| ≤ λ. The following are equivalent

1. T has ∆-elimination of quantifiers;

2. for every finite ∆-morphism k : M→ N between λ-saturated models of T

a. for every b ∈ M some ∆-morphism h : M→ N extends k and b ∈ dom h;

83



b. for every c ∈ N some ∆-morphism h : M→ N extends k and c ∈ img h. �

Note that when ∆ contains the formula x = y and is closed under negation, then
k : M → N is a ∆-morphism if and only if k−1 : N → M is a ∆-morphism. In this
case a and b are equivalent.

10.14 Exercise Let T be a complete theory without finite models in a language that con-
sists only of unary predicates. Prove that T has elimination of quantifiers. �

10.15 Exercise Let T be the theory of discrete linear orders, that is, T extends the theory
of linear orders Tlo (see Section 6.1) with the following two of axioms with the
following two of axioms

dis↑. ∃z
[
x < z ∧ ¬∃y x < y < z

]
;

dis↓. ∃z
[
z < x ∧ ¬∃y z < y < x

]
.

Let ∆ be the set of formulas that contains (all alphabetic variants of) the formulas
x <n y := ∃≥nz (x<z<y) and their negations, for all positive integers n. Prove that
the theory of discrete linear orders has ∆-elimination of quantifiers. Prove that the
structure Q×Z ordered with the lexicographic order

(a1, a2) < (b1, b2) ⇔ a1 < b1 or (a1 = b1 e a2 < b2)

is a saturated model of T. �

10.16 Exercise Let T be a consistent theory. Suppose that all completions of T are of the
form T ∪ S for some set S of quantifier-free sentences. Prove that if all completions
of T have elimination of quantifiers, so does T. Show that this fails when the
completions of T have arbitrary complexity.

Note. Thought the claim follows immediately from Corollary 10.12, a direct proof
by compactness is also instructive. Prove that for every formula ϕ(x) there are some
quantifier-free sentences σi and quantifier-free formulas ψi(x) such that

σi ` ϕ(x)↔ ψi(x), T `
n∨

i=1

σi, and σi ` ¬σj for i 6= j.

For a counter example consider the empty theory in the language with a single
unary predicate. �

3 Model-completeness

We say that T is model-complete if every embedding h : M ↪→ N between models of
T is an elementary embedding. The terminology, introduced by Abraham Robinson,
is inspired by the fact that T is model-complete if and only if T ∪ Diag(M) is a
complete theory, in the language L(M), for every M � T.

To stress positivity in the next proposition, we generalize the definition as follows.
We say that T is ∆-model-complete if every ∆-embedding h : M ↪→ N between
models of T is a {∀∃}∆-embedding.

Model-completeness is equivalent to a property akin to quantifier elimination.

84



10.17 Proposition The following are equivalent

1. T is ∆-model-complete;

2. T has {∃}∆-elimination of quantifiers.

Proof 1⇒2 By 1, every formula {∀∃∧∨}∆ is preserved by ∆-embeddings there-
fore, by Theorem 10.7, it is equivalent to a formula in {∃∧∨}∆.

2⇒1 Clear, because ∆-embeddings preserve formulas in {∃∧∨}∆. �

The theory of discrete linear orders defined in Exercise 10.15 is an example of a
model-complete theory without elimination of quantifiers.

The difference between quantifier elimination and model-completeness subtle. It
boils down to models of T having or not the amalgamation property.

10.18 Proposition Assume T is model-complete. Let M be the category that consists of models
of T and partial isomorphisms. Then the following are equivalent

1. M has the amalgamation property;

2. T has elimination of quantifiers.

Proof 1⇒2 By Proposition 7.25 every partial morphism k : M → N extends to
an embedding g : M ↪→ N′ which, by model-completeness, is an elementary em-
bedding. Model-completeness also implies that N � N′. Hence k : M → N is an
elementary map. This proves 2.

2⇒1 If all morphisms are elementary maps, amalgamations follows from Propo-
sition 7.28. �

Note however that the models of a model-complete theory T do have amalgamation
when the proper notion of morphism is chosen.

Let M′ be the category that consists of models of T and the maps k : M → N such
that there is a partial isomorphism h : M′ → N′ with

1. k ⊆ h; M � M′; N � N′;

2. dom h contains a substructure of M′ that models T (equivalently img h and N′).

Moreover, we add as morphisms the maps that are obtained from those above by
composition. It is clear that if T is model-complete then the morphisms of M′ are
exactly the elementary maps. In this case M′ has amalgamation. Vice versa if M′

has amalgamation, the theory of rich models is model-complete.

10.19 Exercise Prove that M′ satisfies finite character of morphisms, c2 of Definition 7.1. �
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Chapter 11

Geometry and dimension

In this chapter we fix a signature L, a complete theory T without finite models, and
a saturated model U of inaccessible cardinality κ larger than |L|. The notation and
implicit assumptions are as in Section 9.3.

1 Algebraic and definable elements

Let a ∈ U and let A ⊆ U be some set of parameters (of arbitrary cardinality). We say
that a is algebraic over A if ϕ(a) ∧ ∃=kx ϕ(x) holds for a formula ϕ(x) ∈ L(A) and
some positive integer k. In particular, when k = 1 we say that a is definable over A .
We write acl(A) for the algebraic closure of A , that is, the set of all the elements
that are algebraic over A. If A = acl(A), we say that A is algebraically closed. The
definable closure of A is defined similarly and is denoted by dcl(A) .

Let x be a finite tuple of variables. Formulas ϕ(x) ∈ L(A), or types p(x) ⊆ L(A),
with finitely many solutions are called algebraic.

11.1 Proposition For every A ⊆ U and every type p(x) ⊆ L(A), where |x| < ω, the following
are equivalent

1 ∃≤nx p(x);

2 ∃≤nx ϕ(x) for some ϕ(x) which is a conjunction of formulas in p(x).

Proof The non trivial implication is 1⇒2. Let {a1, . . . , an} be all the solutions of
p(x). Then

p(x) ↔
n∨

i=1

ai = x

Then 2 follows by compactness (cfr. Remark 9.21.b). �

11.2 Exercise For every a ∈ Un and A ⊆ U, the following are equivalent

1. a is solution of some algebraic formula ϕ(x) ∈ L(A);

2. a = a1, . . . , an for some a1, . . . , an ∈ acl(A). �

11.3 Theorem For every A ⊆ U and every a ∈ U the following are equivalent

1 a ∈ dcl(A);

2 O(a/A) =
{

a
}

.

Proof Implication 1⇒2 is obvious. As for 2⇒1, recall that O(a/A) is the set of
realizations of tp(a/A), then the theorem follows from Proposition 11.1. �

11.4 Theorem For every A ⊆ U and every a ∈ U the following are equivalent
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1 a ∈ acl(A);

2 O(a/A) is finite;

3 a belongs to every model containing A.

Proof 1⇔2. This is proved as in Theorem 11.3.

1⇒3. Assume 1. Then there is a formula ϕ(x) ⊆ L(A) such that ϕ(a) ∧ ∃=kx ϕ(x)
for some k. By elementarity ∃=kx ϕ(x) holds in every model M containing A. Again
by elementarity, the k solutions of ϕ(x) in M are solutions in U, therefore a is one
of these.

3⇒2. Assume O(a/A) is infinite and fix any model M containing A. By Exer-
cise 9.27, O(a/A) has cardinality κ, hence O(a/A) * M. Pick any f ∈ Aut(U/A)

such that f a /∈ M. Then a /∈ f−1[M], so f−1[M] is a model that contradicts 3. �

11.5 Corollary For every A ⊆ U and every a ∈ U

1 if a ∈ acl A then a ∈ acl B for some finite B ⊆ A; finite character

2 A ⊆ acl A; extensivity

3 if A ⊆ B then acl A ⊆ acl B; monotonicity

4 acl A = acl(acl A); idempotency

5 acl A =
⋂

A⊆M
M.

Properties 1-4 say that acl(-) is a closure operator with finite character.

Proof Properties 1-3 are obvious, 4 follows from 5 which in turn follows from The-
orem 11.4. �

11.6 Proposition If f ∈ Aut(U) then f
[

acl(A)
]
= acl

(
f [A]

)
for every A ⊆ U.

Proof We prove f
[

acl(A)
]
⊆ acl

(
f [A]

)
. Fix a ∈ acl(A) and let ϕ(x ; z) ∈ L and

b ∈ A|z| be such that ϕ(x ; b) is algebraic formula satisfied by a. By elementarity,
ϕ(x ; f b) is algebraic and satisfied by f a. Therefore f a is algebraic over f [A], which
proves the inclusion.

The converse inclusion is obtained by substituting f−1 for f and f [A] for A. �

11.7 Exercise Let ϕ(z) ∈ L(A) be a consistent formula. Prove that, if a ∈ acl(A, b) for
every b � ϕ(z), then a ∈ acl(A). Prove the same claim with a type p(z) ⊆ L(A) for
ϕ(z). �

11.8 Exercise Let a ∈ U r acl∅. Prove that U is isomorphic to some V � U such
that a /∈ V. Hint: let c̄ be an enumeration of U and let p(ū) = tp(c̄) prove that
p(ū)∪

{
ui 6= a : i < |ū|

}
is realized in U and that any realization yields the required

substructure of U. �

11.9 Exercise Let C be a finite set. Prove that if C ∩M 6= ∅ for every model M contain-
ing A, then C ∩ acl(A) 6= ∅. Hint: by induction on the cardinality of C. Suppose
there is a c ∈ Cr acl(A), then there is V ' U such that A ⊆ V � U and c /∈ V, see
Exercise 11.8. Apply the induction hypothesis to C′ = C ∩ V with V for U. �

87



11.10 Exercise Prove that for every A ⊆ N there is an M such that acl A = M∩ N. Hint:
add the requirement acl(Ai) ∩ N ⊆ acl(A) to the construction used to prove the
downward Löwenheim-Skolem theorem. You need to prove that every consistent
ϕ(x) ∈ L(Ai) has a solution a such that acl(Ai, a) ∩ N ⊆ acl(A). The required a has
to realize the type{

ϕ(x)
}
∪
{
¬
[
ψ(b, x)∧ ∃≤ny ψ(y, x)

]
: b ∈ Nr acl(A), ψ(y, x) ∈ L(Ai), n < ω

}
whose consistency need to be verified.

11.11 Exercise Prove that for every A ⊆ N there is an automorphism f ∈ Aut(U/A) such
that acl A = f [N] ∩ N. (This is a stronger version of the claim in Exercise 11.10.)
Hint: let c̄ be an enumeration of N. Let p(x̄) = tp(c̄/A). Consider the type

p(x) ∪
{
¬
[
ψ(b, x̄) ∧ ∃≤ny ψ(y, x̄)

]
: b ∈ Nr acl(A), ψ(y, x) ∈ L(A), n < ω

}
Any ā � p(x̄) enumerates a model A-isomorphic to N. �

11.12 Exercise Let ϕ(x) ∈ L(U) and fix an arbitrary set A. Prove that the following are
equivalent

1. there is some model M containing A and such that M ∩ ϕ(U) = ∅;

2. there is no consistent formula ψ(z1, . . . , zn) ∈ L(A) such that

ψ(z1, . . . , zn)→
n∨

i=1

ϕ(zi).

Hint: let c̄ be an enumeration of N|x|, where N is any model containing A. Let
p(z̄) = tp(c̄/A). Prove that 2 implies the consistency of p(z̄) ∪

{
¬ϕ(zi) : i < |z̄|

}
and deduce the existence of the required M. �

2 Strongly minimal theories

Finite and cofinite sets are always (trivially) definable in every structure. We say
that M is a minimal structure if all its definable subsets of arity one are finite or
cofinite. Unfortunately, this notion is not elementary, i.e. it is not a property of
Th(M). For instance N with only the order relation in the language is a minimal
structure but none of its elementary extensions is. Hence the following definition:
we say that M is a strongly minimal structure if it is minimal and all its elementary
extensions are minimal.

We say that T, a consistent theory without finite models, is strongly minimal if for
every formula ϕ(x ; z) ∈ L, where x has arity one, there is an n ∈ ω tale che

T ` ∃≤nx ϕ(x ; z) ∨ ∃≤nx ¬ϕ(x ; z).

We show that the semantic notion matches the syntactic one.

11.13 Proposition The following are equivalent

1. Th(M) is a strongly minimal theory;

2. M is a strongly minimal structure;

3. M has an elementary extension which is minimal and ω-saturated.
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Proof Implications 1⇒2⇒3 are immediate, we prove 3⇒1. Let ϕ(x ; z) ∈ L and let
N be the elementary extension given by 3. Let p(z) ⊆ L be the following type

p(z) =
{
∃>nx ϕ(x ; z) ∧ ∃>nx ¬ϕ(x ; z) : n ∈ ω

}
.

As N is minimal, N 2 ∃z p(z). By ω-saturation p(z) is not finitely consistent in M.
Hence, for some n

M � ∀z
[
∃≤nx ϕ(x ; z) ∨ ∃≤nx ¬ϕ(x ; z)

]
.

which proves that Th(M) is strongly minimal. �

By quantifier elimination, Tacf and Tdag are strongly minimal theories.

11.14 Exercise Let T be a complete theory without finite models. Prove that the following
are equivalent

1. M is minimal;

2. a ≡M b for every a, b ∈ UrM. �

3 Independence and dimension

Throughout this section we assume that T is a complete strongly minimal theory.

When a /∈ acl B we say that a is algebraically independent from B. We say that B
is an algebraically independent set if every a ∈ B is independent from B r

{
a
}

.
Below we shall abbreviate B ∪

{
a
}

by B, a and Br
{

a
}

by Br a .

The following is a pivotal property of independence that holds in strongly minimal
structures. It is called symmetry or exchange principle. For every B and every pair
of elements a, b ∈ Ur acl B

b ∈ acl(B, a) ⇔ a ∈ acl(B, b)

Note that when T is the theory of vector spaces (over any fixed field) this principle
is the so called Steinitz exchange lemma.

11.15 Theorem (T strongly minimal.) Independence is symmetric. That is, if a, b /∈ acl B then
b ∈ acl(B, a)⇔ a ∈ acl(B, b)

Proof Suppose b /∈ acl(B, a) and a ∈ acl(B, b). We prove that a ∈ acl B. Fix a
formula ϕ(x, y) ∈ L(B) such that ϕ(x, b) witnesses a ∈ acl(B, b), i.e. for some n

ϕ(a, b) ∧ ∃≤nx ϕ(x, b).

As b /∈ acl(B, a), the formula

ψ(a, y) = ϕ(a, y) ∧ ∃≤nx ϕ(x, y).

is not algebraic. Therefore, by strong minimality, ψ(a, y) has cofinitely many so-
lutions. Hence every model containing B contains a solution of ψ(a, y). As a is
algebraic in any of these solutions, a belongs to every model containing B. There-
fore, a ∈ acl B by Theorem 11.4. �

We say that B ⊆ C is a basis of C if B is an independent set and C ⊆ acl B. The
following theorem proves that all bases have the same cardinality, which we call the
dimension of C and denote by dim C . First we need the following lemma.
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11.16 Lemma (T strongly minimal.) If B is an independent set and a /∈ acl B then B, a is also
an independent set.

Proof Suppose B, a is not independent and that a /∈ acl B. Then b ∈ acl(Br b, a) for
some b ∈ B. As a, b /∈ acl(Br b), from symmetry we obtain a ∈ acl(Br b, b) = acl B.
Hence B is not an independent set. �

11.17 Corollary (T strongly minimal.) For every B ⊆ C the following are equivalent

1. B is a basis of C.

2. B is a maximally independent subset of C. �

Finally we prove the main theorem about basis.

11.18 Theorem (T strongly minimal.) Fix some arbitrary set C, then

1 every independent set B ⊆ C can be extended to a basis of C;

2 all bases of C have the same cardinality.

Proof By the finite character of algebraic closure, the independent set form an in-
ductive class. Apply Zorn lemma to obtain a maximally independent subset of C
containing B. By Corollary 11.17 this set is a basis of C. This proves 1.

As for 2, assume for a contradiction that A, B ⊆ C are two bases of C and that
|A| < |B|. First consider the case when B is infinite. For each a ∈ A fix a finite set
Da ⊆ B such that a ∈ acl(Da). Let

D =
⋃

a∈A
Da.

Then A ⊆ acl D and |D| < |B|. By transitivity, C ⊆ acl D which contradicts the
independence of B.

Now we suppose that B is finite. As |A| < |B|, there is a b ∈ Br A. As b ∈ acl(A)

but b /∈ acl(B r b) then A * acl(B r b). Then there is an a ∈ A such that a /∈
acl(Br b). By Lemma 11.16 Br b, a is an independent set that, by what proved
above, is contained in a base B′. As |A| < |B′|, we can iterate the procedure. After
|A|+ 1 iterations we reach a contradiction. �

11.19 Proposition (T strongly minimal.) Let k be an elementary map. Then k ∪
{
〈b, c〉

}
is also

an elementary map for every b /∈ acl(dom k) and c /∈ acl(img k).

Proof Let a be an enumeration of dom k. We need to show that ϕ(b ; a) ↔ ϕ(c ; ka)
holds for every ϕ(x ; z) ∈ L. As k is elementary, the formulas ϕ(x ; a) and ϕ(x ; ka)
are either both algebraic or both co-algebraic. As b /∈ acl(a) and c /∈ acl(ka), they
are both false or both true respectively. So the proposition follows. �

11.20 Corollary (T strongly minimal.) Every bijection between independent sets is an elemen-
tary map. �

Finally we show that dimension classifies models of T.

11.21 Theorem (T strongly minimal.) Models of T with the same dimension are isomorphic.

90



Proof Let A e B be bases of M and N respectively. By Corollary 11.20, any bijection
between A and B is an elementary map. By Proposition 11.6, it extends to the
required isomorphism between acl A = M and acl B = N. �

11.22 Corollary (T strongly minimal.) Let |L| < λ. Then T is λ-categorical.

Proof Let M have cardinality λ. Let B ⊆ M be a base. Then λ = |M| = | acl B| =
|L(B)| = max{|L|, |B|}. If |L| < λ, then λ = |B|. Therefore all models of cardinality
λ are isomorphic because they all have the same dimension λ. �

11.23 Proposition (T strongly minimal.) For every model N of cardinality ≥ |L| the following
are equivalent

1. N is saturated;

2. dim N = |N|.

Proof 2⇒1. Assume 2 and let k : M → N be an elementary map of cardinality
< |N| and let b ∈ M. We want an extension of k defined in b. If b ∈ acl(dom k) then
the required extension exists by Proposition 11.6. Otherwise, we pick any element
c ∈ Nr acl(img k). Such an element exists as |k| < dim N = |N|. Then k ∪

{
〈b, c〉

}
is the required extension by Proposition 11.19.

1⇒2. If B ⊆ N is a basis of N the following type is not realized in N

p(x) =
{
¬ϕ(x) : ϕ(x) ∈ L(B) is algebraic

}
Therefore, if N is saturated, |B| = |N|. �

11.24 Exercise (T strongly minimal.) Prove that every infinite algebraically closed set is
a model. �

11.25 Exercise (T strongly minimal, L countable.) Prove that every model is homoge-
neous. �

11.26 Exercise (T strongly minimal.) Prove that if dim N = dim M + 1 then there is no
model K such that M ≺ K ≺ N. �
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Chapter 12

Countable models

In this chapter L is a fix signature, T a complete theory without finite models, and
U is a saturated model of inaccessible cardinality κ larger than |L|. We make no
blanket assumption on the cardinality of L, but the main theorems require L to be
countable. The notation and implicit assumptions are as in Section 9.3.

1 The omitting types theorem

We say that the formula ϕ(x) isolates the type p(x) when ϕ(x) is consistent and
ϕ(x) → p(x). When ∆ is a set of formulas, we say that ∆ isolates p(x) if some
formula in ∆ does. When ∆ = Lx(A), we say that A isolates p(x) or, when A is
clear, that p(x) is isolated. We say that a model M omits p(x) if p(x) is not realized
in M.

Observe that if p(x) ⊆ L(M) then M realizes p(x) if and only if M isolates p(x).
Therefore if A isolates p(x), then every model containing A realizes p(x). Below
we prove that the converse holds when L and A are countable. This is a famous
classical theorem that is called the omitting types theorem because it is proved by
constructing a model M that omits a given non-isolated type p(x).

The core of the argument lies in the following lemma.

12.1 Lemma Assume L(A) is countable. Let p(x) ⊆ L(A) and suppose that A does not isolate
p(x). Then, if ψ(z) ∈ L(A) is consistent, ψ(z) has a solution a such that A, a does not
isolate p(x).

Proof We construct a sequence of formulas 〈ψi(z) : i < ω〉 such that any realiza-
tion a of the type

{
ψi(z) : i < ω

}
is the required solution of ψ(z).

Let 〈ξi(x ; z) : i < ω〉 be an enumeration of Lx ;z(A). Take ψ0(z) = ψ(z). At stage
i + 1:

. if ξi(x ; z) ∧ ψi(z) is inconsistent, let ψi+1(z) = ψi(z);

. otherwise, pick some ϕ(x) ∈ p such that ψi(z)∧ ∃x
[
ξi(x ; z)∧¬ϕ(x)

]
is consis-

tent and let this conjunction be ψi+1(z).

This guarantees that ξi(x ; a) for any a � ψi+1(z) does not isolate p(x). The proof is
complete if we can show that it is always possible to find the formula ϕ(x) required
above.

Suppose for a contradiction that no formula makes ψi+1(z) consistent, that is,

ξi(x ; z) ∧ ψi(z) → ϕ(x)

for every ϕ(x) ∈ p. This immediately implies that

∃z
[
ξi(x ; z) ∧ ψi(z)

]
→ p(x),

that is, p(x) is isolated by a formula in Lx(A), which contradicts our assumptions. �
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12.2 Theorem(Omitting types) Assume L(A) is countable. Then for every consistent type
p(x) ⊆ L(A) the following are equivalent

1. all models containing A realize p(x);

2. A isolates p(x).

Proof The implication 2⇒1 is clear. We prove 1⇒2. Assume that A does not isolate
p(x). The model M is the union of a chain 〈Ai : i < ω〉 of countable subsets of U
where A0 = A. Along the construction we require that Ai does not isolate p(x). At
the end, M will not isolate p(x). Since M is a model, this this is equivalent to M
omitting p(x).

We proceed as in the proof of the downward Löwenheim-Skolem theorem. Assume
that Ai does not isolate p(x). With the notation of Proof 2.40, at stage i = π(j, k)
apply Lemma 12.1 to find a solution a of ϕk(x) such that Ai+1 = Ai, a does not
isolates p(x). �

Gerald Sacks once famously remarked: Any fool can realize a type but it takes a model
theorist to omit one. However, the diagonalization method in the proof of Lemma 12.1
lean towards descriptive set theory. (We invite the interested reader to compare this
lemma with the Kuratowski-Ulam theorem.)

12.3 Example The following example shows that in the omitting types theorem we can-
not drop the assumption that L(A) is countable. Let F be the set of all bijections
between two uncountable sets, X and Y. Let M be the model whose domain is do-
main the disjoint union of F, X and Y. The language has a ternary relation symbol
for f (x) = y and unary relation symbols for F, X, and Y. Let U be a saturated
elementary extension of M. Then U is partitioned into three definable sets UF, UX
and UY. Each element of UF defines a bijection between UX and UY.

Note that for any two elements a, b ∈ UY, there is an automorphism of U that fixes
UX ∪UY r {a, b} and swaps a and b.

Now, let Y1 ⊆ UY be countable. Let c ∈ UY r Y1 and let p(y) = tp(c/X, Y1). We
claim that p(y) is realized in every model containing X, Y1. In fact, by the remark
above p(U) = UY r Y1. But every model containing X also contains uncountably
many elements of UY, hence it contains a conjugate of c which therefore realizes
p(y). We also claim that p(y) is not isolated. Suppose for a contradiction there
is a consistent formula ϕ(y) such that ϕ(y) → p(y). Then ϕ(y) has a solution in
UY rY1. By the remark above, this implies that ϕ(U) is a cofinite subset of UY and
this contradicts ϕ(U) ⊆ p(U). �

12.4 Exercise Let p(x) ⊆ L(B) and pn(x) ⊆ L(A), for n < ω, be consistent types such
that

p(x) →
∨

n<ω

pn(x)

Prove that there is an n < ω and a formula ϕ(x) ∈ L(A) consistent with p(x) such
that

p(x) ∧ ϕ(x) → pn(x). �

12.5 Exercise Let A ⊆ B and p(x) ⊆ L(A). Suppose that tp(a/B) is isolated for every
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a � p(x). Prove that p(x) is isolated over A. �

2 Prime and atomic models

We say that M is prime over A if A ⊆ M and for every N containing A there is an
elementary embedding h : M → N that fixes A. When A is empty we simply say
that M is prime.

There is no syntactic analogue of primeness. The closest notion, which works well
for countable models in a countable language, is atomicity. For a ∈ U|x| we say that
a is isolated over A if the type p(x) = tp(a/A) is isolated. Note that this equivalent
to claiming that a is an isolated point in U|x| with respect to the A-topology defined
in Section 9.3. We say that M is atomic over A if A ⊆ M and every a ∈ M<ω is
isolated over A. When A is empty we say that M is atomic.

12.6 Proposition Let a and b be finite tuples. Then the following are equivalent

1. A isolates b, a;

2. A, a isolates b and A isolates a.

Proof Let p(x, z) = tp(b, a/A). Then p(x, a) = tp(b/A, a). Note also that ∃x p(x, z) =
tp(a/A).

1⇒2 Let ϕ(x, z) ∈ p be such that ϕ(x, z) → p(x, z). Then ϕ(x, a) → p(x, a) and
∃x ϕ(x, z)→ ∃x p(x, z). Therefore 2 holds by the remark above.

2⇒1 Fix ϕ(x ; z), ψ(z) ∈ L(A) such that ϕ(x ; a) isolates p(x ; a) and ψ(z) iso-
lates ∃x p(x ; z). Let ξ(x ; z) ∈ p be arbitrary. As ϕ(x ; a) → ξ(x ; a), the formula
∀x
[
ϕ(x ; z) → ξ(x ; z)

]
belongs to tp(a/A) which, as noted above, coincides with

∃x p(x, z). Hence ψ(z) → ∀x
[
ϕ(x ; z) → ξ(x ; z)

]
. As this holds for all ξ(x ; z) ∈ p,

we conclude that ψ(z) ∧ ϕ(x ; z) isolates p(x, z). �

The straightforward direction of the proposition above yields the following useful
proposition.

12.7 Proposition If M is atomic over A then M is atomic over A, a for every finite a ∈ M<ω.

Proof Let b ∈ M|x| be a finite tuple. Then A isolates b, a hence A, a isolates b. �

12.8 Proposition Let k : M → N be an elementary map and suppose that M is atomic over
dom k. Then for every b ∈ M there is a c ∈ N such that k ∪

{
〈b, c〉

}
: M → N is

elementary.

Proof Let p(x ; z) = tp(b ; a) where a is an enumeration of dom k. Let ϕ(x ; z) ∈ L
be such that ϕ(x ; a) → p(x ; a). Note that, by elementarity, ϕ(x ; ka) → p(x ; ka).
Hence the required c is any solution of ϕ(x ; ka) in N. �

A limiting assumption in Proposition 12.7 is that a need to be finite. Therefore the
following proposition is restricted to countable models.

12.9 Proposition Any two countable models atomic over A are isomorphic.

Proof Easy, using Propositions 12.7 and 12.8 and back-and-forth. �
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12.10 Proposition Assume L(A) is countable. Then for every model M the following are equiv-
alent

1. M is countable and atomic over A;

2. M is prime over A.

Proof 1⇒2 By Propositions 12.7 and 12.8.

2⇒1 Some countable model containing A exists, as M embeds in it, M has also to
be countable. Now we prove that M is atomic over A. Suppose for a contradiction
that there is some b ∈ M<ω such that p(x) = tp(b/A) is not isolated. By the
omitting types theorem there is a model N containing A that omits p(x). Then
there cannot be any A-elementary embedding of M into N. �

12.11 Proposition Assume L(A) is countable. Then the following are equivalent

1. there are models atomic over A;

2. for every |z| < ω, every consistent ϕ(z) ∈ L(A) has a solution that is isolated over A.

Note that 2 says that in U|z| isolated points are dense w.r.t. the topology defined in
Section 9.3.

Proof 1⇒2 This holds by elementarity.

2⇒1 We construct by induction a sequence 〈ai : i < ω〉. Reasoning as in (the
second proof of) the downward Löverheim-Skolem theorem we can easily ensure
that A ∪

{
ai : i < ω

}
is a model. To obtain an atomic model we require that a�i is

isolated over A.

Suppose a�i has been defined and assume that some formula ϕ(z) ∈ L(A) isolates
tp(a�i/A). Let ψ(x ; z) ∈ L(A) be such that ψ(x ; a�i) is consistent (we leave to the
reader the details of the enumeration of such formulas). Then ψ(x ; z) ∧ ϕ(z) is
also consistent and by assumption it has a solution b ; c that is isolated over A. As
a�i ≡A c, there is an A-automorphism such that f c = a�i. Therefore f b ; a�i is a
solution ψ(x ; z) that is also isolated over A. Then we can set ai = f b. �

3 Countable categoricity

Here we present some important characterizations of ω-categoricity. The second
property below can be stated in different equivalent ways; for convenience, these
equivalents are considered in a separate proposition. For the time being we intro-
duce the following generalization (which we will prove is completely unnecessary):
we say hat T is ω-categorical over A if any two countable models containing A are
isomorphic over A. We say ω-categorical for ω-categorical over ∅.

12.12 Theorem(Engeler, Ryll-Nardzewsky, and Svenonius) Assume L(A) is countable.
The following are equivalent:

1. T is ω-categorical over A;

2. every type p(x) ⊆ L(A) with |x| < ω is isolated.

The set A is introduced for convenience. By 3 of Proposition 12.13 below, no theory
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is ω-categorical over an infinite set, and categoricity over some finite A is equivalent
to categoricity over ∅ (see Exercise 12.15).

Proof 1⇒2 This is an immediate consequence of the omitting types theorem. In
fact, if p(x) is a non-isolated A-type, then there are two countable models M and
N containing A such that M realizes p(x) ⊆ L(A) while N omits it. Then M and N
cannot be isomorphic over A.

2⇒1 Observe that 2 implies that every countable model containing A is atomic
over A. But, by Proposition 12.9, countable atomic models are unique up to isomor-
phism. �

12.13 Proposition Fix a set A and a finite tuple of variables x. The following are equivalent

1. every A-type p(x) is isolated;

2. Sx(A) is finite;

3. Lx(A) is finite up to equivalence;

4. in U|x| there is a finite number of orbits under Aut(U/A).

Proof To prove the implication 1⇒2 observe that U|x| is the union of sets of the
form p(U) where p ∈ Sx(A). If these types are isolated then U|x| is the union of
A-definable sets. By compactness this union has to be finite. To prove 2⇒1 let
p ∈ Sx(A). If Sx(A) is finite, ¬p(U) is the union of finitely many type definable
sets. A finite union of type definable sets is type definable. So ¬p(U) is type
definable. Hence p(U) is isolated. We prove implication 2⇒3 observe that each
formula in Lx(A) is equivalent to the disjunction of the types in Sx(A) that contain
this formula. If Sx(A) is finite, Lx(A) is finite up to equivalence. Implication 3⇒2
is clear and equivalence 2⇔4 follows from the characterization of orbits as type-
definable sets. �

12.14 Exercise Prove that the following are equivalent

1. T is ω-categorical;

2. for every countable model M and every finite x, in M there is a finite number
of orbits under Aut(M). �

12.15 Exercise Prove that the following are equivalent for every finite set A

1. T is ω-categorical;

2. T is ω-categorical over A. �

12.16 Exercise Prove that the following are equivalent

1. T is ω-categorical;

2. there is a countable model that is both saturated and atomic. �

12.17 Exercise Assume L is countable and that T is complete. Suppose that for every
finite tuple x there is a model M that realizes only finitely many types in Sx(T).
Prove that T is ω-categorical. �
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4 Small theories

Let T be, as always in this chapter, a complete theory without finite models. We
say that T is small over A if Sx(A) is countable for every x of finite length. When
A is empty, we simply say that T is small . The set A is introduced for convenience;
in most application A is the empty set. A different term is used in another very
interesting case: a theory which is small over every countable set A is said to be
ω-stable. For this reason, the term 0-stable is sometimes used for small.

12.18 Proposition No T is small over an uncountable set and if T is small (over ∅) then it is
small over any finite A.

Proof Let a be an enumeration of A. As Sx(A) =
{

p(x ; a) : p ∈ Sx ; z(T)
}

the
proposition is immediate. �

Below we identify Sx(A) with U|x|/≡A

12.19 Definition Let ∆ be a set of formulas (we mainly use ∆ = Lx(A) in this section). A
binary tree of formulas in ∆ is a sequence 〈ϕs : s ∈ 2<λ〉 of formulas in ∆ ∪ {>} such
that

1. for each s ∈ 2λ the type ps =
{

ϕs�n : n < |s|
}

is consistent;

2. ps ∪ pr is inconsistent for any two distinct s, r ∈ 2λ.

(Condition 2 is usually obtained by taking ϕs0 ↔ ¬ϕs1 for every s.) We call λ the height
of the tree. If the height is not specified, we assume it is ω. We may depict a binary tree of
formulas as follows

ϕ∅

ϕ0

ϕ00 ...
...

ϕ01 ...
...

ϕ1

ϕ10 ...
...

ϕ11 ...
...

where branches are consistent types and distinct branches are inconsistent. �

Let S(∆) be denote the set of maximal consistent ∆-types.

12.20 Lemma Suppose ∆ is countable and closed under negation. Then the following are equiva-
lent

1. there is a binary tree of formulas in ∆;

2.
∣∣S(∆)∣∣ = 2ω;

3.
∣∣S(∆)∣∣ > ω.

Proof Since the implications 1⇒2⇒3 are clear, it suffices to prove 3⇒1. We assume
that S(∆) is uncountable and define a tree of formulas in ∆ by induction. Begin
with ϕ∅ = >. For s ∈ 2<ω define

ps =
{

ϕs�n : n ≤ |s|
}

.
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Assume inductively that ps has uncountably many extensions in S(∆). This will
guarantee the consistency of the branches.

It suffices to show that there is a formula ψ ∈ ∆ such that both ps ∪ {ψ} and
ps ∪ {¬ψ} have uncountably many extensions in S(∆). Then we define ϕs0 = ψ and
ϕs1 = ¬ψ.

Consider the following type that extends ps

q =
{

ξ ∈ ∆ : ps ∪ {¬ξ} has ≤ ω extensions in S(∆)
}

.

This type is consistent, otherwise ¬ξ1 ∨ · · · ∨ ¬ξn would hold for some ξi ∈ q. This
cannot happen, because ps has uncountably many extensions in S(∆), while by the
definition of q each of ps ∪ {¬ξi} has countably many extensions.

If the formula ψ required above does not exist, q is complete, hence it belongs to
S(∆). Every type in S(∆) that extends ps and is distinct from q contains ps ∪ {¬ξ}
for some ξ ∈ q. By the definition of q, there are countably many such types, so this
contradicts the induction hypothesis. �

12.21 Proposition Suppose L(A) is countable. The following are equivalent

1. T is small over A;

2. there exists a countable saturated model containing A; (???!!!)

3. there is no binary tree of formulas in Lx(A) for any finite x.

Proof 1⇒2 There is a countable model M containing A that is weakly saturated
(see Proposition 9.15). There is a countable homogeneous model N containing M
(see Exercise 9.16). Clearly N is also weakly saturated. Then it is saturated by
Corollary 9.16 .

2⇒3 Clear.

3⇒1 By Lemma 12.20. �

12.22 Proposition A small theory has countable atomic models over every countable set A.

Proof We prove that every formula in Lx(A), where |x| < ω, has a solution isolated
over A. Then it suffices to apply Proposition 12.11.

Suppose for a contradiction that ϕ(x) ∈ L(A) is consistent but has no solution
isolated over A. Then there is a formula ψ(x) ∈ L(A) such that both ϕ(x)∧ψ(x) and
ϕ(x)∧¬ψ(x) are consistent, otherwise ϕ(x) would imply a complete type and every
solution of ϕ(x) would be isolated. Fix such a ψ(x). Clearly neither ϕ(x) ∧ ψ(x)
nor ϕ(x) ∧ ¬ψ(x) have a solution isolated over A. This allows to construct a tree of
formulas in Lx(A) and prove that T is not small over A. �

12.23 Exercise Suppose ∆ is countable and closed under negation. Prove that if there
is a binary tree of formulas then there is a binary tree such that ϕs0 = ¬ϕs1 and
ϕ∅ = >. �

12.24 Exercise Prove that if T is small over A, then T is small over A, a for every finite
tuple a. �

98



12.25 Exercise Let |x| = 1. Prove that if Sx(A) is countable for every finite set A, then T
is small. �

12.26 Exercise(Vaught) Prove that no complete theory has exactly 2 countable models
(assume L is countable – though it is not really necessary).

Hint: suppose T has exactly two countable models. Then T is small and there
are a countable saturated model N and an atomic model M ⊆ N. As T is not
ω-categorical, M 6' N and there is finite tuple a that is not isolated over ∅. Let K
be an atomic model over a. Clearly K 6' M and, by Exercises 12.15 and 12.16, also
K 6' N. �

5 A toy version of a theorem of Zil’ber

As an application we prove that if T is ω-categorical and strongly minimal then it
is not finitely axiomatizable.

We say that T has the finite model property if for every sentence ϕ ∈ L there is a
finite substructure A ⊆ U such that

fmp U � ϕ ⇔ A � ϕ

The property is interesting because of the following proposition.

12.27 Proposition If T has the finite model property then it is not finitely axiomatizable.

Proof Assume fmp and suppose for a contadiction that there is a sentence ϕ ∈ L
such that T ` ϕ ` T. Then A � T for some finite structure A. But T ` ∃>kx (x = x)
for every k. A contradiction. �

We need the following definition. We say that C ⊆ U is a homogeneous set if for
every pair of tuples a, c ∈ C<ω such that a ≡ c and for every b ∈ C there is a d ∈ C
such that a, b ≡ c, d.

12.28 Lemma Suppose L is countable. If T is ω-categorical and every finite set is contained in a
finite homogeneous substructure, then T has the finite model property.

Proof We prove fmp also for formulas with parameters. We prove that for all n there
is a finite structure A ⊆ U where fmp holds for all sentences ϕ ∈ L(A) such that

# number of parameters in ϕ + number of quantifiers in ϕ ≤ n.

Fix n and pick some finite substructure A that is homogeneous and such that all
types p(z) ⊆ L with |z| ≤ n have a realization in A|z|. Now we prove fmp by
induction on the syntax of ϕ.

The claim for atomic formulas is witnessed by any finite structure that contains
the parameters of the formula. Such finite substructure exists in fact it suffices
to take the algebraic closure which, in an ω-categorical theory, is finite (by 3 of
Lemma 12.13). Induction for Boolean connectives is straightforward. As for in-
duction step for the existential quantifier, consider the formula ∃x ϕ(x ; c), where
c ∈ A<n and |x| = 1. Implication⇐ of fmp follows immediately from the induction
hypothesis and from the fact that, if ∃x ϕ(x ; c) satisfy #, also ϕ(d ; c) satisfies it. As
for ⇒, assume U � ∃x ϕ(x ; c). Let a, b ∈ A<ω be a solution of ϕ(x ; z) such that
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a ≡ c. Such a solution exists because all types with ≤ n variables are realized in A.
By homogeneity there is a d ∈ A such that a, b ≡ c, d and therefore A � ϕ(d ; c). �

12.29 Proposition If T is strongly minimal, then every algebraically closed set is homogeneous.

Proof Let A be algebraically closed and let a, c ∈ A<ω be such that a ≡ c. Let b be
an element of A. Suppose first that b ∈ acl a. Let f ∈ Aut(U) be such that f (a) = c
and f [A] = acl A. Then d = f b is the required element, in fact a, b ≡ c, d. Now,
suppose instead that b /∈ acl a. Then any d /∈ acl c satisfies a, b ≡ c, d. Such a d exists
in A, otherwise A = acl c 6= acl a, which contradicts a ≡ c. �

From the propositions above we finally obtain the following.

12.30 Theorem A theory which is ω-categorical and strongly minimal is not finitely axiomatiz-
able.

Proof If T is ω-categorical the algebraic closure of a finite set is finite. Therefore
from Proposition 12.29 we infer that T satisfies the assumptions of Lemma 12.28.
Hence T has the finite model property, so, by Proposition 12.27 it is not finitely
axiomatizable. �

12.31 Exercise Assume L is countable and let T be strongly minimal. Prove that the
following are equivalent

1. T is ω-categorical;

2. the algebraic closure of a finite set is finite.

Implication 1⇒2 does not require the strong minimality of T. �

6 Notes and references

An uncountable, non-isolated, complete type that cannot be omitted was produced
by Gebhard Fuhrken in 1962. Example 12.3 is inspired by a post by Alex Kruckman
on StackExhange [5]. I am not aware of other expositions.

Boris Zil’ber famously proved that Theorem 12.30 holds for any totally categorical
theory. The same theorem has been proved independently by Cherlin, Harrington
and Lachlan. Their proof uses the classification of finite simple groups. This the-
orem marks the birth of a subject known as geometric stability theory which studies
in depth the geometric properties which we briefly mentioned in Chapter 11. The
interested reader may consult Pillay’s monograph [7]. The material in Section 5
comes from [7, Section 2.6]
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Chapter 13

Imaginaries

The description of first-order definability is simplified if we allow definable sets
to be used as second-order parameters in formulas. This leads to the theory of
(elimination of) imaginaries. The technical reason that induced Shelah to introduce
imaginaries will only be clear later, see Section 17.3, but the theory is of independent
interest.

In this chapter we fix a signature L, a complete theory T without finite models,
and a saturated model U of inaccessible cardinality κ strictly larger than |L|. The
notation and implicit assumptions are as in Section 9.3.

1 Many-sorted structures

A many-sorted language consists of three disjoint sets. Besides the usual Lfun and
Lrel, we have a set Lsrt whose elements are called sorts. The language also includes
a (many-sorted) arity function that assigns to function and relation symbols r, f a
tuple of sorts of finite positive length which we call arity.

A many-sorted structure M consists of

1. a set Ms, for each s ∈ Lsrt;

2. a function f M : Ms1 × · · · ×Msn → Ms0 , for each f ∈ Lfun of arity 〈s0, . . . , sn〉;

3. a relation rM ⊆ Ms0 × · · · ×Msn , for each r ∈ Lrel of arity 〈s0, . . . , sn〉.

For every sort s we fix a sufficiently large set of variables Vs. Now we define terms
and their respective sorts by induction.

All variables are terms of their respective sort. If t1, . . . , tn are terms of sorts
s1, . . . , sn and f ∈ Lfun is of arity 〈s0, . . . , sn〉 then f t1, . . . , tn is a term of sort s0.

Formulas are defined as follows. If r ∈ Lrel has arity 〈s0, . . . , sn〉 then r t0, . . . , tn is
a formula. Also, t1 = t2 is formula for every pair of terms of equal sort. All other
formulas are constructed by induction using the propositional connectives ¬ and ∨
and the quantifier ∃x (or any other reasonable choice of logical connectives).

Truth of formulas is defined as for one-sorted languages, except that here we require
that the witness of the quantifier ∃x belongs to Ms, where s is the sort of the variable
x.

Models of second-order logic are arguably the most widely used examples of many-
sorted structures. They may be described using a language with a sort n for every
n ∈ ω. The sort 0 is used for the first-order elements; the sort n > 0 is used for
relations of arity n. For every n > 0 the language has a relation symbol ∈n of
arity 〈0n, n〉, where 0n = 0 n times. . . . . . 0. There are also arbitrarily many function and
relation symbols of sort 〈0n〉 for any n > 0.
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2 The eq-expansion

" Warning: the structure Ueq and the theory Teq defined below do not coincide with
the standard ones introduced by Shelah. As the difference is merely cosmetic, in-
troducing new notation would be overkill and we prefer to abuse the existing ter-
minology. In Section 6 below we compare our definition with the standard one.

Given a language L, we define a many-sorted language Leq which has a sort for
each partitioned formula σ(x ; z) ∈ L and a sort 0 which we call the home sort.
(Partitioned formulas have been introduced in Definition 1.14.)

For legibility, we pretend that all formulas σ depend on the same variables. So we
assume that x ; z are infinite tuples. Hence, with the notation of the previous section
Lsrt = {0} ∪ Lx ;z.

The home sort is also called the first-order sort and all other sorts are called second-order.
First of all, Leq contains all the relations and functions of the first order language
L. The many-sorted arity of a relation r is 〈0nr 〉, where nr is the arity of r in L.
Similarly, the many-sorted arity of a function f is 〈01+n f 〉, where n f is the arity of
f in L. Moreover, Leq contains a relation symbol ∈σ(x ;z) for each sort σ(x ; z). These
relation symbols have arity

〈
0|xσ |, σ(x ; z)

〉
, where xσ are the variables in x that ac-

tually occur in σ. As there is no risk of ambiguity, in what follows we omit σ from
the subscripts.

In Ueq the domain of the home sort is U. The domain for the sort σ(x ; z) contains
the definable sets A = σ(U ; b) as b ranges over U|z|. The symbols in L have the same
interpretation as in the one-sorted case, and ∈ is interpreted as set membership. We
write Teq for Th(Ueq).

As usual Leq also denotes the set of formulas constructed in this language and,
if A ⊆ Ueq, we write Leq(A) for the language and the set of formulas that use
elements of A as parameters.

" We write L(A) for the set of formulas in Leq(A) that contain no second-order vari-
ables, neither free nor quantified (when A ⊆ Ueq, it may contain second-order
parameters).

We use the symbol X to denote a generic second-order variable.

It is important to note right away that this expansion of U is a mild one: the de-
finable subsets of the home sort of Ueq are the same as those of U. In particular,
iterating the expansion would not yield anything new.

13.1 Proposition Let X̄ = X1, . . . ,Xn be a tuple of second order variables of sort σi(x ; z). Then
for every formula ϕ(x ; X̄) ∈ Leq there is a formula ϕ′(x ; z̄) ∈ L, where z̄ = z1, . . . , zn is a
tuple variables of length |z|, such that the following holds in Ueq

ϕ(x ; Ā) ↔ ϕ′(x ; b̄)

for every Ā = A1, . . . ,An and b̄ = b1, . . . , bn such that Ai = σ(U ; bi).

When n = 0 the proposition asserts that Leq
x and Lx have the same expressive power.

Proof (sketch) By induction on syntax. When ϕ is atomic, we set ϕ′ = ϕ unless
ϕ is of the form t ∈ Xi for some tuple of terms t or it has the form Xi = Xj.
In the first case ϕ′ is the formula σi(t ; zi). In the second case it is the formula
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∀x
[
σi(x ; zi)↔ σj(x ; zj)

]
.

The connectives stay unchanged except for the quantifiers ∃X, where X is a second-
order variable, say of sort σ(x ; z). These quantifiers are replaced by ∃z. �

Proposition 13.1 implies in particular that we can always replace ∃X by ∃z if we
substitute σ(t ; z) for t ∈ X in the quantified formula.

13.2 Remark Proposition 13.1 should convince the reader that the move from U to Ueq

is almost trivial. For instance, it implies that for every A ⊆ Ueq, there exists a
B ⊆ U such that L(B) is at least as expressive as L(A). By this we mean that every
formula in L(A) is equivalent to some formula in L(B). The set B ⊆ U contains the
parameters that define the definable sets in A ⊆ Ueq. The point of Ueq is that there
might not be any B ⊆ U such that L(B) is exactly as expressive as Leq(A).

For instance, suppose L contains only a binary relation which is interpreted as an
equivalence relation with infinitely many infinite classes. Let A be an equivalence
class and let A = {A}. Then for A is definable in L(B) if and only if B ∩A 6= ∅.
But no element of A is definable in L(A). �

If V � U we write Veq for the substructure of Ueq that has V as domain of the home
sort and the set of definable sets of the form σ(U ; b) for some b ∈ V|z| as domain of
the sort σ(x ; z). The following proposition claims that the elementary substructures
of Ueq are exactly those of the form Veq for some V � U.

13.3 Proposition The following are equivalent for every structure V† of signature Leq

1. V† � Ueq;

2. V† = Veq for some V � U.

Proof Implication 2⇒1 is a direct consequence of Proposition 13.1. We prove 1⇒2.
Let V be the domain of the home sort of V†. It is clear that V � U. Let A ∈ Veq

have sort σ(x ; z), say A = σ(U ; b) for some b ∈ V|z|. As ∃=1X ∀x
[
x ∈ X↔ σ(x ; b)

]
holds in Ueq, by elementarity it holds in V† and therefore A ∈ V†. This proves
Veq ⊆ V†. A similar argument proves the converse inclusion. Given A ∈ V† of sort
σ(x ; z), the formula ∀x

[
x ∈ A↔ σ(x ; b)

]
holds in V† for some b in the home sort.

By elementarity, A = σ(U ; b) for some b ∈ V. �

13.4 Proposition Let A ⊆ Ueq. Then every type p(u ;X) ⊆ Leq(A) that is finitely consistent
in Ueq is realized in Ueq. That is, Ueq is saturated.

Proof By Remark 13.2, there are some B ⊆ U and some q(u ;X) ⊆ Leq(B) equiv-
alent to p(u ;X). This already proves the proposition when X is the empty tuple.
Otherwise, let q′(u ; z) be obtained by replacing every formula ϕ(u ;X) in q(u ;X)
with the formula ϕ′(u ; z) given in Proposition 13.1. Then q′(u ; z) is finitely consis-
tent in U. Assume for clarity of notation that X is a single variable of sort σ(x ; z). If
c ; b � q′(u ; z), then c ; σ(U ; b) � q(u ;X). �

Automorphisms of a many-sorted structure are defined in the obvious way: sorts
are preserved and so are functions and relations. Every automorphism f : U → U

extends to an automorphism f : Ueq → Ueq as follows. If A = σ(U ; b) we define
fA = σ(U ; f b) = f

[
A
]
, which clearly preserves the sort and the relation ∈. Clearly,

this extension is unique.
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The homogeneity of Ueq follows by back-and-forth as in the one-sorted case.

13.5 Proposition Every elementary map k : Ueq → Ueq of cardinality < κ extends to an
automorphism of Ueq. �

3 The definable closure in the eq-expansion

We may safely identify automorphism of U with automorphisms of Ueq. Let A ⊆
Ueq and let a be a tuple of elements of Ueq. We denote by Aut(U/A) the set of
automorphisms (of Ueq) that fix all elements of A. The symbol O(a/A) denotes the
orbit of a over A . This has been defined in Section 9.2 and now we apply it to Ueq

O(a/A) =
{

f a : f ∈ Aut(U/A)
}

.

By homogeneity, O(a/A) = p(Ueq) where p(v) = tp(a/A). When O(a/A) = {a}
we say that a is invariant over A or A-invariant, for short.

13.6 Definition Let A ⊆ Ueq and a ∈ Ueq. When ϕ(a) ∧ ∃=1v ϕ(v) holds for some formula
ϕ(v) ∈ Leq(A), we say that a is definable over A. We write dcleq(A) for the set of those
a ∈ Ueq that are definable over A. We write dcl(A) for dcleq(A) ∩U. This is the natural
generalization of the notion of definability introduced in Section 11.1. �

The definition above treats first- and second-order elements of Ueq uniformly. The
following propositions proves that when a ∈ Ueq is a definable set, the notion of
definability coincides with the one usually applied to sets.

13.7 Proposition Let A ⊆ Ueq and let A ∈ Ueq have sort σ(x ; z). Then the following are
equivalent

1. A ∈ dcleq(A);

2. A = ψ(U) for some ψ(x) ∈ L(A).

Proof Implication 2⇒1 is clear because extensionality is implicit in the definition
of Ueq. We prove 1⇒2. Let ϕ(X) ∈ Leq(A) be a formula A is the unique solution of.
Then 2 holds with ∃X

[
x ∈ X ∧ ϕ(X)

]
for ψ′(x). This ψ′(x) is a formula in Leq(A).

Proposition 13.1 yields the required formula ψ(x) ∈ L(A). �

The saturation and homogeneity of Ueq allows us to prove the following proposition
with virtually the same proof as for Theorem 11.3

13.8 Theorem For any A ⊆ Ueq and a ∈ Ueq the following are equivalent

1. a is invariant over A;

2. a ∈ dcleq(A). �

By Proposition 13.7, Theorem 13.8 when applied to a definable set A gives an alter-
native proof of Proposition 9.23.

We conclude this section with a remark about the canonicity of the definitions of
sets. The formula ψ(x) in Proposition 13.7 need not be the sort σ(x ; z). For example,
consider the theory of a binary equivalence relation e(x ; z) with two infinite classes,
let A be one of these classes and let A 6= ∅ be such that A ∩ A = ∅. Then A is
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definable over A though not by some formula of the form e(x ; b) for some b ∈ A.
Things change if we replace A with a model.

13.9 Proposition Let M be a model and let A be an element of sort σ(x ; z). Then the following
are equivalent

1. A ∈ dcleq(M);

2. A = σ(U ; b) for some b ∈ M|z|.

In particular Meq = dcleq(M).

Proof Assume 1 and let ψ(x) ∈ L(M) be such that A = ψ(U). Such a formula
exists by Proposition 13.7. Then ∃z ∀x

[
ψ(x)↔ σ(x ; z)

]
holds in U. By elementarity

it holds in M, therefore ∃z has a witness in M. This proves 1⇒2, the converse
implication is obvious. �

4 The algebraic closure in the eq-expansion
The following is the natural generalization of the notion introduced in Section 11.1.

13.10 Definition Let A ⊆ Ueq and a ∈ Ueq. We say that a is algebraic over A if a formula of
the form ϕ(a)∧ ∃=kv ϕ(v) holds for some ϕ(v) ∈ Leq(A) and some positive integer k. We
write acleq(A) for the set of those a ∈ Ueq that are algebraic over A. We write acl(A) for
acleq(A) ∩U.

The following proposition is proved with virtually the same proof as Theorem 11.4

13.11 Theorem For every A ⊆ Ueq and every a ∈ Ueq the following are equivalent

1. O(a/A) is finite;

2. a ∈ acleq(A);

3. a ∈ Meq for every model such that A ⊆ Meq. �

We say finite equivalence relation for an equivalence relation with finitely many
classes. A finite equivalence formula or type is a formula, respectively a type,
that defines a finite equivalence relation. Theorem 13.12 belows proves that sets
algebraic over A are union of classes of a finite equivalence relations definable over
A.

13.12 Theorem Let A ⊆ Ueq and let A ∈ Ueq be an element of sort σ(x ; z). Then the following
are equivalent

1. A ∈ acleq(A)

2. for some finite equivalence formula ε(x ; y) ∈ L(A) and some c1, . . . , cn ∈ U|y|

x ∈ A ↔
n∨

i=1

ε(x ; ci).

Proof 2⇒1 If ε(x ; y) has m classes, then O(A/A) contains at most
(

m
n

)
sets.

1⇒2 Let ϕ(X) ∈ Leq(A) be an algebraic formula that has A among its solutions
and define
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ε(x ; y) = ∀X
[

ϕ(X) →
[
x ∈ X↔ y ∈ X

]]
If ϕ(X) has n, solutions, then ε(x ; y) has at most 2n equivalence classes. Clearly, A
is union of some these classes. �

13.13 Definition We write a
Sh≡A b when ε(a ; b) holds for every finite equivalence formula

ε(x ; y) ∈ L(A). In words we say that a and b have the same Shelah strong-type over
A. �

By the following proposition, the Shelah strong type of a over A is tp(a/ acleq A).

13.14 Proposition Let A ⊆ Ueq and let a, b ∈ U|x|. Then the following are equivalent

1. a
Sh≡A b;

2. a ≡acleq A b.

Proof 2⇒1 Assume ¬1 and let ε(x ; y) ∈ L(A) be a finite equivalence formula
such that ¬ε(a ; b). Let D = ε(U ; b), then b ∈ D and a /∈ D. As ε(x ; y) is an
A-invariant finite equivalence formula, D ∈ acleq(A), and ¬2 follows.

1⇒2 Assume ¬2 and let ϕ(x) ∈ L
(

acleq(A)
)

be such that ϕ(a) ↔/ ϕ(b). Let
D = ϕ(U), then D ∈ acleq(A). Therefore, by Proposition 13.12, the set D is union
of equivalence classes of some finite equivalence formula ε(x ; y) ∈ L(A). Then
¬ε(a ; b) and ¬1 follows. �

" We write S(a/A) for the intersection of all definable sets that contain a and are al-

gebraic over A. By the proposition above S(a/A) =
{

b : b
Sh≡A a

}
= O(a/ acleq A).

13.15 Exercise Let p(x) ⊆ L(A) and let ϕ(x ; y) ∈ L(A) be a formula that defines, when
restricted to p(U), an equivalence relation with finitely many classes. Prove that
there is a finite equivalence relation definable over A that coincides with ϕ(x ; y) on
p(U). �

13.16 Exercise Let A ⊆ U and let A be a definable set with finite orbit over A. Without
using the eq-expansion, prove that A is union of classes of a finite equivalence
relation definable over A. �

13.17 Exercise Let T be strongly minimal and let ϕ(x ; z) ∈ L(A) with |x| = 1. For
arbitrary b ∈ U|z|, prove that if the orbit of ϕ(U ; b) over A is finite, then ϕ(U ; b) is
definable over acl A.

Hint: you can use Theorem 13.12. �

5 Elimination of imaginaries

For the time being, we agree that imaginary is just another word for definable set.
Though this is not formally correct (cfr. Section 6), it is morally true and helps to
understand the terminology. The concept of elimination of imaginaries has been
introduced by Poizat who also proved Theorem 13.23 below. A theory has elimina-
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tion of imaginaries if for every A ⊆ Ueq, there is a B ⊆ U such that L(B) and L(A)

have the same expressive power (i.e. they are the same up to to equivalence).

13.18 Definition We say that T has elimination of imaginaries if for every definable set A there
is a formula ϕ(x ; z) ∈ L such that

ei ∃=1z ∀x
[

x ∈ A ↔ ϕ(x ; z)
]

We say that the witness of ∃=1z in the formula above is a canonical parameter of A or a
canonical name for A. A set may have different canonical parameters for different formulas
ϕ(x ; z).

We say that T has weak elimination of imaginaries if

wei ∃=kz ∀x
[

x ∈ A ↔ ϕ(x ; z)
]

for some positive integer k. �

In the formulas above we allow z to be the empty string. In this case we read ei
and wei omitting the quantifiers ∃=1z, respectively ∃=kz. Therefore ∅-definable sets
have all (at least) the empty string as a canonical parameter.

To show that the notions above are well-defined properties of a theory one needs to
check that they are independent of our choice of monster model. We leave this to
the reader as an exercise.

We say that two tuples a and b of elements of Ueq are interdefinable if dcleq(a) =
dcleq(b). By Theorem 13.8 this is equivalent to saying that Aut(U/a) = Aut(U/b),
that is, the automorphisms that fix a fix also b, and vice versa.

13.19 Theorem The following are equivalent

1. T has weak elimination of imaginaries;

2. every definable set is interdefinable with a finite set;

3. every definable set A is definable over acl{A};

4. dcleq{A} = dcleq ( acl{A}
)

(???).

Proof 1⇒2 Assume 1 and let B be the set of solutions of the formula

∀x
[

x ∈ A ↔ σ(x ; z)
]

.

Hence B is finite and B ∈ dcleq{A}. We also have A ∈ dcleq{B} because A is
definable by the formula ∃z

[
z ∈ B∧ σ(x ; z)

]
. Therefore dcleq{A} = dcleq{B}.

2⇒3 Assume dcleq{A} = dcleq{B} for some finite set B. The elements of B,
say b1, . . . , bn, are the (finitely many) solutions of the formula z ∈ B. Therefore
b1, . . . , bn ∈ acl{B} = acl{A}. Let ϕ(X ;B) be a formula that has A as unique
solution. Then ∃Y

[
Y =

{
b1, . . . , bn

}
∧ ϕ(X ;Y)

]
is the formula that proves 3.

3⇔4 It suffices to rephrase 3 as A ∈ dcleq ( acl{A}
)
.

3⇒1 Assume 3. As wei holds trivially for all ∅-definable sets, we may assume
A 6= ∅. Let σ(x ; z) be such that
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∀x
[

x ∈ A ↔ σ(x ; b)
]

.

for some tuple b of elements of acl{A}. Fix some algebraic formula δ(z ;A) satisfied
by b and write ψ(z ;X) for the formula

∀x
[

x ∈ X ↔ σ(x ; z)
]
∧ δ(z ;X).

The formula ] below is clearly satisfied by b therefore, if we can prove that it has
finitely many solutions, wei follows from Proposition 13.1

] ∀x
[

x ∈ A ↔ σ(x ; z) ∧ ∃Xψ(z ;X)
]

.

We check that any c that satisfies ] also satisfies δ(z ;A). As A is non empty,
ψ(c ;A′) holds for some A′. By ] and the definition of ψ(z ;X) we obtain A′ = A

and δ(c ;A). �

There are a notions of elimination of imaginaries that are weaker than weak elimi-
nation. For instance, we say that T has geometric elimination of imaginaries if for
every A ⊆ U

acleq{A} = acleq( acl{A}
)

This will not be applied in these notes, but see Exercises 13.25 and 13.26.

13.20 Theorem The following are equivalent

1. T has elimination of imaginaries;

2. every definable set is interdefinable with a tuple of real elements;

3. every definable set A is definable over dcl{A};

4. dcleq{A} = dcleq (dcl{A}
)

(???).

Proof Implications 1⇒2⇒3⇔4 are immediate. Implication 3⇒1 is identical to the
homologous implication in Theorem 13.19, just substitute algebraic with definable. �

We now consider elimination of imaginaries in two concrete theories: algebraically
closed fields and real closed fields. The following lemma is required in the proof of
Theorem 13.22 below.

13.21 Lemma The following is a sufficient condition for weak elimination of imaginaries

] for every A ⊆ Ueq, every consistent ϕ(z) ∈ L(A) has a solution in acl A.

Proof Let A ∈ Ueq be a definable set of sort σ(x ; z). Then ∀x
[
x ∈ A ↔ σ(x ; z)

]
is

consistent and, by ] it it has a solution in acl{A}. Hence weak elimination follows
from Theorem 13.19. �

13.22 Theorem Let T be a complete, strongly minimal theory. Then, if acl∅ is infinite, T has
weak elimination of imaginaries.

Proof If acl∅ is infinite, acl A is a model for every A (cfr. Exercise 11.24) so condi-
tion ] of lemma 13.21 holds by elementarity and the theorem follows. �

13.23 Theorem The theories Tp
acf have elimination of imaginaries.
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Proof By Theorem 13.22 we know that Tp
acf has weak elimination of imaginaries.

Therefore, by Theorem 13.19 it suffices to prove that every finite set A is interde-
finable with a tuple. Let A =

{
a1, . . . , an

}
where each ai is a tuple ai,1, . . . , ai,m of

elements of U. Given A we define the term

tA(x ; y) =
n

∏
i=1

(
x−

m

∑
k=1

ai,k yk

)
. where y = y1, . . . , ym.

Note that (the interpretation of) the term tA(x ; y) is independent on particular in-
dexing of the set A. So, any automorphism that fixes A, fixes the tA(x ; y). Now
rewrite tA(x ; y) as a sum of monomials and let c be the tuple of coefficients of
these monomials. The tuple c uniquely determines tA(x ; y) and vice versa. There-
fore every automorphism that fixes A fixes c and vice versa. Hence A and c are
interdefinable. �

13.24 Exercise Let T have elimination of imaginaries and ϕ(x ; z) ∈ L(A). For arbitrary
c ∈ U|z|, prove that if the orbit of ϕ(U ; c) over A is finite, then ϕ(U ; c) is definable
over acl A. �

13.25 Exercise Prove that following are equivalent for every A ⊆ U

1. acleq A = dcleq ( acl A
)

for every A ⊆ U;

2. Aut(U/ acleq A) = Aut(U/ acl A);

3. a ≡acl A b ⇔ a
Sh≡A b for every A ⊆ U and a, b ∈ U<ω. �

13.26 Exercise Prove that the following are equivalent

1. T has weak elimination of imaginaries;

2. T has geometric elimination of imaginaries and 1 of Exercise 13.25 holds. �

6 Imaginaries: the true story

The point of the expansion to Ueq is to add a canonical parameter for each definable
set. In fact, in Ueq every definable subset of U|z| is the canonical parameter of itself.
This allows us to deal with theories without elimination of imaginaries in the most
straightforward way.

The expansion to Ueq that was originally introduced by Shelah (and still used ev-
erywhere else) is slightly different from the one introduced here. For a given set
A = σ(U ; b) Shelah considers the equivalence relation defined by the formula

ε(z ; z′) = ∀x
[

σ(x ; z) ↔ σ(x ; z′)
]

.

The equivalence class of b in the relation ε(z ; z′) is what Shelah uses as canonical
parameter of the set A.

Shelah’s Ueq has a sort for each ∅-definable equivalence relation ε(z ; z′). The do-
main of the sort ε(z ; z′) contains the classes of the equivalence relation defined by
ε(z ; z′). These equivalence classes are called imaginaries. Shelah’s Leq contains
functions that map tuples in the home sort to their equivalence class.
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7 Uniform elimination of imaginaries

Sometimes in the literature elimination of imaginaries is confused with uniform
elimination of imaginaries, see e.g. [9, Definition 8.4.2]. Theorem 13.28 below
shows that the difference is immaterial. This section is more technical and could be
skipped at a first reading.

Let us rephrase the definition of elimination of imaginaries: for every formula
ϕ(x ; u) ∈ L and every tuple c ∈ U|u| there is a formula σ(x ; z) ∈ L such that

∃=1z ∀x
[

ϕ(x ; c) ↔ σ(x ; z)
]

.

A priori, the formula σ(x ; z) may depend on c in a very wild manner. We say that
T has uniform elimination of imaginaries if for every ϕ(x ; u) there are a formula
σ(x ; z) and a formula ρ(z) such that

uei ∀u ∃=1z
[

ρ(z) ∧ ∀x
[
ϕ(x ; u) ↔ σ(x ; z)

]]
.

The role of the formula ρ(z) above is mysterious. It is clarified by the following
propositions. In fact, uniform elimination of imaginaries is equivalent to a very
natural property which in words says: every definable equivalence relation is the
kernel of a definable function. Recall that the kernel of the function f is the relation
f a = f b.

Uniform elimination of imaginaries is convenient when dealing with interpretations
of structure inside other structures. Let us consider a simple concrete example.
Suppose U is a group and let H be a definable normal subgroup of U. The elements
of the quotient structure U/H are equivalence classes of a definable equivalence
relation. If there is uniform elimination of imaginaries we can identify U/H with
an actual definable subset of G (the range of the function f above). Moreover,
the group operation of G are definable functions. As working in U/H may be
notationally cumbersome, G may offer a convenient alternative.

13.27 Proposition The following are equivalent

1. T has uniform elimination of imaginaries;

2. for every ϕ(x ; u) such that ∀u ∃x ϕ(x ; u) there is a formula σ(x ; z) such that

∀u ∃=1z ∀x
[

ϕ(x ; u) ↔ σ(x ; z)
]

;

3. for every equivalence formula ε(x ; u) ∈ L there is given by σ(x ; z) ∈ L such that

∀u ∃=1z ∀x
[

ε(x ; u) ↔ σ(x ; z)
]

.

Note that the definable function f u = z mentioned above is defined by the formula

ϑ(u ; z) = ∀x
[

ε(x ; u) ↔ σ(x ; z)
]

.

Proof 1⇒2. If ∀u ∃x ϕ(x ; u) we can rewrite uei as

∀u ∃=1z ∀x
[

ϕ(x ; u) ↔ ρ(z) ∧ σ(x ; z)
]

.

2⇒3. Clear.
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3⇒1. Apply 3 to the equivalence formula

ε(u ; v) = ∀x
[

ϕ(x ; u) ↔ ϕ(x ; v)
]

Let ϑ(u ; z) be defined as above. The reader may check that uei holds substituting for
δ(z) the formula ∃u ϑ(u ; z) and and for σ(x ; z) the formula ∃u

[
ϕ(x ; u)∧ ϑ(u ; z)

]
. �

By the following theorem, uniformity comes almost for free.

13.28 Theorem The following are equivalent

1. T has uniform elimination of imaginaries;

2. dcl∅ contains at least two elements and T has elimination of imaginaries.

Proof 1⇒2. Let ϕ(x, u) be the formula u1 = u2. From 1 we obtain a formula
σ(x ; z) ∈ L such that

∀u1, u2 ∃=1z
[

ρ(z) ∧ ∀x
[
u1 = u2 ↔ σ(x ; z)

]]
.

Therefore the formulas ∃=1z
[
ρ(z) ∧ ∀x σ(x ; z)

]
and ∃=1z

[
ρ(z) ∧ ∀x¬σ(x ; z)

]
are

both true. The witnesses of ∃=1z in these two formulas are two distinct elements of
dcl∅.

2⇒1. Assume 2 and fix a formula formula ϕ(x ; u) such that ϕ(x, a) is consistent
for every a ∈ U|u|. We prove 2 of Proposition 13.27.

Let p(u) be the type that contains the formulas

¬∃=1z ∀x
[

ϕ(x ; u) ↔ σ(x; z)
]

,

where σ(x; z) ranges over all formulas in L. By elimination of imaginaries p(u) is
not consistent. Therefore, by compactness, there are some formulas σi(x, z) such
that

] ∀u
n∨

i=0

∃=1z ∀x
[

ϕ(x ; u) ↔ σi(x ; z)
]

.

To prove the theorem we need to move the disjunction in front of the σi(x ; z).

We can assume that if σi(x ; b) ↔ σ′i (x ; b′) for some 〈b, i〉 6= 〈b′, i′〉 then σi(x ; b) is
inconsistent. Otherwise we can substitute the formula σi(x ; z) with

σi(x ; z) ∧
∧
j≤i
¬∃y 6= b ∀x

[
σj(x ; y)↔ σi(x ; z)

]
.

As ϕ(x, a) is consistent for every a, the substitution does not break the validity of ].

Fix some distinct ∅-definable tuples d0, . . . , dn of the same length (these are easy to
obtain from two ∅-definable elements). We claim that from ] it follows that

∀u ∃=1z, y ∀x

[
ϕ(x ; u) ↔

n∨
i=1

[
σi(x ; z) ∧ y = di

]]
.

(The tuple z, y plays the role of z.) We fix some a and check that the formula below
has a unique solution

[ ∀x

[
ϕ(x ; a) ↔

n∨
i=1

[
σi(x ; z) ∧ y = di

]]
.

111



Existence follows immediately from ]. As for uniqueness, note that if b, di and b′, di′

are two distinct solution of [ then σi(x ; b) ↔ σi′(x ; b′) for some 〈b, i〉 6= 〈b′, i′〉. By
what assumed on σi(x ; z), we obtain that ϕ(x ; a) is inconsistent. A contradiction
which proves the theorem. �
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Chapter 14

Invariant sets

In this chapter, L is a signature, T is a complete theory without finite models, and
U is a saturated model of inaccessible cardinality κ strictly larger than |L|. We use
the same notation and make the same implicit assumptions as in Section 9.3.

1 Invariant sets and types

Let D ⊆ U|z|, where z is a tuple of length < κ. We say that D is an A-invariant set
if it is fixed setwise by all A-automorphisms. That is, f [D] = D for every automor-
phism f ∈ Aut(U/A) or, yet in other words,

is1. a ∈ D ↔ f a ∈ D for every a ∈ U|z| and every f ∈ Aut(U/A),

which, by homogeneity, is equivalent to,

is2. a ∈ D ↔ b ∈ D for all a, b ∈ U|z| such that a ≡A b.

These equivalent conditions yield the following bound on the number of invariant
sets.

14.1 Proposition Let λ = |Lz(A)|. There are at most 22λ
sets D ⊆ U|z| that are invariant over

A.

Proof By is2, sets that are invariant over A are unions of equivalence classes of the
relation ≡A, that is, unions of sets of the form p(U) where p(z) ∈ S(A). Then the
number of A-invariant sets is at most 2|Sz(A)|. Clearly |Sz(A)| ≤ 2λ. �

We say that D is an invariant set if it is invariant over some (small) set A. Since κ

is assumed to be inaccessible, there are exactly κ invariant sets.

In this chapter we work with ∆-types, that is subsets of ∆, where either ∆ = L(A)

or

# ∆ =
{

ϕ(x ; b), ¬ϕ(x ; b) : b ∈ A|z|
}

for some given ϕ(x ; z) ∈ L.

14.2 Definition When ∆ is as in # above, ∆-types are called ϕ-types. We denote by Sϕ(A) the
set of maximal ϕ-types with parameters in A. Typically, A is either U or some small set
A ⊆ U. Types in Sϕ(U) are called global ϕ-types. We identify Sϕ(A) with a family of
subsets of A|z|. Namely, p(x) ∈ Sϕ(A) is identified with

D =
{

b ∈ A|z| : ϕ(x ; b) ∈ p
}

. �

Let p(x) ⊆ L(U) be a consistent type. For every formula ϕ(x ; z) ∈ L we define

Dp,ϕ =
{

a ∈ U|z| : ϕ(x ; a) ∈ p
}

.

We can read the notation in two ways: either the tuple z has infinite length and is
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the same for all formulas, or it is finite and depends on ϕ. This is possible because
adding or erasing dummy variables to the second tuple of ϕ(x ; z) does not change
Dp,ϕ in any relevant way; in particular, invariance is preserved.

Let p(x) ⊆ L(U) be a consistent type. We say that p(x) is an A-invariant type if,
for every formula ϕ(x ; z) ∈ L,

it1. ϕ(x ; a) ∈ p ⇔ ϕ(x ; f a) ∈ p for every a ∈ U|z| and every f ∈ Aut(U/A).

Hence p(x) is invariant exactly when all the sets Dp,ϕ are. By invariant type we
mean a type that is invariant over some (small) set A.

A global ϕ-type p(x) can be identified with the set Dp,ϕ and a global type p(x)
can be identified with the collection of the sets Dp,ϕ, where ϕ ranges over L. The
notions of invariance for types and sets coincide.

We say that the type p(x) ⊆ L(U) does not split over A if

it2. a ≡A b ⇒
(

ϕ(x ; a) ∈ p ⇔ ϕ(x ; b) ∈ p
)

for all a, b ∈ U|z|

for every formula ϕ(x ; z) ∈ L. By homogeneity, non splitting is equivalent to in-
variance. For global ϕ-types types it2 is equivalent to

it2′. a ≡A b ⇒ p(x) � ϕ(x ; a)↔ ϕ(x ; b)

The following is another important equivalent characterization of invariance over
A of a global type p(x) ∈ S(U) that follows easily from it2

it3. a ≡A b ⇒ a ≡A, c b for all a, b ∈ U|z| and for all c � p�A,a,b.

Note that it3 applies to complete types but not to ϕ-types.

2 Invariance from a dual perspective

" The following terminology is non-standard. We say that the set B ⊆ U|x|, typically
a definable set, is quasi-invariant over M if whenever f1, . . . , fn is a finite tuple of
automorphisms in Aut(U/M), the sets fi[B] have non-empty intersection.

We say that the type p(x) ⊆ L(U), typically a global type, is quasi-invariant over
M if ϕ(U) is quasi-invariant over M for every conjunction ϕ(x) of formulas in p(x).

The definitions above and all what we say in this paragraph remains valid if we
replace the model M with an arbitrary set A. However the correct generalization
involves the notion of strong automorphism developed in Chapter 14.

For global types, quasi-invariance coincides with invariance. In fact we have the
following equivalence.

14.3 Proposition Let p(x) ∈ Sϕ(U) be a global ϕ-type. Then the following are equivalent

1. p(x) is invariant over M;

2. p(x) is quasi-invariant over M.

Proof 1⇒2. Assume p(x) is invariant and let ψ(x ; b) ∈ p where b ∈ U|z|. Then
ψ(x ; f b) ∈ p for every f ∈ Aut(U/M), so 2 follows from the finite consistency of
p(x).

2⇒1. Assume p(x) is not invariant. Then there is b ∈ U|z| such that ϕ(x ; b) ∈ p and
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ϕ(x ; f b) /∈ p for some f ∈ Aut(U/M). By completeness, p(x) contains the formula
ϕ(x ; b) ∧ ¬ϕ(x ; f b) which clearly is not consistent with its f -translate. �

14.4 Exercise We say that B strongly quasi-invariant if for every definable set D at least
one of B ∩D and B ∩ ¬D is quasi-invariant. Strongly quasi invariant types are
defined similarly to quasi-invariant types. Note incidentally that for global types
the two notions coincide. Prove that every strongly quasi-invariant type has an
extension to a global invariant type.

Hint: it may help to prove that if B is strongly quasi-invariant then for every de-
finable D either B ∩D or B ∩ ¬D is strongly quasi-invariant. Then the maximal
strongly quasi-invariant set is the required global extension. �

Unfortunately, a quasi-invariant type does not necessarily extend to a quasi-invariant
global type. There are, however, other properties of types that guarantee that an ex-
tension to a global type with the property can be found. In the next section we
introduce one of these properties, that of being a coheir, and in subsequent chapters
yet another one, non-forking. Being a coheir is stronger that being quasi-invariant,
and non-forking is weaker.

3 Heirs and coheirs

The easiest way to obtain types that are invariant over a model M is via types that
are finitely satisfiable in M. We say that a type p(x) is finitely satisfiable in M if
every conjunction of formulas in p(x) has a solution in M|x|.

14.5 Proposition Every type p(x) ⊆ L(U) that is finitely satisfiable in M is quasi-invariant
over M.

Proof Clearly, the same a ∈ M|x| that satisfies ϕ(x) also satisfies every Aut(U/M)-
translate of ϕ(x). �

Propositions 14.3 and 14.5 yield the following proposition.

14.6 Proposition Let p(x) ∈ Sϕ(U) be a global ϕ-type that is finitely satisfiable in M. Then
p(x) is M-invariant. �

14.7 Proposition Every type q(x) ⊆ L(U) that is finitely satisfiable in M has an extension to
a global type that is finitely satisfiable in M.

Proof Let p(x) ⊆ L(U) be maximal among the types containing q(x) and finitely
satisfiable in M. We prove that p(x) is complete. Suppose for a contradiction
that p(x) contains neither ψ(x) nor ¬ψ(x). Then neither p(x) ∪

{
ψ(x)

}
nor p(x) ∪{

¬ψ(x)
}

are finitely satisfiable in M. This contradicts the finite satisfiability of
p(x). �

In most cases we work with types that are finitely satisfiable over a model. The
reason is explained by the next proposition, which is clear by elementarity.

14.8 Proposition Every consistent type over a model is finitely satisfiable in that model, that is,
whenever p(x) ⊆ L(M) is consistent, p(x) is finitely satisfiable in M. �
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14.9 Definition A type p(x) ⊆ L(U) that is finitely satisfiable in M is said to be a coheir of
p�M(x). �

In many cases it is useful to focus on elements instead of types. We introduce the
following notation to express that tp(a/M, b) is finitely satisfied in M.

14.10 Definition For every a ∈ U|x| and b ∈ U|z| we define

" a ^M b ⇔ ϕ(U, b) ∩M|x| 6= ∅ for all ϕ(x ; z) ∈ L(M) such that ϕ(a ; b).

We say that tp(a/M, b) is a coheir of tp(a/M), or, equivalently, that tp(b/M, a) is a heir
of tp(b/M).

We define the type

x ^M b =
{

ϕ(x ; b) : ϕ(x ; b) ∈ L(M) and M|x| ⊆ ϕ(U ; b)
}

.

We will use the symbol a ≡M x ^M b for the union of the types x ^M b and tp(a/M). �

The tuples a realizing x ^M b are exactly those such that a ^M b. Note that
tp(a/M, b) is a coheir of tp(a/M) according to Definition 14.9, so the terminology
is consistent.

We think of a ^M b as saying that a is independent from b over M. In general
b ^M a is not equivalent to a ^M b.

We shall use, sometimes without explicit reference, the following easy lemma.

14.11 Lemma The following properties hold for all M, a, b, and c

1. a ^M b ⇒ f a ^M f b for every f ∈ Aut(U/M) invariance

2. a ^M b ⇔ a0 ^M b0 for all finite a0 ⊆ a and b0 ⊆ b finite character

3. a ^M c, b and c ^M b ⇒ a, c ^M b transitivity

4. a ^M b ⇒ there exists a′ ≡M, b a such that a′^M b, c coheir extension �

Proof Properties 1-3 follow immediately from Definition 14.10. We prove 4. As-
sume a ^M b, that is, tp(a/M, b) is finitely satisfiable in M. By Proposition 14.7
tp(a/M, b) extends to a global type p(x) that is finitely satisfiable in M. Then any
a′ � p�M, b, c(x) proves the lemma. �

The type a ≡M x ^M b in Definition 14.10 is the intersection of all global coheirs
of tp(a/M). Its consistency is guaranteed by the fact that M is a model (see Propo-
sition 14.8). However, in general it need not be a complete type over M, b. In fact,
completeness in this case is a strong property.

14.12 Definition We say that ^M is stationary if a ≡M x ^M b is a complete type over M, b
for all finite tuples b and a.

We say n-stationary if this is restricted to |a| = n. �

An application of stationarity is given in Section 15.3.

Stationarity is often ensured by the following property, which will receive due at-
tention in Section 17.3. Recall that for D,C ⊆ U we write D =A C for D∩ A = C∩ A.
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14.13 Proposition Let x be a tuple of variables of length n. If for every ϕ(x) ∈ L(U) there is a
formula ψ(x) ∈ L(M) such that ϕ(U) =M ψ(U) then ^M is n-stationary.

Proof Let b ∈ U|z| and a1, a2 ∈ U|x| be such that ai ^M b and a1 ≡M a2. We claim
that a1 ≡M, b a2. We need to prove that ϕ(b ; a1) ↔ ϕ(b ; a2) for every ϕ(z ; x) ∈
L(M). Let ψ(x) ∈ L(M) be such that ϕ(b ;U) =M ψ(U). From ai ^M b we obtain
that ϕ(b ; ai)↔ ψ(ai). Finally, the claim follows because a1 ≡M a2. �

14.14 Remark There are many theories where the stationarity of ^M holds for some
particular M. For example, if every subset of Mn is M-definable then ^M is clearly
n-stationary. This simple observation will help in the proof of Theorem 15.15. For a
natural example, let T = Tdlo and let M ⊆ U have the order type of R. By quantifier
elimination every definable subset of U is a union of finitely many intervals. By
Dedekind completeness, the trace on M of any interval of U coincides with that of
an M-definable interval.

4 Morley sequences and indiscernibles

In what follows α is some ordinal ≤ κ, typically ω, and x is a tuple of variables of
length < κ.

Let p(x) ∈ S(U) be a global type. We say that c̄ = 〈ci : i < α〉 is a Morley sequence
of p(x) over A if for every i < α

Ms. ci � p�A, c�i (x).

When A is a model, say M, and p(x) is finitely satisfiable in M, we say that c̄ is a
coheir sequence of p(x) over M.

When we say that c̄ is a coheir sequence over M (with no explicit reference to a
global type), we mean that there is a type p(x) ∈ S(U) that is finitely satisfiable in
M such that c̄ is a coheir sequence of p(x).

The following is a convenient characterization of coheir sequences.

14.15 Lemma The following are equivalent

1. c̄ = 〈cn : n < ω〉 is a coheir sequence over M;

2. cn ^M c�n and cn+1 ≡M, c�n cn for every n < ω.

Proof 1⇒2. Assume 1 and let p(x) ∈ S(U) be a global type that is finitely satisfiable
in M and such that ci � p�M,c�i (x). The requirement cn+1 ≡M,c�n cn is clear. Now,
suppose ϕ(cn+1) for some ϕ(x) ∈ L(M, c�n+1). Then ϕ(x) belongs to p(x), so
ϕ(U) ∩M|x| 6= ∅ because p(x) is finitely satisfiable in M. This proves cn ^M c�n.

2⇒1. Let q(x) = {ϕ(x) ∈ L(M, c̄) : ϕ(cn) holds for cofinitely many n}. We claim
that q(x) is finitely satisfiable in M. Let ϕ(x ; z) ∈ L(M) be such that ϕ(x ; c�n) ∈ q.
By the definition of q(x), the formula ϕ(cm ; c�n) holds for all sufficiently large m.
Hence, from 2 we infer cm ^M, c�n cn and conclude that ϕ(x ; c�n) is satisfied in M.

Let p(x) be any global extension of q(x) finitely saisfied in M. We prove that c̄ is
a Morley sequence of p(x) over M. By 2 either cm � p�M, c�n(x) for all m ≥ n or
cm 2 p�M, c�n(x) for all m ≥ n. As p(x) extends q(x), the latter cannot occur. �
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Let (I,<I) be a linear order. A function ā : I → U|x| is said to be an I-sequence,
or simply a sequence when I is clear. We will often introduce an I-sequence as
ā = 〈ai : i ∈ I〉.

If I0 ⊆ I we call a�I0 a subsequence of ā. The subsets I0 ⊆ I that are well-ordered
by <I , in particular the finite ones, are especially relevant. When I0 has order type
α, an ordinal, we identify a�I0 with a tuple of length α.

Recall that I(n) denotes that the set of n-subsets of I, i.e. the subsets of I of cardi-
nality n. The notation(

I
n

)
= I(n)

is also common.

14.16 Definition Let (I,<I) be an infinite linear order and let ā be an I-sequence. We say that
ā is a sequence of indiscernibles over A or, an A-indiscernible sequence, if a�I0 ≡A a�I1 for
every I0, I1 ∈ I(n) and n < ω. �

The indiscernibility condition can be formulated in a number of equivalent ways.
For example, we can require that, for every formula ϕ(x1, . . . , xn) ∈ L(A) and every
pair of tuples in In such that i0 < · · · < in and j0 < · · · < jn,

ϕ(ai0 , . . . , ain) ↔ ϕ(aj0 , . . . , ajn)

Alternatively, we can simply say that for all i0, . . . , in ∈ I the type tp(ai0 , . . . , ain /A)

only depends on the order type of i0, . . . , in.

14.17 Proposition Let p(x) ∈ S(U) be a global A-invariant type and let c̄ = 〈ci : i < α〉 be a
Morley sequence of p(x) over A. Then c̄ is a sequence of indiscernibles over A.

Proof We prove by induction on n < ω that

] c�n ≡A c�I0 for every I0 ⊆ α of cardinality n.

For n = 0 the claim is trivial. We assume inductively that ] above is true and prove
that

c�n, cn ≡A c�I0 , ci for every I0 < i < α.

As c̄ is Morley sequence, cn ≡A,c�n ci whenever n < i. Hence we can equivalently
prove that

c�n, ci ≡A c�I0 , ci,

which is equivalent to

c�n ≡A, ci c�I0 .

The latter holds by induction hypothesis ] and the invariance of p(x) as formulated
in it3 of Section 1. �
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Chapter 15

Ramsey theory

In Section 1 we prove Ramsey’s theorem and in Section 2 we present its major appli-
cation in model theory: the Ehrenfeucht-Mostowski construction of indiscernibles.

In the remaining sections we prove two important results of Ramsey theory. These
results will not be used elsewhere in these notes. Our only purpose is to illustrate
a concrete (relatively speaking) application of the notion of coheir.

1 Ramsey’s theorem from coheir sequences

In this chapter we are interest in finite partitions. We may represent the partition
of a set X into k subsets with a map f : X → [k]. The elements of [k] = {1, . . . , k}
are also called colors, and the partition a coloring, or k-coloring, of X. We say that
Y ⊆ X is monochromatic if f�Y is constant on Y.

Let M be an arbitrary infinite set. Fix n, k < ω and fix a coloring f of the set of all
n-subsets of M, aleas the complete n-uniform hypergraph with vertex set M,

f :
(

M
n

)
→ [k].

We say that H ⊆ M is a monochromatic subgraph if the subgraph induced by
H is monocromatic. In the literature monochromatic subgraph are also called
homogeneous sets.

The following is a very famous theorem which we prove here in unusual way. Its
proof will serve as blueprint for other constructions in this chapter.

15.1 Ramsey Theorem Let M be an infinite set and fix some positive integers n and k. Fix an
arbitrary k-coloring of the (edges of the) complete n-uniform hypergraph with vertex set M.
Then there is an infinite monochromatic subgraph H ⊆ M.

Proof Let L be a language that contains k relation symbols r1, . . . , rk of arity n.
Given a k-coloring f we define a structure with domain M. The interpretation the
relation symbols is

rM
i =

{
a1, . . . , an ∈ M : f

(
{a1, . . . , an}

)
= i
}

.

We may assume that M is an elementary substructure of some large saturated model
U. Pick any type p(x) ∈ S(U) finitely satisfied in M but not realized in M and let
c̄ = 〈ci : i < ω〉 be a coheir sequence of p(x) over M.

There is a first-order sentence saying that the formulas ri(x1, . . . , xn) are a coloring
of M(n). Then by elementarity the same hols in U. By indiscernibility, all tuples of
n distinct elements of c̄ have the same color, say 1.

Note parenthetically that no element of c̄ is in M. The theorem is proved if we can
find in M a sequence ā = 〈ai : i < ω〉 with color 1. We construct a�i by induction on
i as follows.
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Assume as induction hypothesis that the subsequences of length n of a�i, c�n have all
color 1. Our goal is to find ai ∈ M such that the same property holds for a�i, ai, c�n.
By the indiscernibility of c̄, the property holds for a�i, c�n, cn. And this can be written
by a formula ϕ(a�i, c�n, cn). As c̄ is a coheir sequence, by Lemma 14.15 we can find
ai ∈ M such that ϕ(a�i, c�n, ai). So, as the order is irrelevant, a�i, ai, c�n satisfies the
induction hypothesis. �

15.2 Exercise Let M be a graph with the property that for every finite A ⊆ M there is a
c ∈ M such that A ⊆ r(c,U). (This holds in particular when M is a random graph.)
Prove that for every finite coloring of the edges of M, there is a subgraph that is
complete and monochromatic. �

15.3 Exercise Under the same assumptions of exercise 15.2, but now the coloring may
also be infinite. Prove that M has a subgraph that is complete and is either monochro-
matic or any two edges have different colors. �

2 The Ehrenfeucht-Mostowski theorem
Let I,<I be an infinite linear order and let ā be an I-sequence. Fix a tuple of distinct
variables x̄ = 〈xi : i < ω〉. We write p(x̄) = EM-tp(ā/A) and say that p(x̄) is the
Ehrenfeucht-Mostowski type of ā over A if

p(x̄) =
{

ϕ(x�n) ∈ L(A) : ϕ(a�I0) holds for every I0 ∈
(

I
n

)}
.

Note that x̄ is always of order-type ω, while ā is an arbitrary infinite sequence.
Clearly, xi and ai are tuple of the same sort.

Note also that if ā is A-indiscernible then EM-tp(ā/A) is a complete type, and vice
versa. So, if ā and c̄ are two A-indiscernible I-sequences with the same Ehrenfeucht-
Mostowski type over A, then ā ≡A c̄.

15.4 Ehrenfeucht-Mostowski Theorem Let I,<I and J,<J be two infinite linear orders such
that |J| ≤ κ. Then for every sequence ā = 〈ai : i ∈ I〉 there is an J-sequence of A-
indiscernibles c̄ such that EM-tp(ā/A) ⊆ EM-tp(c̄/A).

Proof We prove the theorem for I = J = ω and leave the general case to the reader.
Let q(x̄) = EM-tp(ā/A). Let c̄ be any realization of the following type yields a
J-sequence of A-indiscernibles.

q(x̄) ∪
{

ϕ(x�I0)↔ ϕ(x�J0) : ϕ(x�n) ∈ L(A), I0, J0 ∈
(

ω

n

)
, n < ω

}
.

We will prove that any finite subset of the type above is realized by a finite subse-
quence of ā. First note that any finite subset of q(x̄) is realized by any subsequence
of ā of the proper length by the definition of EM-type. Then we only need to pay
attention to the set on the right.

We prove that for k and n arbitrary large and every ϕ1, . . . , ϕk ∈ Lx�n(A) there is an
infinite H ⊆ ω such that a�H realizes

#
{

ϕi(x�I0)↔ ϕi(x�J0) : I0, J0 ∈
(

ω

n

)
and i ∈ [k]

}
.

Consider the subsets of [k] as colors and let f be the coloring of ω(n) that maps I0 to
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the set
{

i : ϕi(a�I0)
}

. By the Ramsey theorem, there is some infinite monochromatic
set H ⊆ ω. Hence {

ϕi(a�I0)↔ ϕi(a�J0) : I0, J0 ∈
(

H
n

)
and i ∈ [k]

}
.

As H has order type ω, it is immediate that a�H realizes #, as required to prove the
theorem with I = J = ω. �

15.5 Proposition Let ā = 〈ai : i ∈ I〉 be a sequence of A-indiscernibles. Then ā is indiscernible
over some model M containing A.

Proof Fix an model M containing A. By Theorem 15.4 there is an I-sequence of M-
indiscernibles c̄ such that EM-tp(ā/M) ⊆ EM-tp(c̄/M). As ā is an A-indiscernible
sequence ā ≡A c̄. Therefore h c̄ = ā for some some h ∈ Aut(U/A). Hence ā is
indiscernible over h[M]. �

15.6 Exercise Let ā = 〈ai : i ∈ I〉 be an A-indiscernible sequence and let J ⊇ I with
|J| ≤ κ. Then there is an A-indiscernible sequence c̄ = 〈ci : i ∈ J〉 such that c�I = ā. �

15.7 Exercise Let p(x) ∈ S(U) be a global type invariant over A. Let a, b � p�A(x). Prove
that there is a sequence c̄ = 〈ci : i < ω〉 such that a, c̄ and b, c̄ are both sequences of
A-indiscernibles. �

3 Idempotent orbits in semigroups

In this and the following sections we focus on semigroups definable in a first-order
structure. For a lighter notation, we identify our semigroup with G , which here de-
notes the domain of a sort in a many-sorted monster model. The language contains,
among others, the symbol · which is interpreted as a binary associative operation
on G.

We fix a set of parameters A, not necessarily all of the same sort. For any two sets
A,B ⊆ G we define

A ·A B =
{

a·b : a ∈ A, b ∈ B and a ^A b
}

In this and the next section we abbreviate O(a/A), the orbit of a under Aut(G/A),
with aA . We write a ·A B for O(a/A) ·A B. Similarly for A ·A b and a ·A b .

15.8 Proposition If A is type definable over A then so is A ·A b for any b.

Proof The set A ·A b is the union of A ·A {c} as c ranges in bA. The set A ·A {c} is
type definable, say by the the type ∃y p(x, y, c) where

p(x, y, c) = y ^A c ∧ y·c ≡A x ∧ y ∈ A

Note that if f is any A-automorphism, then ∃y p(x, y, f c) defines A ·A { f c}. There-
fore if q(z) = tp(b/A) then ∃y, z

[
q(z) ∪ p(x, y, z)

]
defines A ·A b. �

By the invariance of ^A, for every f ∈ Aut(G/A) we have f [A ·A B] = f [A] ·A f [B]
Therefore, when A and B are invariant over A, also A ·A B is invariant over A.
Below we mainly deal with invariant sets.
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15.9 Proposition For every A-invariant sets A, B, and C.

A ·A
(
B ·A C

)
⊆

(
A ·A B

)
·A C

Proof Let a·b·c be an arbitrary element of the l.h.s. where a ^A b·c and b ^A c. By
extension (Lemma 14.11), there exists a′ such that a ≡A, b·c a′^A b·c, a, b, c. By
transitivity (again Lemma 14.11), a′·b ^A c. Therefore a′·b·c belongs to the r.h.s.
Finally, as a′ ≡A, b·c a, also a·b·c belongs to the r.h.s. by A-invariance. �

Let A be a non empty set. When A ·A A ⊆ A, we say that it is idempotent (over A).

15.10 Corollary Assume B ⊆ A are both A-invariant. Then if A is idempotent, also A ·A B is
idempotent.

Proof We check that if A is idempotent so is A ·A B(
A ·A B

)
·A
(
A ·A B

)
⊆ A ·A

(
A ·A B

)
because A ·A B ⊆ A

⊆
(
A ·A A

)
·A B by the lemma above

⊆ A ·A B �

We show that, under the assumption of stationarity, the operation ·A is associative.
The quotient map G→ G/≡A is almost a homeomorphism.

15.11 Proposition Assume ^A is 1-stationary, see Definition 14.12. Fix a ^A b arbitrarily.
Then a′·b′ ≡A a·b for every a′ ≡A a and b′ ≡A b such that a′^A b′. Or, in other words,

(a·b)A = a ·A b.

Proof We prove two inclusions, only the second one requires stationarity.

⊆ As a ^A b holds by hypothesis, a·b ∈ a ·A b. The inclusion follows by invariance.

⊇ By invariance it suffices to show that the l.h.s. contains a ·A {b}. By extension
(Lemma 14.11), there is a′ ∈ aA such that a′^A b. We claim that a′·b ∈ (a·b)A. Both
a and a′ satisfy a ≡A x ^A b. By 1-stationarity, a ≡A, b a′. Hence a·b ≡A a′·b. �

15.12 Corollary (associativity) Let M be a model and assume ^M is 1-stationary. Then for
every M-invariant sets A, B and C.

A ·M
(
B ·M C

)
=

(
A ·M B

)
·M C

Proof We can assume that A, B and C are M-orbits. Say of a, b, and c respectively.
As we are working over a model, we can assume that a ^M b·c and b ^M c. By
Proposition 15.11 the set on the l.h.s. equals (a·b·c)M. By a similar argument the
set on the r.h.s. equals (a′·b′·c′)M for some elements a′, b′, and c′. Proposition 15.9
proves that inclusion ⊆ holds in general. But inclusion between orbits amounts to
equality. �

15.13 Lemma Let M be a model and assume ^M is 1-stationary. If A is minimal among the
idempotent sets that are type-definable over M, then A = bM for some (any) b ∈ A.

Proof Fix arbitrarily some b ∈ A. By Corollary 15.10, the set A ·M b is contained
in A, idempotent and type-definable over M by Proposition 15.8. Therefore by
minimality A ·M b = A. Let A′ ⊆ A contain those a such that a ·M b = bM. This set is
non empty because b ∈ A ·M b. It is easy to verify that A′ is type-definable over M, b.
As it is clearly invariant over M, it is type-definable over M. By associativity it is
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idempotent. Hence, by minimality, A′ = A. Then b ∈ A′, which implies b ·M b = bM.
That is, b has idempotent orbit. Finally, by minimality, A = bM. �

15.14 Corollary Under the same assumptions of the lemma above, every type-definable idempo-
tent set contains an element with an idempotent orbit. �

4 Hindman theorem

In this section we merge the theory of idempotents presented in Section 3 with the
proof of Ramsey’s theorem to obtain Hindman’s theorem in a straightforward way.

Let ā be a tuple of elements of G of length ≤ ω. We write fp ā for the set of finite
products of elements of ā taken in increasing order. Namely,

fp ā =
{

ai0· · · · · aik : i0 < · · · < ik < |ā|, k < |ā|
}

.

Let−< be a relation on G. Let A,C ⊆ G. We say that A is−<-covered by C if for every
a1, . . . , an ∈ A there are infinitely many c ∈ C such that ai−< c for all i. When A = C

we simply sat that A is −<-covered. We say that A is ·−<-closed if a−< b−< c implies
a−< b·c for all a, b, c ∈ A. A−<-chain in G is a tuple ā ∈ G≤ω such that ai−< ai+1.

The requirements on−< are hardly restrictive. For example, on a free semigroup we
can take the preorder relation given by the length of the words. Or, on any semi-
group G, we could take the trivial relation G2 –the theorem below would remain
non trivial.

15.15 Hindman Theorem Let−< be a relation on a semigroup G. Assume that G is ·−<-closed
and−<-covered. Then for every finite coloring of G there is an infinite−<-chain ā such that
fp ā is monochromatic.

Note that this implies that every commutative semigroup G has an infinite monochro-
matic subset closed under finite sums of distinct elements (order G arbitrarily).

Our proof follows closely the proof of Ramsey’s theorem 15.1. The novelty is all in
Lemma 15.13.

Proof We interpret G as a structure in a language that extends the natural language
of semigroups with a symbol for−< and one for each subset of G. Let G be a sat-
urated elementary superstucture of G. As observed in Remark 14.14, the language
makes ^G trivially 1-stationary.

We write G′ for the type-definable set {x : G−< x}, which is non empty because G
is−<-covered. We claim that G′ is idempotent. In fact, if a, b ∈ G′ then, as G−< a, b
and a ^G b, we must have that a−< b. Therefore, from the ·−<-closure of−< we infer
a·b ∈ G′.

Let g be an element of G′ with idempotent orbit as given by Corollary 15.14. Let
p(x) ∈ S(G) be a global coheir of tp(g/G). Let ḡ a coheir sequence of p(x), that is,

gi � p�G, g�i (x).

We write ~g�i for the tuple gi−1, . . . , g0. By the idempotency of gG and Proposi-
tion 15.11, h ≡G g for all h ∈ fp ~g�i and all i. It follows in particular that fp ~g�i is
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monochromatic, say all its elements have color 1. Now, we use the sequence ḡ to
define ā ∈ Gω such that all elements of fp ā have color 1.

Assume as induction hypothesis that we have a�i ∈ Gi such that all elements of
fp(a�i, g0) have color 1. Our goal is to find ai such that the same property holds for
fp(a�i+1, g0).

First we claim that from the induction hypothesis it follows that, for all j, all ele-
ments of fp(a�i, ~g�j) have color 1. In fact, the elements of fp(a�i, ~g�j) have the form
b · h for some b ∈ fp(a�i) and h ∈ fp( ~g�j). As h ≡G g, we conclude that b · h ≡G b · g0,
which proves the claim.

Let ϕ(a�i, gi+1, g�i+1) say that all elements of fp(a�i, ~g�i+2) have color 1. As ḡ is
a coheir sequence we can find ai such that ϕ(a�i, ai, g�i+1). Hence all elements of
fp(a�i+1, g�i+1) have color 1. Therefore ai is as required. �

5 The Hales-Jewett Theorem

The Hales-Jewett Theorem is a purely combinatorial statement that implies the van
der Waerden Theorem.

We need a few definitions. We work with the same notation as Section 3. Let A

be an idempotent set that is type-definable over A. We say that an element c is
left-minimal (w.r.t. A) if c ∈ A ·A g for every g ∈ A ·A c.

15.16 Proposition Let A be idempotent and type-definable over A. Let a be arbitrary. Then
A ·A a contains a left-minimal element c. When A ·A a ∩ A is non empty, we can also
require that c has idempotent orbit.

Proof If b ∈ A ·A a then A ·A b ⊆ A ·A a. By compacteness we obtain c′ ∈ A ·A a such
that A ·A b = A ·A c′ for every b ∈ A ·A c′. Hence every c ∈ A ·A c′ is left-minimal.
Note that if b ∈ A then by idempotency A ·A b ⊆ A. Hence when A ·A a and A have
non empty intersection, we can also require that c′ ∈ A. Then A ·A c′ is idempotent.
Therefore, by Corollary 15.14 there is some c ∈ A ·A c′ with idempotent orbit. �

15.17 Proposition Let M be a model and assume ^M is 1-stationary. Let A be idempotent and
type-definable over M. Let cM be idempotent and such that c ·M A, A ·M c ⊆ A. Then

1. c ·M A ·M c contains some g with idempotent orbit

2. if moreover c is left-minimal, then c ≡M g for every g as in 1.

Note, parenthetically, that the set in 1 may not be type-definable, therefore Corol-
lary 15.14 does not apply directly and we need an indirect argument.

Proof 1. From c ·M A ⊆ A we obtain that A ·M c is idempotent. As it is also type-
definable, by Corollary 15.14 it contains a b with idempotent orbit. Then b ·M c =

bM, from which we obtain that c ·M b is idempotent and contained in c ·M A ·M c.

2. From g ∈ c ·M A ·M c and the idempotency of cM we obtain gM = c ·M g. As
g ∈ A ·M c, from the left-minimality of cM we obtain c ∈ A ·M g. Hence cM = c ·M g,
by the idempotency of gM. Therefore cM = gM, which proves 2. �

The following is a technical lemma that is required in the proof of the main theorem.
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15.18 Proposition Let M be a model and assume ^M is 1-stationary. Let σ : G → G be a
semigroup homomorphism definable over M. Then

1. σ
[
aM
]
= (σ a)M

2. σ
[
a ·M b

]
= σ a ·M σ b.

Proof 1. As a ≡M a′ implies σ a ≡M σ a′, inclusion ⊆ is clear. For the converse,
note that the type ∃y

[
σ y = x ∧ y ≡M a

]
is trivially realized by σ a. By invariance

it is equivalent to a type over A. Therefore it is realized by all elements of (σ a)M.
Hence all elements of (σ a)M are the image of some element in aM.

2. We have to prove the following equality{
σ(a′·b′) : a ≡M a′^M b′ ≡M b

}
=

{
a′·b′ : σ a ≡M a′^M b′ ≡M σ b

}
.

It suffices to prove one inclusion because by Proposition 15.11 both sides are orbits.
We prove ⊆. Note that a′^M b′ implies σ a′^M σ b′. Hence the set on l.h.s. is
contained in the following{

σ(a′·b′) : σ a′^M σ b′, a′ ≡M a, b′ ≡M b
}

.

which is in turn contained in the set on the r.h.s. �

Let G be a semigroup. A nice subsemigroup of G is a subsemigroup C with the
property that if a·b ∈ C then both a, b ∈ C.

15.19 Hales-Jewett Theorem(Koppelberg’s version) Let G be an infinite semigroup and let
C ⊂ G be a nice subsemigroup. Let Σ be a finite set of retractions of G onto C, that is,
homomorphisms σ : G → C such that σ�C = idC. Then, for every finite coloring of C, there
is an a ∈ Gr C such that {σ a : σ ∈ Σ} is monochromatic.

Proof Let G � G. Here G is a monster model in a language that expands the natural
one with a symbol for all subsets of G. As observed in Remark 14.14, this makes
^G trivially 1-stationary. Let C be the definable set such that C = G ∩ C. By
elementarity, C is a nice subsemigroup of G. The language contains also symbols
for the retractions σ : G→ C.

By Proposition 15.16, there is a left-minimal c ∈ C. As C ·M c is clearly idempotent,
we can further require that c has idempotent orbit.

By nicety, Gr C satisfy the assumptions of Proposition 15.17. Hence, by the first
claim of that proposition, there is an idempotent g ∈ c ·G (Gr C) ·G c. In particular,
g ∈ GrC. Now apply the second claim of Proposition 15.18, with C for A, to obtain
σ g ∈ c ·G C ·G c for all σ ∈ Σ. As σ g is also idempotent, we apply Proposition 15.17
to conclude that σ g ≡G c. In particular the set {σ g : σ ∈ Σ} is monochromatic.

Though the element g above need not belong to G r C, by elementarity G r C
contains some a with the same property and this proves the theorem. �

Finally we show how the classical Hales-Jewett theorem follows from its abstract
version.

15.20 Hales-Jewett Theorem(Classical version) Let C be an infinite semigroup. Fix a tuple
of variables x and let F ⊆ C|x| be a finite set. Fix also a finite coloring of C. Then there
is a non constant term t(x) of the language of semigroups with parameters in C such that
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{t(a) : a ∈ F} is monochromatic.

Proof Let G be the set of terms t(x) in the language of semigroups with parameters
in C and free variables in x. Then G is a semigroup under the natural operation.
For every a ∈ C|x| the map σa : t(x) 7→ t(a) is a retraction. Hence we can apply the
theorem above. �

We conclude with a variant of Theorem 15.19 that applies to a broader class of
semigroup homomorphisms. For Σ a set of maps σ : G → C and c ∈ C we define

Σ−1[c] =
⋂

σ∈Σ
σ−1[c]

Clearly, when the maps in Σ are retractions, Σ−1[c] is non empty for all c ∈ C
because it contains at least c.

15.21 Hales-Jewett Theorem(Yet another variant) Let Σ be a finite set of homomorphisms
σ : G → C between infinite semigroups such that Σ−1[c] is non empty for all c ∈ C.
Then, for every finite coloring of C, there is a g ∈ G such that the set {σ g : σ ∈ Σ} is
monochromatic.

Proof Let G ∗ C be free product of the two semigroups. That is, G ∗ C contains
finite sequences of elements of G ∪ C, below called words, that alternate elements in
G with elements in C. The product of two words is obtained concatenating them
and, when it applies, replacing two contiguous elements of the same group by their
product. Note that C is a nice subsemigroups of G ∗ C.

Any homomorphism σ : G → C extends canonically to a retraction of G ∗C to C. In
fact, this extension is unique: the elements of G that occur in a word are replaced by
their image under σ, finally the elements in the resulting sequence are multiplied.
This extension is denoted by the same symbol σ.

Apply Theorem 15.19 to obtain some w ∈ G ∗ C such that {σ w : σ ∈ Σ} is
monochromatic. Suppose w = c0 · g0 · · · · · · cn · gn for some gi ∈ G and ci ∈ C,
where one or both of c0 or gn could be absent. Pick some hi ∈ Σ−1[ci] and let
g = h0 · g0 · · · · · · hn · gn. Then {σ g : σ ∈ Σ} is monochromatic as required to
complete the proof.H �

6 Notes and references

The first application of the algebraic structure of βG (the Stone-Čech compactifi-
cation of a semigroup G) to Ramsey Theory is the celebrated Galvin-Glazer proof
of Hindman’s theorem. Here we have used saturated models in place of Stone-
Čech compactification. The idea to replace the semigroup βG has been pioneered
by Ludomir Newelsi in the study of applications of topological dynamics to model
theory.

The original proof of the Hales-Jewett Theorem by Alfred Hales and Robert Jewett
is combinatorial. An alternative proof, also combinatorial, has been given by Sheron
Shelah. Our proof is taken from [4].
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Chapter 16

Lascar invariant sets

In this chapter we fix a signature L, a complete theory T without finite models,
and a saturated model U of inaccessible cardinality κ strictly larger than |L|. The
notation and implicit assumptions are as in Section 9.3.

1 Expansions

This section is only marginally required in the present chapter so it can be post-
poned with minor consequences.

We will find it convenient to expand the language L with a predicate for a given
D ⊆ U|z|. We denote by 〈U,D〉 the corresponding expansion of U. Generally, we
write L(X) for the expanded language but, if the intended interpretation of X is
only going to be D, we may write L(D) and abbreviate 〈U ;D〉 � ϕ(X) as ϕ(D).

16.1 Remark The definitions above are straightforward when z finite tuple. When z
is an infinite tuple the intuition stays the same but a more involved definition is
required. In fact, first-order logic does not allow infinitary predicates. We think of
L(X) for a two sorted language. The home sort, denoted by 0, and the z-sort, denoted
by z. The expansion 〈U,D〉 has domain U for the home sort, and U|z| for the z-sort.
Besides the symbols of L, there is a function symbol πi for every i < |z| which is
interpreted as the projection to the i-coordinate. These functions have arity 〈z, 0〉
(see Section 13.1 for the notation). There is also a predicate of sort 〈z〉 interpreted
as D. �

What said above is adapted to define the expansion L(Xi : i < λ) , where Xi are
predicates of arity |zi|. Again, when the sets Di ⊆ U|zi | are the only intended
interpretation of Xi, we may write L(Di : i < λ) .

16.2 Definition If C,D ⊆ U|z| we abbreviate 〈U,C〉 ≡A 〈U,D〉 as C ≡A D. We also say that
D is saturated if so is the model 〈U ;D〉. �

16.3 Remark For every D ⊆ U|z| there is a saturated C ≡ D. In fact, it suffices to find
a saturated model 〈U′,D′〉 ≡ 〈U,D〉 of cardinality κ. By saturation, there is an
isomorphism f : U′ → U. Therefore f [D′] is the required set C. �

16.4 Exercise Prove that if D ⊆ U|z| is saturated and invariant over A than it is definable
over A. �

16.5 Proposition If D ⊆ U|z| is invariant over A then every A-indiscernible sequence is indis-
cernible in the language L(A ;D).

Proof Let c̄ = 〈ci : i ∈ I〉 be an A-indiscernible sequence. For every I0, I1 ∈ I[n]

there is an f ∈ Aut(U/A) such that f c�I0 = c�I1 , Hence
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ϕ
(
c�I0 ;D

)
↔ ϕ

(
f c�I0 ; f [D]

)
↔ ϕ

(
c�I1 ;D

)
. �

16.6 Exercise Prove that if C ⊆ U|z| is type-definable over B then ≡A,B implies ≡A ;C. �

2 Lascar strong types

Let D ⊆ U|z|, where z is a tuple of length < κ. The orbit of D over A is the set

o(D/A) =
{

f [D] : f ∈ Aut(U/A)
}

So, D is invariant over A when o(D/A) =
{
D
}

. We say that D is Lascar invariant
over A if it is invariant over every model M ⊇ A. Recall that this means that if
a ≡M c for some model M containing A then a ∈ D↔ c ∈ D.

16.7 Proposition Let λ = |Lz(A)|. There are at most 22λ
sets D ⊆ U|z| that are Lascar

invariant over A.

Proof Let N be a model containing A of cardinality ≤ λ. Every set that is Lascar
invariant over A is invariant over N. As |Lz(N)| = λ the bound follows from
Proposition 14.1. �

16.8 Theorem For every D and every A ⊆ M the following are equivalent

1. D is Lascar invariant over A;

2. every set in o(D/A) is M-invariant;

3. o(D/A) has cardinality ≤ 22|L(A)|
;

4. o(D/A) has cardinality < κ;

5. c0 ∈ D↔ c1 ∈ D for every A-indiscernible sequence 〈ci : i < ω〉.

Proof 1⇒2. This implication is clear because all sets in o(D/A) are Lascar invari-
ant over A.

2⇒3. When |M| ≤ |L(A)| the implication follows from the bounds discussed in
Section 14.1. We temporary add this assumption on M. Once the proof of the
proposition is completed, is easily seen to be redundant (by 4 and Proposition 16.7).

3⇒4. This implication holds because κ is a strong limit cardinal.

4⇒5. Assume ¬5. Then we can find an A-indiscernible sequence 〈ci : i < κ〉 such
that c0 ∈ D↔/ c1 ∈ D. Define

E(u ; v) ⇔ u ∈ C↔ v ∈ C for every C ∈ o(D/A).

Then E(u ; v) is an A-invariant equivalence relation. As ¬E(c0 ; c1), by Proposi-
tion 16.5, indiscernibility over A implies that ¬E(ci , cj) for every i < j < κ. Then
E(u ; v) has κ equivalence classes. As κ is inaccessible, this implies ¬4.

5⇒1. Fix any a ≡N b where A ⊆ N. It suffices to prove that a ∈ D ↔ b ∈ D.
Let p(z) ∈ S(U) be a global coheir of tp(a/N) = tp(b/N). Let c̄ = 〈ci : i < ω〉 be
a Morley sequence of p(z) over N, a, b. Then both a, c̄ and b, c̄ are A-indiscernible
sequences. Therefore, from 5 we obtain a ∈ D↔ c0 ∈ D↔ b ∈ D. �

For definable sets Lascar invariance reduces to definablity over the algebraic closure.
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16.9 Corollary For every definable set D the following are equivalent

1. D is Lascar invariant over A;

2. D is definable over acleq(A). �

The following corollary easily follows from Theorem 16.8 and Proposition 16.5. As
an exercise the reader may wish to prove it using Proposition 15.5.

16.10 Corollary The following are equivalent

1. D is Lascar invariant over A;

2. every sequence of A-indiscernibles is L(A ;D)-indiscernible. �

" Given a tuple a ∈ U|z|, we write L(a/A) for the intersection of all sets containing
a that are Lascar invariant over A. Clearly L(a/A) is Lascar invariant over A. The
symbol L(a/A) is not standard.

16.11 Definition We write a
L≡A b and say that a and b have the same Lascar strong type over

A if the equivalence a ∈ D↔ b ∈ D holds for every set D that is Lascar invariant over A
or, in other words, if L(a/A) = L(b/A). The notation L-stp(a/A) = L-stp(b/A) and
aEL/A b are also common in the the literature. �

16.12 Proposition The relation
L≡A is the finest equivalence relation with < κ classes that is

invariant over A. �

Proof Clearly
L≡A is an equivalence relation invariant over A. Each equivalence

class is Lascar invariant over A, hence the number of equivalence classes is bounded
by the number of Lascar invariant sets over A. To see that

L≡A is the finest of such
equivalences. Suppose D is an equivalence class of an A-invariant equivalence
relation with < κ classes. Then o(D/A) has also cardinality < κ. Then D is Lascar
invariant and as such it is union of classes of the relation

L≡A. �

Let p(x) ∈ S(U) be global type; we say that p is Lascar invariant over A if the
sets Dp,ϕ for ϕ(x ; z) ∈ L all Lascar invariant over A. (The sets Dp,ϕ are defined in
Section 14.1.)

16.13 Proposition Let p(x) ∈ S(U) be a global type. Then the following are equivalent

1. p(x) is Lascar invariant over A;

2. every A-indiscernible sequence c̄ = 〈ci : i < ω〉 is also A, a-indiscernible for every
a � p�A,c̄(x);

3. every A-indiscernible sequence c̄ = 〈ci : i < ω〉 is indiscernible over any a � p�c̄(x).

For convenience all tuples ci have length |z| = ω.

Proof We prove 1⇔3. Equivalence 1⇔2 can be proved similarly because the Las-
car invariance of p(x) easily implies the Lascar invariance of the sets Dp,ϕ for all
ϕ(x ; z) ∈ L(A).

3⇒1 If p(x) is not Lascar invariant over A then c0 ∈ Dp,ϕ ↔/ c1 ∈ Dp,ϕ for some
A-indiscernible sequence c̄ = 〈ci : i < ω〉 and some ϕ(x ; z) ∈ L. Then p(x) contains
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the formula ϕ(x ; c0) ↔/ ϕ(x ; c1). Hence, c̄ is not indiscernible over any realization
of p(x)�c0,c1

1⇒3 Assume 1 and fix an A-indiscernible sequence c̄ = 〈ci : i < ω〉 and some
a � p�c̄. We need to prove that for every formula ϕ(x ; z′) ∈ L, where z′ = z1, . . . , zn,

ϕ(a ; c0, . . . , cn−1) ↔ ϕ(a ; ci1 , . . . , cin−1).

holds for every i0 < · · · < in−1 < ω. Suppose not and let m be any integer larger
than in−1. Then the following equivalences cannot both be true

ϕ(a ; cm, . . . , cm+n−1) ↔ ϕ(a ; c0, . . . , cn−1);

ϕ(a ; cm, . . . , cm+n−1) ↔ ϕ(a ; ci0 , . . . , cin−1).

If the first is false, define c′k = ckm, . . . , ckm+n−1 for all k < ω. Otherwise, do this only
for positive k and set c′0 = ci0 , . . . , cin−1 . In either cases 〈c′k : k < ω〉 is a sequence of
A-indiscernibles and c′0 ∈ Dp,ϕ ↔/ c′1 ∈ Dp,ϕ. This contradicts 1. �

16.14 Exercise Prove that the equivalence relation a
L≡A b is the transitive closure of the

relation: there is a sequence 〈ci : i < ω〉 indiscernible over A such that c0 = a and
c1 = b. Hint: apply Theorem 16.8. �

3 The Lascar graph and Newelski’s theorem

Here we study Lascar strong types from a different viewpoint. The Lascar graph
over A has an arc between all pairs a, b ∈ U|z| such that a ≡M b for some model
M containing A. We write dA(a, b) for the distance between a and b in the Lascar
graph over A. Let us spell this out: dA(a, b) ≤ n if there is a sequence a0, . . . , an
such that a = a0, b = an, and ai ≡Mi ai+1 for some models Mi containing A. We
write dA(a, b) < ∞ if a and b are in the same connected component of the Lascar
graph over A.

16.15 Proposition For every a ∈ U|z|

L(a/A) =
{

c : dA(a, c) < ∞
}

.

Proof To prove inclusion ⊇ it suffices to show that every Lascar A-invariant set
containing a contains the set on the r.h.s. Let D be Lascar A-invariant, and let
b ∈ D. Then D contains also every c such that b ≡M c for some model M containing
A. That is, D contains every c such that dA(b, c) ≤ 1. It follows that D contains
every c such that dA(a, c) < ∞.

To prove inclusion ⊆ we prove the set on the r.h.s. is Lascar A-invariant. Suppose
the sequence a0, . . . , an, where a0 = a and an = c, witnesses dA(a, c) ≤ n and
suppose that c ≡M b for some M containing A, then the sequence a0, . . . , an, b
witnesses dA(a, b) ≤ n + 1. �

We write Autf(U/A) for the subgroup of Aut(U/A) that is generated by the auto-
morphisms that fix point-wise some model M containing A. (The “f” in the symbol
stands for fort, the French word for strong.) It is easy to verify that Autf(U/A) is a
normal subgroup of Aut(U/A). The following is a corollary of Proposition 16.15.

16.16 Corollary The following are equivalent
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1. a
L≡A b

2. a = f b for some f ∈ Autf(U/A). �

It may not be immediately obvious that the relation dA(z, y) ≤ n is type-definable.

16.17 Proposition For every n < ω there is a type pn(z, y) ⊆ L(A) equivalent to dA(z, y) ≤ n.

Proof It suffices to prove the proposition with n = 1. Let λ = |L(A)| and fix a tuple
of distinct variables w = 〈wi : i < λ〉, then p1(z, y) = ∃w p(w, z, y) where

p(w, z, y) = q(w) ∪
{

ϕ(z, w)↔ ϕ(y, w) : ϕ(z, w) ∈ L(A)
}

and q(w) ⊆ L(A) is a consistent type with the property that all its realizations
enumerate a model containing A.

It remains to verify that such a type exist. Let 〈ψi(x, w�i) : i < λ〉 be an enumeration
of the formulas in Lx,w(A), where x is a single variable. Let

q(w) =
{
∃x ψi(x, w�i) → ψi(wi, w�i) : i < λ

}
.

Any realization of q(w) satisfy the Tarski-Vaught test therefore it enumerates a
model containing A. Vice versa it is clear that we can realize q(w) in any model
containing A. �

We conclude this section with a theorem of Ludomir Newelski.

The following notions apply generally to any group G acting on some set X and
to any set D ⊆ X. Below we always have G = Autf(U/A) and X = U|z|. We say
that D is drifting if for every finitely many f1, . . . , fn ∈ G there is a g ∈ G such
that g[D] is disjoint from all the fi[D]. We say that D is quasi-invariant if for every
finitely many f1, . . . , fn ∈ G the sets fi[D] have non-empty intersection. We say that
a formula or a type is drifting or quasi-invariant if the set it defines is.

The union of drifting sets need not be drifting. However, by the following lemma it
cannot be quasi-invariant.

16.18 Lemma The union of finitely many drifting sets in not quasi-invariant.

Proof It is convenient to prove an apparently more general claim. If D1, . . . ,Dn are
all drifting and L is such that for some finite F ⊆ G

] L ⊆
⋃
f∈F

f [D1 ∪ · · · ∪Dn],

then L is not quasi-invariant. The claim is vacuously true for n = 0. Now, assume
n is positive and that the claim holds for n − 1. Define C = D1 ∪ · · · ∪Dn−1 and
rewrite ] as follows

L ⊆
⋃
f∈F

f [C] ∪
⋃

h∈F

h[Dn]

Since Dn is drifting there is a g ∈ G such that g[Dn] is disjoint from h[Dn] for every
h ∈ F, which implies that

L∩ g[Dn] ⊆
⋃
f∈F

f [C].

Hence for every h there holds
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hg−1[L] ∩ h[Dn] ⊆
⋃
f∈F

hg−1 f [C]

So, from ] we obtain

L∩
⋂

h∈F

hg−1[L] ⊆
⋃
f∈F

f [C] ∪
⋃

h∈F

⋃
f∈F

hg−1 f [C].

By the induction hypothesis, the set on the r.h.s. is not quasi-invariant. Hence
neither is L, proving the claim and with it the lemma. �

The following is a consequence of Baire’s category theorem. We sketch a proof for
the convenience of the reader.

16.19 Lemma Let p(x) ⊆ L(B) and pn(x) ⊆ L(A), for n < ω, be consistent types such that

1. p(x) →
∨

n<ω

pn(x)

Then there is an n < ω and a formula ϕ(x) ∈ L(A) consistent with p(x) such that

2. p(x) ∧ ϕ(x) → pn(x)

Proof Negate 2 and choose inductively for every n < ω a formula ψn(x) ∈ pn(x)
such that p(x) ∧ ¬ψ0(x) ∧ · · · ∧ ¬ψn(x) is consistent. By compactness, this contra-
dicts 1. �

Finally we can prove Newelski’s theorem on the diameter of Lascar types.

16.20 Theorem(Newelski) For every a ∈ U|z| the following are equivalent

1. L(a/A) is type-definable;

2. L(a/A) =
{

c : dA(a, c) < n
}

for some n < ω.

Proof Implications 2⇒1 holds by Proposition 16.17. We prove 1⇒2. Suppose
L(a/A) is type-definable, say by the type l(z). Let p(z, y) be some consistent type
(to be defined below) such that and p(z, y)→ l(z) ∧ l(y). Then, in particular

p(z, y) →
∨

n<ω

dA(z, y) < n.

By Proposition 16.17 and Lemma 16.19, there is some n < ω and some ϕ(z, y) ∈
L(A) consistent with p(z, y) such that

]1 p(z, y) ∧ ϕ(z, y) → dA(z, y) < n.

Below we define p(z, y) so that for every ψ(z, y) ∈ L(A)

]2 p(z, a) ∧ ψ(z, a) is non-drifting whenever it is consistent.

Drifting and quasi-invariance are relative to the action of Autf(U/A) on U|z|. Then,
in particular, p(z, a) ∧ ϕ(z, a) is non-drifting and the theorem follows. In fact, by
non-drifting, there are some a0, . . . , ak ∈ L(a/A) such that every set p(U, c)∩ ϕ(U, c)
for c ∈ L(a/A) intersects some p(U, ai)∩ ϕ(U, ai). Let m be such that dA(ai, aj) ≤ m
for every i, j ≤ k. From ]1 we obtain that dA(a, c) ≤ m + 2n. As c ∈ L(a/A) is
arbitrary, the theorem follows.

The required type p(z, y) is union of a chain of types pα(z, y) defined as follows

p0(z, y) = l(z) ∪ l(y);
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]3 pα+1(z, y) = pα(z, y) ∪
{
¬ψ(z, y) : pα(z, a) ∧ ψ(z, a) is drifting

}
;

pα(z, y) =
⋃

n<α

pn(z, y) for limit α.

Clearly, the chain stabilizes at some stage ≤ |L(A)| yielding a type which satisfies
]2. So we only need to prove consistency. We prove that pα(z, a) is quasi-invariant
(so, in particular, consistent). Suppose that pn(z, a) is quasi-invariant for every
n < α but, for a contradiction, pα(z, a) is not. Then for some f1, . . . , fk ∈ Autf(U/A)

pα(z, a) ∪
k⋃

i=1

pα(z, fia)

is inconsistent. By compactness there is some n < α and some ψi(z, y) as in ]3 such
that

pn(z, a) → ¬
m∧

j=1

k∧
i=1

¬ψj(z, fia)

As pn(z, a) is quasi-invariant, from Lemma 16.18 we obtain that pn(z, fia)∧ψj(z, fia)
is non-drifting for some i, j. Clearly we can replace fia with a, then this contradicts
the construction of pα(z, y) and proves the theorem. �

16.21 Exercise Let L be quasi-invariant and let D be drifting, prove that LrD is quasi-
invariant. �

4 Kim-Pillay types

Given a tuple a ∈ U|z|, we write K(a/A) for the intersection of all type-definable
sets containing a that are Lascar invariant over A. Or, more concisely, the intersec-
tion of all sets that are type-definable over a model containing A. We call K(a/A)

the Kim-Pillay strong type over A. Clearly K(a/A) is Lascar invariant over A. It
also easy to see that K(a/A) is type-definable. In fact, by invariance, we can assume
that all types in the intersection above are over M, for any fixed model containing
A. Hence K(a/A) is the minimal type-definable set containing a and closed under
the relation

L≡A. It follows that if b ∈ K(a/A) then K(b/A) ⊆ K(a/A).

To summarize, we recall that we have defined a whole hierarchy of strong types
obtained from the intersection of different sets with various sots of invariance

L(a/A) ⊆ K(a/A) ⊆ S(a/A) ⊆ O(a/A).

Recall that S(a/A) was defined after Proposition 13.14.

If K(a/A) = K(b/A), we say that a and b have the same Kim-Pillay strong type
over A. We abbreviate this by a

KP≡A b . In other words, we write a
KP≡A b when

a ∈ D↔ b ∈ D for every type-definable set D that is Lascar invariant over A.

" Warning: the symbol K(a/A) is not standard. The symbol a
KP≡A b is not unusual,

but some author write KP-stp(a/A) = KP-stp(b/A) or a EKP/A b.

16.22 Proposition Fix some a ∈ U|z| and some A ⊆ U. Then there is a type e(z ; w) ⊆ L(A)

such that K(b/A) = e(U ; b) for all b ∈ O(a/A) and e(z ; w) defines an equivalence
relation on O(a/A).
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Proof Notice that K(a/A) is type-definable over A, a. In fact, if f ∈ Aut(U/A, a)
and D is a set containing a that is type-definable and Lascar invariant over A, then
so is f [D]. Therefore K(a/A) is invariant over A, a. As K(a/A) is type-definable,
invariance implies that it is type-definable over A, a. Let e(z ; w) ⊆ L(A) be such
that K(a/A) = e(U ; a).

We prove that K(b/A) = e(U ; b) for all b ∈ O(a/A). Let f ∈ Aut(U/A) be such
that f a = b. If D is a type-definable Lascar invariant over A, then so is f [D].
Therefore, f is a bijection between type-definable sets that are Lascar invariant over
A and contain a and analogous sets containing b. Then f [K(a/A)] = K(b/A) and
K(b/A) = e(U ; b) follows.

We prove that e(b ;U)∩O(a/A) is Lascar invariant over A. Let f ∈ Autf(U/A) and
c ∈ O(a/A). Then e(b ; f c) is equivalent to e( f−1b ; c) which in turn is equivalent to
e(b ; c), by the invariance of e(U ; c).

Finally we are ready to prove that e(z ; w) defines a symmetric relation on O(a/A).
From what proved above, e(b ;U) ∩O(a/A) is a type-definable Lascar invariant set
containing b and therefore it contains K(b/A). We conclude that for all b, c ∈
O(a/A)

e(c ; b) ↔ c ∈ e(U ; b) ↔ c ∈ K(b/A) → e(b ; c)

Reflexivity is clear; we prove transitivity. As remarked above, K(b/A) ⊆ K(c/A),
for all b ∈ K(c/A) or equivalently e(b ; c). Hence if e(b ; c) then

e(d ; b) → d ∈ K(b/A) ↔ d ∈ K(c/A) → e(d ; c).

Which completes the proof. �

16.23 Corollary For every a, b ∈ U|z| and A ⊆ U the following are equivalent

1. a ∈ K(b/A);

2. b ∈ K(a/A);

3. K(a/A) = K(b/A). �

The following useful lemma is the key ingredient in the proof of Theorem 16.25.

16.24 Lemma Let p(z) ⊆ L(A) and let e(z ; w) ⊆ L(A) define a bounded equivalence relation
on p(U). Then there is a type e′(z ; w) ⊆ L(A) which defines a bounded equivalence relation
(on U) and refines e(z ; w) on p(U).

Proof Let C = 〈Ci : i < λ〉 enumerate the partition of p(U) induced by e(z ; w).
Note that each Ci is type-definable over A, a for any a ∈ Ci. If x = 〈xi : i < λ〉, we
write x ∈ C for the type that is the conjunction of xi ∈ Ci for i < λ.

We claim that the required type is

e′(a ; b) =
def ∃x′ ∈ C ∃x′′ ∈ C a, x′ ≡A b, x′′

As the type above is invariant over A, we can assume that e′(a ; b) is type-definable
over A. Moreover, it is clearly a reflexive and symmetric relation, so we only check
it is transitive. Suppose a, x′ ≡A b, x′′ and b, y′ ≡A c, y′′ for some x′, x′′, y′, y′′ ∈ C.
Let z be such that a, x′, z ≡A b, x′′, y′ then z ∈ C and a, z ≡A c, y′′.

The relation e′(a ; b) clearly refines the equivalence defined by e(z ; w) when re-
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stricted to to p(U). To prove that it is bounded fix some c ∈ C and note that e′(a ; b)
is refined by a ≡A,c b, which is bounded. �

Finally, we have the following.

16.25 Theorem Denote by eA(z ; w) be the finest bounded equivalence relation on U|z| that is
type-definable over A. Then for every a, b ∈ U|z| the following are equivalent

1. a
KP≡ b

2. eA(a ; b). �

Proof As a
KP≡ b is equivalent to a ∈ K(b/A), it suffices to prove that eA(U ; b) =

K(b/A) for every b ∈ U|z|.

⊆ The orbit of eA(U ; b) under Aut(U/A) has cardinality < κ. Hence, by The-
orem 16.8, it is Lascar invariant over A. As K(b/A) is the least of such sets,
K(b/A) ⊆ eA(U ; b).

⊇ Let e(z ; w) be the type-definable equivalence relation given by Proposition 16.22.
The orbit of K(b/A) under Aut(U/A) has cardinality < κ. Hence the equivalence
relation that e(z ; w) defines on O(b/A) is bounded. By Lemma 16.24 there is be
a type-definable bounded equivalence relation e′(z ; w) ⊆ L(A) that refines e(z ; w)

on O(b/A). As e′(z ; w) is refined by eA(z ; w), we obtain eA(U ; b) ⊆ e(U ; b) =

K(b/A). �

The logic A-topology, or simply the logic topology when A is empty, is the topol-
ogy on U|z| whose closed sets are the type-definable Lascar A-invariant sets. It is
clearly a compact topology. Its Kolmogorov quotient, that is U|z|/

KP≡, is Hausdorff.
In fact, by Corollary 16.23, the open sets ¬K(a/A) and ¬K(b/A) separate b 6KP≡ a.

16.26 Exercise Prove that the clopen sets in the logic A-topology are exactly the sets that
are definable over acleq A. �

5 Notes and references

The original proof of Newelski theorem is rather long and complex. A simplified
proof (due essetially to Newelski) appears in Rodrigo Peláez’s thesis [6, Section 3.3].
The proof here is a streamlined version of the latter taken from [10].
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Chapter 17

Externally definable sets

In this chapter we fix a signature L, a complete theory T without finite models, and
a saturated model U of inaccessible cardinality κ > |L|. The notation and implicit
assumptions are as in Section 9.3.

1 Approximable sets

Let C,D ⊆ U|z|. The set D ∩ A|z| is called the trace of D over A. We write C =A D

if C and D have the same trace on A.

Let p(x) ⊆ L(U) be a consistent type. Recall from Section 14.1 that for every formula
ϕ(x ; z) ∈ L we define

Dp,ϕ =
{

a ∈ U|z| : ϕ(x ; a) ∈ p
}

.

We say that D is externally definable if it is of the form Dp,ϕ for a type p(x) in S(U)
or Sϕ(U). We say that D is externally definable by p(x) and ϕ(x ; z) .

Equivalently, a set D is externally definable if it is the trace over U of a set which
is definable in some elementary extension of U. More precisely, D is the trace on U

of a set of the form ϕ(∗b ; ∗U) where ∗U is elementary extension of U and ∗b ∈ ∗U|x|.
The latter interpretation explains the terminology.

" We prefer to deal with external definability in a different, though equivalent, way.
This is not the most common approach.

17.1 Definition We say that D is approximated by the formula ϕ(x ; z) if for every finite B
there is a tuple a ∈ U|x| such that ϕ(a ;U) =B D. We call ϕ(x ; z) the sort of D. If in
addition ϕ(a ;U) ⊆ D, we say that D is approximated from below. Equivalently, we say
that D is approximated from below if for every finite B ⊆ D there is a tuple a ∈ U|x| such
that B ⊆ ϕ(a ;U) ⊆ D. The dual notion of approximation from above is defined as expected
(and coincides with ¬D being approximated by ¬ϕ(x ; z) from below). �

The following proposition is clear by compactness.

17.2 Proposition For every D the following are equivalent

1. D is approximated by ϕ(x ; z);

2. D is externally definable by ϕ(x ; z). �

The rest of this section is only required in Chapter 18.

Approximability from below is an adaptation to our context of the notion of having
an honest definition in [3].

17.3 Definition We say that the global type p ∈ Sx(U) is honestly definable if for every
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ϕ(x ; z) ∈ L the set Dp,ϕ is approximated from below (by some formula). We say that p is
definable if the sets Dp,ϕ are all definable (over U). Note that the terminology is misleading:
honestly definable is weaker than definable.

17.4 Example Every definable set is trivially approximable. Sets may be approximable
by different formulas. For instance, if T = Tdlo, then D = {z ∈ U : a ≤ z ≤ b} is
approximable both from below and from above by the formula x1 < z < x2 though
it is not definable by this formula.

Now, let T = Trg. Then every D ⊆ U is approximable and, when D has small
infinite cardinality, it is approximable from above but not from below. �

In Definition 17.1, the sort ϕ(x ; z) is fixed (otherwise any set would be approx-
imable) but this requirement of uniformity may be dropped if we allow B to have
larger cardinality.

17.5 Proposition For every D the following are equivalent

1. D is approximable;

2. for every C ⊆ U of cardinality ≤ |T| there is ψ(z) ∈ L(U) such that ψ(U) =C D.

Proof To prove 2⇒1 assume 2 and negate 1 for a contradiction. For each formula
ψ(x ; z) ∈ L choose a finite set B such that ψ(b ;U) 6=B D for every b ∈ U|x|. Let C be
the union of all these finite sets. Clearly |C| ≤ |T|. By 2 there are a formula ϕ(x ; z)
and a tuple c such that ϕ(c ;U) =C D, contradicting the definition of C. �

17.6 Remark If D ⊆ U|z| is approximated by ϕ(x ; z) then so is any C such that C ≡ D,
see Section 16.1 for the notation. In fact, if the set D is approximable by ϕ(x ; z) then
for every n

∀z1, . . . , zn ∃x
n∧

i=1

[
ϕ(x ; zi) ↔ zi ∈ D

]
.

So the same holds for any C ≡ D. A similar remark apply to approximability
from below and from above (e.g. for approximability from below, add the conjunct
∀z
[
ϕ(x ; z)→ z ∈ D

]
to the formula above). �

From the following easy observation of Chernikov and Simon [3] we obtain an
interesting (and misterious) quantifier elimination result originally due to Shelah,
see Corollary 18.6 below.

17.7 Proposition Let C ⊆ U|y z| be approximated from below by the formula ϕ(x ; y z). Then
D =

{
z : ∃y

(
y z ∈ C

)}
is approximated from below by the formula ∃y ϕ(x ; y z).

Proof Let B ⊆ U be finite. We want a ∈ U|x| such that

a. ∃y
(
y b ∈ C

)
↔ ∃y ϕ(a ; y b) for every b ∈ B|z|

b. ∀z
[
∃y ϕ(a ; y z) → ∃y

(
y z ∈ C

)]
Let D ⊆ U be a finite set such that

c. ∃y ∈ D|y|
(
y b ∈ C

)
↔ ∃y

(
y b ∈ C

)
for every b ∈ B|z|

As C is approximable from below, there is an a such that
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a’. d b ∈ C ↔ ϕ(a ; d b) for every d b ∈
(

D ∪ B
)|y z|

b’. ∀y z
[

ϕ(a ; y z) → y z ∈ C
]

We obtain b from b’ simply by logic. Implication → in a follows from a’ and c.
Implication← follows from b. �

17.8 Corollary If p ∈ Sx(U) is honestly definable then the family of sets externally definable by
p is closed under quantifiers and Boolean combinations.

Proof The sets externally definable by p(x) are always closed under Boolean oper-
ations. By the proposition above, they are closed under quantifiers. �

2 Ladders and definability

Let ϕ(x ; z) ∈ L(U) be a partitioned formula (these have been introduced in Defini-
tion 1.14). We say that 〈ai ; bi : i < α〉 is a ladder sequence for ϕ(x ; z) if

# i < j ⇔ ϕ(ai ; bj) for all 0 ≤ i, j < α

We say that the formula ϕ(x ; z) is stable if for some finite n all ladders have length
at most n. Otherwise we say it is unstable or that it has the order property.

Note that if a formulas admits ladder sequences of unbounded finite length, then it
admits an infinite one.

The following easy exercise shows that stability is sort of chain condition.

17.9 Exercise Prove that the following are equivalent

1. ϕ(x ; z) has a ladder sequence of length n;

2. there a set B such that ϕ(a0 ; B) ⊂ · · · ⊂ ϕ(an ; B) for some 〈ai : i < n〉. �

The following theorem claims what is arguably one of the most important proper-
ties of stable formulas: any set externally definable by a stable formula is definable
(by a related formula).

17.10 Theorem Any D ⊆ U|z| approximated by a stable formula is definable. More precisely, if
ϕ(x ; z) is a stable formula that approximates D then there are a1,1, . . . , an,m ∈ U|x| such
that

z ∈ D ↔
n∨

i=1

m∧
j=1

ϕ(ai,j ; z)

Proof The theorem follows immediately from the the three lemmas below. �

Below, in Theorem 17.15, we proves the converse of teh theorem above: if every set
approxiamted by ϕ(x ; z) is definable then ϕ(x ; z) is stable.

17.11 Remark The conclusion of Theorem 17.10 is often stated in the following appar-
ently more general form: for every A ⊆ U there are a1,1, . . . , an,m ∈ A|x| such that
for all b ∈ A|z|

b ∈ D ↔
n∨

i=1

m∧
j=1

ϕ(ai,j ; b).
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The proof is exactly the same. In fact, elementarity and saturation are never used.
In a sense, no model theory is used, either – just finite combinatorics – unlike in the
proof of Theorem 17.15 where compactness is essential. �

17.12 Lemma If D is approximated from below by a stable formula ϕ(x ; z) then

z ∈ D ↔
n∨

i=0

ϕ(ai ; z)

for some a0, . . . , an ∈ U|x|.

Proof The elements a0, . . . , an are defined recursively together with some auxiliary
elements b0, . . . , bn−1 ∈ D.

Suppose b0, . . . , bn−1 have been defined (this assumption is empty if n = 0). We first
define an, then bn. Choose an ∈ U|x| such that b0, . . . , bn−1 ∈ ϕ(an ;U) ⊆ D. This is
possible because D is approximated from below. Now, if possible, choose bn such
that

bn ∈ Dr
n⋃

i=0

ϕ(ai ;U).

Then 〈ai ; bi : i ≤ n〉 is a ladder sequence. By stability, for some n, the tuple bn does
not exist. This yields the required a0, . . . , an. �

17.13 Lemma If D is approximated by a stable formula ϕ(x ; z). Then, for some m, the formula

ψ(x0, . . . , xm ; z) =
m∧

j=0

ϕ(xj ; z)

approximates D from below.

Proof Let m be such that there is no ladder sequence for ϕ(x ; z) of length greater
then m. Let C ⊆ D be finite. We prove that there are some a0, . . . , am such that
C ⊆ ψ(a0, . . . , am ;U) ⊆ D. As in the proof above, we define by recursion a ladder
sequence for ϕ(x ; z). Suppose that a0, . . . , an−1 and b0, . . . , bn−1 /∈ D have been
defined. We first define an, then bn. Choose an ∈ U|x| such that

C ⊆ ϕ(an ;U) ⊆ U|z| r {b0, . . . , bn−1}.

This an exists, because D is approximated by ϕ(x ; z). (Apply Definition 17.1 with
any B such that C ∪ {b0, . . . , bn−1} ⊆ B|z|.) Then, if possible, let bn such that

bn ∈
n⋂

i=0

ϕ(ai,U)rD

This procedure has to stop at some n ≤ m. Hence the required parameters are
a1, . . . , an = an+1 = · · · = am. �

17.14 Lemma If ϕ(x ; z) is a stable formula then for every m the formula ψ(x0, . . . , xm ; z) defined
above is stable.

Proof It suffices to prove that if ϕ1(x1 ; z) ∧ ϕ2(x2 ; z) is unstable then one of the
formulas ϕn(xi ; z) is unstable. For simplicity, we use that instability implies the
existence of an infinite ladder (this uses compactness, apparently contradicting Re-
mark 17.11). We leave to the reader to adapt the argument so that compactness is
not required.
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Let a1
i , a2

i ∈ U|x| and bi ∈ U|z| be such that

i ≤ j ⇔ ϕ1(a1
i ; bj) ∧ ϕ2(a2

i ; bj) for all i, j < ω

For n = 1, 2 let Hn ⊆ (ω
2 ) contain those pairs j < i such that ¬ϕn(an

i ; bj). By the
equivalence above H1 ∪ H2 = (ω

2 ). By the Ramsey Theorem there is an infinite set
H such that (H

2 ) ⊆ Hn for at least one of n = 1, 2. Suppose H1 for definiteness. So,
we obtain an infinite sequence a1

i , bi such that

j < i ⇔ ¬ϕ1(a1
i ; bj) for all i, j < ω

hence ϕ1(x1 ; z) is unstable. �

This last lemma concludes the proof of Theorem 17.10.

17.15 Theorem The following are equivalent

1. ϕ(x ; z) is stable;

2. every subset of U|z| that is externally definable by ϕ(x ; z) is definable;

3. there are ≤ κ subsets of U|z| that are externally definable by ϕ(x ; z);

4. there are < 2κ subsets of U|z| that are externally definable by ϕ(x ; z).

Proof 1⇒2 is clear by Proposition 17.2 and Theorem 17.10.

2⇒3⇒4 are obvious.

4⇒1 is proved by contraposition. Suppose that ϕ(x ; z) is not stable. By compact-
ness there is a ladder sequence 〈ai ; bi : i ∈ I〉 where I,<I a dense linear order
of cardinality κ with 2κ cuts, where by cut we mean a subset c ⊆ I that is closed
downward. For every such c ⊆ I we pick a global type

pc(x) ⊇
{

ϕ(x ; bi)↔ i ∈ c : i ∈ I
}

.

Clearly sets Dpc , ϕ are all distinct. �

3 Stable theories

We say that T is a stable theory if every formula is stable. By Theorem 17.15 this is
equivalent to requiring that all externally definable sets are definable.

If p(x) ∈ S(U) is a global type, a canonical base of p(x) is a definably closed set
Cb(p) ⊆ Ueq such that an automorphism f ∈ Aut(U) fixes p(x) if and only if it fixes
Cb(p) pointwise. When they exist, canonical bases are unique, see Exercise 17.23.

Clearly, all definable types (Definition 17.3) have a canonical base, namely

Cb(p) = dcleq
({

Dp,ϕ : ϕ(x ; z) ∈ L
})

.

Therefore if T is stable, all global types have a canonical base.

We now turn to Lascar invariance. Quite interestingly when T is stable this reduces
to a more manageable kind of invariance.

17.16 Proposition Let T be stable and let p(x) ∈ S(U). Then the following are equivalent

1. p(x) is Lascar invariant over A;

2. p(x) is definable over acleq A;
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3. Dp,ϕ ∈ acleq A for all ϕ(x ; z) ∈ L.

Proof 3⇒2⇒1 are clear (stability is not required).

1⇒3 The sets Dp,ϕ are externally definable therefore, by Theorem 17.15, definable
(over U). As p(x) is Lascar invariant over A, so are the sets Dp,ϕ. Hence they belong
to acleq A by Theorem 13.11. �

A type q(x) ⊆ L(A) is stationary if it has a unique global extension that is Las-
car invariant over A. The following proposition says that in a stable theory with
elimination of imaginaries types over algebraically closed sets are stationary.

17.17 Proposition If T is stable then every type q(x) ∈ S
(

acleq A
)

is stationary.

Proof Let pi(x) ∈ S(Ueq), for i = 1, 2, be two global types that extend q(x) and are
invariant over acleq A. To prove that p1(x) = p2(x), it suffices to show that for every
formula ϕ(x ; z) ∈ L

# Dp1, ϕ = Dp2, ϕ

Note that, by Proposition 17.16 both sets belong to acleq A. Clearly, for i = 1, 2, the
formula ∀z

[
ϕ(x ; z) ↔ z ∈ Dpi , ϕ

]
belongs to pi(x). Then both formulas belong to

q(x) and # follows. �

17.18 Corollary If T is stable then the following are equivalent

1. a
L≡A b, see Definition 16.11;

2. a
Sh≡A b, see Definition 13.13.

Proof 1⇒2. This is left as an exercise to the reader (stability is not required).

2⇒1. Assume a
Sh≡A b. By Proposition 13.14 this is equivalent to a ≡acleq A b. Let

q(x) = tp(a/acleqA) = tp(b/acleqA). Let p(x) ∈ S(Ueq) be the unique global type
that is invariant over acleq A and extends q(x) which we obtain from by Proposi-
tion 17.17. Let c̄ = 〈ci : i < ω〉 be such that ci � p� acleq(A), a, b, c�i. Then a, c̄ and
b, c̄ are A-indiscernible sequences, which proves 1, see Exercise 16.14. �

We end this section with a characterization of stability which is not directly related
with the properties discussed above.

17.19 Proposition The following are equivalent

1. T is stable;

2. every A-indiscernible sequence is totally A-indiscernible.

Proof 2⇒1. Assume ¬1 and let ϕ(x ; z) be an unstable formula witnessed by the
ladder sequence 〈ai ; bi : i < ω〉. Let 〈a′i ; b′i : i < ω〉 be indiscernible sequence that
models the EM-type of 〈ai ; bi : i < ω〉. This is not totally indiscernible because
ϕ(a′i ; b′j) if and if i < j.

1⇒2. Assume ¬2 and let 〈ai : i < ω〉 be an A-indiscernible sequence, which is not
totally A-indiscernible. Then there is a formula ϕ(x, y) ∈ L(A) and some i < j such
that ϕ(ai, aj) ∧ ¬ϕ(aj, ai). By indiscernibility ϕ(ai, aj) ∨ ai = aj holds if and only if
i ≤ j. Hence ϕ(x ; y) ∨ x = y is not stable. �
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17.20 Exercise Prove that the following are equivalent

1. T is stable;

2. there is an infinite set A ⊆ U|x| and a formula ψ(x ; y) such that A is linearly
ordered by the relation a < b↔ ψ(a ; b).

Hint: suppose ϕ(x ; z) is unstable and let 〈ai ; bi : i < ω〉 be an infinite ladder
sequence, then A = {ai bi : i < ω} is linearly ordered. �

17.21 Exercise Prove that if every formula ϕ(x ; z) ∈ L with |x| = 1 is stable then T is
stable. Hint: by compactness, if all sets approximable by ϕ(x ; y, z) are definable, so
are the sets approximable by ϕ(x, y ; z). �

17.22 Exercise Prove that strongly minimal theories are stable. �

17.23 Exercise Let p(x) ∈ S(U). Prove that there is at most one definably closed set
A ⊆ Ueq such that Aut(U/A) is the set of automorphisms that fix p(x). �

4 Stability and the number of types

The following proposition highlights the connection between stability and the car-
dinality of types.

Binary trees of formulas have been introduced in Definition 12.19. Here we restrict
to trees of a particular form. Namely, 〈ψs : s ∈ 2<ω〉 where ψ∅ = > and for s ∈ 2<ω

and i ∈ 2 we have ψs_i(x) = ¬i ϕ(x ; bs).

In general, we write ¬i for ¬ i times. . . . . . . . .¬.

>

ϕ(x; b∅)

ϕ(x; b0)
ϕ(x; b00) · · ·
¬ϕ(x; b00) · · ·

¬ϕ(x; b0)
ϕ(x; b01) · · ·
¬ϕ(x; b01) · · ·

¬ϕ(x; b∅)

ϕ(x; b1)
ϕ(x; b10) · · ·
¬ϕ(x; b10) · · ·

¬ϕ(x; b1)
ϕ(x; b11) · · ·
¬ϕ(x; b11) · · ·

When a binary tree of this form exists, we say that ϕ(x ; z) has the binary tree property.

17.24 Theorem The following are equivalent

1. ϕ(x ; z) is not stable;

2. ϕ(x ; z) has the binary tree property.

Proof 1⇒2. From 1, by compactness, there is a ladder sequence 〈as ; bs : s ∈ 2<ω〉,
where 2<ω is ordered lexicografically. We claim that for every r ∈ 2ω the type
pr(x) =

{
ϕ(x ; bs) ↔ r < s : s ∈ 2<ω

}
is consistent. In fact, ϕ(ar�n ; bs) holds for all

s ∈ 2<n. Then consistency follows by compactness.
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For s ∈ 2<ω let ψs(x) be as above with bs_1 for bs. We claim that 〈ψs(x) : s ∈ 2<ω〉
is a binary tree. We need to prove that the branches are consistent. It suffices to
show that ψr�(n+1)(x) ∈ pr.

First, suppose that r(n) = 0. Then ψr�(n+1)(x) = ϕ(x ; br�n_1) belongs to pr(x) be-
cause r < r�n_1. Otherwise r(n) = 1. Then ψr�(n+1)(x) = ¬ϕ(x ; br�(n+1)) belongs
to pr(x) because r 6< r�(n + 1).

2⇒1. From 2, by compactess, there is a binary tree of height κ. Hence there are 2κ

sets that are externally definable by ϕ(x ; z). Therefore, by Therorem 17.15, ϕ(x ; z)
is not stable. �

17.25 Corollary The following are equivalent

1. ϕ(x ; z) is a stable formula;

2.
∣∣Sϕ(A)

∣∣ ≤ |A| for all countable sets A;

3.
∣∣Sϕ(A)

∣∣ < 2|A| for all countable sets A.

Proof The corollary follows immediately from Lemma 12.20 and Theorem 17.24. �
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Chapter 18

Vapnik-Chervonenkis theory

In this chapter we fix a signature L, a complete theory T without finite models, and
a saturated model U of inaccessible cardinality κ > |L|. The notation and implicit
assumptions are as in Section 9.3.

1 Vapnik-Chervonenkis dimension

We say that the formula ϕ(x ; z) ∈ L has Vapnik-Chervonenkis dimension n if this
is the largest finite cardinatity of a set B ⊆ U|z| such that |Sϕ(B)| = 2n. If such n
does not exist, we say that we say that ϕ(x ; z) has infinite VC-dimension.

Note that the condition |Sϕ(B)| = 2n is equivalent to saying that every subset of B
is the trace of some definable set of sort ϕ(x ; z).

For instance, the formula x1 < z < x2 in Tdlo has VC-dimension 2.

Arguing by compactness we obtain the following proposition whose proof is left as
an exercise for the reader.

18.1 Proposition The following are equivalent

1. ϕ(x ; z) ∈ L has finite VC-dimension;

2. there is no infinite set B ⊆ U|z| such that every subset of B is the trace of some definable
set of sort ϕ(x ; z). �

From the proposition above and Proposition 17.24 below it follows that all stable
formulas have finite VC-dimension.

We say that the a sequence of sentences 〈ϕi : i < ω〉 converges if the truth value of
ϕi is eventually constant.

18.2 Lemma The following are equivalent

1. ϕ(x ; z) ∈ L has finite VC-dimension;

2. 〈ϕ(a ; bi) : i < ω〉 converges for any a and any indiscernible sequence 〈bi : i < ω〉.

Proof 1⇒2 Negate 2 and let n < ω. It suffices to prove that for every I ⊆ n the
formula ψI(x ; b0, . . . , bn−1) that says

ϕ(x ; bi) ⇔ i ∈ I

is consistent. If there is a a such that the truth value of 〈ϕ(a ; bi) : i < ω〉 oscillates
at least n times, then we can find k0 < · · · < kn−1 such that

ϕ(a ; bki
) ⇔ i ∈ I.

Then the formula ψI(x ; bk0 , . . . , bkn−1) is consistent. Therefore, by indiscernibility,
also the formula ψI(x ; b0, . . . , bn−1) is consistent.
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2⇒1 Negate 1 and let 〈ci : i < ω〉 be an infinite sequence that is shattered by
ϕ(x ; z). Let 〈bi : i < ω〉 be an indiscernible sequence that models the EM-type of
〈ci : i < ω〉. Then 〈bi : i < ω〉 satisfies ∃x ψI�n(x ; z0, . . . , zn−1) for all n. Let I ⊆ ω

be the set of even integers. By compactness there is a a such that

ϕ(a ; bi) ⇔ i ∈ I.

This proves ¬2. �

In the next section we need the following corollary.

18.3 Corollary If C ⊆ U|z| is a set approximable by a formula with finite VC-dimension, then
〈bi ∈ C : i < ω〉 converges for any indiscernible sequence 〈bi : i < ω〉. �

2 Honest definitions

In this section we present a beautiful theorem by Chernikov and Simon [3] and their
alternative proof of a famous quantifier elimination result by Shelah.

We write ¬n for ¬ n times. . . . . . . . .¬. We abbreviate ¬n(· ∈ ·) as /∈n .

Saturated sets have been defined in Definition 16.2.

18.4 Lemma Let C be saturated set approximable by a formula with finite VC-dimension and let
A be a set of parameters. Then every global A-invariant type p(z) contains a formula ψ(z)
such that either ψ(U) ⊆ C or ψ(U) ⊆ ¬C. Moreover, we can require that ψ(z) ∈ L(N),
for any sufficiently saturated model N.

Proof By Corollary 18.3, there is no infinite sequence 〈bi : i < ω〉

bi � pA, b�i(z) ∪ {z /∈i C}

Let n be the largest integer such that there is a sequence 〈bi : i < n〉 that satisfies
the condition above. Then

pA, b�n(z) → z /∈n+1 C

and the first claim of the lemma follows by compactness.

As for the second claim note that we can pick bi ∈ N|z| as soon as A ⊆ N and 〈N,C〉
is |A|+-saturated. �

18.5 Corollary Let C be a set approximable by a formula with finite VC-dimension and let A be
a set of parameters. Then there is a definable set D ⊇ A|z| such that D ∩ C is definable. In
particular, C is approximable from below.

Proof Let M be a model containing A. Let c enumerate some |M|+-saturated model
containing M. For every b ^M c the type tp(b/c) extends to a global coheir over M.
By the lemma above, there is a formula ψb(z) ∈ tp(b/c) such that either ψb(U) ⊆ C

or ψb(U) ⊆ ¬C, depending on whether b ∈ C or b /∈ C. Hence

z ^M c →
∨{

ψb(z) : b ^M c
}

.

By compactness,

z ^M c →
n∨

i=1

ψbi
(z).
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Again by compactness, there is a formula ϕ(z) such that

ϕ(z) →
n∨

i=1

ψbi
(z).

Let D = ϕ(U). Let ψ(z) is the disjunction of those ψbi
(z) such that bi ∈ C. Then

D∩ C is defined by ϕ(z) ∧ ψ(z).

As C =A D ∩ C, we obtain in particular that C is approximable from below, see
Lemma 17.5. �

When all formulas have finite VC-dimension, we say that the theory T has the
non-independence property or, for short, that T is nip.

Let 〈Di : i < λ〉 be the collection of all subsets of U, of arbitrary finite arity, that are
externally definable. The expansion of U to the language L(Xi : i < λ) is called the
Shelah expansion of U and is denoted by USh .

From Corollary 18.5 and Proposition 17.7 we obtain the following.

18.6 Corollary If T is nip then USh has L-elimination of quantifiers. (I.e. every formula is
Boolean combination of formulas in L and formulas of the form z ∈ Di.) �
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