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Abstract. A recently proposed approach to the rigorous engineering of
collective adaptive systems is the aggregate computing paradigm, which
operationalises the idea of expressing collective adaptive behaviour by
a global perspective as a functional composition of dynamic computa-
tional fields (i.e., structures mapping a collection of individual devices of
a collective to computational values over time). In this paper, we present
FScaFi, a core language that captures the essence of exploiting field
computations in mainstream functional languages, and which is based
on a semantic model for field computations leveraging the novel notion
of “computation against a neighbour”. Such a construct models expres-
sions whose evaluation depends on the same evaluation that occurred
on a neighbour, thus abstracting communication actions and, crucially,
enabling deep and straightforward integration in the Scala programming
language, by the ScaFi incarnation. We cover syntax and informal se-
mantics of FScaFi, provide examples of collective adaptive behaviour
development in ScaFi , and delineate future work.

1 Introduction

The Internet of Things (IoT), Cyber-Physical Systems (CPS), and related ini-
tiatives point out a trend in informatics where computation and interaction are
increasingly pervasive and ubiquitous, and carried on by a potentially huge and
dynamic set of heterogeneous devices deployed in physical space. To address
the intrinsic complexity of these settings, a new viewpoint is emerging: a large-
scale network of devices, situated in some environment (e.g., the urban area of
a smart city), can be seen as a computational overlay of the physical world, to
be programmed as a “collective” exhibiting robustness and resiliency by inher-
ent adaptation processes. These kinds of systems are sometimes referred to as
Collective Adaptive Systems (CAS) [2], to emphasise that computational activi-
ties are collective (i.e., they involve multiple coordinated individuals), and that
a main expected advantage is inherent adaptivity of behaviours to unforeseen
changes (e.g., as induced by changes/faults in the computational environment
or interactions with humans or other systems).
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Aggregate Computing [11] is an approach to CAS engineering that takes a
global stance to design and programming and where coordinated adaptation is
a key feature. Hence, it targets problems and application domains such as crowd
engineering, complex situated coordination, robot/UAV swarms, smart ecosys-
tems and the like [37]. Its key idea is to program a large system as a whole,
that is, to directly consider an ensemble of devices as the target machine to be
programmed, and provide under-the-hood, automatic global-to-local mapping:
once the desired system-level behaviour is expressed by a global program, then
individual computational entities of an aggregate are bound to play a derived,
contextualised local behaviour of that program. Prominently, the distinguishing
characteristic of Aggregate Computing as a “macro-approach” [10] lies in the
ability to formally represent the adaptive behaviour of an ensemble in a compo-
sitional and declarative way, namely, by combination of functional coordination
operators and high-level building blocks expressing the outcome of a collective
task.

One fundamental enabling abstraction for specifying the dynamics of sit-
uated collectives is that of a computational field (or simply, field) [6, 8, 29]: a
distributed data structure that maps devices to computational objects across
time. Accordingly, Aggregate Programming is about describing (dynamic) field
computations, namely, how input fields (data coming from sensors) turn into out-
put fields (actions feeding actuators)—computations that can be conveniently
expressed using the functional paradigm.

A modern implementation of the aggregate programming paradigm is ScaFi3

(Scala Fields) [15]. It is a toolkit, tightly integrated with the Scala programming
language, that comprises a Domain-Specific Language (DSL), a library, and plat-
form tools for specifying and running (distributed) systems by leveraging com-
putational fields. ScaFi provides a number of key advantages with respect to
previous implementation attempts which were standalone DSLs (Protelis [35]
and Proto [8]), such as: (i) familiar programming environment, by coherently
supporting field constructs within the ecosystem as well as the syntactic and se-
mantic model of a mainstream language like Scala; (ii) lightweight type safety, by
leveraging Scala’s powerful type system and type inference; and (iii) seamless
reuse of functionality, by providing unrestricted access to both Scala features
(e.g., lightweight components, implicits) and existing libraries on the JVM.

Technically, such a smooth integration with Scala has been achieved thanks
to a semantic variation of previous formalisation attempts, which were based on
the field calculus [6]: the notion of “neighbouring value” (a map from neighbours
to data values), used in field calculus to locally express outcome of message re-
ception from neighbours, is replaced with that of “computation against a neigh-
bour”, namely, by expressions whose evaluation depends on the same evaluation
occurring on a neighbour. This change leads to a new computational model that
we reify by a calculus called Featherweight ScaFi (FScaFi) and present in
this paper.

3 https://scafi.github.io
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The content is structured as follows. Section 2 provides motivation for ScaFi
and covers related work. Section 3 describes syntax and informal semantics of
FScaFi. Section 4 provides examples, showing how FScaFi can be used to
develop collective adaptive behaviour. Section 5 ends up the paper with a wrap-
up and discussion of future work.

2 Background

Scenarios like the IoT, CPS, smart cities, and the like, foster a vision of rich
computational ecosystems providing services by leveraging strict cooperation of
large collectives of smart devices, which mostly operate in a contextual way.
Engineering complex behaviour in these settings calls for approaches providing
some abstraction through the notion of ensemble, neglecting as much as possible
the more traditional view of focussing on the single device and the messages it
exchanges with peers.

2.1 Aggregate Computing

Aggregate computing is the main theme of this paper. A recent survey of its
historical development and state-of-the-art is provided in [37]. The essence of
the approach is captured by the field calculus [6], a core language grounding
semantics and formal analysis of field computations [12, 36].

Programming languages to work with computational fields have been intro-
duced in the past, with Proto [8] as common ancestor (Lisp-based), and Pro-
telis [35] as its Java-oriented, standalone DSL version. These approaches how-
ever have the drawback of not smoothly integrating field computations in the
syntactic, semantic, and typing structures of a modern, conventional language—
to fully remedy this problem, in this paper we shall present some key semantic
changes to the field calculus.

To address this problem, a prominent, modern approach is to devise an “in-
ternal” or “embedded” DSL [42] that provides mechanisms to support the new
features on top of an adequate host programming language. Of course, with em-
bedded DSLs, both the syntax and the semantics are limited by the constraints
exerted by the host language. However, the model can sometimes be slightly
adjusted in order to favour the embedding, considering the common syntactic,
typing, and semantic features of the candidate set of host languages.

When conceiving this DSL, we took into account the following requirements
and desiderata for the host language: pragmatism (supporting easy reuse of ex-
isting programming mechanisms); reliability (intercepting errors early—cf., type
checking); expressivity (offering an eloquent syntax); and functional paradigm
support (all the significant features of functional programming must be cleanly
available). All the above considerations led us towards the Scala programming
language as the host. Then, to well design the key constructs and provide a
framework for rigorous analysis of programs and properties, we came up with
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FScaFi model of field computations. Its peculiarity is to handle standard val-
ues has been the local representative of a computational field, which provides
a simplified setting for DSL embedding. To achieve this, we introduced a local
notion of “computation against a neighbour”, namely, a computation whose out-
come depends on the most recent, local view of the result of computation in that
neighbour (unlike in the standard field calculus, this allows smooth application
of host typing mechanisms to any field expression)—as detailed in Section 3.

Such a model, and related tooling, is implemented in the ScaFi aggregate
computing DSL and platform [15, 39]. ScaFi achieves the goal of providing an
environment to streamline and support effective development of systems based
on the Aggregate Computing paradigm, leveraging the solid basis provided by
a mainstream programming language such as Scala and its ecosystem. In fact,
Scala: runs on the JVM and thus enables straightforward interaction with the
Java ecosystem; offers a powerful type system, with type inference, that helps
to build type-safe libraries with minimal overhead; has a flexible syntax (con-
venient for creation of elegant APIs/DSLs). Moreover, Scala has great popular-
ity in the distributed computing arena: it is the implementation language for
several distributed computing toolkits, such as Apache Kafka4 and the Akka
actor framework5. Hence, our choice of Scala also fosters the construction of a
platform-level support on top of ScaFi, in the form of a middleware for running
distributed and situated systems [39, 16].

2.2 Related Work

Aggregate programming languages Prior aggregate programming lan-
guages are standalone (also called external) DSLs and include Proto [8], the
Lisp-like progenitor, and its evolution Protelis [35]. Protelis is based on
an untyped, standalone DSL able to interoperate with existing Java code. This
approach has some limitations: aligning the syntax and semantics, as well as
providing training and documenting for a distinct language w.r.t. the one used
to develop the execution platform can be burdensome; extra development and
maintenance effort is needed to adequately support editing tools (e.g., plugins
are required for common IDE features like syntax highlighting and refactoring);
activities that span both the DSL and the target language (e.g., static analysis
and debugging) may be hard to implement; and finally, the ability to smoothly
reuse the features and libraries of the target language can be limited. Though
language tools greatly improved recently (cf. the Xtext language workbench [13]
and its Xbase extension [22], to name a popular one), practically, with an exter-
nal DSL it may be difficult to come up with a cohesive design of the resulting
software system (cf. Generation gap pattern [41]), since parts written in the DSL
need to bidirectionally refer and interact with other parts of the system [24].

4 https://kafka.apache.org
5 https://akka.io
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Ensemble approaches In Helena [26] components can dynamically participate
in multiple ensembles and adapt according to different roles whose behaviour is
given by a process expression. DEECo [14] is another CAS model where com-
ponents can only communicate by dynamically binding together through en-
sembles; DEECo ensemble is formed according to a membership condition and
consists of one coordinator and multiple members interacting by implicit knowl-
edge exchange; DEECo has a Java implementation called jDEECo which en-
ables the definition of components and ensembles through Java annotations. The
GCM/ProActive [7] framework supports the development of large-scale ensem-
bles of adaptable autonomous devices through a hierarchical component model
where components have a non-functional membrane and “collective interfaces”,
and a programming model based on active objects. SCEL [21] is a kernel lan-
guage to specify the behaviour of autonomic components, the logic of ensemble
formation, as well interaction through attribute-based communication (which
enables implicit selection of a group of recipients). Attribute-based communica-
tion [1] is an approach to CAS coordination that leverages implicit multicasts
towards recipients matched by predicates over attributes. The approach has been
formalised by the AbC calculus [1] and implemented as an Erlang DSL in the
so-called AErlang library [20]. Generally speaking, it is worth noting that the
field calculus fits useful device abstractions (such as neighbourhood, message ex-
change, attribute-based filtering) into a purely functional approach, which can
then smoothly interoperate with more traditional programming frameworks and
languages. More specifically, attribute-based communication can be achieved in
the field calculus (and hence in FScaFi) both at the receiver and the sender side,
via construct branch (see Section 4), by which one can define subcomputations
carried on by a subset of nodes—those that execute the same branch and hence
remain actually “observable” by operator nbr. In a more programmatically ex-
pressible way, a notion of ensemble can be captured as a field computation on a
dynamic domain of devices, denoted by the concept of an aggregate process [17].

Spatial computing and macro-programming An extensive survey on spa-
tial computing can be found in [10]. Indeed, multiple classes of approaches ad-
dress (at least in part) the problem of organising a collective of computational
entities. These include topological and geometrical languages like GPL [18] (ex-
ploiting the botanical metaphor of “growing points”) and OSL [32] (focussing on
programming “computational surfaces” through folding operations); languages
abstracting communication and networks, like TOTA [29] and Linda-στ [40] (sup-
porting diffusion and aggregation of tuples on a network of agents), Logical
Neighbourhoods [31] (supporting virtual connectivity), and SpatialViews [34]
(abstracting a network into spatial views that can be iterated on to visit nodes
and request services); and macro-programming languages, like SpaceTime Ori-
ented Programming (STOP) [43] (providing abstractions to support collection
and processing of past or future network data in arbitrary spatio-temporal res-
olutions) and Regiment [33] (modelling network state and regions as spatially
distributed, time-varying signals). Aggregate Computing belongs to the class of
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so-called general-purpose spatial computing languages, all addressing the prob-
lem of engineering distributed (or parallel) computing by providing mechanisms
to manipulate data structures diffused in space and evolving in time. Other
notable examples include the SDEF programming system inspired by systolic
computing [23], and topological computing with MGS [25]. They typically pro-
vide specific abstractions that significantly differ from that of computational
fields: for instance, MGS defines computations over manifolds, the goal of which
is to alter the manifold itself as a way to represent input-output transformation.

3 Featherweight ScaFi: a Core Calculus for ScaFi

In this section, we present Featherweight ScaFi (FScaFi), a minimal core
calculus that models the aggregate computing aspects of ScaFi—much as FJ [27]
models the object-oriented aspects of Java.

In the aggregate computing model, devices undergo computation in rounds.
When a round starts, the device gathers information about messages received
from neighbours (only the last message from each neighbour is actually consid-
ered), performs an evaluation of the program, and finally emits a message to all
neighbours with information about the outcome of computation. The scheduling
policy of such rounds is abstracted in this formalisation, though it is typically
considered fair and non-synchronous.

FScaFi is a core subset of ScaFi, strictly retaining its syntax (with the
exception of typing annotations, which are not here presented). The syntax
of FScaFi is given in Figure 1. Following [27], the overbar notation denotes
metavariables over sequences and the empty sequence is denoted by •; e.g., for
expressions, we let e range over sequences of expressions, written e1, e2, . . . en
(n ≥ 0). FScaFi focusses on aggregate programming constructs. In particular:

– it neglects the many orthogonal Scala features that one can use (object-
oriented constructs, and the like), and

– it is parametric in the built-in data constructors and functions.

Note that – apart from specific Scala syntax – the examples of ScaFi code given
in Section 4 are actually examples of FScaFi code. In particular, in order to turn
ScaFi functions (such as foldhoodPlus, gradient and branch—covered
in Section 4) into FScaFi functions, it is enough to drop type annotations and
default parameters.

A program P consists of a sequence F of function declarations and a main
expression e. A function declaration F defines a (possibly recursive) function; it
consists of a name d, n ≥ 0 variable names x representing the formal parameters,
and an expression e representing the body of the function.

Expressions e are the main entities of the calculus, modelling a whole field
computation. An expression can be: a variable x, used as function formal pa-

rameter; a value v; an anonymous function (x)
τ
=> @@{e} (where x are the
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P ::= F e program

F ::= def d(x) = @@{e} function declaration

e ::= x
∣∣ v

∣∣ (x)
τ
=> @@{e}

∣∣ e(e) expression∣∣ rep(e){e}
∣∣ nbr{e}

∣∣ foldhood(e)(e){e}

v ::= c(v)
∣∣ f value

f ::= b
∣∣ d

∣∣ (x)
τ
=> @@{e} function value

Fig. 1: Syntax of FScaFi.

formal parameters, e is the body, and τ is a tag); a function call e(e); a rep-
expression rep(e){e}, modelling time evolution; an nbr-expression nbr{e}, mod-
elling neighbourhood interaction; or a foldhood-expression foldhood(e)(e){e}
which combines values obtained from neighbours.

Tags τ of anonymous functions (x)
τ
=> @@{e} do not occur in source programs:

when the evaluation starts each anonymous function expression (x) => @@{e}
occurring in the program is given a distinguished tag τ—for instance, two oc-
currences of the same anonymous function expression get different tags. In the
following we will use the phrase name of a function to refer both to the tag of
an anonymous function, or to the name of a built-in or declared function. As we
will see below, names are used to define function equality.

The set of the free variables of an expression e, denoted by FV(e), is defined

as usual (the only binding construct is (x)
τ
=> @@{e}). An expression e is closed

if FV(e) = •. The main expression of any program must be closed.
A value can be either a data value c(v) or a functional value f. A data value

consists of a data constructor c of some arity m ≥ 0 applied to a sequence of m
data values v = v1, ..., vm. A data value c(v1, ..., vm) is written c when m = 0.
Examples of data values are: the Booleans True and False, numbers, pairs (like
Pair(True, Pair(5, 7))) and lists (like Cons(3, Cons(4, Null))).

Functional values f comprise:

– declared function names d;

– closed anonymous function expressions (x)
τ
=> @@{e} (i.e., such that

FV(e) ⊆ {x});
– built-in functions b, which can in turn be:
• pure operators o, such as functions for building and decomposing pairs

(pair, fst, snd) and lists (cons, head, tail), the equality function
(=), mathematical and logical functions (+, &&, ...), and so on;

• sensors s, which depend on the current environmental conditions of the
computing device δ, such as a temperature sensor—modelling con-
struct sense in ScaFi;

• relational sensors r, modelling construct nbrvar in ScaFi, which in
addition depend also on a specific neighbour device δ′ (e.g., nbrRange,
which measures the distance with a neighbour device).
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In case e is a binary built-in function b, we shall write e1 b e2 for the function
call b(e1, e2) whenever convenient for readability of the whole expression in
which it is contained.

The key constructs of the calculus are:

– Function call: e(e1, . . . , en) is the main construct of the language. The func-
tion call evaluates to the result of applying the function value f produced by
the evaluation of e to the value of the parameters e1, . . . , en relatively to the
aligned neighbours, that is, relatively to the neighbours that in their last ex-
ecution round have evaluated e to a function value with the same name of f.
For instance, suppose to have defined a function def plus(a, b) = @@{a + b};
then, function call plus(5, 2) yields a field that is 7 in every point of space
and time (i.e., the expression evaluates to 7 in each round of every device).

– Time evolution: rep(e1){e2} is a construct for dynamically changing
fields through the “repeated” application of the functional expres-
sion e2. At the first computation round (or, more precisely, when
no previous state is available—e.g., initially or at re-entrance after
state was cleared out due to branching), e2 is applied to e1, then
at each other step it is applied to the value obtained at the pre-
vious step. For instance, rep(0){(x) => @@{x + 1}} counts how many
rounds each device has computed (from the beginning, or more gener-
ally, since that piece of state was missing). Another example is an expres-
sion snd(rep(Pair(x, False)){(xR) => @@{Pair(x, x == fst(xR))}}) that
evaluates to True when some value x changes w.r.t. the previous round; it
is common to use tuples when dealing with multiple pieces of state/result.

– Neighbourhood interaction: foldhood(e1)(e2){e3} and nbr{e} model device-
to-device interaction. The foldhood construct evaluates expression e3
against every aligned neighbour6 (including the device itself), then aggre-
gates the values collected through e2 together with the initial value e1. The
nbr construct tags expressions e signalling that (when evaluated against a
neighbour) the value of e has to be gathered from neighbours (and not di-
rectly evaluated). Such behaviour is implemented via a conceptual broadcast
of the values evaluated for e. Subexpressions of e3 not containing nbr are
not gathered from neighbours instead.
As an example, consider the expression

foldhood(2)(+){min(nbr{temperature()},temperature())}

evaluated in device δ1 (in which temperature() = 10) with neighbours
δ2 and δ3 (in which temperature() gave 15 and 5 in their last evaluation
round, orderly). The result of the expression is then computed adding 2,
min(10, 10), min(15, 10) and min(5, 10) for a final value of 27.

6 This is where FScaFi differs from classical field calculus, where instead neighbouring
fields are explicitly manipulated.
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Note that, according to the explanation given above, calling a declared or
anonymous function acts as a branch, with each function in the range ap-
plied only on the subspace of devices holding a function with the same tag.
In fact, a branching construct branch(e1){e2}{e3} (which computes e2 or e3
depending on the value of e1) can be defined through function application as
mux(e1, () => @@{e2}, () => @@{e3})(), where mux is a built-in function selecting
among its second and third argument depending on the value of the first.

Notice that the semantics of this language is compositional and message
exchanges are performed under the hood by nbr constructs within a foldhood;
with an automatic matching of each message from a neighbour to a specific nbr

construct, determined through a process called alignment [5]. Basically, each
nbr construct produces an “export” (i.e., a data value to be sent to neighbours)
tagged with the coordinates of the node in the evaluation tree (i.e., the structure
arising from the dynamic unfolding of the main expression evaluation) up to that
construct. All exports are gathered together into a message which is broadcast
to neighbours, and which can be modelled as a value tree: an ordered tree of
values obtained during evaluation of each sub-expression of the program. The
alignment mechanism then ensures that each nbr is matched with corresponding
nbr reached by neighbours with an identical path in the evaluation tree.

4 Showcasing FScaFi: Programming Examples

In this section, we provide examples of FScaFi programs, showing how to repre-
sent and manipulate fields to implement collective adaptive functionality, using
the ScaFi syntax.

4.1 Scala Syntax

In ScaFi, the FScaFi constructs introduced in Section 3 are represented as
object-oriented methods through the following Scala trait (interface):

trait Constructs {
def rep[A](init: => A)(fun: (A) => A): A
def foldhood[A](init: => A)(aggr: (A, A) => A)(expr: => A): A
def nbr[A](expr: => A): A
def @@[A](b: => A): A

}

This is mostly a straightforward Scala encoding of the syntax of Figure 1. The
main different is given by the presence of typing information and, in particular,
the use of by-name parameters, of type =>T , which provide syntactic sugar for
0-ary functions: these enable to capture expressions at the call site, pass them
unevaluated to the method, and evaluate them lazily every time the parameter
is used. This turns out very useful to implement the FScaFi semantics while
providing a very lightweight syntax for the DSL. Moreover, note that method
signatures do not include field-like type constructors: in fact, in FScaFi, fields
are not reified explicitly but only exist at the semantic level.
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4.2 Programming Examples

When thinking at field programs, one can adopt two useful viewpoints: the lo-
cal viewpoint, typically useful when reasoning about low-level aspects of field
computations, which considers a field expression as the computation carried on
by a specific individual device; and the global viewpoint, typically more useful
when focussing on higher-level composition of field computations, which regards
a specification at the aggregate level, as a whole spatio-temporal computation
evolving a field. So, an expression (e.g., 1+3 of type Int) can represent the
outcome of execution of a computation locally (4), or globally as the program
producing a field (a field of 4s). Note, however, that the global field is not ac-
cessed computationally: a local computation will only access a neighbouring field
(which is actually a view, given by the messages received from neighbours, of the
actual, asynchronously evolving field).

In the following, we incrementally describe the constructs introduced in Sec-
tion 3 and the design of higher-level building blocks of collective adaptive be-
haviour through examples. In ScaFi, a usual literal such as, for instance, tuple

("hello", 7.7, true)

is to be seen as a constant (i.e., not changing over time) and uniform (i.e., not
changing across space) field holding the corresponding local value at any point
of the space-time domain. By analogy, an expression such as

1 + 2

denotes a global expression where a field of 1s and a field of 2s are summed
together through the field operator +, which works like a point-wise application
of its local counterpart. Indeed, literal + can also be thought of as representing
a constant, uniform field of (binary) functions, and function application can be
viewed as a global operation that applies a function field to its argument fields.

A constant field does not need to be uniform. For instance, given a static
network of devices, then

mid()

denotes the field of device identifiers, which does not change across time but
does vary in space. On the other hand, expression

sense[Double]("temperature") // type can be omitted if can be inferred

is used to represent a field of temperatures (as obtained by collectively querying
the local temperature sensors over space and time), which is in general non-
constant and non-uniform.

Fields changing over time can also be programmatically defined by the rep
operator; for instance, expression

// Initially 0; state is incremented at each round
rep(0){ x => x + 1 } // Equally expressed in Scala as: rep(0)(_ + 1)
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counts how many rounds each device has executed: it is still a non-uniform field
since the update phase and frequency of the devices may vary both between
devices and across time for a given device.

Folding can be used to trigger the important concept of neighbour-dependent
expression. As a simple initial example, expression

foldhood(0)(_ + _){ 1 }

counts the number of neighbours at each device (possibly changing over time if
the network topology is dynamic). Note that folding collects the result of the
evaluation of 1 against all neighbours, which simply yields 1, so the effect is
merely the addition of 1 for each existing neighbour.

The key way to define truly neighbour-dependent expressions is by the nbr
construct, which enables to “look around” just one step beyond a given locality.
Expression

foldhood(0)(_+_){nbr{sense[Double]("temperature")}} / foldhood(0)(_+_){1}

evaluates to the field of average temperature that each device can perceive in
its neighbourhood. The numerator sums temperatures sensed by neighbours (or,
analogously, it sums the neighbour evaluation of the temperature sensor query
expression), while the denominator counts neighbours as described above. As
another example, the following expression denotes a Boolean field of warnings:

val warningTh: Double = 42.0 // temperature threshold for warning
foldhood(false)(_ || _){ nbr { sense[Double]("temperature") } > warningTh }

This is locally true if any neighbour perceives a temperature higher than some
topical threshold. Notice that by moving the comparison into the nbr block,

foldhood(false)(_ || _){ nbr { sense[Double]("temperature") > warningTh } }

then the decision about the threshold (i.e., the responsibility of determining
when a temperature is dangerous) is transferred to the neighbours, and hence
warnings get blindly extended by 1-hop. Of course, provided warningTh is
uniform, the result would be the same in this case.

Functions can be defined to capture and give a name to common field com-
putation idioms, patterns, and domain-specific operations. For instance, by as-
suming a mux function that implements a strictly-evaluated version of if:

def mux[A, B<:A, C<:A](cond: Boolean)(th: B)(el: C): A = if(cond) th else el

A variation of foldhood, called foldhoodPlus7, which does not take
“self” (the current device) into account, can be implemented as follows:

def foldhoodPlus[A](init: => A)(aggr: (A, A) => A)(expr: => A): A =
foldhood(init)(aggr)(mux(mid==nbr{mid}){ init }{ expr })

7 The “Plus” suffix is to mimic the mathematical syntax R+ of the transitive closure
of a (neighbouring) relation R.
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Notice that the identity init is used when considering a neighbour device whose
identifier (nbr{mid}) is the same as that of the current device (mid). As another
example, one can give a label to particular sensor queries, such as:

def temperature = sense[Double]("temperature")
def nbrRange = nbrvar[Double]("nbr-range")

The second case uses construct nbrvar, which is a neighbouring sensor query
operator providing, for each device, a sensor value for each corresponding neigh-
bour: e.g., for nbrRange, the output value is a floating-point number express-
ing the estimation of the distance from the currently executing device to that
neighbour—so, it is usually adopted as a metric for “spatial algorithms”. Based
on the above basic expressions, one can define a rather versatile and reusable
building block of Aggregate Programming, called gradient [28, 9, 4]. A gradient
(see Figure 2) is a numerical field expressing the minimum distance (according
to a certain metric) from any device to source devices; it is also interpretable
as a surface whose “slope” is directed towards a given source. In ScaFi, it can
be programmed as follows:

def gradient(source: Boolean, metric: () => Double = nbrRange): Double =
rep(Double.PositiveInfinity){ distance =>
mux(source) { 0.0 }{
foldhoodPlus(Double.PositiveInfinity)

(Math.min(_,_)) { nbr{distance} + metric }
} }

The rep construct allows one to keep track of the distances across rounds of
computations: source devices are at a null distance from themselves, and the
other devices take the minimum value among those of neighbours increased
by the corresponding estimated distances as given by metric—defaulting to
nbrRange. Notice that foldhoodPlus (i.e., a version of foldhood that does
not consider the device itself) must be used to prevent devices from getting stuck
to low values because of self-messages (as it would happen when a source node
gets deactivated): with it, gradients dynamically adapt to changes in network
topology or position/number of sources, i.e., it is self-stabilising [36].

Another key operation on fields is splitting computation into completely sep-
arate parts or sub-computations executed in isolated space-time regions. An
example is computing a gradient in a space that includes obstacle nodes so
that gradient slopes circumvent the obstacles. The solution to the problem needs
to leverage aggregate functions, and their ability of acting as units of alignment.
That is, we can use a different aggregate function for normal and obstacle nodes:

(mux(isObstacle){ () => @@{ Double.PositiveInfinity } }
{ () => @@{ gradient(isSource) } }

)()

Calling such functions effectively restricts the domain to the set of devices exe-
cuting them, thanks to the space-time branching enacted by construct @@ wrap-
ping the bodies of the corresponding literal functions; by calling them exclusively
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Fig. 2: Snapshot of a gradient field from a simulation in ScaFi. The red nodes
are the sources of the gradient. The nodes at the top-left have parted from the
network and their values increase unboundly. The gray lines represent device
connectivity according to a proximity-based neighbouring relationship.

in any device, the system gets partitioned into two sub-systems, each one exe-
cuting a different sub-computation. For convenience, ScaFi provides as built-in
function, called branch, defined as:

def branch[A](cond: => Boolean)(th: => A)(el: => A): A =
mux(cond)(() => @@{ th })(() => @@{ el })()

With it, a gradient overcoming an obstacle is properly written as

branch(isObstacle){ Double.PositiveInfinity }{ gradient(isSource) } // correct

which is cleaner and hides some complexity while better communicating the in-
tent: branching computation. Generally, notation @@ has to be used for bodies of
literal functions that include aggregate behaviour, i.e., functions which (directly
or indirectly) call methods of the Constructs trait—other uses have no effects
on the result of computation. We remark that the above field calculus expres-
sion (gradient avoiding obstacles) effectively creates a distributed data structure
that is rigorously self-adaptive [36]: independently of the shape and dynamics of
obstacle area(s), source area(s), metric and network structure, it will continu-
ously bring about formation of the correct gradient, until eventually stabilising
to it. For instance, it could be used in a wireless sensor network scenario to let
devices equipped with sensors transmit local perception on a hop-by-hop basis
until all information reaches the gradient source. Generally, gradients can be
used as building block for more complex behaviour, to which the self-adaption
properties will be transferred, by simple functional composition.

An example of more complex behaviour is the self-healing channel [38], i.e.,
the field of Booleans that self-stabilises to a true value in the devices belonging
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to the minimal path connecting source with target devices. This functionality
can be implemented as follows:

def channel(source: Boolean, target: Boolean, width: Double): Boolean =
gradient(source) + gradient(target) <=
distanceBetween(source, target) + width

i.e., by applying the triangle inequality property (with some tolerance as cap-
tured by parameter width), and exploiting a block distanceBetween that
calculates the distance between source and target (e.g., using a gradient)
and broadcasts that value to the whole network (e.g., by gossiping or along
another gradient).

5 Conclusion and Future Work

Aggregate Computing is a recent paradigm for “holistically” engineering CASs
and smart situated ecosystems, which aims to exploit, both functionally and
operationally, the increasing computational capabilities of our environments—
as fostered by driver scenarios like IoT, CPS, and smart cities. It formally builds
on computational fields and corresponding calculi to functionally compose macro
behavioural specifications that capture, in a declarative way, the adaptive logic
for turning local activity into global, resilient behaviour. In this paper, we have
introduced FScaFi, a core calculus that captures the essential features of ScaFi,
a recently developed Scala-internal aggregate programming DSL. In particular,
it leverages a novel notion of “computation against a neighbour” which enabled
seamless integration in the Scala language and type system.

In future work, we will formalise the FScaFi semantics (informally sketched
in this paper), its properties, and relation with the field calculus—mainly aimed
at proving analogous properties such as those in [19, 12, 36, 3]. Additionally, work
on ScaFi is part of the research agenda for Aggregate Computing as comprehen-
sively covered in [37], which includes the study of dynamic field computations, or
aggregate processes [17] as well as the design and implementation of aggregate
computing runtime platforms [39, 16]. Together, they could lead to the emergence
of a new platform for large-scale distributed systems deployment over phyisical
environments (such as the IoT), whereby distributed computations can be dy-
namically injected, executed in a distributed way, and cooperate and compete
with each other to realise an ecosystem of adaptive services—developing on the
the vision of, e.g., [30].
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