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class of pseudodifferential operators, whose symbol has finite Fourier Lebesgue
regularity with respect to x and satisfies a quasi-homogeneous decay of deriva-
tives with respect to the £ variable. Applications to Fourier Lebesgue microlo-
cal regularity of linear and nonlinear partial differential equations are given.

Keywords Microlocal Analysis - Pseudodifferential Operators - Fourier
Lebesgue Spaces

Mathematics Subject Classification (2010) 35J60 - 35J62 - 35505

1 Introduction

In [13] we studied inhomogeneuos local and microlocal propagation of singu-
larities of generalized Fourier Lebesgue type for a class of semilinear partial
differential equations (shortly written PDE); other results on the topic may
be found in [6], [18], [19]. The present paper is a natural continuation of the
same subject, where Fourier Lebesgue microlocal regularity for nonlinear PDE
is considered. To introduce the problem, let us first consider the following gen-

eral equation
F(x,0%)aez =0, (1)
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where 7 is a finite set of multi-indices o € Z7, F(z,() € C*°(R" x CV) is a
nonlinear function of z € R™ and ¢ = ((*)acz € CV. In order to study the
regularity of solutions of (1), we can move the investigation to the linearized
equations obtained from differentiation with respect to x;

F
—(m,a’@u)gez, ji=1,...,n

> —F (z,0%u) pez0®0n,u = o

acl 8<0€

Notice that the regularity of the coefficients aq(z) = 25 za L (x,0%u)pez depends
on some a priori smoothness of the solution u = u(z) and the nonlinear func-
tion F'(x, (). This naturally leads to the study of linear PDE whose coefficients
have only limited regularity, in our case they will belong to some generalized
Fourier Lebesgue space.

Results about local and microlocal regularity for semilinear and nonlinear PDE
in Sobolev and Besov framework may be found in [7], [12].

Failing of any symbolic calculus for pseudodifferential operators with symbols
a(x, &) with limited smoothness in z, one needs to refer to paradifferential cal-
culus of Bony-Meyer [2], [17] or decompose the non smooth symbols according
to the general technique introduced by M.Taylor in [23, Proposition 1.3 BJ;
here we will follow this second approach. By the way both methods rely on the
dyadic decomposition of distributions, based on a partition of the frequency
space RY by means of suitable family of crowns, see again Bony [2].

In this paper we consider a natural framework where such a decomposition
method can be adapted, namely we deal with symbols which exhibit a be-
havior at infinity of quasi-homogeneous type, called in the following quasi-
homogeneous symbols. When the behavior of symbols at infinity does not sat-
isfy any kind of homogeneity, the dyadic decomposition method seems to fail.
In general the technique of Taylor quoted above splits the symbols a(x, £) with
limited smoothness in x into

a(z,€) = a¥(z,€) + a*(z,€).

While a®(z,€) keeps the same regularity of a(x, &), with a slightly improved
decay at infinitive, a¥ (z, &) is a smooth symbols of type (1,6), with & > 0.
From Sugimoto-Tomita [21], it is known that, in general, pseudodifferential
operators with symbol in S(f’ s, are not bounded on modulation spaces MP-?
as long as 0 < 6 < 1 and g # 2. Since the Fourier-Lebesgue and modulation
spaces are locally the same, see [14] for details, it follows from [21] that the
operators a* (x, D) are generally unbounded on Fourier Lebesgue spaces, when
the exponent is different of 2. We are able to avoid this difficulty by carefully
analyzing the behavior of the term a™ (z,¢) as described in the next Sections
5, 6.

In the first Section all the main results of the paper are presented. The proofs
are postponed in the subsequent sections. Precisely in Section 3 a generaliza-
tion to the quasi-homogeneous framework of the characterization of Fourier
Lebesgue spaces, by means of dyadic decomposition is detailed. Section 4 is
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completely devoted to the proof of Thoerem 1. The symbolic calculus of pseu-
dodifferential operators with smooth symbols is developed in Section 5, while
Section 6 is devoted to the generalization of the Taylor splitting technique. In
the last Section we study the microlocal behavior of pseudodifferential opera-
tors with smooth symbols, jointly with their applications to nonlinear PDE.

2 Main results
2.1 Notation

In this preliminary section we give the main definitions and notation most
frequently used in the paper. R and N are respectively the sets of strictly
positive real and integer numbers. For M = (p1,...,pun) € R}, £ € R we
define :

(= (L+1E3)Y2 (M = weight), (2)

where

€3 =D 1&1% (M — norm). 3)
j=1

For t > 0 and a € Z7}, we set

EME = (g, g
(0, 1/M) = aj/py;
j=1

Mo = 1g1£n Hy s o= gjagxn Hy -
We call p, and p* respectively the minimum and the maximum order of (€) ar;
furthermore, we will refer to («,1/M) as the M-order of . In the case of
M =(1,...,1), (3) reduces to the Fuclidean norm ||, and the M-weight (2)
reduces to the standard homogeneous weight (€) = (1 + |£[?)'/2.
The following properties can be easily proved, see [8] and the references
therein.

Lemma 1 For any M € R}, there exists a suitable positive constant C' such
that the following hold for any £ € R™:

%@)“* <€) < CUEM | Polynomial growth;

1€+l < C{lélm + 0|}, M — sub-additivity;

[tV ey = t€|pr, t>0, M — homogeneity.
For ¢ in the space of rapidly decreasing functions S(R™), the Fourier trans-
form is defined by ¢(§) = ]:¢(€) = f e_mf(ﬁ(aj) de,x-& = E;‘L:1 ;&5 U = Fu,

defined by (4, ¢) = (u, @, is its analogous in the dual space of tempered dis-
tributions S'(R™)
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2.2 Pseudodifferential operators with symbols in Fourier Lebesgue spaces

Definition 1 For s € R and p € [1,+00] we denote by FL% / the class of all
u € 8'(R™) such that @ is a measurable function in R™ and (-)§,4 € LP(R™).
F Lf; > endowed with the natural norm

lullzre,, =) aralee (7)

is a Banach space, said M -homogeneous Fourier Lebesque space of order s and
exponent p.

Notice that for p = 2, Plancherel’s Theorem yields that ]-"Li, a reduces to
the M-homogeneous Sobolev space of order s, see [8] for details; in this case
FL? ,, inherits from L?(R™) the structure of Hilbert space, with inner product

(u,v)Fr2 o= ()t (Va0 -
In the case M = (1,...,1), FL? ,, reduces to the homogeneous Fourier Lebesgue
space FLP and, in particular, we set FLP := FL{.

The pseudodifferential operator a(x, D) with symbol a(x,£) € §'(R?*") and
standard Kohn—Nirenberg quantization is the bounded linear map

a(z,D) : S(R") — S'(R™)
u = a(z,D)u(z) = (2m)™" [ e Sa(x, £)u(£)dE,

where the integral above must be understood in the distributional sense.

We introduce here some classes of symbols a(z,£), of M-homogeneous type,
with limited Fourier Lebesgue smoothness with respect to the space variable
x.

Definition 2 For m,r € R, 6 € [0,1], p € [1,400] and N € N, we denote
by FL? \/Sits(N) the set of a(z,€) € S'(R*") such that for all o € Z7}
with [a| < N, the map § — 0Jga(-,€) is measurable in R" with values in
F Lf’ 2 NFL' and satisfies for any £ € R™ the following estimates

Haﬁaa('ag)‘l]—'p < C(Q’]&*(a,l/M) 7 .
8ot sz, < Cle)yy 0D, o

where C' is a suitable positive constant and ¢ is the conjugate exponent of p.

When § = 0, we will write for shortness FL? ; S} (N).
The first result concerns with the Fourier Lebesgue boundedness of pseudod-
ifferential operators with symbol in FL? ,,Sj} 5(N).

Theorem 1 Consider p € [1,+00], ¢ its conjugate exponent, r > ﬁ, § €

[0,1], m € R, N > n+1 and a(z,§) € .FL’;M v.5(IN). Then for all s satisfying

(6—1)(r—u7zq><s<r
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the pseudodifferential operator a(x, D) extends to a bounded operator
a(z, D) : FLY, . oy — FLL o -

If § < 1 then the above continuity property holds true also for s =r.

The proof is given in the next Sect.4.

Remark 1 Observe that in the case of § = 0, the above result was already
proved in [13, Proposition 6], where a much more general setting than the
framework of M-homogeneous symbols was considered and very weak growth
conditions on symbols with respect to £ were assumed.

2.3 M-homogeneous smooth symbols

Smooth symbols satisfying M-quasi-homogenous decay of derivatives at in-
finity are useful for the study of microlocal propagation of singularities for
pseudodifferential operators with non smooth symbols and nonlinear PDE.

Definition 3 For m € R and ¢ € [0,1], S}j ; is the class of the functions
a(z, &) € C°°(R*") such that for all o, B € Z7, and z,§ € R™

0808 a(a, €)] < Ca,p(e)py (O MTOBLMY (10)

for a suitable constant Cy g.

In the following, we set for shortness Sp; := Sy 0. Notice that for any 6 €

[0,1] we have () Sj}s = S57°, where ST denotes the set of the functions
meR
a(z,£) € C°°(R*") such that for all > 0 and «, 8 € Z7

0¢00a(2,8)| < Cuapl)™, z,6€R”,

for a suitable positive constant C), 3.

We recall that a pseudodifferential operator a(z, D) with symbol a(z,§) €
ST is smoothing, namely it extends as a linear bounded operator from S’(R™)
(E'(R™)) to P(R™) (S(R™)), where P(R™) and £’ (R™) are respectively the space
of smooth functions polynomially bounded together with their derivatives and
the space of compactly supported distributions.

Aslongas 0 <6 < p,/p*, for the M-homogeneous classes S} 5 a complete

]

symbolic calculus is available, see e.g. Garello - Morando [9], [10] for details.

Pseudodifferential operators with symbol in S, are known to be locally
bounded on Fourier Lebesgue spaces F L?; yforall se Rand 1 < p < o0,
see e.g. Tachizawa [22] and Rochberg-Tachizawa [20]. For continuity of Fourier
Integral Operators on Fourier Lebesgue spaces see [4]. On the other hand, by
easily adapting the arguments used in the homogeneous case M = (1,...,1)
by Sugimoto-Tomita [21], it is known that pseudodifferential operators with
symbol in S}, s are not locally bounded on FL? ,/, as long as 0 < § < 1 and
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p#2

For this reason we introduce suitable subclasses of M-homogeneous symbols in
Sits: 0 € [0,1], whose related pseudodifferential operators are (locally) well-
behaved on weighted Fourier Lebesgue spaces. These symbols will naturally
come into play in the splitting method presented in Sect. 6 and used in Sect. 7
to derive local and microlocal Fourier Lebesgue regularity of linear PDE with
non smooth coefficients.

In view of such applications, it is useful that the vector M = (u1, ..., uy) has
strictly positive integer components. Let us assume it for the rest of Sect. 2,
unless otherwise explicitly stated.

In the following ¢4 := max{t, 0}, [t] := max{n € Z;n < t} are respectively the
positive part and the integer part of t € R.

Definition 4 For m € R, § € [0,1] and £ > 0 we denote by S} s the class
of all functions a(z,£) € C*°(R*") such that for o, 3 € Z'} and z,£ € R™

m—(e,1/M)+5((B,1/M)—r) if

007 a(x,€)| < Cap(€) s B,1/M) # ki, (11)

0802 a(w,€)| < Capl€)yy M log (14 (€)%) . if (8,1/M)=r, (12)

holds with some positive constant C, g.

Remark 2 1t is easy to see that for any x > 0, the symbol class S}; 5 . defined
above is included in Sy} ; for all m € R and ¢ € [0, 1] (notice in particular that
Sitos = Sn0 =S whatever is k > 0). Compared to Definition 3, symbols
in S5, display a better behavior face to the growth at infinity of derivatives;
the loss of decay §(83,1/M), connected to the z derivatives when 6 > 0, does
not occur when the M- order of (3 is less than k; for the subsequent derivatives
the loss is decreased of the fixed amount k.

Since for M = (u1,...,pn), with positive integer components, the M-
order of any multi-index « € Z"} is a rational number, we notice that symbol
derivatives never exhibit the “logarithmic growth” (12) for an irrational x > 0.

Theorem 2 Assume that
k> (/] + 1 (13)

Then for all p € [1,400] a pseudodifferential operator with symbol a(x,§) €
St 5.0 Satisfying the localization condition

Suppa('v§> - K7 Vf € Rna (14)
for a suitable compact set KK C R™, extends as a linear bounded operator

a(x, D) FLY, oy — FLL , Vs€ER, if0<6<1, (15)

s+m,

a(z,D): FLY, vy — FLL y, Vs>0, ifd=1.

s+m,
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The proof of Theorem 2 is postponed to Sect. 5.3.

Taking § = 0, we directly obtain the boundedness property (15), for any
pseudodifferential operator with symbol in S}}.

The following result concerning the Fourier multipliers readily follows from
Hoélder’s inequaltity.

Proposition 1 Let a tempered distribution a(§) € S8'(R™) satisfy
(€)a"al§) € L= (R")

for m € R. Then the Fourier multiplier a(D) extends as a linear bounded
operator from FLZ, . to FLY y, for all p € [1,+00] and s € R.

2.4 Microlocal propagation of Fourier Lebesgue singularities

Consider a vector M = (pt1,. .., ftn) € N and set T°R™ :=R" x (R" \ {0}).
We say that a set I'yy C R™\ {0} is M-conic, if tV/M¢ e Iy for any € € Ty
and t > 0.
Definition 5 For s € R, p € [1,+oc], u € S'(R"), we say that (z0,¢%) €
T°R™ does not belong to the M-conic wave front set WF;L:Mu, if there exist
¢ € C§(R™), ¢(z0) # 0, and a symbol ¥(£) € SY,, satisfying ¢(£) = 1 on
Iy N {|€|lar > €0}, for suitable M-conic neighborhood I'y;y € R™ \ {0} of £°
and 0 < gg < |€°] s, such that

(D) (¢u) € FL 5.

We say in this case that v is F’ L’; s — microlocally regular at the point (zo, £%)
and we write u € FLY (0, &°).

We say that u € S'(R") belongs to FLY 1/, (o) if there exists a smooth
function ¢ € C§°(R™) satisfying ¢(zo) # 0 such that

pue FLV .

Remark 3 In view of Definition 1, it is easy to verify that u € ]-'LIS)’M’mCl(xO, £%)
if and only if

Xeo,I'nm <>TM¢U € LP(R”) )

where ¢ and I'ys are considered as in Definition 5 and x.,,r,, is the charac-
teristic function of I'ny N {|&]ar > €0}

Definition 6 We say that a symbol a(z, &) € Sit s 1s microlocally M-elliptic
at (o, £%) € T°R™ if there exist an open neighborhood U of 29 and an M-conic
open neighborhood I'y; of €9 such that for ¢y > 0, pg > 0:

la(z, ) = co(©)hr > (2,8) €Ux Ty [€lmr > po-
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Moreover the characteristic set of a(x,§) is Char(a) C T°R"™ defined by
(z0,£%) € T°R™ \ Char(a) < a is microlocally M-elliptic at (z,£°).

Theorem 3 For 0 <6 < p./p*, k> [n/p] +1, m € R, a(x,§) € S}j 5, and
u € §8'(R™), the following inclusions

WFrpr (a(z, D)u) C WEppr, - (u) CWFgpr  (a(z, D)u) U Char(a)
hold true for every s € R and p € [1, +00].

The proof of Theorem 3 will be given in Sect. 7.3.

2.5 Linear PDE with non smooth coefficients

In this section we discuss the M-homogeneous Fourier Lebesgue microlocal
regularity for linear PDE of the type

a(z,D)u := Z co(x) D = f(x), (16)

(o, 1/M)<1

where D® := (—i)|*l9*, while the coefficients c,, as well as the source f in the
right-hand side, are assumed to have suitable local M-homogeneous Fourier
Lebesgue regularity®. Let (zg,£%) € T°R™, p € [1, +oc] and r > et {ﬁ} +1
(where ¢ is the conjugate exponent of p) be given. We make on a(z, D) in (16)
the following assumptions:

(i) o € fo’M’IOC(xO) for {a, 1/M) < 1;
(i) anr(zo, &%) # 0, where apr(z,€) = > col(x)E is the M-principal symbol
(a,1/M)=1
of a(z, D).
Arguing on continuity and M-homogeneity in & of aps(z, ), it is easy to prove
that, for suitable open neighborhood U C R™ of xy and open M-conic neigh-
borhood I'yy C R™\ {0} of &°

ap(x,&) #0, for(z,&) €U x I'yr. (17)
Theorem 4 Consider (x¢,£°) € T°R™, p € [1,4+00] and q its conjugate expo-

nent, r > ﬁ + [uﬂ} +1 and 0 <0 < pi/p*. Assume moreover that

1—|—(5—1)<r— n)<8§7‘+1.

H+q

1 Without loss of generality, we assume that derivatives involved in the expression of the
linear partial differential operator a(z, D) in the left-hand side of (16) have M-order not
larger than one, since for any finite set A of multi-indices o € Z} it is always possible
selecting a vector M = (u1, ..., un) € R} so that (a,1/M) <1 for all a € A.
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Let u € ]-'Lf s (z0) be a solution of the equation (16), with given

— (rfﬁ),M,loc

source f € }—Lg—l,M,mcl(xO?gO)‘ Then u € FL‘Z,M,mcl(‘r()?fO)’ that is

WF]:L.I; " ('LL) C WF]:L‘I;7 (f) U Char(a).

1,M

The proof of Theorem 4 is postponed to Sect. 7.4. We end up by illustrating
a simple application of Theorem 4.

Example. Consider the linear partial differential operator in R?

P(x,D) = c(2)0y, + 10y, — 02

T2 ?

(18)

where

7e—alw1e—a212H($1)H({I}2) N xr = ($17x2) € R2 )

being H(t) = X(0,00)(t) the Heaviside function, ki, k2 some positive integers
and a1, as positive real numbers.
It tends out that ¢ € L'(R?) and a direct computation gives:
1
(ay 4 &)+ (ag 4 i&p)F2t1 7

Let us consider the vector M = (1,2) and the related M-weight function

(€)ar = (L+ &2 + &)1
For any p € [1,+o0] and r > 2/q + 3,
suitable constant C' = C(aq, ag, k1, ka, 1)

c(§) = €= (&,6) R

4+ = = 1, one easily proves, for a

141
p g

C
(L+ [t (1 + &)t =2m
thus c e F Lf’ M(Rz), provided that ki, ko satisfy
ki >r—1/¢ and kg >2r—1/q. (19)

©mleé)] <

Then, under condition (19), the symbol P(z,¢) = ic(x)& — &1 + €2 of the
operator P(x, D) defined in (18) belongs to fo’MS}/[, cf. Definition 2.

Let us set 2 := R? \ RZ. Since |P(z,§)* = (2)&] + (=& + &3)?, the char-
acteristic set of P is just Char(P) = 2 x {(&1,&) € R\ {(0,0)} : & = &3}
(cf. Definition 6) or, equivalently, P is microlocally M-elliptic at a point
(x()afo) - (xO,la 1'0,275(1)75(2)) € T°R? if and Only if

201 >0, 202 >0 or & #£ ().
Applying Theorem 4, for any such a point (zg, &%) we have

p
ue ]:Ls—é(r—%),M,loc(xo)

P 0
P(z,Dyu € FL?_, \, . 4 (x0,€°) = wE€FL ppmal0,€7),

aslongas()<5<1/2and1+(671)(r7%)<s§r+1.
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2.6 Quasi-linear PDE

In the last two sections, we consider few applications to the study of M-
homogeneous Fourier Lebesgue singularities of solutions to certain classes of
nonlinear PDEs.

Let us start with the M -quasi-linear equations. Namely consider

Z aa(@, D) (51 /00y<1—eD%u = f(x), (20)
(e,1/M)<1

where aq = aq(z, D%u) are given suitably regular functions of x and partial
derivatives of the unknown w with M-order (5,1/M) less than or equal to
1 —¢, for a given 0 < e < 1, and where the source f = f(z) is sufficiently
smooth.
We define the M-principal part of the differential operator in the left-hand
side of (20) by

AM($’§7C) = Z aa(£7<)§aa (21)

(a,1/M)=1

where z,§ € R", ¢ = (¢3)(p,1/M)y<1—¢ € CN, N = N(e) := #{B ¢ VA
(B,1/M) <1 — €e}. It is moreover assumed that a, is not identically zero for
at least one multi-index a with (a,1/M) = 1.
Let us take a point (z,£%) € T°R™; we make on the equation (20) the following
assumptions:

(a) for all o € Z7} satisfying (a,1/M) < 1, the coefficients a(x, () are locally
smooth with respect to x and entire analytic with respect to ¢ uniformly in
x; that is, for some open neighborhood Uy of xg

a6 (,0) = D aary(@)C7,  any € CF(W), (€CN,

WEZf
where for any 8 € Z7, v € ZY and suitable ¢, 5 > 0, surg) 108 ag ~(x)] <
xzelUo
Ca,pAy and the expansion Fi(¢) := >, A,(” defines an entire analytic

yezy
function;
(b) (20) is microlocally M -elliptic at (xq,£°), that is the M-principal part (21)
satisfies, for some I'y; M-conic neighborhood of &Y,

Ap(2,6,0) #0, for (x,8) € Uy x Iy, ¢€CV.

Under the previous assumptions, we may prove the following
Theorem 5 Let p € [1,+o0], 7 > ﬁ—!—[uﬂ] +1, %—i—% =1,0<e<1
and (z9,£°) € T°R™ be given, consider the quasi-linear M -homogeneous PDE
(20), satisfying assumptions (a) and (b). For any s such that

r+1+6(r— n)—egsgr—i—l, (22)

Hxq
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with
0<d<

and 0<(5<%7 (23)

Hxq

consider w € FL?

—8(r— )M 1oe(T0) @ solution to (20) with source term

e ]:Lzs)—LM,mcl(xvaO)?
then u € FL?_’M?mCI(ﬂCngO)

Proof From (22) and the other assumptions on r, in view of Proposition 1 (see
also [13, Proposition 8]) and [13, Corollary 2], from u € FL? Co(r—n ), B C)

it follows that

Dﬁ'u, S fLifd(rfﬁ)flJre,M,loc(mo) — ]:LZM,]OC(Z'()),
as long as (3,1/M) <1 — ¢, hence aq (-, D u).1/my<1-c € FLY yp100(20) for
(,1/M) < 1.

Notice that conditions (23) ensure that § belongs to the interval }0 B [ as re-
quired by Theorem 4, see Remark 4 below. Notice also that, for r batlbf}ﬂng the

condition required by Theorem 5, (6—1) (r - —) +1 <r+1+90 (r - ﬁ) —e.

Hence the range of s in (22) is included in the range of s in the statement of
Theorem 4. Therefore, we are in the position to apply Theorem 4 to the symbol

Ay(z,§) = j{: aa (7, DPu) 51 /ary<1- £, (24)

(e, 1/M)<1

which is of the type involved in (16) and, in particular, is microlocally M-
elliptic at (7o, &%) in the sense of (17). This shows the result.

Remark 4 According to the proof, we underline that in the statement of The-
orem 5 the assumption (b) could be relaxed to the weaker assumption that the
symbol (24) of the linear operator, which is obtained by making explicit the
expression of the operator in the left-hand side of (20) at the given solution
u = u(z), is microlocally M-elliptic at (x¢,£°) in the sense of (17).

Ko

Concerning the assumptions (23) on d, we note that Z— < —5— if and only
q

ifr < -2 + e otherwise .—%— is strictly smaller than z—* Since 0 < e <1

Hxq

and > 1, in principle r > ot { } + 1 could be either smaller or greater

than -+ “ —¢, therefore the two assumptions on ¢ in (23) cannot be unified.

Assunnng in partlcular r > 7 + /’j—e and taking, in the statement of Theorem
5, s =r+ 1 and the best (that is biggest) amount of microlocal regularity of
u, quantified by § = -——%—, we obtain

Hxq

fe ‘FLf,M,mcl(x()?éO) = uc FL€+17M7mcl(‘r0’§0) (25)
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for any solution u to the equation (20) belonging a priori to ]-'LIT’H%’M’IOC (29)-

*

Assume now r < ﬁ + Z—e and set again s = 7 + 1 in the statement of
Theorem 5; since —— > %, in this case the value —%— cannot be attained

Hxq Hxq

 p*
a priori to FLP

7‘+176('r7ﬁ),]ﬂ,10c(

by 6 € }0 By [, and we get that (25) remains true for any solution belonging

xg) for any positive § < Z—

Remark 5 As in the case of linear PDEs (see e.g. Theorem 7), also in the
framework of quasi-linear PDEs the result of Theorem 5 can be stated for a
M-homogeneous quasi-linear equation of arbitrary positive order m, namely

Z aq(z, DBu)w}l/M)Sm,EDO‘u = f(x), (26)
(a,1/M)<m

with m > 0 and 0 < € < m. In this case, the range (22) of s will be replaced
by

n
r—i—m—i—d(r— )—6<S<7"+m

Hxq
with § satisfying (23), and the result becomes
f € ‘FLg—m,M',mCl(‘rO’ 50) = u € ‘FLg,M,mcl(x(Ja 50)

for any solution u € ]:Lls)%( (xo) of (26).

r— - ),M,loc
K

2.7 Nonlinear PDE

Let us consider now the fully nonlinear equation

F(z, Du)(a1/my<1 = f(2), (27)

where F'(z,() is locally smooth with respect to € R™ and entire analytic in
¢ € CV, uniformly in z. Namely, for N = #{a € Z7 : (o, 57) < 1} and some
open neighborhood Uy of zy,

F,Q)= Y ¢ ()¢, ¢, €C®(M), (eCN,

M
VEZ+

where for any 8 € Z7, v € Zf and some positive ag, Ay, Y. A,(7 is entire
wEZf
analytic in CV and sup |0%¢c, (z)| < ag),.
zeUy

Let the equation (27) be microlocally M-elliptic at (zo, &%) € T°R™, that

is the linearized M-principal symbol Aps(x,&,¢) == gTF(:C, C)E> sat-
(@1/M)=1 """

isfies

> @08 20 for (2,6 € o x T, (28)
(a,1/M)y=1 %

for I'ys a suitable M-conic neighborhood of &.
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Theorem 6 Assume that equation (27) is microlocally M -elliptic at (g, &%) €

T°R™. For 1 < p < 400, 1 > ﬁ+[ﬁ}+1,o < 6 < Z—:, let u €
FLY ri110c(T0) be a solution to (27), satisfying in addition

Oz;u € fL€\4,r+l—5(r—ﬁ),loc(Io)’ ji=1,...,n. (29)
If moreover the forcing term satisfies
@;jfe]:LﬁM’mcl(xo,fO), ji=1...,n, (30)
we obtain
Ouyu € FLY 4 vpma(0,€%), G =1,...,n. (31)

Proof For each j = 1,...,n, we differentiate (27) with respect to z; finding
that 0., u must solve the linearized equation

Z 67F(55a Dﬁ“)(@l/M)gDaaxju =0, f — STF(% Dﬁu)(ﬁ,l/M)gl .
(o,1/M)<1 !
(32)
From Theorems 2 and [13, Corollary 2], u € FLY, | .. (o) yields that

OF

@<~7Dﬁu)ﬁ'1/M§m € 'FLII)V[,’I",]OC(:I;O)'
Because of hypotheses (29), (30), for each j = 1,...,n, Theorem 4 applies to
Oz,;u, as a solution of the equation (32) (which is microlocally M-elliptic at
(w0, £%) in view of (28)), taking s = r + 1. This proves the result.

Lemma 2 For every M € R}, s € R, 1 < p < +oo, assume that u, 0y, u €
FL, y(R™) for all j = 1,...,n. Then u € FL, .. ,,(R"). The same is still

s+ﬁ%,
true if the Fourier Lebesgue spaces FLY , (R™), }'LZ+%7M(R") are replaced
by fL§7M7mCl(x0,§(]), fL’S’Jr%’M’mCI(xO,fO) at a given point (xq,£%) € T°R™.

Proof Let us argue for simplicity in the case of the spaces ]-"Lg v (R™), the
microlocal case being completely analogous.
Notice that u € FL? .. ,, (R") is equivalent to (DYs/" € FLE  (R™). By

s+ix,
using the known properties of the Fourier transform, we may rewrite (D)ﬁ/}/ "
in the form

(DYh; " w = (DY u+ 3" A ar (D) (Dyyu)
j=1
where A; (D) is the Fourier multiplier with symbol (5)‘1(/}/”*725
is

21451 that
] b

(D)o = FH ({4 €M T15) L G =1,

Since <£>’]f/}/”*72§?“"71 € Sh; /i =ie/15 the result follows at once from Propo-
sition 1.
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As a straightforward application of the previous lemma, the following conse-
quence of Theorem 6 can be proved.

Corollary 1 Under the same assumptions of Theorem 6 we have that u €
P 0
]:Lr+l+"j—I,M,mcl(xO’§ )

Remark 6 Notice that if (7" — ﬁ) 0 > 1 then any u € }"Lf_HVM,IOC(xO) rightly

satisfies (29).
Thus 0,,u € ]—'Lf_kl_%’M’loc(xo) — fL%’T+175(T7ﬁ)’IOC(xO) being i, /p; <

1< (r—ﬁ)z?foreachj: 1,...,n. Notice that for r > H%q+l’j—: we can find

0% €]0, p./p*[ such that (r - ﬁ) 0 > 1: it suffices to choose an arbitrary §* €

[ L ,Z—i [ Hence, applying Theorem 6 with such a 6* we conclude that if

T hxq

r> 4 Z— and the right-hand side f of equation (27) obeys to condition (30)
at a point (x9,£%) € T°R", then every solution u € FL} | 5/ ..(%0) to such

an equation satisfies condition (31); in particular u € ‘FLI;+1+5—:,M,mC1(x07 ¢v).

3 Dyadic decomposition

In the following we will provide a useful characterization of M-homogeneous
Fourier Lebesgue spaces, based on a quasi-homogenous dyadic partition of
unity.

Namely for fixed K > 1 we set

M = {eeR” : ¢u < K}

1 (33)
c = {eer: E2h_l < | < K2 h=0,1,....
It is clear that the crowns (shells) C,ZLV[ K for h > —1, provide a covering of

R™. For the sequel of our analysis, a fundamental property of this covering
is that the number of overlapping crowns does not increase with the index h;
precisely there exists a positive number Ny = Ny(K) such that

cEnet =0, forlp—q > No. (34)
Consider now a real-valued function & = &(t) € C°°([0, +oo[) satisfying
0<dt) <1, VYt>0,

1 (35)
P(t)=1 forOStSﬁ, P(t)=0 fort>K,

and define the sequence {¢5,};>° | in C>(R") by setting for £ € R"

paa(©) = 2(eh), on©) =2 (525) -0 () n=o1
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It is easy to check that the sequence {p}}52 ;| defined above enjoys the
following properties:

supp ¢n C C,]LV[’K, for h > —1; (36)
> en(@ =1, forall{eR™ (37)
h=—1

o0

Z up =u, with convergence in S'(R"), (38)
h=—1

where it is set up, := pp(D)u, for h > —1.

As a consequence of (34), for any fixed £ € R™ the sum in (37) reduces to
a finite number of terms independently of the choice of & itself. Namely, for
some positive integers Ny independent of £ and hg = ho(§) > —1, we have

o) ho+No

Z on(&) = Z wn(€), where ho :ﬁo(ﬁ) :=max{—1,hog — No}. (39)

h=-—1 h:im

The sequence {y,};>° | above introduced is referred to as a M -homogeneous
dyadic partition of unity, and the expansion in the left-hand side of (38) will
be called M -homogeneous dyadic decomposition of v € S'(R™); in the homo-
geneous case M = (1,...,1), such a decomposition reduces to the classical
Littlewood—Paley decomposition of u, cf. for example [1].

Proposition 2 For M = (p1,...,ptn) € R}, s € R and p € [1. + o0], a
distribution u € 8’'(R™) belongs to the space .FL?M if and only if

up € LP(R™), forallh > —1, (40)
and
“+oo
S 2G|, < +oo. (41)
h=-1

Under the above assumptions,

+oo 1/p
(ZTWM&> (42)

h=-1

provides a norm in FLY ,, equivalent to (7).
For p = 400, condition (41) (as well as the norm (42)) must be suitably
modified.
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Proof Let us first observe that the M-weight (-),s is equivalent to 2" on the
support of ¢p; indeed

1< (Ou < (1L+KH)Y2 for £ € suppp_1;
1 (43)
ﬁQh < (E)ar < (1+4K?)1/290 for £ € suppyy and h >0,

being K the positive constant involved in (35).
For p € [1,+00], it is enough arguing on smooth functions v € S(R™) in
view of density of S(R") in FL? ;. For { € R", from (37), (39) we derive

00 ho+No ho+No P
ST Han@©F = Y en@Pa@r < @@= Y. en@la©)
h=-1 h=hg h=ho (44)
ho+No oo
<Cnop Y, en©PIAE) = Cnyp Y lTn(©)F,
h=hg h=-1

where hg = ho(€), ho = ho(€) are the integers in (39) and Cl, , > 1 depends
only on Ny and p. Hence, multiplying each side of (44) by (£)}, making use
of (43) and integrating on R™, it yields

shp ||~ ||Ip < V4 < shp|=>. (|p
3 P < ol < o 3 2N

1

CS%K

for a suitable constant C , k¥ > 1 depending only on s, p and K. This proves
the statement of Proposition 2, for 1 < p < 4o0.

In the absence of the density of S(R") in FLZ%,, let us now argue directly.
Thus for arbitrary u € FLZ), and every h > —1, writing

i = 75 (ki (45)
(e
we get Uy, € L>®(R™), since (-)3,u € L>°(R"™) and, in view of (43) and (36),
gsh ‘ph(f) <C,x, VEER", (46)
(€)ar

where the constant Cs x depends only on s and K. From (45) and (46)
2" @n (6)| < Cs iellull Free,, , VEER™, h>—1,

M
follows at once and implies (41) with p = +o0.

Conversely, let us suppose that u € S’(R"™) satisfies (40), (41). From (34),
(38) and (43) we get for an arbitrary £ > —1 and every £ € Céw’K:

“+00 £+ No £+ Ng
(OMAO < D HOMIE = Y HOMUE)] < Cox > 2Man(9)]
h=-1 h=¢—N h=¢—Nj

< Cys,x(2No + 1) sup 2°"|[tp| o=
h>—1
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noticing that u belongs to Lg%, and satisfies

ull o, < Cox(2No + 1) sup 2°" || || o .
: h>—1

The proof is complete.

Remark 7 Arguing along the same lines followed in the proof of estimates (46),
one can prove the following estimates for the derivatives of functions ¢y: for
all v € Z a positive constant C, exists such that

ID{pn(€)| < CL27 MMy E e R h=-1,0,1,.... (47)

Notice also that, in view of (43), estimates (47) can be stated in the equivalent
form

DY (€)] < C(E) M, VEER™, h=—1,0,1,....
Along the same arguments of Bony [2], one can show the following
Proposition 3 Let M = (p1,...,pn) € R} and p € [1. 4 oo].

(i) For s € R, let {uh}::io_l be a sequence of distributions up € S'(R™) satis-
fying the following conditions:

(a) there exists a constant K > 1 such that

supp up, QC}]LW’K, for allh > —1;
(b)
+oo
> 2Manl7, < oo
h=—1

(with obvious modification for p = +00).

+oo

Then u = hz up € FLY ,;, where the series is convergent in S'(R™).
=1

Moreover, for some positive constant Cs , x depending only on s, p, K,

1/p
+oo
lullyzs ,, < Copic ( ) 2S’W||ah||§p> ,

h=-1

(i) If s > 0, the same result stated in (i) is still valid when a distribution
sequence {uh}Zf_l satisfies the condition (b) and

(a’) there exists a constant K > 1 such that
supp up, C B,{LW’K ={£eR" : |¢|y < K21} for allh > —1,

instead of (a) (notice that BM;* = c™*).
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4 Proof of Theorem 1

Following closely the arguments in Coifmann—Meyer [3], see also Garello—
Morando [7], one proves that every zero order symbol in F Lf’ MS?W,(S (N) can
be expanded into a series of “elementary terms”.

Lemma 3 For p € [1,+o0], r > e (being q the conjugate exponent of p),
N > n+ 1 positive integer and § € [0,1], let a(x,&) € FL? 1,53 s(N). Then
there exist a sequence {ci}rezn C Ry satisfying > cx < +00 such that

kezr
CL(LL‘,S) = Z ckak(xag) ;
kezn
with absolute convergence in L™ (R™ x R™).
More precisely for each k € Z™
+o0
ar(z,€) = Y di(@)vp(©), (48)

h=-—1

with suitable sequences {df },/>° | in FL! NFLY , and {yk}ie | in Cg°(RM),
obeying for some positive constants C, H and K > 1 the following conditions:
(@) |dfllrr <H, |dflzer,, < 12" =23) for all h = —1,0,...;

(b) supp ¥k C C}JLV[’K, h=-1,0,...;

(c) |0*pf(&)] < C27 (/M e € R™, |a| < N.

In view of (34) and condition (b) above, the expansions in the right-hand side of
(48) has only finitely many nonzero terms at each point (z,£). Conditions (a)-
(c) above also imply that a(z,£) defined by (48) belongs to }'Lf’MSR/[’é(N)

for each k € Z". A symbol of the form (48) will be referred to as an elementary
symbol.

The proof of Theorem 1 follows the same arguments as in [9]. Without loss
of generality, we may reduce to prove the statement of the theorem in the case
of a symbol a(z,&) € ]:Lf,MSJ(Q,a(N)- Also, because of Lemma 3, it will be
enough to show the result in the case when a(x,§) is an elementary symbol,
namely

+oo
a(z,€) = Y dn(x)pn(8),

h=-1

where the sequences {dj, }>° | and {1, }/>° , obey the assumptions (a)—(c).
In view of Lemma 3 there holds

a(x, D)u(x) = Z dp(x)up(z), VueSR"), (49)

where
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Let {¢¢}e>—1 be an M-homogeneous dyadic partition of unity; then we may
decompose (49) as follows

+oo 4o

a(x, Z Z dp.e(z = Thu(z) + Teu(z) + Tsu(z) ,

h=—14=-1

where it is set
400 h—Np

Tyu(x Z Z dp o

h=No—1 t=—1

+oo h+Np—1
Du(x) =Y Y dpe(@)un(x) (b =max{—1,h— No+1}),
h=—1 (=t

+oo £—Np

Tgu( Z Z dh g

¢=Ng—1h=—1

with sufficiently large integer Ny > 0, and
dh,@ = ng(D)dh, h,éi 71,0,... .

The proof of Theorem 1 follows from combining the following continuity results
concerning the different operators T4, 15, T3.

Henceforth, the following general notation will be adopted: for every pair
of Banach spaces X, Y, we will write ||T'||x—y to mean the operator norm of
every linear bounded operator T from X into Y.

Lemma 4 For all s € R, T} extends to a linear bounded operator

T : }"L’S’,M — .FLIS’,M
and there exists a positive constant C = C, , such that

ITillFre 7Ly, < Chsilf)l l[dn |l 7L

Proof Taking Ny > 0 sufficiently large, we find a suitable T > 1 such that
suppdpeun € CMT | for —1<0<h—Ny and h> Ny— 1.

Then in view of Proposition 3 (i), for every s € R a positive constant C = C; ),
exists such that

h—No

> dngun

l=—1

Tl <C Z oshp
* h>No—1

)

Lr

on the other hand

h—No h—No

Zdhguh— (2m)~ Zdhg*uh— (2m)~ deh*uh

{=—1 l=—1 l=—1
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hence Young’s inequality yields

h*No o h*NO -
Z dpeun|| < (27 Z eedp||  [lunllLe
=—1 Lp l=—1 Ll
and, in view of (37),
h—No h—No
S wdh /Z P©OIdn(©)lde < [ [dale)lde = Idalos.
(=—1 (=1

Combining the preceding estimates and thanks to Lemma 3 and Proposition
2 we get,

p

P hp|—~P
1Tl < c(hs;gl ||dh||m)h>; 2GRl
ZINO—

p
< C| sup l|ldp 1> ullP
(som lenlzs) Tk,

This ends the proof of lemma.

Lemma 5 For all s > (6 — 1) (r - ﬂ) T, extends to a linear bounded op-
erator

T, : FL" M—>fL (1) (r— 2 ) M

and there exists a positive constant C = Cn, p,r,s Such that

)
1T3ll7es e < C sup 2 (=M d e,

+0-9(r-3g)

Proof Taking Ny > 0 sufficiently large, we find a suitable T' > 1 such that
supp dyeun € {€ ¢ |El < T2}, for £y <O <h+No—1, h> -1

and where ¢, := max{—1,h — Ny + 1}. From Proposition 3 (ii), for s >
(6-1) (r— ﬁ) we get

h+No—1
Tl ¢y S dnewn|
s+<1_5)(r—ﬁ),M h>— =L, Lp
and again from Young’s inequality
h+Np—1 h+Np—1 o h+Np—1 o
> dngun| < (2m)" o ldnesunllie < @m0 Y ldnell oo llwn oo s
=Ly, Lr =Ly, L=l
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thus, since the number of indices £ such that ¢, < ¢ < h + Ny — 1 is bounded
independently of h one has

1 T2ull,»
s+(l—6)(r7ﬁ),1\4

h+No—1 p
<cY 2(s+<1_5)(r—“’:q))hp< 3 |dh7£||Lp||uAh||L1>
h>—1

=4y,
) h+Np—1
< COngp Y 26FE00=2m)he e N |dy g,
h>—1 L=t
h+Np—1 .
= Cnyp y 227w |G 7, 272 O S dy 2
h>-1 =0y,

Notice also that Holder’s inequality yields

nh

1/q
@l = [, TIde < [Tl ( Lo d§> < Ol 27
Cr Cr

hence

_nhp
27 hxa

[unll7, < CllunlLs -
Moreover, for a suitable constant C'y, > 0 depending only on Np,

oh < On.28, for 0, <0 <h+Ny—1.
0

Hence we get

h+Np—1 N
27 0= N |d ),
=Ly,
h+Npy—1
< Cngrp2 20 m) 5™ ortr)i g, |1,
L=l
< Ongrp2 U Ry < Oy HY
where
H = sup 27002 dy | 71, (50)
h>—1 ’
and, in view of Proposition 2,
o~ +OO
I Toul®, < ONorpH” D7 2" a1 < Oy HP [l -
s+(1—5)(‘r'7“:‘q),M h=-1 7

This ends the proof of Lemma 5.
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Remark 8 Since for 0 < § < 1 and r > - we have s+ (1 —0) (r——) > s,
T e

as an immediate consequence of Lemma 5, we get the boundedness of T5 as a
linear operator Ty : FLY ), — FLY /.

Lemma 6 For all s < r, T3 extends to a linear bounded operator

. FLP — FL? (51)

s+(E-1)(r—55):M

and there exists a positive constant C = Cs p, , such that

I3l rnn,, SO swp 2700 My (52)
s+ -1 (r-g2 )M s h>—1 ™

Moreover for 0 < 6 < 1 and arbitrary € > 0, T3 extends to a linear bounded

operator

: FL? v = FL v (53)

e+or—(6—1)-2—

u*q’

and there exists a positive constant C = C,.p . such that:

—5(r——o—
ITs| 717 Lrpr, < Cosup 27007 D dy e L (54)
€ T h271 T

+or—(8-1) ;e M
Proof Let us prove the first statement. For Ny > 0 sufficiently large we have
suppmg(,’f, for{ > Nog—1, - 1<h<{—Ny.

Hence Proposition 3 and Young’s inequality imply, for finite p > 1,

£— Ny £—No
HT3u||Z;Lp <C Z 9stp Z dh upll =C Z 2stp Z dhg*uh
(=No—1 h=—1 p  £=No—1 h=—1 I
400 £—No - p
<cy oW ( > IIdh,eHLP”WHLl)
t=No—1 h=—1

+oo £—No - P
—o 3 (3 el |
(=Ny—1\h=—1

(55)

(with obvious modifications in the case of p = +00); on the other hand, con-
dition (a) and Proposition 2 yield

+oo
S 2l < HPCTEDP for > 1,
£=—1

hence
9\ ol < H2OU— 7" for £ > —1, (56)

where H is the constant in (50).
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Combining (55), (56) and using Bernstein’s inequality

27" [l s < Ol (57)

we get

—+oo £— Ny p
Tilray < CHP S (z z<w>f26<f-m>h|m||y)

f=No—1 \h=-1

{=Np—1 \h=-1

“+o0 £— Ny p
= CHP Z ( Z 2(sr)(€h)2(sr)h26(r—“:q)h2“’:qh2—quh”@”L1>

+o0 £— Ny p
=CH? ) <Z 2<s—r)<e—h)2(s+<61>(rJ:q))hzu’iqh”fh”p)

=No—1 \h=—1

+oo £—Np p
<cmr Y <Z 2<s—r><e—h)2(s+<61>(r;:Zq))hagm) :

¢=No—1 \h=—1

The last quantity above is the general term of the discrete convolution of the
sequences

bi= {207 hongor, o= (20FCTVOTEDR G o b o
Since b € ¢, for s < r, discrete Young’s inequality and Proposition 2 yield

ITsullyyy < CHP[pllnllcler < CHP S 20 O-00=20) gy 17,
>-1
< CH|lu| 717
+(

This proves the first continuity property (51) together with estimate (52).

Let us now prove the second statement of Lemma 6, so we assume that
d € [0,1[. For an arbitrary ¢ > 0 similar arguments to those used above give
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the following estimate

P <
||T3U||_7:LIT’1M =

+o00 £—No p
<c > 2N dyexun
¢=No—1 h=—1 I
+oo £—No . p
<C Z ortp ( Z ||dh,E|Lp|ahLl>
¢=No—1 h=—1
+o0o ¢—Ng - p
=C > (Z 2‘”25’12”|dh,z||m||ah||u>
(=No—1 \h—1 (58)
+oo  [0—No P/4 s N, -
<C Z (Z 2—£hq> ( Z QE}WQMPdh,Z”ip”@z”%)
¢=No—1 \h=—1 h=—1
+o0o0 £—Np

<Cep Y. > 22| dy |1} l[Tn]lf,
(=Ng—1h=—1

“+o0
:Cs,p Z 2€hp z 2Mp||@

h=—1 £>h+Ng

LollEnl7y

where in the last quantity above the summation index order was interchanged.
Again from condition (a) and Proposition 2

> 2l < Crplldnllrey,, < CrpHP2'C ™),
0>h+No

with H defined in (50). Using the above to estimate the right-hand side of
(58), Bernstein’s inequality (57) and Proposition 2 we obtain

+oo
I Toullyy < Crepl? Y 27020 U=a)e g, |2,
' h=-1
“+oo
< CrepH? Y 200 g |8,
h=—1
p
< Cr’p’sHpHu”]:L:JN;T,(J,l)ﬁ,M :

This completes the proof of the continuity (53) together with estimate (54).

Remark 9 Let us collect some observations concerning Lemma 6.
We first notice that for s < r the boundedness of T3 as a linear operator
Ty : FLE  — FLY ,, follows as an immediate consequence of (51), since

P T :
FLgy = FL3+(571)(T7L),M for § and r under the assumptions of Lemma
6.

Hxq
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Regarding the second part of Lemma 6 (see (53)), we notice that the Fourier-
Lebesgue esponent ¢ + or — (6 — l)ﬁ, with any positive ¢, is a little more
restrictive than the one that should be recovered from the exponent s + (§ —

1) (r — ﬁ), in the first part of the Lemma, in the limiting case as s — r.

Notice eventually that when 0 < & < (1 — ) <r - ﬁ) is considered in the
second part of the statement of Lemma 6, then &+ 0r — (6 — 1) %~ < r. Hence

we get the boundedness of T3, as a linear operator T5 : fo, M= ]-'Lf’ Mo 38
long as 0 < ¢ < 1, as an immediate consequence of the boundedness (53).

5 Calculus for pseudodifferential operators with smooth symbols

In this section we investigate the properties of pseudodifferential operators
with M-homogeneous smooth symbols introduced in Sect. 2.3.

At first notice that, despite M-weight (2) is not smooth in R™, for an
arbitrary vector M = (u1,...,pn) € R, one can always find an equivalent
weight which is also a smooth symbol in the class S},.

More precisely, in view of [11, Proposition 2.9], the following proposition
holds true.

Proposition 4 For any vector M = (1, .., pin) € R} there exists a symbol
7 = mm(E) € Sy, independent of x,which is equivalent to the M-weight (2),
in the sense that a positive constant C' exists such that

éﬂM(f) <{(Em < Crp(§), VEER".

In view of the subsequent analysis, it is worth noticing that in the case when
the vector M has positive integer components, in Proposition 4 we can take

T (§) = (§)m-

5.1 Symbolic calculus in Sp; 5

The symbolic calculus can be developed for classes Sy; 5., thus pseudodif-
ferential operators with symbol in S}; ;. form a self-contained sub-algebra
of the algebra of operators with symbois in S35, for m € R, k > 0 and
0 < ¢ < ps/p*. The main properties of symbolc calculus are summarized in
the following result.

Proposition 5 (i) For m,m’ € R, k > 0 and 6,0" € [0,1], consider a(x,§) €
St s b(@,€) € Sit 5 s 0,0 €ZL. Then

v m— (0, 6(v, m~+m’
8?336(1(33,@ S SM,‘S,(N 1/M)F841/M) ) (a’b)(w7§) € SM:"I_na,x{(S,(S’},K :
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(i) Let {m,; };':08 be a sequence of real numbers satisfying:

m; >mjiy1, j=0,1,... and jETmmj = —00
and {aj}j;og be a sequence of symbols aj(z,§) € SXZ&K for each integer
j > 0. Then there exists a unique (up to a remainder in S~°°) symbol
a(z,§) € Sy’ . such that

a— Za] € SM(;H, for all integers N > 0.
<N

(iii) Let a(x,€) and b(x,&) be two symbols as in (i), and assume that 0 <
6" < pw/p*. Then the product c(x,D) := a(x,D)b(z, D) is a pseudod-
ifferential operator with symbol c(x,&) = (afib)(z,§) € Sﬂyﬁ/ﬁ, where
6" := max{J, 5’}; moreover this symbol satisfies

atb— Z

la|<N

65 adyb mET’:(l/“**él/”*)N, for all integers N > 0.

Proof (i): From estimates (11), (12), it is very easy to check that for any
multi-index 0 € Z7}

a(x,§) € Syrs, implies aga(x £) € SM§: 1/M>,
hence we can limit the proof of (i) to # = 0 and an arbitrary v € Z%, v #£ 0.
Let «,8 € Z% be arbitrary multi-indices and assume, for the first, that
(B,1/M) # k; if (v+ 5,1/M) # K, we then get

B (v (a1 /M)+5((+ 8,1/ M) )
1007 (85 a) (2,6)] < Cua,p(€)ar ’

(59)
a1/ MY+8{v,1/M)+6((8,1/M
<Cuaﬁ<§></></>(</>),
in view of (11) and the sub-additivity inequality (z +y)+ < 4 + Y.
Assume now that (v + 8,1/M) = k; then
080 (0%a) (2,6)] < Cuap @ log(1+(©)3)).  (60)

in view of (12). Since (v + 8,1/M) = k and (§,1/M) # rk imply (8,1/M) < k
and (v,1/M) > 0, then

v, 6{v, 1/ MY+6({B,1/M)—k
log(1+ (€)3) < Cup (@AM = 0, p(g) o /M -,

which, combined with (60), leads again to (59).
Assume now that (8,1/M) = k. Since also (v,1/M) > 0, from (11) we get

—(a,1/M)+5((v+B,1/M)—r)

10802 (92a) (2,€)| < Croap(€)ny
< O, (€Y (DTN 1001 4 (£)3))
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because ((v + 3,1/M) — k) = (v + 8,1/M) — k = (v,1/M) and we also use
the trivial inequality

log2 < log(1+ (€),), VEeR™. (61)

The preceding calculations show that d%a(z, &) € Sﬂ;ﬁ”’l/M).

Similar trivial, while overloading, arguments can be used to prove the second
statement of (i) concerning the product of symbols.

(i) 1t is known from the symbolic calculus in classes Sy; 5, cf. [10, Propo-
sition 2.3], that for a sequence of symbols {a; };“:"8, obeying the assumptions
made in (ii), there exists a(z,§) € SA"}[%, which is unique up to a remainder in
ST, such that

a— Z a; € Sy, for all integers N > 0. (62)
J<N

It remains to check that a(z,§) actually belongs to S};% ., namely its deriva-
tives satisfy inequalities (11), (12). In view of (62), for any positive integer N,
the symbol a(z, &) can be represented in the form

a(l‘,f) :aN($7§)+RN(xa§>7 (63)
where ay := ) aj e Ry € S§/%.
j<N ’
Since ‘lir+n m; = —oo, for all o, 3 € Z} an integer N, g > 0 can be found
]4) oo
such that

M, o +0(B,1/M) < mo +5((8,1/M) = k)4, if (B,1/M) #k,

64
mNQ,B_F(S/{SmO’ lf <671/M>:K/a ( )

hence let a be represented in form (63) with N = N, (from the above
inequalities N, g can be chosen independent of «, as a matter of fact). Since
{m;} is decreasing, from a; € S;\ZJ 5. for every j > 0, we deduce at once that

. MmN, 5 . ...
an, 5 € Sy’ - As for the remainder Ry, ,, from Ry, , € Sy 5 # | inequalities

(64) and (61), we deduce

a,p?

e} m o, —<Ct,1/M>+5<B,1/M>
0808 R, (2,6)] < Cap(€)ny ™

. { b (@ BT (5, 1/M) #
L Chstenr M os (1 (€030, (5,1/M) = 5.
From (63) with V = N, g and estimates above, we deduce
0807 a(z,€)| < |0g0]an, ,(x,)| + |08 07 Ry, , (,€)]
- {Og,ﬁ<s>’;;f<“’”M>”“ﬁ>“>+ L (B1/M) # s,

(&) M og(1 4+ ()3, i (8.1/M) =k

and, because of the arbitatriness of o and 3, this shows that a € Sﬁ?&n.
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(i1i) By still referring to the symbolic calculus in classes S7; 5, cf [10, Propo-
sition 2.5], it is known that the product of two pseudodifferential operators
a(z, D) e b(x, D) with symbols like in the statement (iii) is again a pseudodif-
ferential operator ¢(z, D) = a(x, D)b(x, D) with symbol ¢(z, ) = (ab)(z,§) €

S}\'/})Jgffl ,1f 0 < ¢ < py/p*; moreover, such a symbol satisfies

c(z,6) — > ( 3' 'aga(x,g)agb(x,g) € Syt T BIN N >
lal<N
(65)
To end up, it sufficient applying statements (i) and (ii) above to the sequence
{er}i29 of symbols

_i\k
Ck(xvé-) = Z ( OLZ') 8?@(.%,6)831?(%,6), k= 0,1,....
|a|=k )

From statement (i) it is immediately seen that cx(z,€) € SX}—;TN_(I/“ 8 /a)k

for all integers k > 0. Since the sequence {my,}} 9 of orders my, := m +m/ —
(1/p* — &' /ps )k is decreasing, in view of 0 < §" < p./p*, it follows from (ii)
that a symbol &(z,€) € SA”}‘;T/K exists such that the same as (65) holds true
with &(z, &) instead of c(z, £); moreover, from uniqueness of c(z,&) (up to a
symbol in S™), it also follows that ¢(z, &) —c(x, &) € S™°°, hence the symbol

m-+m

c(z,§) actually belongs to Sy, .

5.2 Parametrix of an elliptic operator with symbol in S3; 5 -

In order to perform the analysis of local and microlocal propagation of sin-
gularities of PDE on M-Fourier Lebesgue spaces, cf. Sect. 7, this section is
devoted to the construction of the parametrix of a M-elliptic operator with
symbol in Sp7 5 .-

We first recall the notion of M-elliptic symbol, we are going to deal with, see
9], [10].

Definition 7 We say that a(z,§) € S} 5, or the related operator a(z, D), is
M-elliptic if there are constants cgp > 0 and R > 1 satisfying

la(@, &) > col€)hy, VY (2,6) €R*™, [€ly > R. (66)

Proposition 6 Form € R, k > 0 and 0 < 6 < p./p*, let the symbol a(x, ) €
V... be M-elliptic. Then there exists b(x, &) € Sy, . such that b(z, D) is a
parametriz of the operator a(x, D), i.e.

b(z,D)a(x,D) =1+ l(z, D), a(z,D)b(z,D) =1+ r(z,D), (67)

where I is the identity operator and l(x,D), r(x,D) are pseudodifferential
operators with symbols l(z, &), r(z,§) € S™.
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Proof The proof follows the standard arguments employed in construcing the
parametrix of an elliptic operator, see e.g. [5].

The first step consists to define a symbol by(x, &) to be the inverse of a(z, &),
for sufficiently large £, that is

bo(@,€) = (&) 3" F ()" a(x,©)) (68)

with some function F' = F(z) € C*(C) satisfying F(z) = 1/z for |z| > ¢
and where ¢q is the positive constant from (66). From the symbolic calculus
in the framework of S37 5 (cf. [10]), it is easily shown that by(z,§) € S},’s and

p1(x, &) == (atib)(x,€)—1 € SE:S(I/“*_‘S/“*), where, according to the notation
introduced in Proposition 5-(iii), affby stands for the symbols of the product
a(z, D)by(z, D).

Then an operator b(x, D) satisfying the second identity in (67) (that is a right-
parametrix of a(z, D)) is defined as b(x, D) := by(z, D)p(x, D) and where

+oo

p(z, D) is given by the Neumann-type series p(z,D) = 3 pi(x, D); more
§=0

precisely, p(z, D) is the pseudodifferential operator with symbol associated to

/" =6/ )i
0

the sequence of symbols p;(z,§) € S;[E recursively defined by

po:=1 and p;:=pilpj_1, forj=1,2,....

Since the sequence of orders —(1/u* — /. )j tends to —oo, once again in view
of the symbolic calculus in S35 (cf. [10]), a symbol p(z, &) € S§; 5 such that

p— Z pj € 5;4(7(15/“*_5/“*)1\], for all integers N > 1,
Jj<N

is defined uniquely, up to symbols in S™°°.

One can finally show that b(x, D), constructed as above, is a (two sided)
parametrix of a(z, D), see e.g. [5, Ch. 4] for more details.

In view of Proposition 5, to end up it is sufficient to show that the sym-
bol bo(z,&) € S/, defined in (68), actually belongs to S,,% ., that is its
derivatives satisfyyestimates (11), (12). Since these estimates,(;nly require a
more specific behavior of x—derivatives, compared to a generic symbol in

Sils» we may reduce to check their validity for xz—derivatives alone. Be-

cause (§),/" a(x,§) € Sg/f,é,m we are going to only treat the case of a symbol

a(z, ) € SR/I@K.
For an arbitrary nonzero multi-index 8 # 0, from Faa di Bruno’s formula, we
first recover

18]
0000(x, ) <Y Y 108 a2, €)] ... 107 alx, €, (69)

k=1 Bl4.tpr=p

where C}, is a suitable positive constant depending only on k > 0 (notice that
the function F' is bounded in C together with all its derivatives), and where,
for each integer k satisfying 1 < k < |8|, the second sum in the right-hand
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side above is extended over all systems {3, ..., 3%} of nonzero multi-indices
B7 (j =1,...,k) such that g1 +--- 4 gF = .

To apply estimates (11), (12), different cases must be considered separately.
Let us first assume that (8,1/M) # k. Since a € Sg/j’éﬁ, we have

0 afe, )] < GO or 10 aa, )] < Clog(14+(6)4) , (70)
for all integers 1 < k < |f] and 1 < j < k, according to whether (57,1/M) # k
or (9,1/M) = k, and suitable constants C; > 0.

If (3,1/M) < k then (87, 1/M) < k for all j = 1,...,k and every 1 < k < |8,
and

02bo(, )| < s = Gy T
follows at once from (69) and (70), with suitable Cg > 0.
Assume now (f,1/M) > k, so that, for a given integer 1 < k < |8| and
an arbitrary system {8!,..., 8%} of multi-indices satisfying B! + --- + ¥ =
B, it could be either (37,1/M) # k or (37,1/M) = k for different indices
j=1,...,k; up to a reordering of its elements, let {8',..., 3%} be split into
the sub-systems {3, ..., 8%} and {S¥*1 ..., B*} (for an integer k" with 1 <
k' < k) such that (87,1/M) # k for all 1 < j < k" and (B*,1/M) = & for all
k' 4+ 1 < ¢ < k% In such a case, from (69) and (70) we get

El . y
00b0(z, )] <> Cr Y (AT A T
k=1 Bt pr=p (71)
k—k'
x (log(1+(6)3s) -
Under the previous assumptions, it can be shown that
(8" 1/M) = k)4 + -+ (B, 1/M) = k)1 < (8, 1/M) = )+,

where we have set 8’ := 814 -+8* . Suppose (8/,1/M) < « (thus ((8,1/M)—
k)4 = 0); since (8,1/M) > k, we have

S{BY /MY =) 44+ (B 1/ M)~k k—k'
<§>1\/{I(<ﬁ /M) =K)4+-+({B" ,1/M)—rK)4} (10g(1+<£>§\4))

< (YT (10g(1 4 (6)3)) T = (log(1 +(€)5) T (™)
< g <£>%<571/M>—5) = Copm <£>¢15V(I(ﬁ»1/M>—f<)+ '

Suppose now (8',1/M) > x (hence ((8',1/M) — )+ = (8',1/M) — k). Since
(B,1/M) > (', 1/M), we get

<@%“”W%MAwmwnm%@ﬁ0%u+@m»“”

A

k—k'
)

<O (1051 + (041)" "

= (6)58 1= (10g(1 + (£)3,)) (73)

< g <§><15\;{[((ﬂ',1/M>—N)+(<B71/M>—<,6",1/M>)}

5((B,1/M)—x)

S((B,1/M)—k
= a0, 0e k(€)1 = cg 5 (€)M T

2 Of course when k = 1 then only (8',1/M) = (8,1/M) > & can occur.
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In the boarder cases of a system {3!,..., 3%} where either (37,1/M) # & for
all j or (87,1/M) = k for all j3, all preceding arguments can be repeated, by
formally taking &' = k in (72) or ' = 0 and k¥’ = 0 in (73) respectively; thus
we end up with the same estimates as above. Using (72), (73) in the right-hand
side of (71) leads to

(({B,1/M)—k
10200 (2, €)] < Cafe) P

5.3 Continuity of pseudodifferential operators with symbols in S}7 ;5 .

Throughout the rest of this section, we assume that M € R’} has all integer
components. The Fourier-Lebesgue continuity of pseudodifferential operators
with symbols in Sﬁ s, 1s recovered as a consequence of Theorem 1.

Taking advantage from growing estimates (11), (12), we first analyze the
relations between smooth local symbols of type Sy; 5 . and symbols of limited
Fourier-Lebesgue smoothness introduced in Sect. 2.2 .

Proposition 7 For M = (u1,...,u,) € N*, m € R, § € [0,1] and £ > 0,
let the symbol a(z,§) € Sy 5 . satisfy the localization condition (14) for some
compact set K C R™. The for all integers N > 0 and multi-indices o € 72"}
there exists a postive constant Co v x such that:

(MN108a(n, €)] < Con (&) (CVMITN=L 0 p N, (74)

(MNOE a0, O < Canac @ ™M log(1+ (%), if N=r, (75)
where a(n, &) is the partial Fourier transform of a(x,§) with respect to x:
a(n,€) =a(-,€)(m), V(0,6 € R*™.

Proof For an arbitrary integer N > 0 we estimate
myr<Cn Y. In’l, VneRr”,
(B,1/M)<N

with some positive constant Cy > 0 (independent of M), hence for any o € Z7
(mirlogam. el <Oy Y Pogam.)l=Cn Y 1050¢a(n,€)|
(B,1/M)<N (B,1/M)<N
=Cy Z

/e‘”"mﬁf(‘)?a(x,f)dx < Cn Z /|8£8?a(x,§)|dm.
(B1/My<N 1K (CRVIVES

Thus, we end up by using estimates (11), (12) under the integral sign above.

Remark 10 Notice that estimates (75) are satisfied only when x > 0 is an
integer number.

3 Notice that, under (8,1/M) > k, this second case can only occur when k > 2.
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As a consequence of Proposition 7 we get the proof of Theorem 2

Proof (Proof of Theorem 2) For k satisfying (13), consider the estimates (74),
(75) of a(n,&) with N = N, := [n/u.] + 1. For sure, estimates (75) cannot
occur, since N, is smaller than x, whereas estimates (74) reduce to

108a(n,€) < Can, (€7 MmN, V(&) eR™.  (76)
On the other hand, the left inequality in (4) yields
M- < Cm)y~N, ¥YneR",

from which, (-);/V* € L*(R™) follows, since i, N, > n. Then integrating in RY
both sides of (76) leads to

18¢a(-, &)l zrt < Canupcl)yy M, veeR, (77)

which are just estimates (8).

For an arbitrary integer r > 0, we consider again estimates (74), (75) of
a(n, &) with N = N, :=r 4 [n/u.] + 1. Notice that from (13)

N, —k <N, —[n/us] —1=r, hence (N,—k)y <rp=r1.

Then (74), (75) lead to
(a0, )] < Covy il (5 M, if N, # 5

(31088, )| < Can, )it (€5 M log(1 + (€)3,) , otherwise,

where N, = [n/u.] + 1 as before. Then using the trivial estimate
log(1+ (€)3,) < Cr{€)3r, VEER"

and integrating in R} both sides of inequalities above gives

m—{a, or
10ga(n, )l 71: ,, < Can, (€ MHT . veer,

which are nothing else estimates (9) with p = 1 (so ¢ = +00). Together
with (77), estimates above prove that a(z, ) € fL%7MSA”}’5(N), for all integer
numbers r > 0 and N > 0 arbitrarily large.

Then applying to a(z,&) the result of Theorem 1 with p = 1 and an ar-
bitrary integer r > 0 shows that a(z, D) fulfils the boundedness in (15) with

p=1.
Now we are going to prove that the same symbol a(x,&) also belongs to

the class FL9,(N) with an arbitrary integer number r > n/u, and N > 0
arbitrarily large, so as to apply again Theorem 1 to a(x, D) with p = +o0. To
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do so, it is enough considering once again estimates (74) for a(n, &) with an
arbitrary integer N = r > k; noticing that, under the assumption (13),

r—Kk<rT—n/us, hence (r—r)y <(r—m/p)s=r—n/p.,
estimates (74) just reduce to

a m—{a, S(r—m/ iy n
10ga (-, )l 7L, < Canp(€)yy CV/MHCTID 1 ye e R

which are exactly estimates (9) with p = +oo (the number of {—derivatives
which these estimates apply to can be chosen here arbitrarily large). So, as
announced before, Theorem 1 can be applied to make the conclusion that the
boundedness property (15) holds true for a(x, D) with p = +00 and an arbi-
trary integer r > &, and this shows that a(z, D) also exhibits the boundedness
in (15) with p = +o0.

To recover (15) with an arbitrary summability exponent 1 < p < +o0
it is then enough to argue by complex interpolation through Riesz-Thorin’s
Theorem.

Remark 11 Let us remark that assumption (14) on the x support of the sym-
bol a(z,&) amounts to say that the continuous prolongement of a(z, D) on

FL.,,, a takes values in FL? ; only locally, see the next Definition 8.

6 Decomposition of M-Fourier Lebesgue symbols

As in the preceding Sect. 5, we will assume later on that vector M = (u1,. .., tn)
has strictly positive integer components.
For m,r € R, p € [1,+00], 6 € [0, 1], we set

FL pSiis = () FLy Sk 5(N)
N=1

and fo,MS}\’/} = ]:Lf,MSﬁ,@ In order to develop a regularity theory of M-
elliptic linear PDEs with M-homogeneous Fourier Lebesgue coefficients, in the
absence of a symbolic calculus for pseudodifferential operators with Fourier
Lebesgue symbols (in particular the lack of a parametrix of an M-elliptic
operator with non smooth coefficients), following the approach of Taylor [23,
§1.3], we introduce here a decomposition of a M-Fourier Lebesgue symbol
a(x,§) € FLY ST as the sum of two terms: one is a M-homogeneous smooth
symbol in S} 5 and the other is still a Fourier Lebesgue symbol of lower order,
decreased from m by a positive quantity proportional to §, where 0 < § < 1 is
given, while arbitrary.

Such a decomposition is made by applying to the symbol a(zx,&) a suitable
“cut-oft” Fourier multiplier, “splitting in the frequency space the (nonsmooth)
coefficients of a(z,£) as a sum of two contributions”.
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Let us first consider a C*°—function ¢ such that ¢(§) = 1 for ({)u <
1 and ¢(§) = 0 for (&) > 2. With a given € > 0, we set ¢(5ﬁ£) =
qﬁ(sﬁgl, e ,smingn) and let ¢(em D) denote the associated Fourier multi-
plier.

The following M-homogeneous version of [23, Lemma 1.3.A], shows the be-
havior of ¢(5ﬁ D) on M-homogeneous Fourier Lebesgue spaces.

Lemma 7 Letp € [1,+00] and € > 0 be arbitrarily fized.

(i) For every B € 27} and r € R, the Fourier multiplier D’%(Eﬁ D) extends

as a bounded linear operator Dﬁgb(eﬁ D): FL?,, — FLY,, and there is a
positive constant Cg, independent of €, such that:

1D ¢(e3 DYull e, < Coe™ P30 ullpre , Vue FLE 5 (78)

(ii) Forallr € R andt > 0, the Fourier multiplier I—¢(e3 D) (where I denotes
the identity operator) extends as a bounded linear operator I — qﬁ(sﬁ D) :
FL} oy — FLY_, o and there exists a constant Cy > 0, independent of ¢,
such that:

lu—¢(e™ Dyullzrr_, , < Cietllullrrr,, . YueFLE,:  (79)

r—t,M —

(iii) If r > ﬁ, where % +é =1, and B € Z, then DBG(eYMD) and T —
¢(ev D) extend as bounded linear operators DP¢(e'/M D), I — ¢(e v D) :

FL, o — FL' and there are constants Cy. g and C.., independent of €, such
that:

—((B,1/M)—(r— 2=
| DPp(eM D)ul| 711 < Cr ge (82720~ “*q))+||“||fL’X4.w
if (B,1/M) #£r — >

Hxg’

1D $(MM Dyul| zr < Cplog' (L + el £ry (80)

if (BMy=r— 2

b

lu—¢(e3 Dyullpp1 < Cre™ 72

|u||]:l’lr7,M7 Vue]:Lf)M

Proof (i): From the properties of function ¢, one can readily show that for any
B € Z} there exists a constant Cz > 0 such that:

P (e €)| < CpeBUM | Ve e R, Ve €]0,1].

Then estimate (78) follows at once from Holder’s inequality.

(ii): Similarly as for (i), for ¢ > 0, one can find a positive constant C; such
that:
()31 —p(e/Me))| < Cie’, VEER™, Ve €]o,1],

then estimate (79) follows once again from Holder’s inequality.
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(iii): The extension of DP¢(e3 D) and I — ¢(e3 D) as linear bounded
operators from FL7,, to FL' follows at once from a combination of the
continuity properties stated in (i), (ii) and the fact that the space FL} ,, is
imbedded into FL! when r > e

For (8,1/M) < r — ﬁ, we directly have
1D $( /M Dyul| 511 = / €716V e |a(e)de

and 0 < ¢ < 1 implies |£°%|p(e'/M¢) < (€ ) (8.1/M) " Combining the above and
since («>§5’1/M> € LT asr—(8,1/M) > ", Holder’s inequality yields

ID?6(eM Dyull 11 < Croppllull zrr

M

1/q
where C;. g p := <f Wdf) . The above formula is (80), for (8,1/M) <

T_n

For (67 1/M) > r — -2 we first write

1D $(/M Dyul| 11 =

h=-1

Lt

where, for every integer h > —1, we set Uj, = @1, being {¢p, },-_, the dyadic
partition of unity introduced in Sect. 3.

Since ¢(e'/M&)a, = 0, as 1ong as the integer h > 0 satisfies 2~ %2}”1
(that is h > logy(4K/€)), cf. (33), (35), from (81), 0 < ¢ <1,

€8] < 1€ \0YM) < O 2B oy € e O
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with a constant C'x g > 0 independent of h, and Hoélder’s inequality, it follows

[log, (4K /€)]
DR M Dyl < S /|§ﬁ|¢(s”Mf>|ah<£>|ds

h=-—1
oM.k

h

[log, (4K /¢)]

<Ckp Z o1/ / AIIS
h=-—1 Cﬁ/f’k
[log, (4K /€)]
—Ca Yy, 27 [ tERE e
h=——1 it
1/4q
[log, (4K /€)]
<Ckp Z oho /2_hﬁ ||2hrﬂhHLp
h=——1 P
h
[log, (4K /¢)]
<Crpmp 212" GnllLr,
h——1

where we used f d¢ < O, KmQhk%?, for a constant Cy g, independent of h,

M,k
Ch

and it is set Cx g pnp 1= CKﬁC:,/I%,n and o := (8,1/M) — (r — ;). Hence, we
use discrete Holder’s inequality with conjugate exponents (p, ¢) and the charac-
terization of M-homogeneous Fourier Lebesgue spaces provided by Proposition
2 to end up with

llog, (4K /)] e
1D ¢ MDyullppr < Crpnp | D 2| Nlullrpe,, . (82)
h=-—1
and
[log, (4K /€)] [logy (4K /€)]
. ghoq — goalllog,(iK/2)) 3 g-oalllog, (1K /2)]-h)
[l W (83)

< (4K/e)71C5,q = Crooqc 77,

where C, ;== > 2799 is convergent, as o > 0, and Ck 4 := 4KC, 4 is inde-
j=0

pendent of €. Inequality (80), for (8,1/M) > r — 7 follows from combining

(82), (83).

To prove (80),, we repeat the arguments leading to (81)—(82) where (3,1/M) =
T — ﬁ (that is o = 0), use discrete Holder’s inequality and Proposition 2, to
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get:
[log, (4K /¢€)]
ID?¢(eMDyull s < Crpnp . 112" G| 1o
h=-—1
logz (4K /e)] \ M9
SC'K,nn,p Z 1 ||U||fo’M
h=—

= Cityrinp (2+ [logy (4K /) ull 71,

< Cle ponplog" (14 =™l zr

The proof of inequality (80), follows along the same arguments used above.
We resort once again to Proposition 2 and Holder’s inequality to get

(2 = (/M D))ull zrr = 11 = (/M) e = [|(1 = d(/M) D an

h=-—1 Lt
< 3 @6 M an]
h>log2(211<5)
1 — (/M. R
< X H( eIy

()

La

h>log2( S )

where for an integer h > —1, xy, is the characteristic function of C,é/[’K and we
use (1 — ¢(e/M.))pp, = 0 for K21 < 1/¢, cf. (33), (35). Arguing as in the
proof of Proposition 2 yields

1) e < Crp2™ e, Yh> -1,

with positive constant C,., depending only on r and p. Using again the prop-
erties of functions ¢ and ¢y’s, we also get, for any h > —1,

(L= o™ Nxan " _ (1—g(e!/Me)) | 1
H O e ‘/c;y« GR d“/cgm GI

< Cr,qZ#hq/ dg = C’ﬁp,u*,K,n2h(7rq+n/#*)
crE

(with obvious modifications in the case of ¢ = oo, that is p = 1); here and
later on, C; p .. k,n Will denote some positive constant, depending only on r,
D, Wy, K and the dimension n, that may be different from an occurrence to
another.

Using the above inequalities in the previous estimate of the L' —norm of
(1 — ¢p(e/M.))a, together with Hélder’s inequality and Proposition 2, we end
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up with

IT=¢( ™M D)ull prr < Crppeien » . 27D 2G| o

h>40g2(2é6)
1/q l/p
< Crppicn | D 2HCrern/) S 2,
h>log2(2}(5) h>—1
1 T L(—rq+n/ ) e
< Crppesin | 3302 > 2 lullzrs, |
£>0

< Cr,p,u*,K,nE Wed |u||FL§’MTa

since the geometric series 3 2¢(=74+n/1+) is convergent for r > ﬂ
£>0

Remark 12 As already noticed in the proof of the above Lemma 7, for r >
1

7.5 the continuity of the operator DP¢(en D) from FL? o to FL' readily

follows from the continuity of the same operator in FL” r and the validity of

the continuous imbedding of FL? v into F L'; combining the above with the
inequality (78) also gives the followmg continuity estimate

1 _ 1
IDP (e D)u| 11 < Cpe <B’M>||U||fo,M , YueFLY

Notice however that inequalities (80), , provide an improvement of the conti-

nuity estimate above, as they give a sharper control of the norm of D”? (b(aﬁ D),
with respect to ¢, as a linear bounded operator in L(]—'L’;M; FLY).

Remark 18 In the case of r > = q, applying statement (ii) of Lemma 7 with

0 <t < r— -2 and taking account of prM C FL', with continuous
imbedding, ylelds that

1
lu— ¢(e™ Dyullrrr < Cie'llullprr . Yue FLY

holds true with some positive constant C;, independent of €. Notice, however,

that the endpoint case t = r — ﬁ (corresponding to statement (iii) of Lemma

7) cannot be reached by treating it along the same arguments used to prove
statement (ii) above; indeed, in general, FL”. ,, is not imbedded in FL
Bxq’

(that is (-)"7wa ¢ L9).

Let a(z,§) belong to FLY /St and take § €]0, 1]; we define

Zfb “W D, )a(@, )en(€), (84)

h=-1
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and set
a*(z,&) == a(z, &) — a¥(x,¢). (85)

As a consequence of Lemma 7, one can prove the following result, which will
play a fundamental role in the analysis made in Sect. 7.4.

Proposition 8 Forr > ﬁ and m € R, let a(x,§) € .FLvaS]\"j and take an
arbitrary 6 €]0,1]. Then
a#(x,f) € S]\W/},(;,rm

75 __n
where k =1 — o moreover af(z,€) € fo7MSA7;’5 (v “*q),

Proof For arbitrary «, 8 € Z%, from Leibniz’s rule we get

IDZDga* (- &)l 71

+o00
=2 (a> > IDZo(2= % DYDE™a(- )l rrs IDEwon(©)
e (86)

v<a

ho+No
=3 (9) % Ipoe ¥ D)Dg )l s DZan(E)]
h=ho

v<a

where, for every £ € R", the integers Ny > 0 (independent of &), ho = ho(§) >
—1 and hg = ho(€) are the same as considered in (34), (39).

On the other hand, because r > ﬁ, applying to u = Dg‘_”a(~, €) the inequal-
ities (80); , with e = 27" and using estimates (9) and (47), we get for h > —1
and £ € C,JL\/I’K

—2h a—v —K a—v
IDE¢(2~ 5 D)D" a(-,€) | 711 < Cp g2 PN | DEVa(-, €) | 1,
—(a—v,1/M)Y+56({(8,1/M)—kr) .
< Crapu (e @ MR (8, 1/M) £k,
—oh a—v a—v
IDSé2 % D)DE a(-,€)|| rrr < Cplog! (1 +2) | DE~a(-,€) | rrs, .
< Criayw log!a(1 + (€)5) () /M)
< Cr o log(1+ (€3 M i (8,1/M) = &,

and
DY on(€)] < Cu(€) 3™,

with suitable positive constants C; g, Cr a.8,0s Cr, Cr a,v, Cy independent of h.
Then summing the above inequalities over all h’s such that hg < h < hg + Ny,
from (86) it follows that

a m—(o,1/M)+8((B,1/M)=r), .
IDZDga* (- &)l 7z < Cas(€) s T i (8 1/M) # 5,

IDEDga* (-,€) || rrr < Cap€)y M log(1+(€)%,), i (B,1/M) =k,
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from which a*(z,&) € S 5 . follows at once, recalling that FL' is imbedded
in the space of bounded continuous functions in R™.

As regards to symbol a?(z,€) defined in (85), applying inequalities (79)
with ¢t = 0, together with estimates (9) and (47), and using similar arguments
as above, for all integers h > —1 and £ € C}JLW’K we find

HD?ah(wf)HfoM
ho+No
<> X ( )n (I = (27N D)) (D~ a( &) 71, ID" o1 (€)
v<a p=h,
ho+No
<Y Y CaulDEal ) FLe,, 1D R (€)]
v<a p=hy
ho+No

< Z Z m (a— ul/]\/1><§>x4<1/,1/M) SC@<§>E_<O(71/M>,

v<a p— ho

with positive constants C, ., C’; », Cqo independent of h; similarly, replacing
(9) with (8) and (79) with (80), (with ¢ = 27"%) in the above estimates, we

find
IDga (-, &)l 7

ho+No

2333 ( )| (I — 6(27"/ D)) (D~ a(-. )| 71 D" on(€)]

v<a p— h
ho+No
- #)||Dga(-, )l 71z

| D" on(§)]

r M
v<a p= ho

ho+No

<> Y ¢ - m)<£>n&—<a—u,1/M><§>A—4<u,1/M>

v<a p=h,

m—34 (e,1/M)
< Cafg U eAn,
where the numerical constants involved above are independent of hA. The above

m— (r— ﬁ)

inequalities yields a®(z, &) € FL 0rSars
of h and that the C,ILV[’K% cover R™.

, because of the arbitrariness

7 Microlocal properties

In order to study the microlocal propagation of weighted Fourier Lebesgue sin-
gularities for PDEs, this section is devoted to define local/microlocal versions
of M-Fourier Lebesgue spaces as well as M-homogeneous smooth symbols
previously introduced in Sects. 3, 5, and to collect some basic tools and a few
results needed at this purpose.
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7.1 Local and microlocal function spaces

While the main focus of this paper is on M-homogeneous Fourier Lebesgue
spaces, in this section we define general scales of function spaces, where the
microlocal propagation of singularities of pseudodifferential operators with M-
homogeneous symbols, as defined in Sect. 5, will be then studied.

Let us consider a one-parameter family {X;}scr of Banach spaces X, s €
R, such that

SR™") Cc X C X, CS'(R"), with continuous embedding,

for arbitrary s < t. Following Taylor [23], we say that {X }ser is a M-
microlocal scale provided that there exists a constant kg > 0 such that for
all m € R, 0 € [0,1[, K > Ko and a(x,§) € S} ;. satisfying (14) for some
compact K C R", the pseudodifferential operator a(x, D) extends to a linear
bounded operator

a(z,D): Xysry — Xy, VseR. (87)

In view of Theorem 2, it is clear that for every p € [1, +00] the M-homogeneous
Fourier Lebesgue spaces {FL? |, }scr constitute a M-microlocal scale, accord-
ing to definition above; in this case the threshold k¢ considered above is given
by ko = [n/p«] + 1. Other examples of M-microlocal spaces are provided by
M -homogeneous Sobolev and Hélder spaces studied in [10]4.

In order to allow the microlocal analysis performed in subsequent Sect. 7.2,
the following local and microlocal counterparts of spaces X5, s € R, are given.

Definition 8 Let s € R, zp € R™ and £ € R™\{0}. We say that a distribution
u € S'(R™) belongs to the local space Xsoc(z0) if there exists a function
¢ € C§°(R™), satisfying ¢(zg) # 0, such that

pu € X .

We say that u € S’(R") belongs to the microlocal space Xs mel (7o, %) provided
that there exist a function ¢ € C5°(R"), satisfying ¢(zg) # 0, and a symbol
P(€) € SY,, satisfying ¥(£) = 1 on I'ny N {|€|p > €0} for suitable M-conic
neighborhood I'yy € R™\ {0} of €Y and 0 < g < |€°| s, such that

(D) (du) € X

Under the same assumptions as above, we also write

xo ¢ Xy —singsupp (u) and (xg,&%) ¢ Wy, (u)

respectively.

4 Actually for M-homogeneous Sobolev and Holder spaces, the continuity property (87)
is extended to all pseudodifferential operators with symbol in S}(}’ 5» Without the need of the
more restrictive decay conditions in Definition 4 and of the locality condition (14), see [10,
Theorem 3.3 and Corollary 3.4].
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In the case X* = F LZ A it is clear that Definition 8 reduces to Definition 5.
It can be easily proved that X5 — singsupp (u) is a closed subset of R™ and is
called the X,—singular support of the distribution u, whereas WFy_ (u) is a
closed subset of T°R™, M — conic with respect to the £ variable, and is called
the X;—wave front set of u. The previous notions are natural generalizations
of the classical notions of singular support and wave front set of a distribution
introduced by Hormander [15], see also [16].

Let m; be the canonical projection of T°R™ onto R", that is m(z,£) = «.
Arguing as in the classical case, one can prove the following.

Proposition 9 if u € Xsma(zo,&°), with (20,6°) € T°R", then, for any
o € C§(R™), such that p(zo) # 0, pu € mclXs me(z0,£°). Moreover, we
have:

X, — singsupp(u) = 71 (W Fx,_(u)).

7.2 Microlocal symbol classes

We introduce now microlocal counterparts of the smooth symbol classes given
in Definitions 3, 4 and studied in Sect. 5.

Definition 9 let U be an open subset of R™ and I'yy € R™\ {0} an open M-
conic set. For m € R, § € [0,1] and k > 0; we say that a € S’(R?") belongs to
Sir.s (resp. to Sars,) microlocally on U x I'ns if aj yxr,, € C(U x I'yr) and
for all o, 8 € Z7} there exists Cy g > 0 such that (10) (resp. (11), (12)) holds
true for all (x,§) € U x I'yy. We will write in this case a € mclSyj ;(U x I'n)
(resp. a € mclSy) 5 (U x I'n)). For (w9,&%) € T°R™, we set

mclSA"})(s(,K)(xo,fO) = U mel Sy s () (U x I'n),
U, I'ns

where the union in the right-hand side is taken over all of the open neighbor-
hoods U C R™ of xg and the open M-conic neighborhoods I'yy € R™ \ {0} of
£°.

With the above stated notation, we say that a € S'(R™) is microlocally

reqularizing on U x I'y if aj yxp,, € C°(U x I'y) and for every p > 0 and
all o, 8 € Z7} a positive constant C), o, > 0 is found in such a way that:

0805a(z,€)| < Crap(1+1E)7", V(z,§) €U x Iy .

Let us denote by mclS~™>°(U x I'y;) the set of all microlocally regularizing
symbols on U x I'yr. For (x9,£0%) € T°R™, we set:

melS™ (g, £°) = U melS™°(U x I'n);
U, T
it is easily seen that mclS™>(U x I'ng) = [, melSy,/5(U x I'ny) for all
§ €[0,1] and M € N, and a similar identity holds for mel S~ (zq, £9).
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It is immediate to check that symbols in mclSy; s(U x Inr), melSyy s(xo,£°)
behave according to the same rules of “global” symbols, collected in Proposi-
tion 5. Moreover S} 5 .y C mclSy) 5 (U x I'ng) C melSy; 5 (w0, £%) hold
true, whenever (¢, &%) € T°R™, U is an open neighborhood of xg and I'y; is an
open M-conic neighborhood of £°. A slight modification of the arguments used
to prove Proposition 6, see also [10, Proposition 4.4], leads to the following
microlocal counterpart.

K)

Proposition 10 (Microlocal parametrix). Assume that 0 < 0 < p./p*
and > 0 and let a(z,§) € S} 5, be microlocally M-elliptic at (w0,&%) €

T°R™. Then there exist symbols b(x, ), c(z,€) € Sy’ . such that
c(z,D)a(x,D) =1+ 1(z,D) and a(x,D)b(x,D)=1+r(z,D),

and I(x,€),r(x,€) € mclS™° (o, £°).

The notion of microlocal M-ellipticity, as well as the characteristic set, see
Definition 6, can be readily extended to non-smooth M-homogeneous symbols
(as, in principle, it only needs that the symbol a(z, £) be a continuous function,
at least for sufficiently large £); in particular, microlocally M-elliptic symbols
in FL? ST, with sufficiently large » > 0, must be considered later on. For
a symbol a(z,§) € FLV , ST, with r > o PbE [1,+00] and % + % =1, for
every 0 < § < 1 let the symbol a#(z,€) and a®(z,€) be defined as in (84),
(85).

The following result can be proved along the same lines of the proof of [10,
Proposition 7.3].

Proposition 11 If a(z,£) € FLY , ST, m € R, is microlocally M-elliptic
at (x9,€%) € T°R", then a¥(x,€) € 8§} 5. (with k as in the statement of
Proposition 8) is also microlocally M -elliptic at (xq,£°) for any 0 < § < 1.

7.3 Microlocal continuity and regularity results

Let {Xs}secr be a M-microlocal scale as defined in Sect. 7.1. The follow-
ing microlocal counterpart of the boundedness property (87) and microlocal
Xs—regularity follow along the same lines of the proof of [10, Theorem 5.4 and
Theorem 6.1].

Proposition 12 For 0 < § < u./u*, K > ko, m € R and (x0,£°) € T°R™,
assume that a(z,§) € S37 5N mclSA%(;,n(xo,fO). Then for all s € R

AS Xs—i—m,mcl(ango) = CL(JJ,D)U € Xs,mcl($07€0) .

Proposition 13 For 0 < § < p./p*, k> ko, m € R, let a(z,§) € Sy} ;5. be
microlocally M-elliptic at (zg,&°) € T°R™. Then for all s € R

ue S (R") and a(z,D)u € X&md(xo,go) = wuc Xs+m,mc1(a:0,§0) .
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Resorting on the notions of M-homogeneous wave front set of a distribution
and characteristic set of a symbol, the results of the above propositions can
be also restated in the following

Corollary 2 For 0 < 0 < p./p*, K > ko, m € R, a(z,§) € Sy}, and
u € §'(R™), the following inclusions

W Fx, (a(x,D)u) C WFx,,,, (u) C WFx,(a(x, D)u) U Char(a)
hold true for every s € R.

As particular case of Corollary 2 we obtain the result in Theorem 3

7.4 Proof of Theorem 4

This section is devoted to the proof of Theorem 4 concerning the microlocal
propagation of Fourier Lebesgue singularities of the linear PDE (16). As it
will be seen below, the statement of Theorem 4 can be deduced as an im-
mediate consequence of a more gerenal result concerning a suitable class of
pseudodifferential operators.

Since the coefficients ¢, in the equation (16) belong to FLY | (x¢), it
follows that the localized symbol ay(x,€) := ¢(x)a(x, &) belongs to the symbol
class FL} Sy := FL} 3y, S}y, for some function ¢ € C§°(R™) supported
on a sufficiently small compact neighborhood of xy and satisfying ¢(xg) # 0
(see Definition 2); moreover, by exploiting the M-homogeneity in & of the
M-principal part of a(x,§), the localized symbol ay(z,§) amounts to be mi-
crolocally M-elliptic at (z9, &%) according to Definition 6.

It is also clear that, by a locality argument, for any u € S’'(R")

ag(z, D)u = ag(z, D)(tu), (88)
where ¢ € C§°(R™) is some cut-off function, depending only on ¢, that satisfies
0<y <1, and =1, on suppa. (89)

It tends out that only the identity (88) will be really exploited in the subse-
quent analysis; thus the symbol of a differential operator of the type considered
in (16), with point-wise local M-homogeneous Fourier Lebesgue coefficients,
can be replaced with any symbol a(x, ) of positive order m and local Fourier
Lebesgue coefficients at some point xg, namely

ag(x,€) € FL} 3, Sip, for some ¢ € C5°(R™) satisfying ¢(zo) #0, (90)

so that the related pseudodifferential operator a(xz, D) be properly supported:
while locality does not hold for a general symbol in FL , ST: (unless it is a
polynomial in £ variable ), identity (88) is still true whenever a(z, D) is prop-
erly supported (see [1] for the definition and properties of a properly supported
operator). For shortness here below we write a(z, §) € FL ;,S}} () to mean
that condition (90) is satisfied by a(z, £).
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Theorem 7 For (z¢,£°%) € T°R", p € [1,+00] and r > i {ﬁ} +1, where
q is the conjugate exponent of p, let a(x,§) € fLﬁMSA"j(xo) be, microlocally
M -elliptic at (xo,£°) with positive order m, such that a(x, D) is properly sup-

ported. For all 0 < § < p./p* andm+(5—1)(r—ﬁ) < s <r4+m we

have

p
ue ]:Lsfﬁ(rfﬁ),M,loc(‘ro) ’

= wueFLV, (0,&).
and a(z,D)u € ng_m7M7md(xo,§0) Mol

Proof Let us set f := a(x, D)u for u € fLi,g(r,L) Mloc(xo). Since a(z, D)

is properly supported, suitable smooth functions ¢ € C§°(R™) and ¢ sat-
isfying (88) and (89) can be found, supported on such a sufficiently small

neighborhood of x( that yu € FL’S’_5<T_L) o and ag(@,§) € FLY 5\ Sis cf.
Hxq )’

Definition 8 and (90). Following the decomposition method illustrated in Sect.

6, for 0 < § < ps/p* let af(x,f) € S35, and ai(m,f) € foyMSE:f(r_ﬁ)
be defined as in (84), (85), with a4 instead of @ and where x = r — =, hence
u satisfies the equation

al,(z, D)(ypu) = ¢f — a’y(w, D) (Yu) .

whereas f (so

m—0(r—-—"—
Because ai(z,f) € FL} /Sars ( “*‘Z), Yu € fLi—é(r—ﬁ),M’

also ¢f) belongs to ngfm’M’md(a:o,go) (cf. Proposition 9), for the range of
s belonging as prescribed in the statement of Theorem 7 (notice in particular
that from 0 < § < p./p* < 1 even the endpoint s = r + m is allowed), one

can apply Theorem 1 to find
aj(xv D)(’(/JU) € ]:Lf—m,M,mcl(xO’ 50) )

hence, because k > [n/u.]+ 1, applying Theorem 3 to af (z,€) yields that vu,
hence u, belongs to fL§7M7mCl(x0, €%), which ends the proof.

It is worth noticing that the result of Theorem 7 can be restated in terms
of characteristic set of a symbol and Fourier Lebesgue wave front set of a
distribution as in the next result.

Proposition 14 Let r, m, p, s and & satisfy the same conditions as in The-

orem 7. Then for a(z,§) € FL? S} and u € ]—'Lf_é(r_ v ) we have

Hxq

WFrpr  (w) CWFzrpe  (a(z, D)u) U Char(a) .

The statement of Theorem 7, as well as Proposition 14, applies in particular to
the linear PDE (16) considered at the beginning of this section, thus Theorem
4 is proved.
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