
23 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Popularity-Based Rate Allocation in Multiview-Video

Publisher:

Published version:

DOI:10.1117/12.863826

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

The international spciety for photonics and optics

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1769154 since 2021-01-26T14:03:25Z



Popularity-Aware Rate Allocation in Multi-View Video

Attilio Fiandrottia, Jacob Chakareskib, Pascal Frossardb

aComputer and Control Engineering Department, Politecnico di Torino, Turin, Italy
bSignal Processing Laboratory (LTS4), Ecole Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland

ABSTRACT

We propose a framework for popularity-driven rate allocation in H.264/MVC-based multi-view video commu-
nications when the overall rate and the rate necessary for decoding each view are constrained in the delivery
architecture. We formulate a rate allocation optimization problem that takes into account the popularity of
each view among the client population and the rate-distortion characteristics of the multi-view sequence so that
the performance of the system is maximized in terms of popularity-weighted average quality. We consider the
cases where the global bit budget or the decoding rate of each view is constrained. We devise a simple rate-
video-quality model that accounts for the characteristics of interview prediction schemes typical of multi-view
video. The video quality model is used for solving the rate allocation problem with the help of an interior
point optimization method. We then show through experiments that the proposed rate allocation scheme clearly
outperforms baseline solutions in terms of popularity-weighted video quality. In particular, we demonstrate that
the joint knowledge of the rate-distortion characteristics of the video content, its coding dependencies, and the
popularity factor of each view is key in achieving good coding performance in multi-view video systems.

Keywords: multi-view video, rate allocation, popularity-driven, rate-video-quality modeling, Lagrange opti-
mization, 3DTV

1. INTRODUCTION

Video applications have recently experienced important changes due to both the need for enriched and interactive
services and the development of new vision sensors. In particular, multi-view video has been receiving a lot of
attention lately, as it offers the possibility to encode and deliver simultaneously several views that represent the
same scene from different perspectives. Multi-view video opens the door to many novel and exciting applications
such as three-dimensional television (3DTV) or immersive communications, for example. Furthermore, the
availability of multiple views offers the possibility for the users to choose the content to be displayed in television
or gaming services; it certainly represents an interesting solution for interactive multimedia systems.

The definition of multiple views however clearly increases the storage and bandwidth requirements in inter-
active television services. At the same time, the multiple views certainly convey highly redundant information
due to both temporal and spatial correlation in the set of image sequences. This redundancy can however be
drastically reduced by spatio-temporal prediction during the encoding process. Typically, a joint encoder in
multi-view video can predict an image from neighbor images in the same view or in adjacent views. Recent
standardization efforts in the H.264/Multi-view Video Codec (MVC)1 have shown that joint multi-view encod-
ing frequently achieves better overall compression efficiency than H.264/AVC-based simulcast,2 which simply
consists of independent encoding and transmission of the different views. However, motion and disparity com-
pensation in joint encoding introduces a lot of dependencies between the images. These dependencies have to be
considered carefully in the coding strategy and particularly in the bit allocation strategy when the coding rate
is constrained.

In this paper, we address the problem of rate allocation in multi-view video coding for interactive television
systems. We consider that the different views have different popularity as they get different number of subscribers,
so that the performance of the system is measured as a popularity-weighted average video quality. Then we
address two main allocation problems. In one case, the total bit budget for all the views has to be minimized
in order to control the resources required by the system. In the other case, the bit rate necessary to decode
any of the views in the interactive system is also constrained when users have limited access bandwidth. This



Figure 1: An MVC streaming scenario with global rate constraint RC and access bandwidth constraints RA.

decoding bit rate includes the rate of the view of interest as well as the coding rate of the reference views. The
rate constraints are illustrated in a typical MVC streaming framework shown in Figure 1.

We first propose a simple rate-distortion model for multi-view video, where the quality of each view follows
a increasing logarithmic function of the view encoding rate. In addition, this quality is driven by the quality
or the encoding rate of its direct predictor view. We then formulate a Lagrangian optimization problem that
targets an efficient bit allocation among the different views, such that the popularity-weighted video quality
is maximized while a minimal quality is guaranteed for each of the views and, at the same time, constraints
are imposed on the overall coding rate or on the transmission rate of any view. This optimization problem is
solved by an interior point method.3 We then validate our rate-distortion model by coding experiments with
common multi-view sequences. We show that our rate allocation strategy performs better than baseline solutions
in terms of popularity-weighted average quality in the cases where the total rate or the decoding rate of any
view is constrained. In particular, we show that the distribution of the quality in the different views follows
closely the view popularity distribution and that the gain in average quality can exceed 1 dB. These performance
improvements are due to the fact that our rate allocation strategy considers jointly view popularity, prediction
dependencies, and rate-distortion characteristics when computing its coding decisions.

The resource allocation problem has been widely studied in the video communication community, but the
case of multi-view video coding has surprisingly been largely overlooked. For example, Chakareski et al. have
addressed the resource allocation problem in the scenario where independent video sequences are transmitted
over a shared medium.4 They propose an optimization framework that achieves optimal performance through
an accurate modeling of the rate-distortion characteristics of the contents. While a similar optimization frame-
work based on accurate rate-distortion modeling could be extended to multi-view video, the increased level of
dependencies renders the problem quite complex in this case. A few works have studied the effects of interview
prediction in multi-view coding5 or the modeling of stereoscopic video in the context of communications over
lossy channels.6 The latter introduces a rate-distortion model that takes into account the interview prediction
between left and right views and uses it to optimally allocate the resources in the network. However, the ex-
tension of such a framework to a high number of views is not trivial. To the best of our knowledge, the joint
consideration of view popularity, coding dependencies and rate-distortion characteristics for multi-view video
communication under bandwidth constraints has not been addressed before.

The structure of this work is organized as follows. In Section 2, we formulate the rate allocation problem
that targets the maximization of the popularity-weighted average quality-of-service. Section 3 then proposes
experiments that validate our simple rate-distortion model and examine the performance of our rate allocation
strategy. Finally, conclusions are drawn in Section 4.



2. RATE-VIDEO-QUALITY OPTIMIZATION

Let there be N views of a video scene. The content is experienced by an audience comprising U users. Each
user is characterized with an access link of capacity RA. Let ui denote the number of users interested in view
i = 1, . . . , N . Then, the popularity factor of view i is defined as wi = ui/U . We are interested in assigning
encoding rates Ri, for i = 1, . . . , N , to the various views such that their overall popularity-weighted video quality
is maximized. The optimal allocation needs to satisfy several rate and video quality constraints. In particular,
(i) the overall rate

∑
i Ri should not exceed a total bit-rate budget RC , (ii) the video quality of each view should

not drop below a view-specific threshold, and (iii) the capacity of the access link of a user should not be exceeded.
The above optimization can be formally written as

max
R

N∑

i=1

wiQi(R) (1)

s.t.
N∑

i=1

Ri ≤ RC ,

Qi(R) ≥ Q
(i)
C , for i = 1, . . . , N ,

∑

j�i

Rj ≤ RA , for i = 1, . . . , N ,

where R = (R1, . . . , RN) denotes the vector of allocated rates and Qi(R) denotes the video quality of a view

as a function of the rate allocation. Furthermore, Q
(i)
C denotes the minimum video quality threshold for view i,

while the last line of constraints in (1) captures the fact that for decoding view i all its ancestor views (j � i) in
the multi-view compression hierarchy need to be received as well.

To reduce the complexity of the optimization problem in (1) we model the functions Qi(R) as follows. If
view i is independently encoded, i.e., with no reference to any other view, then Qi(R) becomes Qi(Ri) which we
formulate as

Qi(Ri) = ai + bi ∗ log(Ri) (2)

where the parameters ai and bi are estimated empirically from actual compressed multi-view content. Logarithmic
models, similar to (2), have been commonly used in studies involving compressed single-view (monoscopic) video
content.7, 8 On the other hand, for all predictively encoded views i we simplify Qi(R) to be a function only of
the rates allocated to its reference view(s), in addition to Ri. Specifically, let view i be bi-directionally predicted
from views j and l. Then, we write

Qi(R) = Qi(Ri, Rj +Rl) (3)

=
Rj +Rl −R

(j+l)
min

R
(j+l)
max −R

(j+l)
min

Qi(Ri|Rj +Rl = R(j+l)
max ) +

R
(j+l)
max −Rj −Rl

R
(j+l)
max −R

(j+l)
min

Qi(Ri|Rj +Rl = R
(j+l)
min ) ,

where R
(j+l)
max and R

(j+l)
min are parameters that represent the maximum and minimum rate values that the sum

Rj +Rl can achieve, while Qi(Ri|Rj +Rl = R
(j+l)
min ) and Qi(Ri|Rj +Rl = R

(j+l)
max ) correspond to the model in (2)

describing the quality-rate characteristics of view i when its reference views are encoded at the sum rates R
(j+l)
min

and R
(j+l)
max , respectively. Again, these two characteristics are obtained empirically from the actual compressed

multi-view sequence. Note that in (3) to further reduce complexity we modeled Qi(R) only as a function of
Rl +Rj rather than of their individual values. Finally, in the case of views i encoded predictively from a single
reference view j, the expression (3) is still employed to obtain Qi(R) = Qi(Ri, Rj) where instead of the sum
Rl+Rj we simply use now Rj only. Correspondingly, the minimum and maximum rate parameters then become

R
(j)
min and R

(j)
max, respectively.



Figure 2: Simplified GOP structure of the encoding scheme used in this work.

The optimization in (1) represents a convex programming problem. By employing our models in (2) and (3) we
solve our constrained non linear optimization problem using the interior point method implementation provided
by Matlab optimization toolbox.9 In Section 3, we examine the performance of the proposed optimization and
quality-rate models on different multi-view sequences.

3. EXPERIMENTAL RESULTS

3.1 Setup

We briefly describe the setup used in our experiments. First, we choose to use the coding structure illustrated
in Figure 2, based on a pyramidal temporal prediction scheme where the GOP size is equal to four pictures.
Only for view zero, that is the main view, one picture on every eight is Intra-coded for improved random
temporal accessibility. Even-numbered views are predicted by the lower-id, even-numbered view (e.g.: view two
is predicted from the main view.), while odd-numbered views are bipredicted from the two adjacent neighbor
views (e.g.: view one is predicted from view two and the main view.) This coding structure has been found to
be a good solution for our streaming framework among the coding schemes proposed in.2 In particular, the use
of bipredictive frames permits to reduce the number of reference frames one has to decode in order to display
one specific view, since the decoding path becomes shorter on the average when bipredicted pictures are used
instead of predicted pictures exclusively. This means that the bandwidth requirements are generally reduced in
our streaming scenario, or equivalently that the encoding quality is higher for the given bandwidth constraints.
While the coding structure of Figure 2 represents a good compromise between coding efficiency and flexibility in
an interactive streaming scenario, the algorithms proposed in this paper apply to any multiview coding structure.

We have then used two multiview video sequence, Breakdancer10 and Race.11 These sequences have eight
views each, 100 frames per view and a CIF resolution. We have encoded these sequences at multiple rates in
order to build the video-quality-rate model proposed in the previous section. Since the MVC reference encoder
JMVC12 lacks rate control capabilities, we have implemented the quadratic rate control algorithm described
in13 for the construction of the quality-rate model. This algorithm is used in the H.264/SVC JSVM reference
encoder,14 in the H.264/AVC JM reference encoder15 and is at the basis of a proposal for rate control in MVC.16

We focus on a target encoding quality in the range of 30 ∼ 40 dB, to ensure an acceptable viewing quality. This
respectively represents bitrates in the range of 50 ∼ 250 Kbps and 100 ∼ 350 Kbps for the Race and Breakdancer.
The resulting rate-quality values are used to compute the parameters of the quality-rate model in Eqs. (2) and
(3).

Finally, we consider three different popularity distribution functions in order to model the relative number
of users that request the different views in the multiview streaming system. In particular, we consider the
Flat distribution, where all views have all the same popularity, and Gaussian and Exponential distributions,
where the main view has the highest popularity and the other views have a popularity that follow a Gaussian

or an exponential function, respectively. We further set the minimal quality of any view to be Q
(i)
m for 30 dB,

irrespectively of the popularity distribution.



3.2 MVC Video-Quality-Rate Model
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Figure 3: QR characteristics of the Breakdancer sequence.

We illustrate the accuracy of our Quality-Rate (QR) model by comparing sets of collected samples with the cor-
responding logarithmic models. Figure 3a shows samples of the main view of the Breakdancer sequence collected
at 50, 150 and 250 Kb/s encoding rates. The figure also shows the corresponding interpolated logarithmic curve
as described in Eq. (2), where parameters a and b are set, respectively, to -33.46 and 5.71. The figure shows
that the logarithmic curve interpolates accurately the collected samples. Similarly, Figure 3b shows two sets of
samples for the second view of the Breakdancer sequence. The figure also shows the corresponding logarithmic
curves described in Eq. (3). The close match between samples and curves shows that our model can accurately
estimate predicted views as well. Similar results were obtained for the Race sequence. Then, we compare ex-
pected and actual quality for a set of test encodings and calculate the prediction error as shown in Table 1 (every
view is encoded at 150 Kb/s.) On the average, the error between predicted and actual encoding PSNR is lower
than two percents, which demonstrates the validity of the model.

View Type Expected PSNR [dB] Actual PSNR [dB] Error [%]

Breakdancer Race Breakdancer Race Breakdancer Race
Main AVC 37.52 35.87 37.34 36.05 0.46 0.51
One MVC-B 37.68 38.33 37.63 38.43 0.13 0.28
Two MVC-P 39.00 37.64 39.04 37.56 0.10 0.21
Three MVC-B 37.78 38.36 37.68 38.45 0.24 0.25
Four MVC-P 40.03 38.51 40.02 38.55 0.01 0.10
Five MVC-B 38.16 38.71 38.30 38.84 0.38 0.34
Six MVC-P 39.36 37.86 39.37 37.92 0.02 0.17

Seven MVC-P 37.95 38.26 37.85 38.37 0.26 0.29

Table 1: Expected and actual encoding PSNR for Breakdancer and Race sequences.

3.3 Network Constrained Streaming

We explore in this section the case where the overall encoding rate is bounded uniquely by the constraint RC

(i.e., RA = ∞ in Eq. (1).)
We introduce two rate allocation baseline strategies for performance evaluation. Both strategies allocate a given
bit budget RC without any knowledge of the QR characteristics of the video content. The first baseline strategy
(Baseline-A) is popularity unaware and simply allocates the available bandwidth RC in equal shares for each
view. The second baseline strategy (Baseline-B) is aware of the popularity factor and allocates the bit budget
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(a) Rate allocation function.
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Figure 4: Encoding rate and quality for the different views, Race sequence, Gaussian user distribution, RC =
1.5 Mb/s, RA = ∞.

proportionally to the popularity of the views. In detail, it first allocates every view a minimum bandwidth,
while the remaining bit budget is allocated among the views according to their popularity. Since both baseline
strategies are totally unaware of the QR characteristics of the video content, they cannot however guarantee any
minimum quality. Finally, note that when the view popularity is even (Flat distribution) both baseline strategies
are equivalent.

Sequence Flat Distribution Gaussian Distribution Exponential Distribution

Proposed
Gain vs
Base-A/B

Proposed Gain versus Proposed Gain versus

Base-A Base-B Base-A Base-B
Breakdancer 38.40 0.38 39.00 0.98 0.32 38.52 0.50 0.21

Race 35.77 0.54 36.65 1.40 0.48 36.22 0.97 0.27

Table 2: Weighted encoding PSNR for different bit allocation strategies (RC = 1.5 Mb/s, RA = ∞.)

Table 2 compares our proposed rate allocation scheme with the two baseline strategies. For every distribution
of users we report the weighted quality achieved by our scheme and the gain with respect to the baseline schemes
(higher numbers correspond to better performance of our framework). When the popularity stays even for all
the views (i.e., Flat popularity distribution), our rate allocation scheme performs better than both baseline
solutions. In this case, the knowledge of the QR characteristics of the video content is the unique key to better
quality. When the user population becomes non uniform, Baseline-B performs better than Baseline-A due to its
awareness of the popularity factor. However, our proposed strategy outperforms both baseline schemes because
it is aware of both the popularity factor and the characteristics of the video content.

An detailed look at how the various strategies allocate the bit budget helps to understand why our proposed
scheme outperforms baseline schemes. Figure 4a shows how our proposed strategy and the two baseline schemes
allocate the rate for a Gaussian popularity distribution. The corresponding quality curves are shown in Figure 4b.
Baseline-A allocates the rate evenly among the views: clearly this is the worst possible option since it neglects
both the popularity factor and the QR-characteristics. In fact, not only Baseline-A achieves the worst quality
as shown in Table 2 (loss of 1.40 dB with respect to Proposed), but the quality curve does not match the user
distribution function at all. Baseline-B allocates the rate so that the rate allocation function matches the user
distribution, achieving better weighted quality than Baseline-A and showing a quality distribution function that
resembles more closely the user distribution function. Finally, we see that the rate allocation function of the
proposed strategy accounts both for the user distribution function and the characteristics of the encoded content.



As a result, it achieves higher weighted quality while its quality distribution function closely matches the user
distribution function. In particular, we see that the proposed strategy allocates different rates to views three and
four, as well as to views zero and one, despite equal popularity. Indeed, the proposed strategy is aware of the
coding dependencies between views and allocates the bandwidth so that views used as predictors are assigned
more bandwidth than the others under equal popularity.

Sequence Flat Distribution Gaussian Distribution Exponential Distribution

Proposed
Gain vs
Base-A/B

Proposed Gain versus Proposed Gain versus

Base-A Base-B Base-A Base-B
Breakdancer 36.54 0.53 37.50 1.49 0.63 37.20 1.19 0.51

Race 33.27 0.45 33.81 1.09 0.40 34.04 1.22 0.98

Table 3: Weighted encoding PSNR for different strategies, RC = 1.0 Mb/s, RA = ∞.

The experiments are then repeated by reducing RC to 1.0 Mb/s and the results are shown in Table 3. We see
that the reduced bit budget produces lower PSNR figures, while the gap between the proposed rate allocation
scheme and baseline schemes increases. As the bit budget decreases, the views operate in fact in the steep
low-quality area of their QR curves, where even small differences in bit allocation result in big quality changes.
In this situation the ignorance of the QR model of the baseline strategy is an even more severe handicap and
leads our model-based rate allocation scheme to comparatively better results.

3.4 User-Side Rate Constrained Streaming

We now investigate the case where the capacity RA of the communication lines between the users and the proxy
server shown in the right part of Figure 1 is finite. We present two new different three-stages baseline strategies
that we call Baseline-C and Baseline-D. The strategy Baseline-C, is popularity agnostic. During the first stage,
it allocates the RA bit-budget evenly among view i and its predictors for each view i among the N views of the
system. For example, in the specific case of the second view in Figure 2, the bit-budget RA would be equally
allocated between the main view and view two. Then, during the second stage, for every view i, the lowest
non-zero rate value among the N independently computed values for that view is selected. Step two produces a
single solution that jointly satisfies all the constraints on the links between proxy and the users. However, such
a solution may not satisfy the RC constraint on the distribution network capacity, thus a third step is required.
As a third and final step, if the total allocated bandwidth exceeds the constraint on RC , Baseline-C computes
the number of bits in excess and the rate of each view is reduced by the number of bits in excess over N
We now describe the strategy Baseline-D, which is popularity-aware. During the first stage, for each view i
among the N views of the system, it allocates the available bit-budget RA among view i and its predictors
proportionally to their popularity. The second stage is identical to the second stage of Baseline-C. During the
third stage, if the constraint RC on the distribution network capacity is not satisfied, the exceeding bandwidth
is removed. In particular, due to the fact that Baseline-D is popularity-aware, the rate of each view is reduced
by a number of bits that is inversely proportional to its popularity.

Sequence Flat Distribution Gaussian Distribution Exponential Distribution

Proposed
Gain vs
Base-C/D

Proposed Gain versus Proposed Gain versus

Base-C Base-D Base-C Base-D
Breakdancer 38.12 0.94 38.91 0.81 0.39 38.47 0.35 0.09

Race 35.14 0.53 36.31 1.17 0.14 35.77 0.63 0.29

Table 4: Weighted encoding PSNR for different strategies, RC = 1.5 Mb/s, RA = 1.0 Mb/s.

Table 4 shows how our rate allocation framework performs when RC is equal to 1.5 Mb/s and RA is 1.0 Mb/s. A
comparison with the results relative to the case where RA = ∞ in Table 2 shows that introducing the constraint
on RA produces a general quality reduction. Such a quality drop is expected, since each additional constraint
added to our optimization problem narrows down the search space for the optimal solution. Table 4 shows that



our proposed strategy consistently outperforms the reference schemes in every test scenario thanks to the joint
knowledge of the popularity distribution and the video content characteristics.

4. CONCLUSIONS

We have proposed an optimization framework for rate allocation in multi-view that jointly considers the popu-
larity of each view, the prediction dependencies between the views, and their rate-video-quality characteristics.
In conjunction with the framework, we have designed simple models characterizing the video quality versus
encoding rate trade-offs for both independently encoded and predictively encoded views. Using the models,
we effectively solve the optimization problem under consideration using an interior point method in the case
of constrained overall data rate for the multi-view content and constrained decoding rate of each view. Our
experimental results show that the proposed optimization due to its design provides performance advantages
over baseline schemes that do not consider the rate-video-quality characteristics and the view popularity in their
allocation. Furthermore, our rate-video-quality models show a considerable degree of accuracy when applied on
different multi-view sequences.
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