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Abstract
The notion of solvability, crucial in the λ-calculus, is conservatively extended to a probabilistic
setting, and a complete characterization of it is given. The employed technical tool is a type
assignment system, based on non-idempotent intersection types, whose typable terms turn out to
be precisely the terms which are solvable with nonnull probability. We also supply an operational
characterization of solvable terms, through the notion of head normal form, and a denotational
model of Λ⊕, itself induced by the type system, which equates all the unsolvable terms.
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1 Introduction

In probabilistic computation, the current state of the underlying program or machine can
evolve in different ways depending on the outcome of probabilistic choices, this way turning
an essentially deterministic process into a stochastic one. This computing paradigm has
proved useful, in particular, in the area of cryptography [20] or in so-called randomized
algorithmics [25]. From a theoretical point of view, all evolutions of a computation possibly
contribute to the final result, according to the laws of probability. As a consequence, the
result of a computation, if formalized using rewriting, is not a normal form with respect to
some set of reduction rules, but a probabilistic distribution on all the possible outcomes. If
the languages one has in mind are higher-order probabilistic languages, a natural model to
consider is the λ-calculus, of course enriched with one or more probabilistic constructs.

The simplest approach, followed in [11, 8, 13] consists in endowing the λ-calculus with
an operator ⊕ modeling fair coin flipping. This suffices to reach universality [8]: the
mere presence of binary fair probabilistic choice allows to get all computable probability
distributions on the natural numbers. The resulting calculus, called Λ⊕, is however well-
known to be non-confluent, as recalled in Example 3.2 below. In the literature, such a
problem has been handled by fixing deterministic reduction strategies. In [15], a foundational
investigation of all this has been initiated following a principle stated by Plotkin [28], where
a clear distinction is made between calculi and programming languages: the former consist
of reduction rules (and are thus independent of any reduction strategy), enjoy confluence
and standardization, while the latter are implementations of calculi, obtained by fixing a
deterministic standard strategy. The aforementioned reference [28] is the first considering
Λ⊕ as a calculus in the former sense, endowing it with the β-rule in its full generality, and
a rule dealing with the probabilistic operator ⊕. The main results were that, under mild
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XX:2 Solvability in a Probabilistic Setting

conditions on the probabilistic rule, confluence and standardization hold. This is done both
in presence of call-by-name and of call-by-value evaluation.

In this paper, we continue this foundational investigation, from a semantic perspective.
We restrict ourselves to consider the call-by-name version of Λ⊕, and we study in it the
notion of solvability. Solvability is a central notion in λ-calculus theory: solvable programs
are those which are meaningful, i.e. those that can produce any desired result when applied
to a suitable sequence of arguments. More formally, a closed term M of the usual λ-calculus
is solvable if there is a sequence of terms ~P such that M ~P reduces to the identity. The
importance of this notion is witnessed by the fact that it is sound to equate all unsolvable
terms in any denotational semantics. We define solvability in Λ⊕, in a conservative way
with respect to λ-calculus, as follows. A closed term M of Λ⊕ is said to be p-solvable, where
p ∈ R[0,1] if p is the least upper bound on the probabilities of observing the identity in
the distributions obtained reducing M ~P for any sequence of terms ~P . In order to study
solvability, we use a type assignment system, based on non-idempotent intersection types,
where types are multisets (so intersections) of simple types, weighted by probabilities. The
result we obtain is a complete characterization of probabilistic solvability: an operational
characterization, through the notion of head normal form, a logical one, through typing, and
a denotational one. In fact, the type assignment system we define supplies a model for Λ⊕,
giving not trivial denotation to all and only the p-solvable terms, for a strictly positive real.

Related Work. The idea of endowing the λ-calculus with a form of probabilistic choice is
not at all new (see, e.g., [31, 17, 27, 29, 11, 13, 8]). Most of the introduced idioms, however,
come with a fixed reduction strategy, i.e. they are indeed languages, not calculi, according
to Plotkin’s distinction. To the authors’ knowledge, the only proposals of a probabilistic
λ-calculus in which reduction is studied independently on a specific strategy are the call-by-
name calculus introduced in [22], which stems from the line of work of differential [14] and
algebraic [32] λ-calculi, and the already mentioned work by the first and third authors [15].

The study of semantical properties of probabilistic λ-calculi has itself a long tradition,
starting from the pioneering contributions which introduced and studied the so-called
probabilistic powerdomain [31, 17], down to some deep observations about the technical
problems one inevitably encounters along this route [18], until, e.g., a very recent contribution
about how probabilistic higher-order computation can be reconciled with domain-theoretic
semantics based on continuous functions, through call-by-push-value [16].

An alternative way of giving a denotational semantics to probabilistic λ-calculi based
on coherent spaces has also been investigated [9], and the obtained model has been proved
fully abstract for a probabilistic variation on Plotkin’s PCF [12]. A model (itself based on
coherent spaces) for a calculus very similar in spirit to Λ⊕ has been given [13], and proved
fully abstract [24]. A full abstraction result has also been proved [5] for a model which is
based on the weighted relational semantics [21].

Observational equivalence for a probabilistic λ-calculus has been further studied by
Leventis [23] who proved it to coincide with the equivalence induced by Nakajima trees, i.e.
Böhm trees quotiented by infinitary extensionality. A probabilistic variation on Abramsky’s
applicative bisimilarity has been proved sound for contextual equivalence in an untyped
λ-calculus with weak-head evaluation [7], and fully abstract in presence of sequencing [19] or
head evaluation.

An intersection type assignment system for Λ⊕ has been designed in [4], but with an
aim different than the one we have in the present paper: the authors show how weak-head
termination can be characterized by typability in idempotent intersection types. Type
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disciplines of other kinds, sized types [6] and linear dependent types [1] in particular, have
been shown to be sound for termination of probabilistic higher-order programs.

Outline. In Section 2, we give basic notions about probability theory. In particular, we
define the central notions of distribution and multidistribution. In Section 3, we introduce the
calculus Λ⊕, a λ-calculus endowed with a probabilistic choice operator, indicated as ⊕. The
calculus’ operational semantics is given in terms of multidistributions, following [2, 15]. Then,
we define the semantic notion of p-solvability, and the notion of having head normal form
with probability p. In Section 4, we give a type assignment system, based on non-idempotent
intersection types, where types are multidistributions of simple types, and we prove that the
system enjoys the good properties of subject reduction and expansion. In Section 5 we give,
through the type assignment system, a threefold characterization of solvability: operational,
logical and denotational. In fact, the type assignment system induces a model for Λ⊕ in
which terms are interpreted by sets of typings. Section 6 contains some concluding remarks
and hints for future work. Some technical proofs are in the Appendix.

2 Preliminaries

A discrete probability space is given by a pair (Ω, µ), where Ω is a countable set, and
µ is a discrete probability distribution on Ω, i.e. is a function from Ω to [0,1] ⊂ R such
that ‖µ‖ :=

∑
ω∈Ωµ(ω) = 1. In this case, a probability measure is assigned to any subset

A ⊆ Ω as µ(A) =
∑
ω∈A µ(ω). Given a countable set Ω, a function µ : Ω → [0,1] is a

probability subdistribution if ‖µ‖≤ 1. We write DST(Ω) for the set of subdistributions on
Ω. Subdistributions allow us to deal with partial results and non-successful computations.
Slightly abusively, we often use the term distribution also when referring to subdistributions.

Let (Ω,µ) be as above. Any function F : Ω→ ∆, where ∆ is another countable set,
induces a probability distribution µF on ∆ by composition: µF (d ∈∆) := µ(F−1(d)) i.e.
µ{ω∈Ω:F (ω)=d}. The support of µ is Supp(µ)={ω :µ(ω)>0}. We represent a distribution
by explicitly indicating the support, and (as superscript) the probability µ assigns to each
element. We write µ= {ap1

1 ,...,a
pn
n } (where the ais are pairwise distinct) if µ(ai) = pi for

every 1≤ i≤n and µ(b)=0 for every b∈{a1,...,an}.

3 The Calculus

Terms and Contexts. Terms of Λ⊕ are generated by the grammar

M,N,P,Q ::=x | λx.M |MM |M⊕M (Terms)

where x ranges over a countable set of variables (indicated as x,y,...). As usual, λxy.PQR
abbreviates λx.(λy.(PQ)R), ~x and ~M denote respectively a sequence of variables and a
sequence of terms, and |~x| and | ~M | denote their lenghts. Free variables are defined as usual.
M [N/x] denotes the term obtained by the capture-avoiding substitution of N for each free
occurrence of x in M . Terms we use frequently in our examples are I = λx.x, ∆ = λx.xx,
K=λxy.x, O=λxy.y and Ω=(λx.xx)(λx.xx).

Contexts and surface contexts are generated by the grammars:

C ::=� |MC |CM | λx.C |C⊕M |M⊕C (Contexts)

S,W,T ::=� | λx.S | SM (Surface Contexts)
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where � denotes the hole of the context. Given a context C, we denote by C(M) the term
obtained from C by filling the hole with M , allowing the capture of free variables. Similarly
for surface contexts. Since the hole will be filled with a redex, surface contexts formalize the
fact that the redex (the hole) is neither in argument position nor in the scope of a ⊕.

Multidistributions. To syntactically represent the global evolution of a probabilistic system,
we rely on the notion of multidistribution [2].

A multiset is a (finite) list of elements, modulo reordering, ranged over by m,n. Let m
be a multiset of pairs of the form pM , with p∈]0,1], and M ∈Λ⊕. We call m=[piMi | i∈I]
(where the index set I ranges over finite subsets of a countable set a multidistribution
on Λ⊕ if

∑
i∈I pi ≤ 1 (think of list concatenation). We denote by MDST(Λ⊕) the set of

all multidistributions. We write the multidistribution [1M ] simply as [M ]. The sum of
multidistributions is denoted by +. The product q ·m of a scalar q and a multidistribution m
is defined pointwise: q ·[p1M1,...,pnMn]=[(qp1)M1,...,(qpn)Mn].

Intuitively, a multidistribution m∈MDST(Λ⊕) is a syntactical representation of a discrete
probability space where to each element of the space are associated a probability and a term
of Λ⊕. To the multidistribution m = [piMi | i ∈ I], we associate a probability distribution
µm∈DST(Λ⊕) as follows:

µm(M)=
∑
i∈I

qi qi=
{
pi if Mi=M

0 otherwise

(Observe that, m being a multiset, there are in general more than one elements piMi where
Mi = M , or even multiple copies of the same element). As usual (see Section 2), the
distribution µm assigns a probability measure to every subset of Λ⊕, namely the sum of the
probabilities of its elements. That is, given a set of terms T ⊆Λ⊕,

µm(T )=
∑
M∈T

µm(M)

I Example 3.1 (Distributions vs. Multidistributions). If m=[ 1
2a,

1
2a], then µm ={a1}. Please

observe the different nature of distributions and multidistributions: if n=[1a], then m 6=n,
but µm =µn.

Reduction Rules. We first define reduction rules on terms (Fig. 1), and one-step reduction
from terms to multidistributions (Fig. 2). We then lift the definition of reduction to a binary
relation on MDST(Λ⊕).

Observe that in the λ-calculus, a reduction step is given by the closure under context of
the reduction rules. However, a reduction from terms to terms is not informative enough
in a probabilistic setting, because the likelihood of each reduction step needs to be taken
into account. The meaning of M⊕N is that this term reduces to either M or N , with equal
probability 1

2 . There are various ways to formalize this fact, and here we follow [2, 15] and
use multidistributions.

The reduction rules on the terms of Λ⊕ are defined in Fig. 1. The (one-step) reduction

The β-rule
(λx.M)N 7→βM [N/x]

Probabilistic Rules
M⊕N 7→l⊕M M⊕N 7→r⊕N

Figure 1 Reduction Rules
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relations →β ,→⊕⊆ Λ⊕× MDST(Λ⊕) are defined in Fig. 2. Observe that the probabilistic
rules 7→r⊕,l⊕ are closed only under surface contexts, while the reduction rule 7→β is closed
under general contexts. We denote by → the union →β∪→⊕. We lift the reduction relation

(λx.M)N 7→βM [N/x]
C((λx.M)N)→β [C(M [N/x])]

M⊕N 7→l⊕M M⊕N 7→r⊕N

S(M⊕N)→⊕ [ 1
2S(M), 12S(N)]

Figure 2 Reduction Steps

→⊆Λ⊕×MDST(Λ⊕) to a relation ⇒⊆MDST(Λ⊕)×MDST(Λ⊕), as defined in Fig. 3. Observe
that ⇒ is a reflexive relation.
We define in the same way the lifting of any relation →r ⊆Λ⊕×MDST(Λ⊕) to a binary

[M ]⇒ [M ]
M→m

[M ]⇒m
([Mi]⇒mi)i∈I

[piMi | i∈I]⇒+i∈Ipi ·mi

Figure 3 Lifting → to ⇒

relation ⇒r on MDST(Λ⊕). In particular, we lift →β ,→⊕ to ⇒β ,⇒⊕. The definition of
lifting allows us to apply a reduction step → to any number of Mi in the multidistribution
m=[piMi | i∈I]. If no Mi is reduced, then m⇒m (the relation ⇒ is reflexive).

Reduction Sequences. A⇒-sequence (or reduction sequence) from m is a sequence m0,m1,m2,...

such that m=m0 and mn⇒mn+1 for every n∈N. We write m⇒∗ n to indicate that there is a
finite sequence from m to n, and 〈mn〉n∈N for an infinite sequence.

Confluence. It has been proved [15] that the reduction ⇒ enjoys the confluence property.
The restriction of ⇒⊕ to surface contexts is essential to obtain confluence, as the following
example shows.

I Example 3.2. LetM be the term ∆(K⊕I). [M ]⇒β [(K⊕I)(K⊕I)]⇒∗ [ 1
4KK, 14KI, 14 IK, 14 II]⇒∗

[ 1
4λx.K,

1
4λx.I,

1
4K, 14 I], which is a multidistribution on normal forms. But, if we would allow

⇒⊕ also in the argument position, the result would be: [M ]⇒⊕ [ 1
2∆K, 12∆I]⇒∗ [ 1

2KK, 12 II]⇒⊕
[ 1
2λx.K,

1
2 I], which is a different multidistribution, again on normal forms!

Head Normal Forms. The notion of head normal form can be extended to Λ⊕. Head
normal forms (shortly hnfs) are the normal forms of surface reduction s→, i.e., the closure of
both β and ⊕ reduction rules under surface contexts S. Let us write H for the set of head
normal forms, which can be seen as being defined by the following grammar:

H ::=λx.H |K; K ::=x |KM.

It is easy to check that any term of Λ⊕ can be written the following form:

λx1...xn.ζM1...Mm,

where m,n≥0 and ζ (the head) is either a variable or a redex. So, as in the λ-calculus, the
head normal forms are the terms having a variable in their head position.

In order to generalize the notion of having a head normal form to Λ⊕ we need to take
into account probabilities. Recall that H is the set of head normal forms, and therefore
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µm(H) is the probability assigned by µm to the event “a term is in head normal form”. Let
then p be any strictly positive real number. Then:

A term M has head normal form with probability at least p (notation ≥p-hnf ) if there is
m such that [M ]⇒∗ m and µm(H)≥p.
A term M has head normal form with probability p (notation p-hnf ) if p=sup{q | [M ]⇒∗
m and µm(H)=q}.
A term M has not head normal form if for every m it holds that [M ] ⇒∗ m implies
µm(H)=0.

Note that even if a term has head normal form with probability 1, that degree of certitude
is not necessarily reached in any finite number of steps, as the following Example (point 2)
shows:

I Example 3.3. 1. M = λyz.(yI⊕ y)Ω has ≥ 1
2 -hnf and ≥1-hnf so it has 1-hnf. In fact

[M ]⇒m=[ 1
2λyz.yIΩ, 12λyz.yΩ], and both components of m are in hnf.

2. Let N=λx.xx⊕I, and let M=NN . It is easy to check that [NN ]⇒∗ [ 1
2NN,

1
2 I], which,

for every n, reduces to m such that µm(H)= 1
2 + 1

4 +..+ 1
2n . So M has ≥

∑n
1

1
2n -hnf, for all

n≥1, and it thus has 1-hnf.
3. I⊕Ω has 1

2 -hnf.

3.1 Solvability

The notion of solvability is a central semantic notion, capturing the property of a term being
meaningful (or a program being meaningful, if we consider closed terms). In λ-calculus, the
semantic notion of solvability has its operational counterpart in that of head normal form,
moreover it can be characterized by suitable intersection type assignment systems. We will
show that similar properties hold for Λ⊕.

Let us first recall this notion for λ-calculus [3]. A λ-term M is solvable if there is a
surface context such that S(M) β-reduces to the identity I (obviously considering surface
contexts restricted to λ-calculus1). Closed solvable terms represent meaningful programs: if
M is closed and solvable, then M can produce any desired result when applied to a suitable
sequence of arguments. The importance of this notion is certified by the fact that it is sound
to equate all unsolvable terms in any denotational semantics.

Extending this notion to Λ⊕ is indeed possible by way of the following definition, where
p is any strictly positive real:

A term M is solvable with probability at least p (notation ≥p-solvable) if there is a surface
context S such that [S(M)]⇒∗ m, and µm(I)≥p.
A term M is p-solvable if p=sup{q |M is ≥q-solvable}.
A term is unsolvable if for every S it holds that [S(M)]⇒∗ m implies µm(I)=0.

This definition, when restricted to the syntax of λ-calculus, coincides with the standard one.
Note that, while proving a term ≥p-solvable requires to exhibit just one context, proving
that a term is p-solvable may require to exhibit an infinite number of contexts. Point 3 of
the following example is an instance of this fact.

1 To be precise, the definition of solvability for λ-calculus uses the notion of head context, which is a
restriction of that of surface context. But since the two induced β-reductions have the same normal
forms, using one or the other in the definition is equivalent. Here, the use of surface contexts is motivated
by the fact that the surface reduction is standard, while head reduction is not (see [15]).
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I Example 3.4. 1. M = λyz.(yI⊕y)Ω is 1-solvable and ≥ 1
2 -solvable and ≥1-solvable. A

context playing the job is �(λxt.I)(λxt.I)I. In fact, [M(λxt.I)(λxt.I)I]⇒∗β [((λxt.I)I⊕
(λxt.I))ΩI]⇒⊕ [ 1

2 (λxt.I)IΩI, 12 (λxt.I)ΩI]⇒∗β [ 1
2 II, 12 (λt.I)I]⇒β [ 1

2 I, 12 I].
2. Consider the term NN , defined in Example 3.3.2. Clearly NN is ≥

∑n
1

1
2n -solvable, for

every n>0. To prove that M is 1-solvable, the context � suffices.
3. Let Y be a fixed-point operator, whose behavior is [YM ]⇒∗ [M(YM)]. Then [Y (K⊕

O)]⇒∗ [ 1
2λx.Y (K⊕O), 1

2 I]⇒∗ [ 1
2 I, 1

4λx.I,
1
8λx1x2.I,..., 1

2nλx1..xn+1.I], (n ≥ 0). Then the
context Sn=� I..I︸︷︷︸

n+1

is a witness that M is ≥
∑n

1
1

2n -solvable, for every n≥0. Taking the

supremum, this term is 1-solvable.

Three Characterizations of Solvability. In the λ-calculus, solvability can be characterized [3,
30] in three different ways:

operationally, through the notion of head normal form;
logically, through suitable type assignment systems, based on intersection types;
denotationally, though some denotational models.

To be more precise, the operational characterization says that a term is solvable if and only
if it has head normal form, the logical characterization says that there are type assignment
systems assigning types to all and only the solvable terms, and the denotational one says
that there are λ-models which are sensible, i.e., which assign a significant denotation to all
and only the solvable terms. The aim of this paper is to show that similar characterizations
hold also for Λ⊕, taking into account the differences between the two calculi. For proving all
three characterizations, one tool is sufficient, namely an intersection type assignment system.

4 A Type Assignment System for Λ⊕

In this section we will present a type assignment system, based on non idempotent intersection
types, which is the technical tool we will use to characterize the solvability property of Λ⊕.

Types. Types are defined by the following grammars:

A,B ::=α |A→A (Simple Types)

a,b,c ::=
〈
p1A1,...,pnAn

〉
(Types)

A,B ::=[a1,...,an] (Context Types)

where n≥ 0, α ranges over a countable set of constants, types are multidistributions on
simple types, and context types are multisets of types. Note that the definition of types
as multidistributions means that, syntactically, a=

〈
p1A1,...,pnAn

〉
implies pi>0 for every

1≤ i≤n and Σ1≤i≤npi≤ 1. If a =
〈
piAi | i∈ I

〉
then its norm is ‖a‖=

∑
ipi. As usual, in

simple types, the type constructor → associates to the right.

Type Contexts. Type contexts, ranged over by Γ,∆,Φ,Ψ are partial functions from variables
to context types, with finite domain. Γ]∆ denotes the function such that (Γ]∆)(x) =
Γ(x)+∆(x). We denote by ≤ the set-theoretical order between partial functions.

The Type Assignment System S. The type assignment S is given in Fig. 4; it proves
judgements of the shape Γ`M :a, or Γ`M :A, where Γ is a type context, M is a term, a is
a type and A is a context type.
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I Notation 4.1. pa denotes
〈
pqA |qA∈a

〉
; recall that + denotes the multiset union, so a+b

denotes the concatenation of a and b. The type
〈
1A
〉
is abbreviated by

〈
A
〉
. Γ`M :a denotes

the existence of a derivation proving this judgment, while Π.Γ`M :a denotes a particular
type derivation proving the judgment Γ`M :a. If Π.Γ`M :a, then M and a are respectively
the subject and the object of Π. `M :a abbreviates ∅`M :a, where ∅ is the empty function.
If Π.Γ`M :a we say that M is typed in Π with probability ‖a‖.

a∈A
Γ,x :A`x :a var

Γ,x :A`M :
〈
piAi | i∈I

〉
Γ`λx.M :

〈
pi(A→Ai) | i∈I

〉 →I
Γ`M :

〈
pi(Ai→Bi) | i∈I

〉
(∆i`N :Ai)i∈I

Γ]i∈I∆i`MN :
〈
piBi | i∈I

〉 →E

(Γi`M :ai)i∈I
]iΓi`M : [ai | i∈I] !

Γ`M :a Γ`N :b
Γ`M⊕N : 1

2a+ 1
2b
⊕ Γ`M :a

Γ`M⊕N : 1
2a
⊕l Γ`N :a

Γ`M⊕N : 1
2a
⊕r

Figure 4 The Type Assignment System S

The size of a derivation Π, denoted by |Π|, is defined as follows. Note that the size of Π is
not the number of its rule applications (the dimension of the derivation tree) because of the
cases of rules (!) and (⊕).

If Π is an application of the rule (var), then |Π|=1;
If Π ends with an application of rule (→I), with premise Φ, then |Π|= |Φ|+1;
If Π ends with an application of rule (→E), with premise Φ and (Ψi)i∈I , then |Π|=
|Φ|+

∑
i∈I |Ψi|+1;

If Π ends with an application of rule (!), with premises (Φi)i∈I , then |Π|=
∑
i∈I |Φi|;

If Π ends with an application of rule (⊕), with premises Φ,Ψ, then |Π|=max{|Φ|,|Ψ|}+1;
If Π ends with an application of rule (⊕r) (resp. (⊕l)), with premise Φ, then |Π|= |Φ|+1;

The size of a derivation is a key notion here, since one of the characterizations, namely the
proof of (1⇒2) in Theorem 5.1 is by induction on it. A benefit of using non idempotent
intersection consists in the fact that it is possible to define a measure of derivations that
decreases while reducing the subject. In case of λ-calculus, the size corresponds to the
dimension of the derivation tree, i.e., the number of rule applications in it. Here the additive
behavior of the (⊕) rule obliges us to a different choice.

Some comments about the rules of S are in order. The rule (var) uses implicitly a
weakening property. Rules (→ I) and (→E) are similar to the usual rules for λ-calculus.
Note that to the subject of the major premise is assigned a type, while to the subject
of the minor premise is assigned a context type; this is possible through rule (!). The
three rules for the constructor ⊕ are as expected. Notice that these last rules treat type
environments addively, while the rule (→E) treats them multiplicatively. The use of an
additive presentation for ⊕ rules is justified by the fact that that, in order to have the subject
reduction property with respect to ⇒⊕, we need weakening, as the following example shows.

I Example 4.2. Let M=λx.(x⊕I). The following (incomplete) derivation can be built:

x : [
〈
A
〉
]`x :

〈
A
〉 var

` I :
〈
[
〈
B
〉
]→B

〉 →I

x : [
〈
A
〉
]`x⊕I :

〈 1
2A, 12 ([

〈
B
〉
]→B)

〉 ⊕

`λx.(x⊕I) :
〈 1

2 ([
〈
A
〉
]→A, 12 ([

〈
A
〉
]→ [

〈
B
〉
]→B

〉 →I
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Note that [M ]⇒⊕ [ 1
2 I, 12λx.I]; while ` I :

〈
[
〈
A
〉
]→A

〉
, it is necessary to have weakening in order

to built a derivation proving `λx.I :
〈
[
〈
A
〉
]→([

〈
B
〉
]→B)

〉
.

In fact the weakening rule is derivable, as the following property formalizes.

I Property 4.3. Π.Γ`M :a implies there is Φ such that Φ.Γ]∆`M :a and |Φ|= |Π|.

On the other hand, the multiplicative presentation for the rule (→ E) comes naturally
from the use of non idempotent intersection, which avoid the use of difficult tools to prove
termination, like computability or reducibility candidates.

Rule (!) allows to assign context types to terms, and it can assign the type context [ ] to
any term, in case I is the empty set. It is not strictly necessary, a system without it could
be easily designed, but it allows for an easy presentation of the (→E) rule. Note that the
rule cannot be iterated.

The system can assign type also to terms with untyped subterms, through rules (⊕l),(⊕r)
and (→E), in case I=∅. Consider the following examples:

I Example 4.4. .

x : [
〈
A
〉
]`x :

〈
A
〉 var

` I :
〈
[
〈
A
〉
]→A

〉 →I

` I⊕Ω:
〈 1

2 ([
〈
A
〉
]→A)

〉 ⊕l
x : [
〈
[ ]→B

〉
]`x :

〈
[ ]→B

〉 var

x : [
〈
[ ]→B

〉
]`xΩ:

〈
B
〉 →E

`λx.xΩ:
〈
[
〈
[ ]→B

〉
]→B

〉 →I

Properties of the Type Assignment System S. The system S enjoys the good properties
we expect, namely subject reduction and expansion. Before going into that, we need to prove
an important property of surface contexts, namely that terms filling their hole positions
inherit from them both the typability and the norm, as expressed by the following lemma.

I Lemma 4.5. If Π .Γ ` S(M) : a, then there are ∆ and b such that ∆ `M : b, where
‖a‖=‖b‖.

Proof. By induction on S. If S=� the proof is obvious. If S=TN , then Π is of the shape:

Π′.Γ′`T(M) :
〈
pi(Ai→Ai) | i∈I

〉
(∆i`N :Ai)i∈I

Γ′]i∈I∆i`T(M)N :
〈
piAi | i∈I

〉 →E

We conclude by induction. If S=λx.T, then the claim follows by induction, too. J

Typing is preserved by both reduction and expansion, but these properties, which are standard
in intersection type assignment systems, must be adapted to the probabilistic setting.

I Lemma 4.6 (One-Step Subject Reduction). Let Π.Γ`M :a.
1. If M→β [N ] then there is Ψ.Γ`N :a.
2. If M→⊕ [ 1

2N1,
1
2N2], then one of the two following cases happens:

a= 1
2a1+ 1

2a2 and Ψ1.Γ`N1 :a1, Ψ2.Γ`N2 :a2;
a= 1

2b and Ψ.Γ`Ni :b, for some 1≤ i≤2.
Moreover, if the redex is typed in Π, then |Ψ|< |Π| (resp. |Ψi|< |Π|).

Proof. The proof is in the Appendix. J

I Lemma 4.7 (Subject Reduction). Π.Γ`M :a and [M ]⇒∗ m=[piNi | i∈ I] imply there is
J⊆I, a=Σj∈Jpjaj and Πj.Γ`Nj :aj.
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Proof. By induction on the lenght of the reduction, using Lemma 4.6. J

I Lemma 4.8 (Subject Expansion). [M ]⇒∗ [piNi | i∈ I] and Γ`Nj : aj for some j ∈ J ⊆ I
imply ∆`M :Σj∈Jpjaj, for some ∆, Γ≤∆.

Proof. By induction on the length of the reduction, see the Appendix. J

The system can assign type to every hnf.

I Property 4.9. Let M ∈H. Then for every p∈]0,1] there are Γ,a such that Γ`M :a and
‖a‖=p.

Proof. Let M ∈H. The proof is by induction on the grammar defining H. Let M ∈K: we
will prove that, for every a there is Γ such that Γ`M : a. Let a =

〈
piAi | i∈ I

〉
. If M =x,

then choose Γ = x : [a], if M =NP , where N ∈K, then by induction there is Γ such that
Γ`N :

〈
pi([ ]→Ai) | i∈I

〉
and the proof follows by rule (→E). If M=λx.N , with N ∈H the

proof comes by induction and rule (→I). J

Note that the previous property says, in particular, that if a term is in hnf, then it is always
possible to assign it a type with norm 1.

5 Characterizing Solvability

The next theorem shows the key result of this paper.

I Theorem 5.1 (Finitary Characterization). The three following statements are equivalent:
1. Γ`M :a, with ‖a‖=p.
2. M has ≥p-hnf.
3. M is ≥p-solvable.

Proof. 1⇒2 Let Π.Γ`M :a; we prove that [M ]⇒∗ m with µm(H)≥‖a‖, by induction on
|Π|. Note that if M is in head normal form, the claim holds. If |Π|= 1, then M =x is
in hnf. Let |Π|>1. If M is in hnf, the claim holds; if M not in hnf, then, according to
Lemma 4.6, three cases can happen:
a M s→β [N ], and Ψ.Γ`N :a;
b M s→⊕ [ 1

2N1,
1
2N2], a= 1

2ai, and Ψ.Γ`Ni :ai, for some i∈{1,2};
c M s→⊕ [ 1

2N1,
1
2N2], a= 1

2a1+ 1
2a2, and Ψi.Γ`Ni :ai, for all i∈{1,2};

and in all cases |Ψ| < |Π|, |Ψi| < |Π| by Lemma 4.5. In case a, the result follows by
induction on the structure of Ψ. In the case b, by induction it holds that [Ni]⇒∗ ni
with µni

(H)≥‖ai‖, for some 1≤ i≤ 2. Assume i= 1. Then [M ]⇒∗ 1
2n1 + 1

2 [N2] = m, so
µm(H)≥ 1

2µn1(H)≥‖a‖. Let us consider case c. By i.h., it holds that [Ni]⇒∗ ni with
µni

(H)≥‖ai‖ for every i∈{1,2}. Hence we have that M s→ [ 1
2N1,

1
2N2]⇒∗ ( 1

2n1+ 1
2n2)=m,

where µm(H)= 1
2µn1(H)+ 1

2µn2(H)≥i.h. 1
2‖a1‖+ 1

2‖a2‖=‖a‖.
2⇒3 Assume M in H; we prove that M is 1-solvable, by showing how to build a particular

head context S such that [S(M)]⇒∗ [I]. Let M = λx1...xn.zM1...Mm. If z = xi, for
some i, then the context � (λz1...zm.I)︸ ︷︷ ︸

n

does the job. If z is free, then use the con-

text λz.�(λz1...zm.I). For the general case, let [M ] ⇒∗ m, and µm(H) = q ≥ p. Let
m = [q1N1, ...,qnNn] + n, where µn(H) = 0 and Σ1≤i≤nqi ≥ p. W.l.o.g., we assume M



Ronchi Della Rocca, Dal Lago, Faggian XX:11

closed. Every Ni is of the shape λ~xi.zi ~Pi, where zi ∈ ~xi; let r = max1≤i≤n|~xi| and
s=max1≤i≤n| ~Pi|. Choose w1,..,wr fresh variables. Then the desired context is:

H=(λw1...wr.�w1...wr)(λt1...tr+s.I)...(λt1...tr+s.I)︸ ︷︷ ︸
r

I...I︸︷︷︸
r+s

[S(M)]⇒∗ [q1S(N1),...,qnS(Nn)]+p. It is sufficient to prove that [S(Ni)]⇒∗ [I]. Now,

[S(Ni)]⇒∗β [(λw1...wr.w
i ~P ′i )(λt1...tr+s.I)...(λt1...tr+s.I)︸ ︷︷ ︸

r

I...I︸︷︷︸
r+s

],

where ~P ′i = ~Qiw|Pi|+1...wr, wi∈{w1,...,wr}, Qi=Pi[ ~wi/~xi] and | ~P ′i |≤| ~Pi|+r−1≤s+r−1.
Then, after r reduction steps, we obtain: [(λt1...tr+s.I) ~P ′′i I...I︸︷︷︸

r+s

]⇒∗β [(λ~t.I) I...I︸︷︷︸
l

], where

l≤r+s. Since s |~t|≤r+s, [(λ~t.I) I...I︸︷︷︸
l

]⇒∗β [ I...I︸︷︷︸
o

]⇒∗β [I] (o≤r+s−1).

3⇒1 Let M be ≥p-solvable. Then there is S such that [S(M)]⇒∗ [piI | i∈ I]+m, where
Σi∈Ipi ≥ p. By Property 4.9, there is a, with ‖a‖= 1, such that ` I : a, so, by Subject
Expansion, Γ`S(M) :Σi∈Ipia. By Lemma 4.5, Γ`M :b, where ‖b‖=Σi∈Ipi‖a‖.

J

The results of Theorem 5.1 can be extended to the supremum, this way enabling a complete
characterization:

I Theorem 5.2 (Characterization). The three following statements are equivalent

1. p=sup{q |Γ`M :a, for some Γ,a, and q=‖a‖}.

2. M has p-hnf.

3. M is p-solvable.

Theorem 5.2 implicitly supplies three different characterizations of solvability, similarly to
what happens in the λ-calculus. Namely, the equivalence 2⇔3 corresponds to an operational
characterization of solvability, and 1⇔3 corresponds to a logical characterization. Moreover
1⇔2 gives a logical characterization of hnf s.

A Model for Λ⊕. S is an extension of the basic type assignment system defined in [26],
which gives rise to a relational model of λ-calculus. It is possible to reason in a similar way
here, and to extract from S a model of Λ⊕, in the sense specified by Property 5.3. As has
been proved in [26], following a seminal observation of [10], the interpretation of a term in a
model extracted from a type assignment system with non-idempotent intersections, depends
not only on the types derivable for it, but also on the related type contexts. In fact, the
context is necessary to preserve the quantitative aspect of types. Let us define the basic
ingredients of our model. An abstract typing is a pair (Γ;a), where Γ is a type context and a
is a type, not necessarily related to each-other. Let T be the set of abstract typings: the
space D of denotations of our model is the power set of T . D is equipped by two operations
◦,⊕ :D−→D which allow to interpret terms of Λ⊕. Their definitions reflect, respectively, the
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behavior of the typing rules (→E) and (⊕) of S:

t1◦t2 ={(Γ;
〈
piAi | i∈I

〉
) |(Γ;

〈
pi([ ]→Ai) | i∈I

〉
∈ t1}∪{

(Γ]i∈I∆i;
〈
piAi | i∈I

〉∣∣∣∣ (Γ;
〈
pi(Ai→Ai) | i∈I

〉
∈ t1,Ai=[aij |j∈Ji],

(∆i
j ;aij)∈ t2,∆i=]j∈Ji

∆i
j

}
;

t1⊕t2 =
{(

Γ;12a
)
|(Γ;a)∈ t1

}
∪
{(

Γ;12a
)
|(Γ;a)∈ t2

}
∪{(

Γ;12a1+ 1
2a2

)
|(Γ;ai)∈ ti,i=1,2

}
.

Moreover, if t∈D and p is a probability, p•t denotes the element of D such that, if (Γ;a)∈ t
then (Γ;pa)∈p•t. Let ρ be a denotational environment, assigning an element of D to every
variable: the interpretation of a term under the environment ρ is defined by induction as
follows:

JxKρ=ρ(x)
JMNKρ=JMKρ◦JNKρ

JM⊕NKρ=JMKρ⊕JNKρ
Jλx.MKρ={(Γ;

〈
pi(A→Ai) | i∈I

〉
|A=[aj |j∈J ],(Γ]j∈J∆j ;

〈
piAi | i∈I

〉
)∈JMKρ[t/x],

t={(∆j ;aj) |j∈J}}

It is easy to check that the interpretation of a term is related to its concrete typings in the
following way:

JMKρ={(Γ;a) |∆`M :a,Γ=]i∈I∆i such that for every x,
∆(x)=[ai | i∈I] implies (∆i;ai)∈ρ(x)}

If M is a closed term, then its interpretation is even simpler, namely:

JMK={(Γ;a) |∃Γ,a.Γ`M :a}

In particular, since M closed and Γ`M :a together imply that `M :a, the interpretation of
a closed term depends only on the types derivable for it. In the following we will restrict
ourselves to consider only closed terms: clearly all the properties we prove hold also for the
open terms, but are expressed in a more cumbersome way.

The model is correct with respect to the operational behavior of Λ⊕, i.e., the following
property holds.

I Property 5.3 (Adequacy). Let M be closed. M⇒∗ [piMi | i∈I] implies JMK=∪i∈Ipi•JMiK.

Finally, the model characterizes solvability, in the following sense:

I Property 5.4. Let M be closed. M is p-solvable if and only if p=sup{q |(Γ;a)∈JMK} and
‖a‖=q.

Note that M is unsolvable if and only if JMKρ=∅ for every ρ, so, using the terminology of
λ-calculus, this model is sensible, since it equates all unsolvable terms.

6 Conclusions and Future Work

We investigated the notion of solvability in the context of the calculus Λ⊕ as introduced in
[15], and focusing on the call-by-name parameter passing regime. Solvability being a semantic
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property, and call-by-name and call-by-value behaving quite differently semantically [30], we
leave the task of extending our work to call-by-value to some future work. The definition
of solvability we give is a conservative extension of the one from the pure λ-calculus, and
explicitly takes probability into account: a term is dubbed p-solvable if, put in a suitable
context, it reduces to the identity with probabilities at most, but arbitrary close to, p.
We characterize solvability through a type assignment system based on non-idempotent
intersection types. Such a system supplies a logical characterization of solvability, but also
induces an operational one in which being p-solvable corresponds to having head normal form
with probability p. Finally, the type system induces a model for Λ⊕, in which all unsolvable
terms (i.e., terms which are 0-solvable) are equated.

It would be interesting to study the theory induced by our model from a finer point
of view, in particular with respect to the equivalence it induces on terms. Certainly, this
equivalence cannot coincide with the operational one, characterized in [23], since our model is
not extensional. The type assignment system could however be enriched with an equivalence
between types, in such a way as to induce an extensional model, thus catching the operational
semantics of Λ⊕, in the sense of Plotkin.

Moreover, we intend to give a domain-theoretic account of our model: we believe that it
gives a logical description of the category of weighted relational models [21], as conjectured
by an anonymous referee.
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A Some Technical Proofs

Subject Reduction. As usual, the subject reduction property relies on a substitution
property.

I Lemma A.1 (Substitution). Π.Γ,x :A`M :a (resp. Π.Γ,x :A`M :B) and Θ.∆`N :A
imply Π[Θ/x].Γ]∆ `M [N/x] : a (resp. Π[Θ/x].Γ `M [N/x] :B). Moreover, |Π[Θ/x]|<
|Π|+|Θ|.

https://tel.archives-ouvertes.fr/tel-01427279v2/document
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Proof. By induction on Π:
Let Π be:

a∈A
Γ,y :A`y :a var

On the other side, the derivation Θ is of the shape:

(Πi.Γi`N :ai)i∈I
]i∈IΓi`N : [ai | i∈I] !

so a=ai, for some i. Let y=x. By Property 4.3, there is a derivation Ξ.Γ]i∈IΓi`N :ai,
such that |Ξ|= |Πi|. So Π[Θ/x]=Ξ. If y 6=x, then Π[Θ/x]=Π. In both cases the condition
on the size of Π[Θ/x] is obvious.
Let Π be:

Ξ.Γ,x :A′`P :
〈
pi(Bi→Bi) | i∈I

〉
(Πi.]i∈IΣi,x :Ai`Q :Bi)i∈I

Γ]i∈IΣi]x : (A′+i∈IAi)`PQ :
〈
piBi | i∈I

〉 →E

where A=A′+i∈IAi. Then the derivation Θ is:

(Φb.∆b`N :b)b∈A′ ((Φic.∆i
c`N :c)c∈Ai)i∈I

+b∈A′∆b+c∈A′,i∈I∆i
c`N :A !

Then we can build derivations Ψ and Ψi, with subject N , by rule (!) with premises
respectively (Φb)b∈A′ and (Φic)c∈Ai ; by induction there are Ξ[Ψ/x].P [N/x] :

〈
pi(Bi→bi) |

i∈I
〉
and (Πi[Ψi/x].`Q[N/x] :Bi). Since PQ[N/x]=P [N/x]Q[N/x] the result follows

by rule (→E). Moreover by induction |Ξ[Ψ/x]|< |Ξ|+ |Ψ|, |Πi[Ψi/x]|< |Πi|+ |Ψi|, so
|Π[Θ/x]|= |Ξ[Ψ/x]|+i∈I |Πi[Ψi/x]|+1< |Ξ|+|Ψ|+i∈I (|Πi|+|Ψi|)+1= |Π|+|Φ′|
Let Π be:

Π1.Γ,x :A`P :a Π2.Γ,x :A`N :b
Γ,x :A`P⊕Q : 1

2a+ 1
2b

⊕

By induction there are Π1[Θ/x].Γ]∆`P [N/x] : a and Π2[Θ/x].Γ]∆`Q[N/x] : b, so
Π[Θ/x] can be built by rule (⊕). Moreover |Π[Θ/x]|=max{|Π1[Θ/x]|,|Π2[Θ/x]|}+1<i.h.
max{(|Π1|+|Θ|,|Π2|+|Θ|)+1=max{|Π1|,|Π2|}+|Θ|+1= |Π|+|Θ|.
If the last used rule is (→I), (⊕r), ⊕l) the proof follows by induction.

J

Let us identify an occurrence of a term N in a termM by the context C such thatM=C(N).
Then, given a typing derivation Π.Γ`M : a, an occurrence of a subterm of M is a typed
occurrence of Π if and only if it is the subject of a subderivation of Π.

I Lemma (4.6, One-Step Subject Reduction). Let Π.Γ`M :a.
1. If M→β [M ′] then there is Π′.Γ`M ′ :a.
2. If M→⊕ [ 1

2M1,
1
2M2], then one of the two following cases happens:

a= 1
2a1+ 1

2a2 and Π′1.Γ`M1 :a1, Π′2.Γ`M2 :a2;
a= 1

2b and Π′.Γ`Mi :b, for some i (i∈{1,2}).
Moreover, if the redex is typed in Π, then |Π′|< |Π| (resp. |Π′i|< |Π|).

Proof. 1. By induction on the context C such that M=C((λx.P )Q) and M ′=C(P [Q/x]).
The base case follows by Lemma A.1, the induction case is easy.
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2. By induction on the context S such that M=S(P⊕Q), and then by induction on Π.
a. In case S=�, then the last rule of Π is ⊕, and the proof is obvious. Let S=λx.S′. So

M=λx.N→⊕ [ 1
2λx.N1,

1
2λx.N2], so N→⊕ [ 1

2N1,
1
2N2]. Π is of the shape:

Π′.Γ,x :A`N :
〈
piAi | i∈I

〉
Γ`λx.N :

〈
pi(A→Ai) | i∈I

〉 →I

by induction
〈
piAi | i∈I

〉
=
〈
qi

2 Ai | i∈I1
〉
+
〈
qi

2 Ai | i∈I2
〉
, and Γ`Nj :

〈
qi | i∈Ij

〉
, where

I=I1∪I2, pi= qi

2 (j=1,2). Then by rule (→I), Πj.Γ`λx.Nj :
〈
qi(A→Ai) | i∈Ij

〉
(j=

1,2), and then, by rule (⊕), Φ.Γ`λx.N1⊕λx.N2 : 1
2
〈
qi(A→Ai) | i∈I1

〉
+ 1

2
〈
qi(A→Ai) |

i∈I2
〉

=
〈
pi(A→Ai) | i∈I

〉
. Moreover, if the redex is typed in Π, then it is typed in Π′,

so by induction |Π′i|< |Π′|. Then |Φ|= 1
2 |Π1|+ 1

2 |Π2|= 1
2 (|Π′1|+|Π′2|)+1< |Π′|+1= |Π|.

Let S=S′P . Then M=NP→⊕ [ 1
2N1P,

1
2N2P ] and Π is of the shape:

Π′.Σ`N :
〈
pi(Ai→Ai) | i∈I

〉
(Ψi.∆i`P :Ai)i∈I

Γ=Σ]i∈I∆i`NP :
〈
piAi | i∈I

〉 →E

By induction on Π′, I = I1 ∪ I2 and
〈
pi(Ai → Ai) | i ∈ I

〉
=
〈 1

2pi(Ai → Ai) | i ∈
I1
〉

+
〈 1

2pi(Ai → Ai) | i ∈ I2
〉
such that Π1 . Σ ` N1 :

〈
pi(Ai → Ai) | i ∈ I1

〉
and

Π2.Σ`N2 :
〈
pi(Ai→Ai) | i∈I2

〉
, so, by rule (→E), Φj.Σ]i∈Ij ∆j `NjP :

〈
piAi | i∈Ij

〉
(j∈{1,2}). By Property 4.3, Σ]i∈I∆i`NjP :

〈
piAi | i∈Ij

〉
. So, by rule (⊕), we obtain

Θ.Γ`N1P⊕N2P : 1
2
〈
piAi | i∈ I1

〉
+ 1

2
〈
piAi | i∈ I2

〉
. Moreover, if the redex is typed in

Π, then it is typed in Π′, so by induction |Πi|< |Π′|. Since |Φj |= |Πj |+i∈Ij |Ψi|+1,
we have: |Θ| = 1

2 |Φ1| + 1
2 |Φ2| = 1

2 (|Π1| +i∈I1 |Ψi| + 1) + 1
2 (|Π2| +i∈I2 |Ψi| + 1) =

1
2 (|Π1|+|Π2|)+i∈I |Ψi|+1< |Π′|+i∈I |Ψi|+1= |Π|.

b. Similar to the previous case, but easier.
If the redex occurs in an untyped occurence of Π, then, by Lemma 4.5, it is a β-redex. So, if
Π.Γ`C(M) :a, and M→βM

′, then Π′.Γ`C(M ′) :a can be obtained from Π just replacing
the occurrence of M by M ′. J

Subject Expansion.

I Lemma A.2 (Inverse Substitution). Π . Γ ` M [N/x] : a implies there is A such that
Σ,x :A`M :a, ∆`N :A and Γ⊆Σ]∆.

Proof. By induction on M . All the cases follow easily by induction. Note that, in case all
the occurrences of N in M are untyped in Π, then A=[] and Σ=Γ. J

I Lemma A.3 (One-Step Subject Expansion). 1. Π.Γ`M :a and N→β [M ] imply Γ`N :a.
2. Π.Γ`M :a and N→⊕ [ 1

2M, 12P ] imply Γ→N : 1
2a.

3. Π.Γ`Mi :ai for every 1≤ i≤2 and N→⊕ [ 1
2M1,

1
2M2] imply Γ`N : 1

2a1+ 1
2a2.

Proof. 1. By Lemma A.2.
2. By induction on the context S such that N=S(R1⊕R2)→⊕ [ 1

2S(R1), 12S(R2)] and either
M = S(R1) or P = S(R2), and then by induction on Π. In case S = �, the proof is
obvious. Let S=λx.S′, so N=λx.Q→⊕ [ 1

2λx.N1,
1
2λx.N2], where Q→⊕ [ 1

2N1,
1
2N2]. Let

Π.Γ`λx.N1 :a. Then Π is of the shape:

Γ,x :A`N1 :
〈
piBi | i∈I

〉
Γ`λx.N1 :

〈
pi(A→Bi | i∈I

〉 →I
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By induction Γ,x :A`Q :
〈 1

2piBi | i∈I
〉
, and then, by rule (→I), Γ`λx.Q :

〈 1
2pi(A→Bi) |

i∈I
〉
. Let S=S′R, so N=QR→⊕ [ 1

2N1R,
1
2N2R]. Then Π is of the shape:

Γ`N1 :
〈
pi(Ai→Ai) | i∈I

〉
(∆i`R :Ai)i∈I

Γ]i∈I∆i`N1R :
〈
piAi | i∈I

〉 →E

By induction, Γ`Q :
〈 1

2pi(Ai→Ai) | i∈I
〉
, so the proof follows by rule (→E).

J
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