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Abstract: The urgent need to develop a detection system for Staphylococcus aureus, one of the most 
common causes of infection, is prompting research towards novel approaches and devices, with a 
particular focus on point-of-care analysis. Biosensors are promising systems to achieve this aim. We 
coupled the selectivity and affinity of aptamers, short nucleic acids sequences able to recognize 
specific epitopes on bacterial surface, immobilized at high density on a nanostructured zirconium 
dioxide surface, with the rational design of specifically interacting fluorescent peptides to assemble 
an easy-to-use detection device. We show that the displacement of fluorescent peptides upon the 
competitive binding of S. aureus to immobilized aptamers can be detected and quantified through 
fluorescence loss. This approach could be also applied to the detection of other bacterial species once 
aptamers interacting with specific antigens will be identified, allowing the development of a 
platform for easy detection of a pathogen without requiring access to a healthcare environment.  

Keywords: Staphylococcus aureus; biosensors; molecular dynamics; circular dichroism; fluorescence; 
nanostructured surface; point-of-care detection 

 

1. Introduction 

Staphylococcus aureus, a common commensal of skin and nares, is one of the most frequent causes 
of infections [1,2], one of the five most common causes of infections after injury or surgery. Moreover, 
it has become the second major bacterium in food poisoning since it is able to produce heat-resistant 
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toxins [3]. In addition, antibiotic-resistant strains of S. aureus (e.g., methicillin-resistant staphylococci) 
appeared not only in clinical settings such as in hospitals, but also in whole communities [4]. These 
premises make the development of rapid and reliable methods to identify S. aureus in biological 
samples as well as in food an urgent need to avoid epidemics. 

Pathogen detection mainly relies on microbiological and biochemical methods, but these are 
usually time-consuming, expensive and not suitable for integration in on-site diagnosis. In fact, 
conventional methods to detect S. aureus, such as cell cultures, require more than one day and cannot 
distinguish among strains belonging to other species such as S. intermedius, S. caprae, S. simulans and 
S. capitis [5]. Rapid S. aureus agglutination tests have been developed as an alternative for routine 
diagnosis, but their accuracy, specificity and predictive capacity have been questioned [6–8]. 
Techniques involving manual or automated biochemical methods exploiting colorimetric reactions 
are widely used in clinical laboratories. They are faster than cell cultures and comparative studies 
indicate significantly better results [9], but they require specific instrumentation and trained 
personnel. For these reasons, there is currently a huge demand for alternative, rapid methods to 
detect S. aureus overcoming these limitations [10,11]. The advent of real-time PCR led to the 
development of rapid methods (a few hours), not requiring the bacteria isolation [12–14], but this 
technique requires expensive equipment and trained personnel. Hence is not suitable for bedside 
point-of-care use. Moreover, PCR-based methods are based on nucleic acids amplification, hence 
suffer from false positive results coming from contaminants sequences amplification, as well as false 
negative results coming from template nucleic acid degradation. As an alternative to nucleotides, 
peptide nucleic acids (PNAs), pseudopeptides mimicking DNA, show improved binding behavior 
and higher stability, but their cost is still too high for their application in this field. MALDI-TOF MS-
based identification of bacteria is a fast and accurate technology [15–18] and could be an alternative 
to molecular tests if the test accuracy is proven [19], but requires an expensive instrument as well. 
Beside their interest and popularity, the costs, required time and the need for trained personnel and 
fixed equipment make the applicability of these techniques to point-of-care pathogen monitoring 
tools challenging to realize. 

An attractive alternative is represented by biosensors, devices where a biological component, 
such as a protein or oligonucleotide, is coupled with a transducer for obtaining a readable signal. 
Biosensors may represent novel and user-friendly devices to handle human, animal of food samples, 
allowing the rapid detection of bacteria without the need for expensive and fixed equipment. 

The recognition of a bacterial pathogen such as S. aureus has been approached in different ways 
by biosensors, exploiting proper transducers to give a readable signal (Table 1). Commonly reported 
recognition tools are: (1) antibodies [20]; (2) bacteriophages [21]; (3) phage display peptides and 
phage receptor binding proteins and (4) nucleic acids. While successful in immuno-analytic protocols, 
antibodies are still costly, and show a relatively short shelf life and poor stability towards changes in 
temperature, pH and ionic strength. Moreover, ethical issues regarding the need for animal 
immunization for their production have to be considered. However, optical fibers-based biosensors 
conjugated to monoclonal antibodies that bind methicillin-resistant Staphylococci have been recently 
reported as a potential alternative to cell cultures [22]. Phages, which have better stability, and are 
selective for single strains of bacteria, have still to be optimized in terms of immobilization density 
and their purification remains challenging [23]. Nucleic acids are exploited for their capability to 
complementary hybridize each other or to form more complex tridimensional structures able to 
selectively recognize epitopes, similarly to antibodies. 

As an example of the first case, an electrochemical DNA sensor based on DNA hybridization 
has been recently developed and tested on contaminated food [24]. The second case is mainly 
represented by aptamers, a novel and highly performing analytical tool for diagnostic applications 
[25]. Aptamers are DNA or RNA segments acting as artificial recognition elements that are able to 
recognize conserved epitopes on the surface of a bacterium. Aptamer libraries are continuously 
growing thanks to the recent progress in the aptamer selection procedure (SELEX). Moreover, due to 
the relatively easy prediction of their secondary structure, the possibility to modulate affinity towards 
a target by a rational modification of the sequence has been demonstrated [26]. While several 
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aptamers are available for recognizing S. aureus [27–33] and hence a set of molecular recognition 
probes is available, the development of a proper transducer for a biosensor is still calling for an 
intensive research in the field of the technological challenges in translating aptamer-based biosensors 
in clinical practice is the possibility to have substrate materials adequate for the high density and 
functional immobilization of aptamers. A first endeavor to overcome this limit relies in the use of 
carbon nanotubes (CNTs), chosen for their capability to form hybrids with nucleic acids and 
transducing electrical signals with high efficiency, exploited in the development of electrochemical 
sensors [10,34,35]. An ultra-sensitive method for bacterial identification based on the resonance light-
scattering signal of aptamer-conjugated gold nanoparticles was used for detecting single S. aureus 
cells [36]. Other recent advances in the development of aptamer-based S. aureus biosensors are based 
on gold electrode piezoelectric sensors [30] or silver nanoparticles [31]. 

Despite these encouraging results, the development of surfaces able to immobilize aptamers is 
still crucial and nanostructured surfaces are very promising for this kind of applications [37–42], 
because they can allow high-density immobilization of biorecognition elements while retaining their 
structure and functionality. In particular, it has been demonstrated that the surface nanoscale 
morphology promotes protein [43–45] and aptamer [46] adsorption. Thus, producing nanostructured 
substrates with well controlled and scalable roughness represents a unique asset for the 
implementation of aptamers-based devices. 

We took advantage of aptamers already known to interact with S. aureus to improve their surface 
immobilization density, by adopting a nanostructured zirconium dioxide support to promote surface 
linking. The final aim is to produce a detection system kit suitable for point-of-care use with a user-
friendly read-out. We proved the possibility of creating a detection kit by immobilizing on the 
nanostructured support one of the highest affinity reported aptamers, SA23 [27]. The detection is 
based on a fluorescein-labeled peptide bound to the aptamer that is displaced in the presence of 
bacteria and released free in the solution, with a concomitant change of its fluorescence properties. 
Pathogens can be detected by visual inspection, ideally simply by illuminating the device with a 
visible commercial blue led. 

The novelty of our biosensor development approach resides in coupling an already known 
biorecognition element obtained with a high throughput approach (i.e., aptamers) with a rationally 
designed element (specifically interacting peptides), to give an easily readable signal. To design the 
structure of peptides we introduced in silico design in the development of a transducer [47,48], i.e., a 
peptide able to selectively bind an aptamer based on its sequence. 

The interacting peptide was designed in silico exploiting the energetic amino acid-base 
recognition code previously obtained by estimating the interaction energy of several protein-DNA 
complexes with the HINT force field [49]. The latter, originally developed for evaluating protein-
ligand interactions [50], has also been successfully applied to protein-protein [51], protein-water [52] 
and protein-DNA [49,53] systems. Differently from complementary double stranded DNA, aptamers 
do not have a well-defined three-dimensional structure and present a high level of flexibility [54]. It 
is known that aptamers are predominantly unstructured molecules in solution, and fold upon 
association with the corresponding ligands into molecular architectures, in which the ligand becomes 
an intrinsic part of the nucleic acid structure [55]. This property was favorably exploited to increase 
the energy of interaction of peptides specifically designed to bind aptamers. Starting from the 
aptamer sequence, the aforementioned recognition code was used to predict the residues able to give 
stronger interactions, considering that contacts as Arg and Lys with G, Asp and Glu with C, and Asn 
and Gln with A have demonstrated to be conserved and to better stabilize protein-nucleic acid 
complexes [49]. The designed peptides were then synthesized using stepwise solid phase synthesis 
(SPPS), exploiting the effectiveness of microwave irradiation, which previously demonstrated its 
potential allowing the synthesis of a 75mer peptide [56]. 

We finally created a device where the fluorescein-labeled peptide, hybridized to the aptamer 
immobilized on the nanostructured surface, is displaced by S. aureus and released in the biological 
fluid, losing its fluorescence. The properties of nanostructured materials could also fit in microfluidic 
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devices, that demonstrated to be useful in the concentration of pathogens, hence improving the 
detection limit [57]. 

This approach can in principle be expanded towards any biological agent for which selective 
aptamers have been identified. As a perspective, this platform has the potential for the development 
of point-of-care detection avoiding to access the healthcare environment. The recent SARS-CoV-2 
pandemic highlighted how this aspect would be critical in the management of such emergency conditions. 

Table 1. Relevant S. aureus biosensors with their component properties and detection limit. 

Biorecognition Element Detection Method 
Detection 

Limit Ref. 

PEI-GA modified antibody amperometric 10 CFU/mL [20] 
lytic phage surface plasmon resonance-based sensor 104 CFU/mL [21] 

monoclonal antibody optical fiber 104 CFU/mL [22] 

hybridizing S. aureus DNA electrochemical (multiwalled carbon 
nanotubes-chitosan-bismuth) 

3.17 × 10−14 M [24] 

hybridizing S. aureus 
ssDNA chitosan–Co3O4 nanorod–graphene 4.3 × 10−13 M [58] 

DNA aptamer 
potentiometric (single-walled carbon 

nanotubes) 
8 × 102 

CFU/mL [10] 

DNA aptamer graphene interdigitated gold electrode 41 CFU/mL [30] 
biotynilated DNA aptamers electrochemical (silver nanoparticles) 1.0 CFU/mL [31] 

DNA aptamer fluorescence (labeled aptamer) 102 CFU/mL [32] 
aptamer-conjugated gold 

nanoparticles resonance light-scattering–detection system single cells [36] 

2. Materials and Methods 

2.1. In Silico Design 

Two main criteria were followed during the aptamer design phases: (i) evaluation of the 
aminoacid-nucleotide pairing suitability according to the employed pseudo-code [49]; (ii) the 
selection, whenever possible, of residues bearing side chain with similar length with respect to the 
wild type ones. 

2.2. Molecular Dynamics 

The three-dimensional structure of SA23-2AII DNA single strand was generated using MC-Fold-
MC-Sym pipeline [59]. Then, the protein-aptamer complex was obtained by manually placing the 
ssDNA molecules close to the CRO protein, according to the protein-DNA complex reported in PDB 
6cro [60]. We reproduced the interactions hypothesized by the mentioned recognition code [49], 
residues 26–27 and 31–32 of CRO protein, which should interact with nucleobases at position 2–3 and 
16–20 of SA23 DNA sequence. To optimize the molecules and the relative interaction, we submitted 
the SA23-2AII complex model to 500 ns of MD simulation using the GROMACS 5.0.5 package [61]. 
The complex was solvated in an octahedron box using the TIP3P water model, maintaining a 1.1 nm 
distance from the molecule border [62]. Counter-ions were added to neutralize the whole system. 
Temperature and pressure were controlled with the Berendsen algorithm [63], following previous 
protocols [64–67]. The Ewald method was applied to model electrostatic interactions. Before starting 
the equilibration, waters were minimized for 10 ps at 300 K, restraining protein and RNA atomic 
positions with a harmonic potential. Starting from 50 K, the system was heated up gradually to 300 
K in six steps phases and the production run in NPT standard conditions for 500 ns, without 
restraints. The MD trajectory was analyzed with GROMACS, VMD [61,68] and Pymol [69] packages. 
The second part of the simulation was clustered to extract a representative conformation, with the 
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gromos clustering method [70]. The structure having the lowest RMSD, with respect to the other 
cluster members, was considered as the most representative, for each cluster. 

2.3. Peptide Synthesis and Labeling 

Peptide synthesis was carried out on a microwave-assisted solid phase-based peptide 
synthesizer, followed by labeling with 5(6)-carboxyfluorescein [56,71]. 

2.4. Circular Dichroism 

Circular dichroism (CD) spectra were recorded with a Jasco J-715 spectropolarimeter (Jasco 
International Co. Ltd., Tokyo, Japan) thermostatted with a Peltier unit set at 20 °C. Secondary 
structure estimation was performed by using the Dichroweb server [72,73]. 

2.5. Fluorescence Analysis 

Fluorescence spectra of each peptide-aptamer complex were recorded on a Jasco FP-777 
spectrofluorometer. The excitation wavelength was 488 nm and the emission wavelengths were in 
the range from 510 to 610 nm. Peptides tagged with carboxyfluorescein were dissolved in 20 μM 
phosphate buffer and titrated with different amounts of aptamer. The peptide-aptamer mixture was 
incubated at room temperature for 15 min to allow the formation of the complexes before the 
registration of each fluorescence spectrum. 

2.6. Nanostructured Zirconia Substrates 

Nanostructured zirconia (ns-ZrOx) thin films were grown on glass microscope slides by 
depositing supersonic beam seeded with zirconia clusters produced by a pulsed microplasma cluster 
source (PMCS) under high vacuum conditions [74–76]. A zirconium rod is ablated by a pulsed argon 
plasma stream, ignited by an electric discharge. The removed materials thermalize in the quenching 
inert gas and condense to form clusters. The mix of cluster and inert gas is extracted through a nozzle, 
forming the seeded supersonic beam. The zirconia clusters are collected on substrates mounted on 
the manipulator perpendicularly to the beam trajectory. Since the kinetic energy of the zirconia 
clusters is sufficiently low to avoid fragmentation a cluster assembled film is grown. The films are 
partially oxidized in the deposition apparatus due to the presence of oxygen traces; further oxidation 
occurs upon exposure to air. 

The surface roughness of the substrates is crucial for the molecules immobilization since it affects 
their adsorption density and functionality [44,77,78]. Thus, the films were grown with deposition 
parameters optimized for producing films with morphological properties suitable for the aptamers 
immobilization. The rms roughness was estimated by AFM measurements, as extensively described 
elsewhere [75]. The value chosen as optimal was 15 nm. 

2.7. Aptamers Microarrays 

The validation and quantification of the aptamers immobilization on ns-ZrO2 have been 
achieved by using the protocol called protein surface interaction microarray (PSIM), which allows 
the high throughput study of biomolecules-surfaces interactions [43]. The protocol applied takes 
advantage of the biotin-streptavidin pairing to enhance the adsorption of aptamers on ns-ZrO2. 

Initially, a small volume droplet (450 pL) of Streptavidin is spotted on slides with the zirconia 
nanostructured surfaces, on top of those subsequent 450 pL droplets biotin-triethylene glycol (TEG) 
fluorescent aptamers are spotted. All the spotting process has been performed using an automated 
sciFLEXARRAYER S3-Scienion AG spotter (Scienion AG, Berlin, Germany). After incubation for 20 
min at 65% controlled humidity, the slides were blocked in a solution with PBSMT (PBS + 5 mM 
MgCl2 + 0.1% (v/v) Tween 20) for 10 min and washed 3 times in PBSMT for 3 min, 3 times in PBSM 
(PBS + 5 mM MgCl2) for 3 min and finally in doubly-distilled H2O for 1 min. Slides were then dried 
under gentle nitrogen flux. The amount of adsorbed biomolecules is evaluated by reading the 
fluorescent signal with a TECAN microarray scanner (Tecan Group Ltd., Männedorf, Switzerland), 
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and images are analyzed using Scan-array Express software (PerkinElmer Inc., Waltham, MA, USA). 
Figure S1 shows a sketch of PSIM protocol applied to 4 different fluorescent aptamers spotted on ns-
ZrO2 substrate. SA23 has been purchased from Sigma-Aldrich (Sigma-Aldrich Corp., St. Louis, MO, 
USA), aptamer SA23 biotin-TEG 5′ modified has been purchased from PrimmBiotech (PrimmBiotech, 
Inc., Cambridge, MA, USA). The IIA2 fluorescent peptide is incubated in the aptamers microarray 
immediately after the blocking step. The concentration of the peptide is 20 μM in PBS and incubation 
time is of 15 min. 

2.8. Fluorescence Confocal Microscopy 

The microscope slides have been imaged in the xy and xz planes using a Leica TCS SP5 confocal 
microscope (Leica Microsystems, Wetzlar, Germany), using a diode (561 nm) laser with 30% laser 
power, a 40× oil immersion objective, 1024 × 1024 image resolution and UV (405 nm) at 35% laser 
power, 40× oil immersion objective and 1024 × 1024 image resolution (Figure S1). 

2.9. Bacterial Culture 

Staphylococcus aureus subsp. aureus (ATCC-25923) and Escherichia coli (ATCC-25922) are from 
LGC Standards (LGC Standards s.r.l., Milan, Italy). The bacteria are cultured in solution, using LB 
Broth (Miller) from Sigma-Aldrich as growth medium, in a thermoshaker at 37 °C overnight. Then 
the concentration of bacteria is measured using a spectrophotometer at fixed wavelength (600 nm). 
Before the incubation with the immobilized aptamers, the bacteria were stained with Hoechst 33,258 
from Sigma-Aldrich (3 μL per mL of solution). 

2.10. Detection of Bacteria-Aptamer Interaction 

In order to detect the activity of aptamers immobilized on nanostructured surfaces for bacterial 
recognition the following protocol has been established: incubation with 5 μM streptavidin for 20 
min; washing with PBSM 1 time for 5 min; incubation with 5 μM biotin-TEG-aptamer-Cy3 labelled 
for 15 min; washing with PBSMT 3 times for 3 min; incubation with S. aureus or E. coli, 108 bacteria/mL 
for 45 min at RT; washing with PBSMT and PBSM, 3 times for 3 min each. 

2.11. Bacterial Displacement 

The bacterial displacement experiments are based on the previously described procedures: 
round cover glass (Ø 13 mm) coated with ns-ZrO2 (rms roughness 15 nm), coverage of the surface 
with streptavidin (6.63 μM, 100 μL), incubation at RT for 20 min in 65% controlled humidity, washing 
in PBSM, removal of PBSM, spotting of aptamer SA23 biotin-TEG modified (26.53 μM, 100 μL), 
incubation at RT for 20 min in 65% controlled humidity, washing in PBSM, removal of PBSM, spotting 
of peptide (50 μM, 100 μL), incubation at RT for 15 min in 65% controlled humidity (kept dark), plate 
reading (TECAN), washing in PBSM, bacteria plating incubation with S. aureus or E. coli, 108 

bacteria/mL for 45 min at RT (kept dark), washing with PBS, plate reading (Tecan) of the fluorescein 
signal (excitation wavelength 485 nm, emission wavelength 535 nm). 

3. Results and Discussion 

3.1. Aptamer Selection for in Silico Design of Interacting Peptide 

The five aptamers presented by Cao and coworkers [27] were considered for selecting the 
candidate that could be better targeted by peptides designed in silico. SA23 (Figure 1a) was chosen 
among these aptamers firstly for a structural peculiarity. According to the predicted secondary 
structure, in fact, it presents a relatively long trait in double strand configuration (the hairpin made 
by nucleotides 16–44), with high GC content in the inner portion. This double strand DNA region of 
the aptamer was then identified as the putative binding region of the peptides. Moreover, the SA23 
aptamer results as the one with the higher affinity towards S. aureus within this group. 
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Figure 1. Aptamer folding prediction obtained with RNAstructure 
(https://rna.urmc.rochester.edu/RNAstructureWeb/) for (a). Full lenght SA23; (b). SA23 short1 
sequence; (c). SA23 short 2. Here the predicted contacts with the mutated residues are also indicated. 
The color-code shows the level of prediction reliability, as indicated in the legend. 

3.2. Peptide Scaffold Selection 

Once the proper aptamer was chosen, we identified among proteins able to interact with nucleic 
acids λ-Cro as a suitable scaffold for the design of aptamer-interacting peptides [79]. λ-Cro is a 66 aa 
protein that plays a pivotal role in the switch from lysogenic to lytic phase in the growth cycle of 
phage λ and represented a suitable scaffold for several reasons: (i) the availability of three-
dimensional structures both in the presence and absence of its cognate DNA (PDB ID: 6cro [60] and 
5cro [80], respectively) allows detailed structural evaluations; (ii) the helix-turn-helix motif of the 
DNA binding domain is relatively small and all the interactions between the nucleobases of the 
consensus sequence and the peptidic backbone are well characterized; (iii) the minimum functional 
portion of the consensus sequence is quite short and made by contiguous nucleobases along the two 
strands of the DNA target; (iv) previous works reported successful examples of Cro reprogramming 
for binding consensus sequences that differ from the wild type [79]. Moreover, the helix-turn-helix 
peptide domain of the Cro protein showed to well mimic full-length protein for binding [79]. 
Therefore, the sequence of the helix-turn-helix motif of Cro was mutated, accordingly to the 
previously reported recognition code, to specifically bind SA23 double strand region. 
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3.3. In Silico Design and Synthesis of λ-Cro Mutant Specific for Aptamer Binding 

The selected portion of λ-Cro sequence suitable for in silico evaluation and following mutation 
spans the residues 15–38 (wild type sequence: GQTKTAKDLGVYQSAINKAIHAG), that includes 
almost the totality of the a-specific and pseudo-specific residues that interact with its cognate DNA 
sequence, according to the complex reported by Olhendorf et al. (PDB ID: 6cro) [60]. The design was 
performed using the complex as template and considering the peptides acting as a monomer, which 
was reported to bind its operator site, with a binding constant of around 25 μM or above for the wild 
type. This binding constant is theoretically appropriate for a system where the labeled peptide has to 
be displaced by the aptamer that, on the contrary, shows binding constant in the nanomolar range. 

The secondary structure of SA23 was predicted by using RNAstructure and is reported in Figure 
1a. As mentioned, the paired region was chosen as possible target. The interacting peptides have been 
designed substituting the original residues to possibly generate more stable interactions with the 
paired aptamer (Table 2). 

The peptides were synthesized using microwave assisted Fmoc-based solid phase peptide 
synthesis on Rinkamide resin [56]. Labelled peptides were prepared on resin using 5,6 
carboxyfluorescein as the fluorescent tag [81]. 

Table 2. λ-Cro mutant peptides sequence. 

Peptide Sequence MW (Da) 
IA Ac-GQTKTAKDLGVYKSAIEEAIHAG 2428.73 

IAser Ac-GQTKTAKDLGVYKDAIEEAIHAG 2456.73 
IB2A Ac-GQTKTAKDLGVYDSAIEEAIHAG 2415.63 
IIA Ac-GQTKTAKDLGVYESAIEEAIHAG 2429.67 

IIA2 Ac-GQTKTAKDLGVYEDAIEKAIHAG 2456.74 
IIA3 Ac-GQTKTAKDLGVYEDAIEFAIHAG 2475.74 

IIA2M Carboxyfluorescein-GQTKTAKDLGVYEDAIEKAIHAG 2773 
IA3M Carboxyfluorescein- GQTKTAKDLGVYEDAIEFAIHAG 2792 

3.4. λ-Cro Peptide Mutants Characterization by Far-UV Circular Dichroism 

Circular dichroism experiments were carried out on λ-Cro peptide mutants optimized to interact 
with the double strand portion of SA23 aptamer in 20 mM phosphate buffer, pH 7.4. Circular 
dichroism was used to characterize the secondary structure of synthesized peptides, and hence to 
determine the mutation effect on the structure stability. It has already been demonstrated that it is 
possible to mimic the DNA binding behavior of λ-Cro by shorter, chemically synthesized peptides, 
representing the helix-turn-helix region of the protein [79]. These peptides, also in dimeric form, 
showed significant helical content only when α-amino isobutyric acid is introduced in the sequence 
[79]. To quantify the λ-Cro mutant helical content, the spectra of the peptides were analyzed using 
Dichroweb server (CDSSTR algorithm-reference set 7), yielding a low percentage of helical content 
(Table 3), highlighting that the isolated peptides in solution are unstructured in the absence of the 
target nucleotide sequences. 

Table 3. Peptides secondary structure estimated by Dichroweb server. 

Peptide Helices Strand Turns Disordered 
IA 17% 28% 18% 36% 

IAser 21% 24% 20% 35% 
IB2 21% 26% 21% 32% 
IIA 19% 24% 20% 37% 
IIA2 7% 32% 23% 37% 
IIA3 5% 36% 17% 40% 
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To verify that increasing the concentration the peptides does not result in the formation of 
aggregates or oligomeric forms, CD spectra were collected as a function of peptide concentration (10–
100 μM). The CD spectra in this range of concentration appeared identical (data not shown). Peptide 
solutions demonstrated to be stable even after 1–2 freeze-thawing cycles. 

The use of circular dichroism for evaluating the interaction between SA23 aptamer and the 
peptides requires also to characterize SA23 CD spectra. Since peptides were specifically designed to 
bind a specific region on the aptamer (the hairpin formed by nucleotides 16–44), shorter sequences 
were also characterized: SA23 short1 and SA23 short2, the former being the short paired sequence on 
which the peptide is expected to bind, while the latter is the complete hairpin. CD spectra of SA23, 
SA23 short1 (Figure 1b) and SA23 short2 (Figure 1c) were collected in the far-UV and near-UV regions. 

3.5. Circular Dichroism Studies on Peptide-Aptamer Interaction 

The peptide-aptamer interaction was first studied by near-UV CD spectroscopy. In this region, 
only aptamers and not peptides contribute to the spectra. The analysis of this spectral region allowed 
to monitor the peptide effect on the aptamer structure, without any interference from the peptide 
conformational change. 

Solutions containing aptamers and peptides at the same concentration (20 μM) were incubated 
before recording the spectra. A comparison between the spectra of the aptamer-peptide mixture and 
the arithmetic sum of the two separated components would highlight potential interactions. 

The comparison between arithmetic and experimental mixtures highlighted no differences with 
the short versions of SA23, SA23 short1 and SA23 short2, while a marked difference was observed 
for the full length aptamer SA23 with the four peptides IIA2, IAser, IIA and IB2. In Figure 2 the 
comparison between arithmetic and experimental mixtures for the IIA2 peptide is shown. The 
absence of CD spectra difference between the mixtures and the arithmetic sums observed for the 
shorter versions of SA23 (SA23 short1 and SA23 short2) may derive from the lack of conformational 
adjustment upon peptide binding. 
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Figure 2. Circular dichroism spectra of the mixtures (solid lines) and the arithmetic sum (dashed lines) 
of peptide IIA2 with SA23 short1 (a), SA23 short2 (b) and SA23 (c). 

However, the collected data showed that the aptamer SA23 interacts with four peptides, 
promoting a conformational change detectable by a CD band intensity decrease. The most evident 
effect was observed for peptide IIA2, as reported in Figure 3 where the ellipticity at 280 nm is reported. 
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Figure 3. Circular dichroism signal at 280 nm of SA23 in the absence and presence of peptides. 

To demonstrate that peptide binding is determined by the specific mutation inserted on λ-Cro 
peptide mutants, we synthesized and checked sequence-scrambled peptides, and peptides where 
mutations causing unfavorable interaction were inserted. The comparison of the mixture of these 
peptides with SA23 with the arithmetic sum gave overlapping results, demonstrating the absence of 
interaction (data not shown). 

3.6. Fluorescence Characterization of Peptide-Aptamer Interactions 

Based on CD results, further analyses were carried out by fluorescence spectroscopy, using the 
most promising IIA2 peptide labeled with fluorescein, in order to: (i) confirm peptide-aptamer 
complex formation also after peptide labeling, and (ii) calculate the dissociation constants (Kd) of the 
peptide-aptamer complex, which determination is prevented in circular dichroism measurements by 
experimental limits of acquiring CD spectra at low concentrations. 

The labeled peptide was titrated with increasing concentrations of aptamers and spectral 
perturbations were followed at 520 nm emission wavelength, allowing to calculate the dissociation 
constants (Figure 4). In accordance with the CD measurements, specific binding could be detected for 
the aptamer SA23 with peptide IIA2, with a measured Kd of 1.64 ± 0.20 μM. Differently form CD 
measurements, fluorescence analysis was able to detect peptide binding also to the shorter versions 
of SA23, SA23 short 1 and SA23 short 2, for which a Kd of 5.81 ± 0.21 and 9.61 ± 0.77 μM was obtained, 
respectively. These data demonstrated that IIA2 peptide is able to bind to SA23 with an affinity in a 
low micromolar range, and peptide binding is specific for the target sequence, as demonstrated by 
binding of SA23 short 1 and SA23 short 2, that showed similar binding affinity. IIA2 peptide affinity 
for SA23 aptamers, compared to the reported affinity of SA23 for S. aureus of 61.50 ± 22.43 nM, makes 
IIA2 peptide a good candidate for a device where the displacement of the peptide from SA23 binding 
site in the presence of the pathogen bacterium easily allows the S. aureus detection. 
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Figure 4. Binding of SA23 to fluorescein-labeled IIA2 peptide recorded by measuring fluorescence 
emission changes at 520 nm in 20 μM phosphate buffer at room temperature. Solid line, fitting of 
fluorescent data to a binding isotherm (Kd 1.64 ± 0.20 μM); dashed lines, 95% confidence bands. 

The fluorescence behavior of fluorescein upon binding will allow an easy detection of 
aptamer:peptide complex displacement by S. aureus. In fact, fluorescein loses fluorescence upon 
release from the aptamer, and this can be appreciated by the loss of fluorescence of the 
nanostructured chip upon its incubation in the putative contaminated fluid. 

3.7. Molecular Dynamics Simulation 

To further investigate the interaction of SA23 with the most promising peptide IIA2, we 
modelled the aptamer-peptide complex, using as guide the coordinates of the CRO protein co-
crystallized with a DNA duplex molecule (PDB ID 6cro [60], see method section for details). To 
stabilize and investigate the dynamic and structural properties of the complex, molecular dynamic 
simulation (MD) in explicit waters was performed for 500 ns. Although no major perturbations affect 
the complex, the root mean square deviation (RMSD) values exhibited by either the complex, the 
peptide or the aptamer, with respect to the initial state, reveal the system reaches a global equilibrium 
in the second half of MD simulation (Figure S2). In Figure 5 (panel a) a representative structure of the 
equilibrated part of the trajectory is shown. Even if changes occurred with respect to the starting 
modelled structure, a good protein-aptamer interface is established and preserved along the 
trajectory and the aptamer maintains the same loop arrangement dictated by the original folding. We 
have calculated the occurrence percentage of hydrogen bonds formed at the complex interface, 
finding that 3 out of the 7 significative hydrogen bonds (preserved for more than 30% of the trajectory 
frames) involve the aptamer backbone atoms (Figure S3 and Table S1). The remaining connections 
involve nucleobase atoms of the aptamer. In detail, Lys39 and Thr6 (out from the peptide length) 
interact with the phosphate groups of Guanine 5 and 6 (Table 2), Lys32 and His35 make persistent 
bonds with the nucleobases of guanine 10 (DG10) and timine 11 (DT11). The last interactions are 
formed by the exposure of Lys32 and His35 out of the double strain towards the peptide and are able 
to anchor the peptide with specific nucleobase interactions. Likely, the IIA2 peptide sequence is able 
to maintain the required secondary structure arrangement to bind the aptamer through non-specific 
and specific contacts. 
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Figure 5. (a). Global (left) and zoom (right) view of the key interactions at the protein-aptamer 
interface. The protein is shown in blue cartoon and the aptamer in yellow ribbon; the atoms involved 
in each connection are labeled. (b,c). Frontal and lateral view of molecular dynamic representative 
structures of the protein-aptamer complex simulations derived using a RMSD based clustering 
approach. The CRO protein is shown as surface and colored according to the electrostatic potential. 
The red color (negative potential) arises from an excess of negative charges near the surface and the 
blue color (positive potential) occurs when the surface is positively charged (±1 kT/e). The white 
regions correspond to fairly neutral potentials. The aptamer is colored yellow. 

The typical electrostatic profile of the protein-aptamer interface, showing positively charged 
patches on the peptide side in contact with the negatively charged nucleic acid backbone, is shown 
in Figure 5 (panel b and c). 

3.8. Aptamer Immobilization on Ns-ZrO2 

To exploit the possibility to realize an aptamer-based biosensor for bacteria detection the 
microarray technique was applied to test different aptamers and different experimental conditions 
for their immobilization in one single experiment and to test bacteria-aptamer interactions. Figure 6 
shows the image acquired by a scanner/reader of SA23 fluorescent aptamer spotted on a glass slide 
coated with ns-ZrO2 for various concentrations, namely 1, 2, 4 and 8 μM. 
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Figure 6. Scanned image of aptamer-microarray. SA23 spotted on ns-ZrO2 surface covering a glass 
slide with different concentrations of 1, 2, 4 and 8 μM. 

The isotherms showing the adhesion of SA23 aptamer on different substrates are reported in 
Figure 7. The promotion of the adhesion of bare aptamers on ns-ZrO2 substrate with respect to clean 
glass is mainly evident at high concentrations. However, the adhesion enhancement is of about a 
factor of two for all the concentrations, when the biotinylated aptamers pair with streptavidin 
deposited on the nanostructured surface. Furthermore, no manifest hindering to aptamer adhesion 
appears to be induced by the TEG spacers. 

 
Figure 7. Isotherm describing the adsorption behavior of bare aptamers spotted on glass and on ns-
ZrO2 and of aptamers functionalized with biotin-TEG 5′ spotted on ns-ZrO2 coated with streptavidin. 

3.9. Aptamers Hybridization with Peptides 

The SA23 aptamer immobilized on the microarray was left to hybridize with fluorescein-labeled 
IIA2 peptide. The total absence of fluorescein signal suggests that aptamers loose their functionality, 
possibly because of interactions with the microarray surface leading to incorrect aptamer folding, i.e., 
electrostatic interactions between the negatively charged DNA phosphodiester backbone and the 
positively charged surface. To overcome this problem, biotin-TEG modified aptamers were used 
since the 15 atoms spacer should be able to avoid any possible interaction between the aptamers and 
the surface [82]. Thus, a new microarray with biotin-TEG aptamers spotted on ns-ZrO2 coated with 
streptavidin was left to hybridize with the fluorescein-labelled peptide (IIA2). The assays result is 
reported in Figure 8 and Figure S4. The expected signal originating from the hybridization between 
SA23 and IIA2 was clearly appreciable, demonstrating that the SA23 aptamer was immobilized with 
the correct folding. 

8 μM 
4 μM 
2 μM 
1 μM 

SA23 



Sensors 2020, 20, 4977 15 of 22 

 

 

Figure 8. Confocal microscopy images in the focal plane and along the z-axis. From top to bottom: 
spot of streptavidin physico-absorbed on cluster-assembled zirconia surface, SA23 aptamer 
functionalized with biotin-TEG immobilized on the surface via biotin-streptavidin bindings, peptide 
used as probe for the SA23 aptamer and merge of the three fluorescence signals. 

3.10. Interaction of S. aureus with SA23 Aptamer 

Figure 9 shows representative confocal images from multiple acquisitions of the interaction of 
S. aureus (left panel a) and E. coli (right panel a) with SA23 aptamers immobilized on ns-ZrO2. The 
larger amount of fluorescent spots for S. aureus in comparison with those for E. coli indicates a high 
degree of hybridization of the former bacteria with the aptamer, supporting the effective selectivity 
of the device. This achievement is a fundamental step for the further device assessment, i.e., the 
peptide displacement (Figure 9, panel b). 

Streptavidin 

Peptide ΠA2 

Biotin-TEG SA23 

Merge 

xy-plane xz-plane 
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Figure 9. (a). Confocal microscope images of bacteria stained with Hoechst, upon interaction with 
previously immobilized SA23 aptamer. Left: S. aureus; right: E. coli. Both bacteria have been incubated 
at a concentration of 108 bacteria/mL. (b). schematic representation of the device assembly. 

3.11. Aptamer:Fluorescent Peptide Complex Displacement by S. aureus 

To finally test the functionality of the proposed device, we investigated the capability of S. aureus 
to outcompete IIA2 peptide binding to SA23. The ns-ZrO2 substrate functionalized with SA23 and 
hybridized with IIA2 peptide was subjected to bacterial incubation followed by a washing step; then 
fluorescence was measured. Successful competition of bacteria with respect to the fluorescently 
labelled peptides for binding to SA23 is expected to bring about fluorescence loss upon washing. We 
compared the fluorescent peptide displacement by S. aureus and E. coli to evaluate the selectivity of 
peptide displacement by SA23-S. aureus interaction. The residual fluorescence signal, averaged on 16 
samples using a plate reader, is related to the remaining amount of bound peptides, that is inversely 
related to their displacement by bacteria. The data shown in Figure 9 (panel a) and analyzed in Figure 
10 indicate that the device plated with S. aureus exhibits a significantly lower signal with respect to 
that with E. coli. This result supports the effectiveness of the device for selective detection of S. aureus. 
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Figure 10. Fluorescence counts of fluorescein-labeled IIA2 peptide upon incubation and washing with 
S. aureus and E. coli. All data were obtained from two independent experiments (n = 15). Error bars 
represent the standard deviation (* p < 0.05, unpaired t test). 

4. Conclusions 

We demonstrated that the rational design of a peptide able to interact with a nucleotide sequence 
(aptamer) selected for the recognition of a specific pathogen is a viable approach for the development 
of a biosensor. Moreover, we show that the developed zirconia nanostructured substrate is a 
promising platform for generating biosensors based on the immobilization of receptors for the 
detection of pathogenic agents. 

Important structural determinants related to the aptamer sequence and responsible for the 
specificity of the protein targeting have been revealed. MD simulations performed on the modelled 
peptide-aptamer complex validated the interaction and identified key residues fundamental for the 
complex stabilization. Even if the original interaction pattern, as predicted by the protein-DNA 
recognition code [49], has not been totally preserved, these results are of significant relevance, 
considering that no X-ray structure of the peptide-aptamer is available and the complex has been 
hardly modelled on the structure of the λ-Cro protein interacting with a double strand DNA. This 
likely supports the use of the recognition code for the prediction of key residue-nucleobase contacts 
in protein-nucleic acids interaction. 

The microarray technique allows the development of biosensors to screen in parallel for more 
targets, given the possibility to immobilize multiple receptors on the same substrate, retaining their 
structure and functionality. Moreover, the high surface-to-volume ratio that characterizes the porous 
materials used as substrates for the microarrays, allows the adsorption of a higher amount of 
molecules/receptors/aptamers with respect to a flat surface. 

The cluster-assembled zirconia developed in this work was used as reliable support for bioactive 
molecules’ immobilization, particularly aptamers, for biosensing applications. The protocol 
developed for their immobilization preserves the functionality of the nucleotides. This 
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immobilization technique well couples with the use of fluorescently labeled synthesized peptides 
able to selectively bind specific aptamers. 

We finally created a device where the fluorescent chip, loaded with the labeled peptide, looses 
fluorescence upon bacterium displacement and consequent peptide release in the fluid. A 
colorimetric switch as a detected signal could also be possible by preparing peptides labeled with 
solvatochromic fluorophores [83,84]. 

This device development platform can, in principle, be applied to any analyte for which selective 
aptamers have been identified, and whose rapid and specific point-of-care detection is desired. 

Supplementary Materials: The following materials are available online at www.mdpi.com/1424-
8220/20/17/4977/s1: Peptide synthesis and labeling, Figure S1: Sketch of PSIM protocol applied to one fluorescent 
aptamer spotted on ns-ZrO2 at different concentrations. Upper left: spotting; upper right: incubation in a 
controlled atmosphere (65% humidity), immersion in a blocking solution and rinsing; bottom left: drying and 
bottom right: scanned image, Figure S2: Time evolution of the RMSD values with respect to the starting model. 
The RMSD values have been computed considering the C alpha and C5' atoms of the protein and aptamer, 
respectively. The following color code was used: overall complex (mean: 0.7 nm, SD: 0.12 nm): black line, peptide 
2AII (mean: 0.45 nm, SD: 0.07 nm): red, aptamer (mean: 0.59 nm, SD: 0.14 nm): green, Figure S3: Absolute number 
of protein-aptamer interfaces hydrogen bonds during the entire trajectory, Figure S4: Sketch of the biotin-
streptavidin paring strategy. The aptamers are functionalized with biotin-TEG 5’and the ns-ZrO2 is coated with 
streptavidin. The 15-atom tetraethylene glycol (TEG) spacer is added for minimizing steric hindrance when 
conjugating the biotin with other molecules, Table S1: Persistent hydrogen bonds computed for the last 250 ns 
of simulation time. 
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Abbreviations 

The following abbreviations (in order of appearance) are used in this manuscript: 
PCR polymerase chain reaction 
PNA peptide nucleic acid 
MALDI-TOF matrix assisted laser desorption ionization time-of-flight 
MS mass spectrometry 
SELEX systematic evolution of ligands by exponential enrichment 
CNT carbon nanotubes 
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2 
PEI-GA glutaraldehyde pre-coated with polyethyleneimine 
CFU colony forming unit 
PDB protein data bank 
MD molecular dynamics 
CD circular dirchoism 
ns-ZrOx nanostructured zirconia 
PMCS pulsed microplasma cluster source 
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AFM atomic force microscopy 
PSIM protein surface interaction microarray 
TEG triethylene glycol 
PBS phosphate buffed saline 
RT room temperature 
RMSD root mean square deviation 
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