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Abstract Recent BELLE measurements provide the cross
section for single hadron production in e+e− annihilations,
differential in thrust and in the hadron transverse momen-
tum with respect to the thrust axis. Universality breaking
effects due to process-dependent soft factors make it very
difficult to relate this cross sections to those correspond-
ing to hadron-pair production in e+e− annihilations, where
transverse momentum dependent (TMD) factorization can be
applied. The correspondence between these two cross sec-
tions is examined in the framework of the Collins-Soper-
Sterman factorization, in the collinear as well as in the TMD
approach. We propose a scheme that allows to relate the TMD
parton densities defined in 1-hadron and in 2-hadron pro-
cesses, neatly separating, within the soft and collinear parts,
the non-perturbative terms from the contributions that can
be calculated perturbatively. The regularization of rapidity
divergences introduces cut-offs, the arbitrariness of which
will be properly reabsorbed by means of a mechanism closely
reminiscent of a gauge transformation. In this way, we restore
the possibility to perform global phenomenological studies
of TMD physics, simultaneously analyzing data belonging
to different hadron classes.

1 Introduction

QCD describes hadronic matter through the dynamics of its
elementary consituents, quarks and gluons. However, con-
finement prevents the direct observation of partonic degrees
of freedom, which are shaded by the hadronization mecha-
nism.

Recently, the BELLE Collaboration at KEK has measured
the e+e− → HX cross section at a c.m. energy of Q2 ∼ 112
GeV2 as a function of PT , the transverse momentum of the
observed hadron h relative to the thrust axis [1]. The data are
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binned in PT and selected in thrust in such a way to ensure that
T ∼ 1, which corresponds to a two jet configuration. This is
one of the measurements which go closer to being a direct
observation of a partonic variable, the transverse momentum
of the hadron with respect to its parent fragmenting parton.

These data have indeed triggered a great interest of
the high energy physics community, especially among the
experts in the phenomenological study of TMD phenomena
and factorization. However, there are difficulties in the anal-
ysis of these data as, due to the nature of this process, a TMD
factorization as that formulated in Ref. [2] cannot be directly
applied. In this case, in fact, collinear factorization would
rather be the correct approach.

In this paper we will follow very closely the formulation
proposed by J. Collins in Ref. [2] for e+e− → HA HB X
processes and we will give a different definition of TMDs
which, by extending their degree of universality, becomes
suitable to be applied also to the e+e− → H X process. We
will move along the lines suggested, for instance, in Ref. [3].

In this new definition, the soft factor of the process, which
is responsible for potential universality breaking effects, is
not absorbed in the TMD, to prevent it from influencing its
genuinely universal nature. Instead, it appears explicitly in
the cross section which acquires a new term, that we will
call soft model, MS . After being modelled using a suitable
parameterization, it can be extracted from experimental data.
While the TMDs are truly universal and can be extracted from
any process, MS is universal only among a restricted number
of processes. In other words, MS is universal only within his
hadron class. Later on in the paper we will define what we
mean exactly by “class”; for the moment being we anticipate
that, for instance, Drell-Yan, Semi Inclusive Deep Inelastic
Scattering (SIDIS) and e+e− → HA HB X processes belong
to the same hadron class, while DIS and e+e− → H X
belong to a different class.

The advantage of this formulation is that a well defined
expression relates TMDs extracted using different defini-
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tions. Consequently, all results obtained in past phenomeno-
logical analyses can easily be reformulated according to this
new framework, with no loss of information.

We stress that the factorization procedure itself will not
be altered from its original form. Rather, we introduce a new
methodology to implement the phenomenological applica-
tion of that same scheme, changing the focus on the funda-
mental ingredients of the phenomenological models.

The paper is organized as follows. In Sect. 1.1 we will
outline the basics of TMD and collinear factorization. Sec-
tion 2 will be devoted to the study of the soft factor and its
factorization properties, while in Sect. 3 we will examine the
collinear parts of hadronic processes. Here we will define the
TMDs and show how a particular transformation, which we
will call “rapidity dilation”, allows to consider them invariant
with respect to the choice of the rapidity cut-offs introduced
by the regularization of the rapidity divergences. In Sect. 4
we will briefly outline a new way of classifying hadronic
processes in terms of their “hadron class”. Section 5 will be
dedicated to the study of 2-hadron processes and their cross
sections, respectively. Finally, in Sect. 6 we will apply this
formalism to e+e− → H X , giving a simple example of how
this scheme can be applied to a phenomenological analysis.
Appendices A, B and C will be dedicated to the definition
of Wilson lines, to the small bT behaviour of the soft factor
and of the TMDs, and to the kinematics of a e+e− → H X
process, respectively.

Throughout the paper we will adopt a pedagogical
approach, as we intend to provide a review which could
be useful to young beginners as well as to experienced
researchers.

1.1 Collinear and TMD factorization

Modern studies of high energy QCD processes are based on
factorization, a procedure that allows to separate the cross
section of a hadronic process involving a hard energy scale
Q into a part which is fully computable in perturbation theory
and a non-perturbative contribution, with an error suppressed
by powers of m/Q, where m is a typical low energy mass
scale. In general, the perturbative part is process dependent
but it can be computed, at any given order, for any given
process. The non-perturbative part, cannot be computed: it
should rather be inferred from experimental data. However,
when defined in an appropriate way, it is universal, in the
sense that it can be extracted from one process and then used
in any other. If factorization applies and universality is pre-
served, then the theory can be predictive. Nowadays, several
different schemes are available to implement factorization.
In the following, we will adopt the modern version of the
Collins-Soper-Sterman (CSS) scheme [4,5], often referred
to as CSS2, presented in Ref. [2].

When factorization applies, then the cross section of the
process will appear as a convolution of contributions which
can be classified in terms of the following three categories:

1. Hard part It corresponds to the elementary subprocess
and it provides the signature of the process, as it identifies
the partonic scattering uniquely. It is fully computable in
perturbation theory in terms of Feynman diagrams, up to
the desired accuracy.

2. Collinear parts These contributions are associated to the
initial and final state hadrons of the process and contain
the collinear divergences related to the massless particles
emitted along the hadron direction. Each of them corre-
sponds to a bunch of particles strongly boosted along this
direction, which move almost collinearly, very fast. Due
to their characteristic divergences, collinear parts can-
not be fully computed in perturbation theory: their non-
perturbative content has to be extracted from experimental
data. Among all the particles in the collinear group, two of
them deserve special attention: the reference hadron and
the reference parton. If the collinear group refers to the
initial state of the process, the reference hadron coincides
with the initial hadron and the reference parton is the par-
ton confined inside it that is struck in the hard scattering;
if the collinear group refers to the final state, the reference
hadron is the detected hadron and the reference parton is
the fragmenting parton, i.e. the particle that initiates the
hadronization process.

3. Soft part It embeds the contribution due to the soft gluon
radiation that connects the collinear parts and that flows
through the detector. It contains soft divergences and car-
ries non-perturbative information, therefore it cannot be
computed in perturbation theory. It cannot be directly
extracted from data, either, as the energy of the soft radi-
ation is so low that detectors are not sensitive to it. Since
the collinear parts interact among each other only through
soft gluons, their contribution can affect the cross section
in a non-trivial way. Moreover, the soft part is always
associated with the collinear terms and there is no way to
extract them separately. This is sometimes referred to as
the soft factor problem.

In several cases the contribution of the soft part is trivial. In
particular, any time in addition to the collinear partons there
are real emissions with hard transverse momentum, the soft
factor fully factorizes but its value reduces to unity. In these
cases, in fact, the soft gluons are kinematically overpowered
and do not correlate the collinear parts anymore: in this way
each collinear cluster of partons is totally independent from
any other. Technically speaking, in such a situation the soft
factor involves an integration over all the components of the
total soft momentum so that the soft information is washed
out in the integral. Whether there could be a hard real emis-

123



Eur. Phys. J. C            (2021) 81:96 Page 3 of 38    96 

Fig. 1 a Pictorial representation of (the hadronic part of) a DIS pro-
cess. The struk quark is associated to the collinear part relative to the
target hadron, while the radiated gluon is the hard real emission. b Pic-
torial representation of (the hadronic part of) e+e− → H X . The quark

line corresponds to the fragmenting quark associated to the collinear
part representing the final hadron, while the radiated gluon is the hard
real emission

sion or not is determined by kinematics. Hence, it is the hard
factor that discriminates among different cases.

Kinematical configurations where hard real emissions are
present, see for instance Fig. 1, represent instances in which
collinear factorization holds. In these cases it is possible
to relate each collinear part with a Parton Distribution Func-
tion (PDF) or a Fragmentation Function (FF), depending on
whether the associated reference hadron is in the initial or in
the final state, respectively. As an example of a collinearly
factorized process, one could consider the case of an e+e−
scattering where two spinless hadrons HA and HB are pro-
duced in the final state, in a configuration far from being
back-to-back in the center of mass frame (which, in this case,
corresponds to the lab frame). The resulting cross section is
given by (see Eq. (12.84) in Ref. [2]):

dσ(
d3pA
EA

) (
d3pB
EB

) =
∑
jA, jB

∫
dẑA
ẑ2
A

dHA/jA (̂zA)

×
∫

dẑB
ẑ2
B

dHB/jB (̂zB)
dσ̂

( d
3kA
εA

)
(
d3kB
εB

) ,

(1)

where dσ̂ is the partonic cross section, i.e. the hard part,
while dHi /ji (̂zi ), for i = A, B, are the usual FFs associated
to the outgoing hadrons, with momenta pA and pB , and to
the fragmenting partons of flavor jA and jB , corresponding
to the two collinear contributions to the cross section of the
process.

Configurations in which kinematics forbid hard real emis-
sions, instead, are extremely complex, but still very interest-
ing. Here, the soft factor does not reduce to unity, and soft
gluons have a non-trivial impact on the cross section as they
correlate the collinear parts. This correlation originates from
momentum conservation laws in the transverse direction. In
fact, with no hard real emissions and consequently no large
transverse momentum entering into the game, the low trans-
verse momentum components of soft and collinear particles
cannot be neglected anymore: the information regarding the

(total) soft transverse momentum survives and the soft factor
results in an integration over the plus and minus (but not over
the transverse) components. In these cases it is not possible
to associate a PDF or a FF to the collinear contributions: par-
ton densities are now related to different and more general
objects, known as Transverse Momentum Dependent (TMD)
parton functions, either TMD PDFs or TMD FFs depending
on whether they refer to an initial or a final state hadron.
In this cases collinear factorization breaks and a different,
more involved, factorization scheme has to be applied, com-
monly referred to as TMD factorization. As an example of
a TMD factorized process, we can once again consider the
production of two spinless hadrons from an e+e− scattering
where, this time, the two hadrons are almost back-to-back in
the e+e− center of mass frame. In this case, there are no hard
real emissions and the hadronic part of the cross section is
given by (see Eq. (13.31) in Ref. [2]):

Wμν(Q, pA, pB)

= 8π3zAzB
Q2

∑
f

Hμν

f, f
(Q)

×
∫

d2kA, h T d2kB, h T S(qh T − kA, h T − kB, h T )

×DHA/ f (kA, h T ) DHB/ f (kA, h T ), (2)

where Hμν

f, f
(Q) is the hard part, S represents the soft factor

and the functions DHi / f , for i = A, B, are the TMD FFs
associated to the outgoing hadrons and to the fragmenting
partons of flavor f and f̄ .

Once again, it is kinematics that determines which fator-
ization scheme has to be used: if the two hadrons are back-
to-back then TMD factorization, Eq. (2), must be applied,
otherwise Collinear factorization, Eq. (1), will be appropri-
ate.
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2 Soft factor

In this section we focus on those kinematical configurations
in which there is no hard radiation, where TMD factorization
has to be applied and the soft factor plays a non trivial role.

From the point of view of the soft gluons, each collinear
group is simply a bunch of particles strongly boosted in a
certain direction. The boost is so strong that the soft gluons
are only sensitive to the color charge and to the direction
of the collinear particles. As a consequence, the propaga-
tion of collinear particles is well approximated by a Wilson
line, see Appendix A, in the direction of the correspond-
ing collinear group, usually represented by double lines, see
Eq. (3). In the massless limit, the versor which identifies
this direction is light-like. However, a light-like Wilson line
brings unregulated rapidity divergences. In order to cancel
them, it is common to introduce a rapidity cut-off yi which
tilts the corresponding Wilson line away from its original
light-like direction. Obviously, the final result for the cross
section should not depend on these rapidity cut-offs, which
then have to be removed in the final stage of the computa-
tion. As explained in Ref. [2], the self-interactions of these
Wilson lines should not be included into the definition of the
soft factor. If kS, T is the total transverse momentum of the
real soft radiation flowing through the detector, then the soft
factor of a generic process is defined as [2]:

S(kS, T ; μ, yi, jk) = ZS(μ, yi, jk)×

×
∫

dk+
S dk−

S

(2π)D

∣∣∣∣∣
NO S.I.

,

(3)

where D is the dimension of space time (D = 4 − 2ε in
dimensional regularization), μ is the renormalization scale
and {yi } are Lorentz invariant combinations of the rapidity
cut-offs (i = 1, . . . N where N is the number of collinear
parts in the process). The dependence on the parton-types
j1 . . . jN of the partons associated to the collinear parts is only
on their Wilson line approximation, which changes according
to their color representation (fermions or gluons). The label
“NO S.I.” reminds us not to consider the Wilson lines self
energies Ref. [2]. This implies that N = 1 is excluded, since
it would correspond only to a Wilson line self energy-like
contribution. Finally, the factor ZS is a UV-renormalization
factor that cancels, order by order, the UV divergences gen-
erated when the integration region stretches outside of the
soft region. The role of ZS will become clear later on, when

the soft factor will be defined in the Fourier conjugate space,
Eq. (4).

It is important to stress that, with this definition, the soft
factor is sensitive to the number N ≥ 2 of collinear groups,
each one associated to a reference hadron h. Therefore it is
not totally blind to the rest of the process, but carries some
residual information about the overall process. For this rea-
son, in what follows we will always add a label “N-h” to the
soft factor S in order to take into account this dependence.

It is usually more convenient to define the soft factor in
the Fourier conjugate bT space of kS, T , where the quantities
involved in the cross section can be identified through an
operator definition. In the following, the Fourier transformed
quantities will be labeled by a tilde. In particular, the Fourier
transform of the soft factor, S̃N−h, is a matrix in color space,
given by the vacuum expectation value of a product of Wilson
lines:

S̃N−h(bT ; μ, yi , jk)

=
∫

dD−2kS, T ei kS, T ·bT SN−h(kS, T , μ, yi , jk)

= ZS(μ, yi , jk)〈0|
N∏
i=1

Wji (∞, −bT /2; ni (yi ) )†

×
N∏

k=1

Wjk (∞, bT /2; n j (y j ) )|0〉 |NOS.I.. (4)

The Wilson line Wji (∞, bT /2; ni ) goes from bT /2 towards
infinity in the direction of ni , which is not light-like thanks to
the rapidity cut-off yi , and has the color representation given
by the parton type ji .

We can obtain more information about the soft factor by
studying its structure in detail. Since all the collinear infor-
mation is replaced by spinless eikonal propagators, kS, T is
the only vector appearing in the soft factor. Therefore, S is
always rotational invariant and depends only on the modu-
lus |kS, T | = kS, T . This reflects on the Fourier conjugate
space, where the dependence on bT is only through its mod-
ulus |bT | = bT . Moreover the natural leading momentum
region of S is where all the momenta are soft, with com-
ponents of size λS = λ2/Q, where λ << Q is a very low
energy scale. When the soft factor is Fourier transformed, the
total transverse soft momentum kS, T is integrated out and its
dependence is replaced by bT . At fixed bT we can roughly
access all momenta with kS, T ≤ 1

bT
, hence this operation can

be regarded as a sort of analytic continuation of the function
S2−h(kS, T ) outside of its natural momentum region, since
when bT is small kS, T can be very large. This generates UV
divergences which will have to be canceled order by order
by the UV counterterm ZS .

The application of the factorization procedure to the soft
factor itself gives us the possibility to express S̃N−h in terms
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Fig. 2 Leading regions for the soft factor, SN−h, at small bT

of perturbative and non-perturbative parts (see Ref. [2]).
Leading regions involve hard, collinear and soft subgraphs,
as represented in Fig. 2. The hard factor is associated to the
external Wilson line vertices and contains hard subgraphs
with highly virtual loops. There is a collinear subgraph cor-
responding to each Wilson line and all of them are connected
by the soft subgraph. Furthermore, if the entering transverse
momentum ks is large enough, there can be more hard sub-
graphs Cα with production of final-state jets of high trans-
verse momentum (i.e. hard gluon emissions which cross the
cut). In each hard jet there is a fully inclusive sum/integral
over final states, hence the sum-over-cuts argument presented
in Ref. [2] allows us to consider them as being far off-shell
and part of the hard factor. In this case collinear factorization
holds and the soft factor is unity. Furthermore, there is no
convolution between the hard part and the collinear factors
Ci , since the cut eikonal propagators that exit from the hard
subgraphs do not carry momentum. As a consequence, all the
collinear parts are integrated 2-h soft factors and are unity as
well. Therefore, the only remaining effective region is the
hard factor with all the extra hard jets. It has the same struc-
ture of SN−h but now it is fully computable in perturbation
theory. In particular, it is a standard result that general soft
functions exponentiate and that the exponent can be com-
puted by using web technology, see for example Refs. [6–9].
Hence at small bT the soft factor can be written schematically
as:

SN−h(bT ; μ, yi , jk)
low bT∼∫

dD−2kS, T ei kS, T ·bT

exp

[∑
W

W(kS, T ; μ, yi , jk)

]
, (5)

where the sum is extended to all the (multiparton) webs and
the sums over the diagrams in each web, corresponding to
a certain color mixing matrix, has not been shown for sim-
plicity. In order to separate the small and large bT behavior
of S̃N−h, we can modify its functional dependence on bT by
introducing a function b�

T (bT ) such that it coincides with bT
at small bT , while at large bT it is no larger than a certain
bmax. A possible choice, according to Ref. [2,4,5], is given
by:

b�
T (bT ) = bT√

1 + b2
T /b2

max

(6)

Then, by dividing and multiplying S̃N−h in Eq. (5) by its
small bT behavior, we easily obtain a factorized expression
which holds valid at any value of bT :

S̃N−h(bT ; μ, yi , jk) = S̃N−h(b
�
T ; μ, yi , jk)

× S̃N−h(bT ; μ, yi , jk)

S̃N−h(b�
T ; μ, yi , jk)

=
∫

dD−2kS, T ei kS, T ·b�
T

× exp

[∑
W

W(kS, T ; μ, yi , jk)

]

× MS(bT ; μ, yi , jk), (7)

where MS(bT ; μ, {yi }i=1...N , { ji }i=1...N ) is the fully non-
perturbative function that models the N -h soft factor at large
bT , while the whole perturbative content is gathered in the
webs.

In the t’Hooft limit,1 the soft factor is strongly simplified.
Regarding the perturbative part, the only surviving diagrams
are planar and the exponentiation becomes trivial. Further-
more, we can also make some guess on the non-perturbative
part which is, in principle, a fully arbitrary function, since
there is no way to extract it independently from experiments.
In this limit the non-perturbative contribution of S̃N−h only
regards the incoherent emission of free glueballs, of every
possible kind.2 The function that models this kind of emis-
sion is a Poisson distribution, similarly to what happens for
photons in QED.

2.1 2-h soft factor

In the 2-h class, there are two directions for the collinear parts
which can be identified to the plus and the minus direction
in the c.m. frame. The Wilson lines are tilted with respect

1 NC → ∞ and αS NC is fixed.
2 In order to preserve unitarity the sum must run over all the possible
final states.
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to these light-like directions by introducing two rapidity cut-
offs y1 and y2. The original plus and minus directions are
restored if the cut-offs are removed, i.e. by taking the limits
y1 → +∞ and y2 → −∞. In total, there are four Wilson
lines, two on each side of the final state cut. The only rele-
vant case for applications involves Wilson lines that replace
fermionic collinear partons. Hence, in the following we will
drop the dependence on the parton types for simplicity. Fur-
thermore, the 2-h soft factor is color singlet, proportional to
the identity matrix in color space, i.e. (̃S2−h)

i
j ∝ δi j . Then,

S̃2−h is defined as the coefficient in front of the delta function.
By using the definition in Eq. (4) we have:

S̃2−h(bT ; μ, y1 − y2)

= ZS(μ, y1 − y2)

× TrC
NC

〈0|W (−bT /2, ∞; n1(y1) )†

× W (bT /2, ∞; n1(y1) )

× W (bT /2, ∞; n2(y2) )†

× W (−bT /2, ∞; n2(y2) )|0〉 |NOS.I., (8)

where NC is the number of colors available for quarks and
antiquarks (3 in QCD). The Eq. (8) describes a loop for the
full path outlined by the Wilson lines. It starts (e.g.) from
−bT /2 and goes to bT /2, passing through ∞, along the
almost plus direction n1. Then it comes back, again pass-
ing through ∞, along the almost minus direction n2. Notice
that the only Lorentz invariant combination for a function
depending on two rapidities (e.g. y1 and y2) is their difference
(e.g. y1 − y2). It is possible to write the evolution equation
for S2−h in the bT -space with respect to both rapidity cut-
offs, y1 and y2, using a single rapidity-independent kernel
K̃ (bT ; μ) defined as [2]:

lim
y2→−∞

∂ log S̃2−h(bT ; μ, y1 − y2)

∂y1
= 1

2
K̃ (bT ; μ) (9)

lim
y1→+∞

∂ log S̃2−h(bT ; μ, y1 − y2)

∂y2
= −1

2
K̃ (bT ; μ) ,

(10)

It has an anomalous dimension γK :

d K̃ (bT ; μ)

d log μ
= −γK (αs(μ)), (11)

where γK depends on μ through the strong coupling αS and
is independent of bT . Then, K̃ can be written as:

K̃ (bT ; μ) = K̃ (bT ; μ0) −
∫ μ

μ0

dμ′

μ′ γK (αs(μ
′)). (12)

For large values of (y1 − y2), the solution to the evolution
equations for S̃2−h is given by:

S̃2−h(bT ; μ, y1 − y2)

= S̃2−h(bT ; μ0, 0)

× exp
{ y1 − y2

2
K̃ (bT ; μ)

}

+ O
(
e−(y1−y2)

)

= S̃2−h(bT ; μ0, 0)

× exp
{

− y1 − y2

2

×
[ ∫ μ

μ0

dμ′

μ′ γK (μ) − K̃ (bT ; μ0)
]}

+ O
(
e−(y1−y2)

)
, (13)

where the reference values of the RG scale and of the rapidi-
ties are chosen to be μ0 and y1, 0 = y2, 0, respectively. In the
solution of the evolution equation, two functions appear: the
fixed scale soft factor S̃2−h(bT ; μ0, 0) and the soft kernel
K̃ (bT ; μ). Both of them can be separated in terms of their
perturbative and non-perturbative contents by using the b�

prescription, similarly to what was done in Eq. (7):

S̃2−h(bT ; μ0, 0) = S̃2−h(b
�
T ; μ0, 0) M (0)

S (bT ) ; (14)

K̃ (bT ; μ) = K̃ (b�
T ; μ) − gK (bT ) . (15)

Finally, consistency between Eqs. (7) and (13) requires that:

lim
y1→+∞
y2→−∞

∫
dD−2kS, T ei kS, T ·b�

T

× exp

[∑
W

W(kS, T ; μ, y1 − y2)

]

= y1 − y2

2
K̃ (b�

T ; μ) = y1 − y2

2

×
[
K̃ (b�

T ; μ0) −
∫ μ

μ0

dμ′

μ′ γK (μ′)
]

; (16)

lim
y1→+∞
y2→−∞

MS(bT ; μ, y1 − y2) = M (0)
S (bT ) e− y1−y2

2 gK (bT ) ;

S̃2−h(b
�
T ; μ0, 0) = 1 . (17)

Notice that the non-perturbative function MS(bT ; μ, y1 −
y2) loses its dependence on μ in the large rapidity limit, as gK
does not depend on the RG scale. Since we are only interested
in the asymptotic behaviour of S̃2−h, we will drop the label
(0) from MS(bT ) and we will refer to it as the soft model, i.e.
the non-perturbative part which will have to be parametrized
and treated phenomenologically, possibly taking inspiration
from the properties of the soft factor in the t’Hooft limit.

123



Eur. Phys. J. C            (2021) 81:96 Page 7 of 38    96 

The two non-perturbative functions MS and gK should not
contribute at small bT by definition, hence we require that
gK (bT ) → 0 and MS(bT ) → 1 when bT → 0. Furthermore,
since the Fourier transform of S̃2−h has to be well behaved,
the contribution of gK and MS should be suppressed at large
bT . Notice that the factor in front of gK , being proportional
to the difference of the rapidity cut-offs, is always large and
negative in the large rapidity cut-off limit. In conclusion, the
2-h soft factor in bT space can be written as:

S̃2−h(bT ; μ, y1 − y2)

= e
y1−y2

2 K̃ (b�
T ;μ) MS(bT )

e− y1−y2
2 gK (bT ) + O

(
e−(y1−y2)

)
. (18)

This result shows that the soft factor itself can be factorized in
a purely perturbative part, process dependent but calculable
within pQCD, and a part which is genuinely non perturbative
and, inevitably, will have to be committed to a phenomeno-
logical model, in this case embedded in the functions MS(bT )

and gK (bT ).
Although the definition of Eq. (8) implies that S̃2−h = 1

at bT = 0, a direct fixed order perturbative computation of K̃
does not reproduce the correct behavior in this region. In this
regard, since the soft factor is unity at bT = 0, then K̃ goes
to zero at small bT , but an explicit calculation gives instead a
larger and larger value asbT decreases, forcing S̃2−h to vanish
in bT = 0. This kind of problems arise because the integrated
soft factor can be defined through perturbative QCD only as
a bare quantity. A solution can be found by applying some
regularization procedure, for instance one can modify the b�

prescription of Eq. (6) allowing for the introduction of a new
parameter bMIN �= 0 that provides a minimum value for bT
(see Appendix B).

3 Collinear Parts and TMDs

Let’s now consider a generic collinear part. If kinematics
forbid hard real emissions, the information about the trans-
verse momentum kT of the reference parton survives. All the
collinear particles are boosted very strongly in the collinear
group direction, that we can identify with the plus direction
without loss of generality. To them, everything outside of the
collinear group is moving very fast in the opposite direction,

so fast that the only surviving information is the color charge
and the direction. In other words, as seen from the collinear
factor, the rest of the process is well approximated by a light-
like Wilson line flowing in the direction opposite to that of
the collinear group.

Assuming for simplicity that the reference parton is a
quark, if kT is the total transverse momentum of the collinear
group, then the collinear factor (along the plus direction) is
defined as in Ref. [2]:

(19)

where the color average TrC/NC is due to the fact that
collinear factors are color singlets and, analogously to the
2-h soft factor, they are defined as the coefficient in front
of the delta in color space. The variable ξ is the light-cone
fraction of the momentum k of the reference parton, quark
of flavor j , with respect to the momentum P of the refer-
ence hadron H , μ is the renormalization scale at which C is
evaluated and yP is the (very large) rapidity of the reference
hadron. The definition of ξ in the initial and final state is
given by:

ξ =
{
x = k+

P+ initial state hadron;

z = P+
k+ final state hadron,

(20)

To the Wilson line, instead, we can associate a very large and
negative rapidity. Similarly to the definition in Eq. (3), ZC is
the UV-counterterm of C, while the label “NO S.I.” reminds
us not to consider the Wilson lines self interactions. It is
important to stress that the collinear factor C is totally blind
to the rest of the process, it only depends on its intrinsic
variables. As for the soft factor, the operator definition is
simpler in the Fourier conjugate space. Here, we have:
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C̃ j, H (ξ, bT ; μ, yP , −∞) =
∫

dD−2kT ei kT ·bT C j, H (ξ, kT ; μ, yP , −∞)

= ZC (μ, yP ,−∞)
TrC

NC

∫
dx−

2π
eik

+x−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈P (H)|ψ(−x/2)Wj (−x/2, x/2; w−)ψ(x/2)|P(H)〉|NO S.I. initial state,
1

ξ
×
∑
X

〈P (H), X; out|ψ(−x/2)Wj (−x/2,∞; n1(y1) )†|0〉
× 〈0|Wj (x/2,∞; w− ) ψ(x/2)|P(H), X; out〉|NO S.I.

final state,

(21)

where x = (0, x−, bT ) and w− is the light-like minus direc-
tion of the Wilson line.

The presence of a light-like Wilson line allows for par-
ticles with a low, or even a very large negative rapidity, to
be considered as part of the collinear group. This contradic-
tion reflects in the computation by inducing the presence of
unregulated rapidity divergences. This problem can be solved
by subtracting out these unphysical contributions from the
collinear factor by using the subtraction method described in
Ref. [2]. Since all the non truly collinear contributions are
due to the overlapping with the soft region, they can be rear-
ranged in one global term which turns out to be a 2-hadron
soft factor. Hence we can use the definitions given in Eqs. (3)
and (4) to subtract them out and obtain:

C̃
sub
j, H (ξ, bT ; μ, yP − y1)

= Z sub
C (μ, yP − y1) Z2 (αS(μ))

× lim
yu2 →−∞

C̃
(0)
j, H (ξ, bT ; μ, yP − yu2)

S̃
(0)
2−h(bT ; μ, y1 − yu2)

, (22)

where y1 is the rapidity cut-off carried by S2−h that, similarly
to the case of the soft factor, should be removed in the final
result for the cross section. After subtraction, the particles in
C can only have a rapidity y such that y1 < y < yP ∼ +∞.
Hence if y1 is chosen to be sufficiently large, only strongly
boosted particles in the plus direction contribute toC, accord-
ing to the naive physical intuition. The subtracted collinear
factor has its own UV-counterterm Z sub

C , for this reason in the
previous definition the quantities inside the limit are bare, in
the sense that they have to be considered without their UV-
renormalization factors. Since the unsubtracted collinear part
is defined with renormalized quark fields, see Eq. (21), then
if Z sub

C is the ratio of the renormalized collinear part to the
unrenormalized collinear part, we have to multiply explic-
itly by the wave-function renormalization factor of the quark
field, Z2.

Having given the general definition of C, TMDs can be
obtained straightforwardly. In fact, as C is an operator acting
onto the space of Dirac spinors, it belongs to the Clifford
algebra built from the Dirac matrices {γ μ}. Therefore, we

simply expand C on the basis of this algebra. Neglecting
all the dependences on partonic and hadronic variables, we
have:

C
sub = S I + Vμ γμ + Aμ γ 5 γμ

+i P γ 5 + iT μν σμνγ
5. (23)

Then, the TMDs are related to the coefficientsS,V, . . . , T μν

of the Clifford Algebra expansion and the definition in
Eq. (22) naturally extends to TMDs. Such coefficients can
be further expanded in terms of all the Lorentz tensors con-
tributing to the leading twist approximation (see e.g. Ref.
[10]). This allows to isolate all the dependence on the vector
part of bT in the coefficients of such expansion, leaving a set
of scalar functions depending only on the modulus bT . These
scalar functions are the TMDs. For example, the coefficient
of γ + defines the unpolarized TMDs and the Sivers function:

V+ = 1/4 TrDirac
[
γ +

C
sub]

=
{
f1 − 1

M |ST × kT | f ⊥
1T initial state ,

D1 − 1
M |ST × kh,T |D⊥

1T final state .
(24)

Formally, if C is a generic TMD function referring to
a collinear factor in the plus direction, then its defini-
tion equipped with subtractions is inherithed directly from
Eq. (22) and it is given by:

C̃sub
j, H (ξ, bT ; μ, yP − y1)

= (ZTMD) j (μ, yP − y1) Z2 (αS(μ))

× lim
yu2 →−∞

1
4 TrDirac

[
Γ C̃

(0)
j, H (ξ, bT ; μ, yP − yu2 )

] leading
twist coeff.

S̃
(0)
2−h(bT ; μ, y1 − yu2 )

= 1

4
TrDirac

[
Γ C̃

sub
j, H (ξ, bT ; μ, yP − yu2 )

] leading
twist coeff. , (25)

where Γ is the proper Dirac matrix combination to extract
the desidered TMD and ZTMD is its own UV counterterm.
The label “leading twist coeff.” means that the TMDs are
obtained, after the projection onto the Clifford Algebra, as the
coefficients of the expansion at leading twist. The operator
definition of TMD as given in Eq. (25), which follows directly
from the TMD factorization prescription, will be referred
to as the factorization definition. Notice that within this
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definition, the TMD is a purely collinear object, as all soft
sub-divergences have been subtracted out.

3.1 Evolution equations for TMDs

In the factorization definition3 of TMDs, Eq. (25), a 2-h soft
factor appears as a consequence of the subtraction mecha-
nism. Therefore, we can use the results of Sect. 2.1 to write
the evolution equation (Collins-Soper evolution) for C̃ with
respect to the rapidity cut-off y1. On the other hand, the evo-
lution with respect to the scale μ (i.e. the Renormalization
Group evolution) is ruled by the anomalous dimension γC .
The equations are given by:

∂ log C̃ j, H (ξ, bT ; μ, ζ )

∂ log
√

ζ
= 1

2
K̃ (bT ; μ) , (26)

∂ log C̃ j, H (ξ, bT ; μ, ζ )

∂ log μ
= γC

(
αS(μ),

ζ

μ2

)
, (27)

which, for later convenience, have been re-written in terms
of a new variable, ζ , defined as follows:
⎧⎨
⎩

ζ = (Mx)2 e2(yP−y1) initial state hadron;

ζ =
(
M
z

)2
e2(yP−y1) final state hadron,

(28)

where M is the mass of the reference hadron, while x and z
are the light-cone fractions of the momentum of the reference
parton with respect to the hadron. Thanks to the definitions
in Eq. (20), in both initial and final states we can write ζ ∼
Q2e−2y1 . In addition to the previous evolution equations,
we also have the RG evolution of K̃ , Eq. (11), and the CS
evolution of γC , given by:

∂γC
(
αS(μ), ζ/μ2

)

∂ log
√

ζ
= −1

2
γK (αS(μ)), (29)

which gives:

γC

(
αS(μ), ζ/μ2

)
= γC (αS(μ), 1)

−1

4
γK (αS(μ)) log

ζ

μ2 . (30)

With the help of Eqs. (11), (29) and (30), we can rewrite the
solution to Eqs. (26) and (27) as [2]:

C̃ j, H (ξ, bT ; μ, ζ )

= C̃ j, H (ξ, b�
T ; μ0, ζ0)

× exp
{1

4
K̃ (b�

T ; μ0) log
ζ

ζ0
+
∫ μ

μ0

dμ′

μ′

3 In the following, we will drop the superscript “sub” since, from now
on, we will always refer to subtracted quantities.

×
[
γC (αS(μ

′), 1) − 1

4
γK (αS(μ

′)) log
ζ

μ′2

] }

× (MC ) j, H (ξ, bT ) exp
{

− 1

4
gK (bT ) log

ζ

ζ 0

}
(31)

where the standard choices for the reference values of the
scales are4:

μ0 = μb = 2e−γE

b�
T

; (32)

ζ0 = μ2
b ; (33)⎧

⎨
⎩

ζ 0 = (Mx)2 initial state;

ζ 0 =
(
M
z

)2
final state.

(34)

In the solution of the evolution equation the b�
T prescription,

Eq. (6), has been used in order to separate the perturbative
from the non-perturbative content, in complete analogy to
what was done for the soft factor in Sect. 2.1. In particu-
lar, in Eq. (31), the non-perturbative behavior of the TMD is
described by two functions. The first is gK , the same function
that appears in Eq. (18) in the asymptotic behavior of S̃2−h.
The second is the TMD model function (MC ) j, H (ξ, bT ),
that embeds the genuine non-perturbative behavior of the
TMD: it depends on the flavor of the reference parton and
on the reference hadron associated to the collinear part. By
definition, the model should not influence the TMD at small
bT . Furthermore, since the Fourier transform of the TMD
has to be well behaved, the model should be sufficiently sup-
pressed at large bT .5 These properties restrict the behaviour
of the non-perturbative function MC at small and large bT as
follows

lim
bT →0

MC (ξ, bT ) = 1; lim
bT →∞ MC (ξ, bT ) = 0. (35)

The factorization procedure can be applied either to the
full collinear factor or to the TMDs themselves, in order
to study their behavior at small bT , outside of their natural
collinear momentum region. This is given by a convolution
of a finite (calculable in perturbative QCD) hard coefficient
C with the TMD integrated over kT . The proof can be found
in Chapter 13 of Ref. [2]. Hence, TMDs at small bT can be
written as Operator Product Expansions (OPE):

4 Notice that the reference value of ζ is different in the perturbative
and in the non-perturbative parts. This follows from the application of
the evolution equation to C̃(ξ, bT ; μ0, ζ0)/C̃(ξ, b�

T ; μ0, ζ0), which
gives MC (bT ) exp

(−1/4gK (bT ) log ζ0/ζ 0
)
.

5 Although the function gK gives a suppression factor in Eq. (31), it
is modulated by (minus) the logarithm of ζ and consequently it may
create problems when the rapidity cut-off becomes too low.
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C̃ j, H (ξ, bT ; μ, ζ )
low bT∼ C̃ k

j (bT ; μ, ζ ) ⊗ ck, H (μ),

=
⎧
⎨
⎩

(
C̃ k
j (bT ; μ, ζ ) ⊗ fk/H (μ)

)
(x) initial state;

z−2+2ε
(
dH/k(μ) ⊗ C̃k

j (bT ; μ, ζ )
)

(z) final state.

(36)

where C̃ k
j are the Wilson Coefficients of the OPE, which are

matrices in the flavor space. A sum over k is implicit. In
the second line of Eq. (36) we distinguish the Wilson Coef-
ficients of the initial state from those corresponding to the
final state according to the position of their upper and lower
flavor indices. The convolution ⊗ of two generic functions
f and g is defined as

( f ⊗ g) (x) =
∫ 1

x

dρ

ρ
f (x/ρ)g(ρ), (37)

where we recall that the Wilson Coefficients of the final state
have a normalization factor ρ2−2ε when the convolution is
made explicit, see Ref. [11]. The integrated TMDs are indi-
cated by lowercase letters. In the following, ck, H will be a
generic integrated TMD, while f will label integrated TMD
PDFs and d will refer to integrated TMD FFs. Thanks to the
OPE, the solution of the evolution equations, Eq. (31), can
be rewritten as

C̃ j, H (ξ, bT ; μ, ζ )

=
(
C̃ k
j (b�

T ; μ0, ζ0) ⊗ ck, H (μ0)
)

(ξ)

× exp
{1

4
K̃ (b�

T ; μ0) log
ζ

ζ0
+
∫ μ

μ0

dμ′

μ′

×
[
γC (αS(μ

′), 1) − 1

4
γK (αS(μ

′)) log
ζ

μ′2

] }

× (MC ) j, H (ξ, bT ) exp
{

− 1

4
gK (bT ) log

ζ

ζ 0

}
. (38)

The definition of integrated TMDs coincides with the Fourier
transformed TMDs in bT = 0. Perturbative QCD fails to give
the right result in bT = 0 because of the new UV divergences
introduced by the integral over the whole range of kT . In fact,
as we explain in Appendix B.2, C̃ goes to zero as bT → 0
(see Eq. (134)) and the usual collinear PDFs and FFs are
not recovered. This problem is completely analogous to that
encountered in Sect. 2.1 and it can be solved in a similar way,
by defining a regularization procedure for the definition of
the integrated TMDs (see Appendix B).

3.2 Rapidity dilations

In the operator definition of the TMD, Eq. (25), we intro-
duced a rapidity cut-off y1, required in the subtraction mech-
anism of the overlapping between soft and collinear momen-
tum regions; y1 acts as a lower bound for the rapidity of the

particles described by the TMD, which are supposed to be
collinear, hence very fast moving along the reference direc-
tion (plus direction) of the jet. Therefore, despite it is a full-
fledged arbitrary cut-off, its value has to be chosen “large
enough” to preserve the physical meaning of the TMDs. In
fact, in a physical observable y1 should be set in the limit in
which the factorization procedure holds, i.e. y1 → ∞. How-
ever, TMDs are not physical observables and they depend on
μ as well as y1, hence they can be considered at a fixed, and
finite, value of y1.

The transformation rule for a shift in the rapidity cut-off
can be easily obtained from the solution of the evolution
equations in Eq. (31). If we shift y1 to ŷ1 = y1 − θ , where θ

is some real number, then (neglecting the dependence on all
variables except ζ ) the full TMD transforms as:

C̃(ζ ) �→ C̃ (̂ζ ) = C̃(ζ ) exp

[
1

2
θ K̃

]
, (39)

Therefore, the full effect of this transformation is a dilation
factor which depends on the soft kernel K̃ (bT , μ) and the
shift parameter θ . Notice that the transformed TMD describes
a different physical configuration, as the rapidities of the
collinear particles have been shrinked to a narrower range.
In particular, as ŷ1 approaches the factorization limit of infi-
nite rapidity, the particles belonging to that TMD become
more and more tightly aligned along the reference direction
of the collinear group. As a consequence, in the limit of infi-
nite rapidity cut-off, the collinear particle motion is basically
1-dimensional and the 3D picture of the hadron structure
is altered (see Fig. 3). Since the non-perturbative informa-
tion about the 3D structure of the hadrons is encoded into
the model MC , we can define a transformation that makes
the TMD invariant with respect to the shift of the rapidity
cut-off by acting simultaneously on the model. The result-
ing transformed TMD will describe the same physical con-
figuration of the initial TMD, because the alteration due to
the tightened range of rapidity will be totally reabsorbed by
the transformed model, that will compensate for the dilation
factor exp

[ 1
2θ K̃

]
in Eq. (39). Then, for any θ < 0 such

transformation is defined as:

y1 �→ Dθ (y1) = y1 − θ, (40)

MC (bT ) �→ Dθ (MC (bT ))

= MC (bT ) exp

[
−1

2
θ K̃ (μ, bT )

]
, (41)

where only the dependence on bT has been shown explicitly
in MC . Due to the dilation factor in front of the model, we
will refer to the previous transformation Dθ as a rapidity
dilation (RD), that makes TMDs invariant with respect to
the choice of the rapidity cut-off:
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Fig. 3 Pictorial representation of a TMD Fragmentation Function, in
which the separation between perturbative and non-perturbative regime
is explicitly shown, corresponding to two different values of the rapidity
cut-off. In a the rapidity cut-off of the TMD FF is set to a generic value
y1. In b the rapidity cut off has been shifted to ŷ1 > y1. The two TMDs

represent different physical configurations, as the range spanned by the
rapidities of the particles belonging to those TMDs are different. This
transformation alters the fragmentation mechanism; in fact at extremely
large values of the rapidity cut off, one can reach a quasi 1-dimensional
configuration

C̃(ζ, MC ) �→ Dθ

(
C̃(ζ, MC )

)

= C̃
(
ζe2θ , Dθ MC

)
= C̃(ζ, MC ). (42)

The transformed model, Eq. (41), acquires the same proper-
ties of Eq. (35). In fact, since K̃ goes to zero at small bT ,
then the dilation factor is 1 for bT ∼ 0. Furthermore, since
K̃ is basically negative, at large bT the dilation factor give
an additional suppression beside those due to the proper-
ties of gK and MC . Rapidity dilation make TMDs invariant
under the choice of the rapidity cut-off y1, which neverthe-
less has to be considered an arbitrary and large parameter.
This is in fact one of the necessary hypothesis at the basis
of any factorization formula: all the particles described by a
collinear part (and ultimately by a TMD) must have a large
and positive rapidity, according to the reference direction of
the collinear group. Hence, a rapidity dilation performed with
a very large and positive θ would contradict the initial hypoth-
esis on the validity of factorization itself. The correct way to
interpret this transformation is to apply it only after the fac-
torization formula has been derived, in the limit of y1 → ∞.
Roughly speaking, the model associated with a certain choice
describes how collinear particles with rapidity in the range6

y1 ≤ y < ∞ behave in the non-perturbative regime. Then,
rapidity dilations simply balance the perturbative and non-

6 In the real world, quite different from the massless limit, the upper
bound is yP , the large and positive rapidity of the reference hadron.

perturbative information encoded in the TMDs according to
the choice of rapidity cut-off, in order to keep their combi-
nation invariant. Furthermore, rapidity dilations offer a new
point of view which helps in the comparison between dif-
ferent physical configurations. Let’s consider, for example,
those depicted in Fig. 3, where panel (a) and panel and (b)
represent TMDs described by C(ζ, M) and C(Dθ ζ, M),
respectively, with Dθ ζ < ζ . It is interesting to point out
that this interpretation is totally equivalent to considering
the two TMDs evaluated within the same range of rapid-
ity but associated to two different non-perturbative models,
i.e. interpreting the TMD depicted in panel (a) as described
by C(Dθ ζ, Dθ M) and the TMD in panel (b) as described
by C(Dθ ζ, M). Notice that rapidity dilations define a group
under the multiplication laws:

Dθ2 ◦ Dθ1 = Dθ1+θ2 , Dθ ◦ D−θ = id . (43)

Rapidity dilations are closely reminiscent of a 1-parameter
gauge transformations for the “fields” y1 and MC , that make
the TMD invariant. Here the TMD plays the role of the
“Lagrangian”. In this sense, rapidity dilations might be con-
sidered a symmetry for the TMDs. There is an interesting
analogy between the action of rapidity dilations on the rapid-
ity cut-off, y1, and the action of the Renormalization Group
(RG) on the energy scale μ. Here, an arbitrary μ allows to
regularize the UV divergences, but it introduces some arbi-
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trariness in the theory, as μ can be set to any value. Some
quantities are independent of the choice of this scale, like
cross sections, where the RG-variation of the fields is exactly
compensated by the RG-variation of the external on-shell par-
ticles (LSZ mechanism). Similarly, rapidity dilations (RD)
allow to control the arbitrariness in the choice of the rapid-
ity cut-off, y1, that regularizes the rapidity divergences. In
particular, TMDs defined along the plus direction are RD-
invariant, as the transformation of the model MC , Eq. (41),
exactly compensates for the rapidity shift, Eq. (40). How-
ever, there are quantities that are not RD-invariant. As we
will show in Sect. 3.2.1, the TMD defined along the minus
direction C̃− or the 2-h soft factor S̃2−h are examples of such
quantities. On the other hand, combinations as C̃+ C̃− S̃2−h

are RD-invariant, because the dilation factor in C̃− exactly
compensates the variation in S̃2−h.

When a TMD appears in a cross section, its non-
perturbative content, i.e. the last line of Eq. (38), has to
be extracted from experimental data and the result will
depend on the choice of the rapidity cut-off, as represented
in Fig. 3. Rapidity dilations ensure that the physical infor-
mation encoded in the TMDs stays unaltered if the rapidity
cut-off is moved toward the limit of infinite rapidity. If C̃NP

denotes the full non-perturbative content of the TMD, then
its transformation rule under rapidity dilation is given by:

Dθ

(
C̃NP

j, H

)
(ζ, M, gK )

= C̃NP
j, H (Dθ ζ, Dθ M, gK )

= (Dθ M) j, H (bT ) exp
{

− 1

4
gK (bT ) log

Dθ ζ

ζ 0

}

= (M) j, H (bT ) exp
{

− 1

4
gK (bT ) log

ζ

ζ 0

}

× exp
{

− 1

2
θ K̃ (b�

T , μ)
}

= C̃NP
j, H (ζ, M, gK ) exp

{
− 1

2
θ K̃ (b�

T , μ)
}
, (44)

where the second step is given by Eqs. (15), (40) and (41). In
this case, the dilation factor is fully computable in perturba-
tive QCD. Notice that the function gK is not affected by the
rapidity dilation, as it should. In fact gK is also involved in
the definition of the soft factor S̃2−h (Eq. (18)), which must
not depend on the extraction of the TMD.

Due to rapidity dilations, the choice of the model depends
on the choice of the rapidity cut-off. Therefore, in general two
independent extractions of TMDs, that use different values
of ζ , will feature different models. However, rapidity dila-
tions allow to relate these independent extractions of TMDs.
The main difficulty here is that theory is devised in the bT -
space, while measurements are performed in the transverse
momentum space.

As a practical example, let’s suppose we want to compare
the TMD extractions of two independent research Groups, A
and B, that have analyzed the same sample of data. They will
provide two TMD functions in transverse momentum space
C (A) and C (B). Since they obtained their result fitting the
same experimental data, the two functions have to be com-
patible within the overlapping of the respective uncertainty
bands, built by considering all source of errors (collinear
PDFs/FFs uncertainties, experimental errors, fitting uncer-
tainties, etc ...). However a meaningful comparison can only
be made for small values of transverse momentum, because
TMDs turn non-physical at large kT (see B.2). Both results
can be written as the Fourier transform of their bT counter-
parts. Schematically:

C (A)(kT , ζ, M (A))

=
∫

d2bT
(2π)2 eikT ·bT C̃P

ζ (b�
T ) C̃NP

ζ, M(A) (bT ); (45)

C (B)(kT , ζ ′, M (B))

=
∫

d2bT
(2π)2 eikT ·bT C̃P

ζ ′(b�
T ) C̃NP

ζ ′, M(B) (bT ). (46)

where only the dependence on the rapidity cut-off and on the
model are shown explicitly and C̃P denotes the perturbative
content of the TMD. In principle, also the choice of gK may
be different for the two extractions. However, Group A and
B have to agree also in the estimate of the S2−h, and this
gives further constraints. Hence, even if g(A)

K and g(B)
K have

different functional forms, they should share more or less
the same shape. For simplicity, in the following we will set
g(A)
K ∼ g(B)

K .
The two rapidity cut-off are different but, supposing ζ ′ <

ζ , a certain real number θ < 0 must exists such that ζ ′ =
ζe2θ . Hence, Group A can perform a rapidity dilation in order
to comply with the choice of Group B. By using Eq. (44),
they can write:

C (A)(kT , ζ, M (A))

=
∫

d2bT
(2π)2 eikT ·bT C̃P

ζ ′(b�
T ) C̃NP

ζ ′,Dθ M(A) (bT )

=
∫

d2bT
(2π)2 eikT ·bT C̃P

ζ ′(b�
T ) C̃NP

ζ, M(A) (bT )

× exp
{

− 1

2
θ K̃ (b�

T )
}
. (47)

In this way, the two estimates are written with the same per-
turbative part in bT -space. If TMDs were valid throughout
the whole spectrum of kT s, then the comparison between
Eqs. (46) and (47) would lead to Dθ M (A) ∼ M (B). How-
ever, the Fourier transforms in Eqs. (45) and (46) have to be
compatible at small kT , but there is no constraint for larger
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values. Furthermore, we known that the perturbative con-
tent is constant for bT larger than a certain bSAT ≥ bMAX.
At the same time, the non-perturbative content should be of
order 1 at small/moderate bT , i.e. up to bSAT, in order not
to interfere too drastically on the perturbative information.
Therefore, we can roughly split the Fourier transform in two
parts as:

C(kT ) ∼
∫ bSAT d2bT

(2π)2 eikT ·bT

×
(
C̃P

ζ (b�
T ) − C̃P

ζ (bSAT)
)
C̃NP

ζ, M (bT )

+ C̃P
ζ (bSAT)

∫
d2bT
(2π)2 eikT ·bT C̃NP

ζ, M (bT ). (48)

The first part is integrated only up to the saturation value
bSAT. It is clearly dominated by perturbative information,
since C̃NP is not drastically different from 1 in that range, for
any choice of ζ and M . As a consequence, this part is almost
the same for both Eqs. (47) and (46). On the other hand,
the second part is simply proportional to the Fourier Trans-
form of the non perturbative content of the TMD. Different
choices of ζ and M can give integrands of the same order up
to bSAT but they can differ on how rapidly they go to zero as
bT goes to infinity: at large bT they could be very small and
at the same time differ for many orders of magnitude. This
difference is not evident at small values of kT , since the area
under the curve in bT space, after the saturation value, can
be neglected in any case. However, the differences may be
consistent at large kT . This is not a problem, since TMDs lose
their physical meaning in this region. Hence, Group A can
compare its result with that of Group B by Fourier transform-
ing its non-perturbative part after it has been rapidity-dilated.
Then, the following relation should hold within uncertainties:

RNP(kT ) =
FT

[
C̃NP

ζ ′, M(B) (bT )
]

FT
[
C̃NP

ζ, M(A) (bT ) exp
{

− 1

2
θ K̃ (b�

T )
}]

∼ 1 at small kT . (49)

3.2.1 Rapidity dilation and z-axis reflection

The behaviour under z-axis reflection, which simply exchan-
ges the plus and minus directions, is particularly impor-
tant for widely studied processes, like SIDIS, Drell-Yan and
e+e− → HA HB X , where two TMDs associated to opposite
directions are multiplied together. If Rz is the Lorentz trans-
formation that reverses the z-axis, then the rapidity of the
reference hadron swaps its sign under the action of Rz . On
the other hand, the rapidity cut-off is not the rapidity of any
real particle. It is just an ad hoc number and hence it is triv-
ially invariant under the action of Rz . However, the particles

belonging to the collinear group associated to the TMD in
the minus direction should have a very large negative rapid-
ity according to the limit y1 → +∞. Therefore, a proper
rapidity cut-off would be y2 = −y1, as if y1 had changed its
sign. Summarizing:

{
yP �→ Rz (yP ) = −yP ;
y1 �→ Rz (y1) = y1

de f= −y2.
(50)

As a consequence, the variable ζ for a TMD in the
minus direction is obtained by simply replacing ζ+ ∝
exp (yP − y1) with ζ− ∝ exp (y2 − yP ) and the full TMD
transforms as:

C̃+(ζ+) �→ Rz
(
C̃+(ζ+)

) = C̃−(ζ−), (51)

where only the dependence on the rapidity cut-off has been
made explicit.

There is a non trivial interplay between z-axis reflection
and rapidity dilations, since the two transformations do not
commute. In fact, if the rapidity cut-off y1 of C+ is shifted,
then the rapidity cut-off y2 of C− is shifted as well, but with
the sign reversed. This can easily be seen by a direct compu-
tation, with the help of Eqs. (40) and (50):

Dθ (y2) = Dθ (−y1) = −y1 + θ = y2 + θ. (52)

Therefore, according to Eq. (41), the model ofC− transforms
as:

Dθ

(
MC−(bT )

) = MC−(bT ) exp

[
1

2
θ K̃

]
. (53)

However, in the z-reversed TMD, C−, the rapidity cut-off
appears with the opposite sign with respect to C+. Hence,
there is no more compensation between the rapidity shift
and the transformed model, and C− is not invariant under
rapidity dilations. This can be summarized by saying that the
two transformations do not commute:
{

Rz
(Dθ

(
C̃+(ζ+)

)) = Rz
(
C̃+(ζ+)

) = C̃−(ζ−);
Dθ

(
Rz
(
C̃+(ζ+)

))=Dθ

(
C̃−(ζ−)

)= C̃−(ζ−) exp
[
θ K̃

]
.

(54)

Finally, lets consider the behavior of the (asymptotic) 2-h soft
factor, defined in Eq. (18), under rapidity dilations. Since the
soft model is not affected by the transformation and y1 →
y1 − θ , while y2 → y2 + θ , it transforms as:

Dθ

(̃
S2−h(bT ; μ, y1 − y2)

) = S̃2−h(bT ; μ, y1 − y2)

exp
[−θ K̃

]
. (55)

Therefore, by exploiting Eqs. (42), (54), and (55), the combi-
nation C̃+ C̃− S̃2−h cross section) is invariant under rapidity
dilations.
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4 Universality and process classification

Process-independent quantities play the most important role
in factorized cross sections. They areuniversal, which means
that once they have been estimated they can be used in any
cross section, regardless of the specific process. This is partic-
ularly useful for those quantities that carry non-perturbative
information. Since they cannot be computed analytically,
they have to be extracted from experimental data. However, if
they are universal, any process that allows for their presence
in the cross section can be exploited, and we can prefer those
with a richer amount of data. A lack of universality would
undermine the predictive power of QCD itself. In fact, if
the non-perturbative quantities had to be extracted again for
each individual process, the phenomenological analysis of
a hadronic cross sections would be reduced to a mere fit of
experimental data.

In general, a factorized cross section is a convolution of
three different objects: the hard part, the collinear factors and
the soft factor (see Sect. 1).

The hard part is completely process-dependent. However,
it can be computed in perturbative QCD and its lack of uni-
versality does not affect the predictive power of the theory.

Collinear parts and the TMDs, as defined in Sect. 3 by the
factorization definition, Eq. (25), depend only on their inter-
nal variables and hence are completely blind to the kinemat-
ics of the process. Therefore, they can be really considered
universal quantities.

On the other hand, the soft factor, defined in Sect. 2, is not
completely process-independent. In fact, it depends on the
number N of the collinear factors involved in the factorized
cross section, each related to its reference parton of type j
and to its reference hadron H . Therefore, they are not insen-
sitive to the kinematics of the process in which they appear,
because they depend both on the number of the Wilson lines
replacing the collinear parts and also on their color represen-
tation, which is fixed by the parton type j and differs from
quark and gluons. However, at fixed N and for reference
partons of the same kind, soft factors are actually the same
object, modulo crossing symmetry. As an example, Drell-
Yan scattering with two quark-initiated collinear factors in
the initial state, e+e− → HA HB X , with two quark-initiated
collinear factors in the final state, and also SIDIS, with one
quark-initiated collinear factor in the initial and one in the
final state, share the same soft factor S2−h modulo the cross-
ing symmetry that relates the three processes. Notice that
in this case there are only two collinear factors and charge
conservation allows only two quarks as reference partons.

Since processes with a different number N of collinear
factors have a different soft factor in their factorized cross
section, it is possible to classify them according to this num-
ber. This coincides with the number of reference hadrons
participating to the hadronic process. The classes derived

with this criterion will be called hadron classes. Formally,
a process belongs to the N-h class if it globally involves N
collinear parts, which can appear in the initial and/or in the
final state, in all possible combinations and for all the allowed
kind of reference partons. Therefore, SN−h can be considered
universal only within the N -h class, modulo crossing sym-
metry and the possible color representations of its Wilson
lines. This is a weaker kind of universality, that holds only
for a limited number of processes. For instance, processes
involving one collinear group belong to the 1-hadron class:
deep inelastic scattering (DIS), corresponding to one refer-
ence hadron in the initial state; e+e− → H X correspoding
to one reference hadron in the final state. Processes involv-
ing two collinear groups belong to the 2-hadron class: here
we have Drell–Yan like scattering, e+e− → HA HB X , and
SIDIS.

The classification above has nothing to do with the nature
of the factorization adopted (collinear or TMD): it depends
only on the specific kinematics of the processes, that can
be different case by case. However, it is possible to identify
common properties within each hadron-class that allows to
determine, a priori, which factorization scheme should be
used. Consider for example the 1-hadron class case. In both
DIS and e+e− → H X there is at least one hard real emis-
sion, since there is always a fermion leg crossing the final
state cut (see Fig. 4). The collinear factor associated to the
real emission is totally crossed by the final state cut and hence
it does not have any reference hadron. Therefore, it can be
considered far off-shell and part of the hard factor. All the
information about soft transverse momentum is washed away
and the collinear factorization scheme has to be applied. The
factorized cross section for 1-hadron class processes is then
written as a convolution of the collinear part associated to the
reference hadron with an hard factor that, once considered
together with the hard real emissions, can be interpreted as
a partonic cross section, i.e. the partonic counterpart of the
process.

In the 2-hadron class, instead, the choice of factorization
scheme is non-trivial and depends on the specific kinematics
of the process. It is dictated by the size of one parameter,
namely the ratio between the modulus of the weak boson
transverse momentum qT and the typical energy scale of the
process Q (see Ref. [2]). When qT /Q � 1, TMD factor-
ization has to be applied, while if qT /Q � 1, collinear fac-
torization will be appropriate.7 The cross sections predicted
in these two kinematical ranges, computed within two dif-
ferent approximations, do not automatically match; in fact,
the intermediate region, where qT ∼ Q, is usually called

7 For e+e− → HA HB X processes, the condition qT /Q � 1 corre-
sponds to having the two hadrons almost back-to-back in the c.m. frame.
On the contrary, qT /Q � 1 implies that the back-to-back configuration
cannot be realized, see Sect. 1.1.
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Fig. 4 Pictorial representation of DIS (a) and of e+e− → H X (b).
In both cases, there is at least one hard real emission, which produces a
collinear factor completely crossed by the final state cut. Consequently
it can be reabsorbed in the hard factor of the cross section

“matching region”. Several studies have been devoted to the
implementation of different algorithms to map these kine-
matics regions and to match the collinear cross sections to
the TMD cross section (a problem known as “matching”),
see for example Refs. [12–16].

According to the previous considerations, one can build
a hierarchy based on universality. The lowest level is occu-
pied by quantities, like the hard part, that are completely
process dependent but usually fully computable in perturba-
tion theory. At the top of the hierarchy we find quantities,
like the collinear factors, that are absolutely process inde-
pendent: they carry non-perturbative information but their
universality properties guarantee that they can be extracted
from one particular process and then used in any other. In the
middle there are quantities which are only universal within
their own N -hadron class, like the soft factors. As they carry
non-perturbative information, they cannot be computed per-
turbatively. They too have to be extracted from experimental
data, but they can only be used, class by class, for the pro-
cesses involving the same number of collinear groups and for
the same kind of reference partons.

In this sense, it is very important to provide a working
scheme where objects with different degrees of universality
are neatly separated, in such a way to maximize their pertur-
bative content and their universal parts, while reducing the
class-dependent factors to the minimum. For the latter, spe-
cial experimental efforts will be required in order to gather
a large number of high quality data corresponding to sev-
eral different processes, which will then be analyzed simul-
taneously in a completely consistent framework. The latest
analyses of the BELLE Collaboration and the current plans
towards the realization of a new Electron Ion Collider (EIC)
are indeed moving towards this direction [1,17–19].

The classification introduced above has to be intended as
a criterion to classify processes on the basis of their factor-
ized cross section properties, and of their corresponding soft

factor. Therefore, the number N that labels the classes is not
the number of all hadrons involved in the process, in gen-
eral much greater than the number of collinear factors. The
difference is more evident when we consider the final state
of a scattering process. In general, experimentalists detect
a huge number of hadrons, grouped in jets. The number of
jets does not correspond to the number of collinear factors,
which instead is the number of reference hadrons, i.e. the
number of jets in which the hadron is detected in order to
study the jet’s fragmentation properties. The actual topology
of the event (e.g. the number of jets) is described by event-
shape variables, like thrust. An example will be presented in
Sect. 6.

5 The 2-hadron class

We will now focus on the 2-hadron class of processes. As
mentioned above, in this class the choice of factorization
scheme depends on a single parameter, the ratio qT /Q (see
Sect. 1.1). The 2-hadron class plays a crucial role, as its
soft factor S2−h is exactly the same object that appears at
denominator in the subtracted collinear factor C, Eq. (22)
and, consequently, in the general definition of the TMD,
Eqs. (23) and (24).

5.1 2-h class cross section

In Sect. 2 we have provided a useful formalism to decompose
the 2-h class soft factor and the collinear part C in a fully
perturbative (computable) part and a strictly non-perturbative
term, which can be modeled through the functions gK (bT ),
MS(bT ) and MC (bT ), as shown in Eqs. (18) and (31). At
this stage we have achieved all the necessary tools to be
able to write an explicit expression for the 2-hadron class
cross section. Its generic structure is analogous to that given
in Eq. (2) for e+e− → HA HB X , with HA and HB in an
almost back-to-back configuration:

dσ2−h ∼ H × FT
[
C̃+ × C̃− × S̃2−h

]

∼ H × FT
[ C̃unsub+

S̃2−h
× C̃unsub−

S̃2−h
× S̃2−h

]
, (56)

where C+, C− refers to TMDs defined along the plus and the
minus direction, respectively. The soft factor S̃2−h appearing
in Eq. (56) is the same object that appears as subtraction factor
in the factorization definition of the TMDs. Reorganizing the
three S̃2−h factors and reabsorbing them in the TMD, leads
to a different definition of TMDs (see e.g. [2,20]):
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C̃ sqrt
+ (ξ+, bT ; μ, yP1 − yn)

= lim
yu1→+∞
yu2 →−∞

C̃unsub+ (ξ+, bT ; μ, yP1 − yu2)

×
√

S̃2−h(bT ; μ, yu1 − yn)

S̃2−h(bT ; μ, yu1 − yu2) S̃2−h(bT ; μ, yn − yu2)

(57)

C̃ sqrt
− (ξ−, bT ; μ, yn − yP2)

= lim
yu1→+∞
yu2 →−∞

C̃unsub− (ξ−, bT ; μ, yu1 − yP2)

×
√

S̃2−h(bT ; μ, yn − yu2)

S̃2−h(bT ; μ, yu1 − yu2) S̃2−h(bT ; μ, yu1 − yn)
.

(58)

This definition of TMDs is often referred to as the square
root definition.

There are many advantages to it. First of all, a single rapid-
ity cut-off yn is sufficient to regularize all rapidity diver-
gences, the perturbative computations are much easier and
the evolution equation are unified and symmetrized, see Ref.
[2]. Moreover, as mentioned above, the square root defini-
tion allows to solve the soft factor problem in the 2-hadron
class. In fact, according to this definition, the cross section
assumes a “Parton-Model”-like structure, where all soft glu-
ons are reabsorbed in the TMD definition, very convenient
for phenomenological applications:

dσ2−h ∼ H × FT
[
C̃+ × C̃− × S̃2−h

]

∼ H × FT
[
C̃ sqrt

+ × C̃ sqrt
−

]
, (59)

As an example, the unpolarized cross section for e+e− →
HA HB X for almost back-to-back spinless hadrons, Eq. (2),
becomes:

Wμν(Q, pA, pB)

= 8π3zAzB
Q2

∑
f

Hμν

f, f
(Q)

×
∫

d2bT S̃2−h(bT )D̃1,HA/ f (zA, bT )D̃1HB/ f (zB, bT )

= 8π3zAzB
Q2

∑
f

Hμν

f, f
(Q)

×
∫

d2bT D̃
sqrt

1,HA/ f (zA, bT )D̃ sqrt
1,HB/ f

(zB, bT ) . (60)

Despite its numerous advantages, the square root defini-
tion lowers the degree of universality of the TMD, as it relates
it to the 2-h soft factor which, by definition, is only univer-
sal within its corresponding 2-h class. In other words, the

square root definition is optimal for the 2-hadron class, as it
beautifully simplifies the 2-h cross section making it suitable
for phenomenological applications; its drawback, however,
is that it ceases to be valid outside the 2-hadron class. On
the other hand, abandoning the square root definition of the
TMDs in favor of the factorization definition, Eq. (23), will
force us to face the soft factor problem and take a new (and
potentially very hard) challenge: reformulating the way we
do phenomenology, in terms of newly defined fundamental
objects, where the soft factors are modeled explicitly rather
than absorbed in the definition of the TMDs.

We will attempt such a strategy, adopting the factorization
definition of the TMD, Eq. (25), and relying on the results of
Sects. 2 and 3 for the decomposition of the collinear and soft
factors in terms of their perturbative and non-perturbative
parts.

Using the solution of the evolution equations for the
TMDs, Eq. (38), and the soft factor, Eq. (18), it is possible
to write the 2-hadron class cross section in terms of pertur-
bative and non-perturbative functions. Apart from the hard
factor and a Fourier transform, the relevant structure is given
by:

C̃+(ξ+, bT ; μ, ζ1) C̃−(ξ−, bT ; μ, ζ2) S̃2−h

× (bT ; μ, y1 − y2)

= C̃+(ξ+, b�
T ; μ0, μ2

0) C̃−(ξ−, b�
T ; μ0, μ2

0)

× exp
{1

4
K̃ (b�

T ; μ0) log
ζ1ζ2

μ4
0

+
∫ μ

μ0

dμ′

μ′

[
2γC (1) − 1

4
γK (μ′) log

ζ1ζ2

μ′4

] }

× MC+(ξ+, bT ) MC−(ξ−, bT )

exp
{

− 1

4
gK (bT ) log

ζ1ζ2

ζ10ζ20

}

× exp
{ y1 − y2

2

[
K̃ (b�

T ; μ0) −
∫ μ

μ0

dμ′

μ′ γK (μ)

] }

× MS(bT ) exp
{

− y1 − y2

2
gK (bT )

}
, (61)

where the reference values of the scales can be set to stan-
dard choices, Eqs. (32), (33), (34) and the errors due to the
evolution equations are neglected, since they are suppressed

by O
(
e−(y1−y2)

)
. From Sect. 3.2.1, the product of the two

rapidity cut-off gives ζ1 ζ2 ∼ Q4e−2(y1−y2), hence the sec-
ond and the third lines in Eq. (61) generate contributions that
exactly cancel the fourth line and the exponential of the fifth
line, respectively. Therefore, we simply have:
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C̃+(ξ+, bT ; μ, ζ1) C̃−(ξ−, bT ; μ, ζ2) S̃2−h

× (bT ; μ, y1 − y2)

= C̃+(ξ+, b�
T ; μ0, μ2

0) C̃−(ξ−, b�
T ; μ0, μ2

0)

× exp
{
K̃ (b�

T ; μ0) log
Q

μ0

+
∫ μ

μ0

dμ′

μ′

[
2γC (1) − γK (μ′) log

Q

μ′

] }

× MC+(ξ+, bT ) MC−(ξ−, bT ) MS(bT )

× exp
{

− gK (bT ) log
Q√

ζ10ζ20

}
. (62)

As expected, in the previous equation there is no residual
dependence on the rapidity cut-offs y1 and y2, hence we can
simply set ζ1, 2 = Q2. Needless to say, this result is com-
patible with rapidity dilations since, as shown in Sect. 3.2.1,
the combination C̃+C̃−S̃2−h is invariant on the choice of the
rapidity cut-off.

The same steps that lead to Eq. (62) could be repeated
using the square root definition of the TMDs, Eqs. (57)
and (58). The final result will be very similar to Eq. (62),
with the exception that the soft model, MS , would not be
there. One may therefore be induced to think that adopting the
factorization definition instead of the square root definition
results in the replacement of the whole 2-h soft factor with its
long-distance behavior, given by the sole MS . However, this
is not the case. In fact, the 2-h soft factor strongly correlates
the two TMDs and combines with them in the structure of
the factorization theorem of Eq. (59). In particular, the expo-
nential resulting from the solution of the evolution equations
(see Eq. (18)), which encodes the whole dependence on the
scale and rapidity cut-offs, combines with its analogous coun-
terparts contained in the two TMDs in such a way that the
final cross section does not show any explicit dependence
on y1 and y2. The neat effect of applying the factorization
definition of the TMD instead of the square root definition
can be investigated by direct comparison, as we will show in
Sect. 5.2. For the moment being, we may expect that the two
TMD definitions will differ in their long-distance behavior.
In fact, one might imagine that, in Eq. (62), MS could be
reabsorbed by assigning one of its square roots to MC+ and
the other to MC− , giving back the same result that could have
been obtained by using the square root definition. This naive
intuition will be confirmed in the next Section.

5.2 Factorization definition vs. square root definition

We can now compare the factorization definition with the
square root definition of the TMDs. Reference [2] shows that
the unsubtracted TMDs C̃unsub

i (i = 1, 2), are the same in

the two definitions. Hence we can compute their ratio (here
we pick the plus direction):

C̃ sqrt
+ (ξ+, bT ; μ, yP1 − yn)

C̃+(ξ+, bT ; μ, yP − y1)

= lim
yu1 →+∞
yu2 →−∞

√
S̃2−h(bT ; μ, yu1 − yn)

S̃2−h(bT ; μ, yu1 − yu2 ) S̃2−h(bT ; μ, yn − yu2 )

× S̃2−h(bT ; μ, y1 − yu2 )

=
√
S̃2−h(bT ; μ0, 0) exp

(
(y1 − yn) K̃ (bT ; μ)

)

= √
MS(bT ) × e

(y1−yn )

2 K̃ (b�
T ; μ) e− (y1−yn )

2 gK (bT ) , (63)

where in the second line we used the solution to the evolu-
tion equations for the 2-h soft factor, Eq. (13), while in the
last step we used Eq. (18) in order to separate the perturba-
tive from the non-perturbative content. Obviously, a perfectly
analogous result holds for the TMD relative to the opposite
direction, C̃−. Notice that Eq. (63) is an exact result, since all
the corrections to the asymptotic part of the solution to the
evolution equations vanish due the limits yu1 → +∞ and
yu2 → −∞, for any finite value of yn , y1.

According to Sect. 3.2 (see e.g. Fig. 3), the physical con-
figuration described by a TMD depends on the cut-off that
constrains the rapidity of the particles that move collinearly to
the reference direction. Therefore, the comparison between
the two different TMD definitions has to be done at the same
value of the rapidity cut-off, which implies setting y1 = yn ,
to ensure that we compare TMDs that describe the same
physics. As a consequence, in Eq. (63) the dependence on
the soft kernel K̃ disappears, leaving only a square root of
the soft model MS(bT ). Therefore we have:

C̃ sqrt(ξ, bT ; μ, yP − yn)

= √
MS(bT ) × C̃(ξ, bT ; μ, yP − yn) , (64)

which clearly holds for both C̃+ and C̃−. This is a very impor-
tant result, as it shows that the choice of TMD definition
(square root or factorization definition) only affects the non-
perturbative content of the TMDs, while having no impact
on the perturbative part. Consequently, C sqrt will differ from
C mainly in the small kT region.

According to Eq. (64), the square root definition is
obtained from Eq. (31) by multiplying the TMD defined
through the factorization definition by a square root of the soft
model. In other words, the contribution of the soft physics
just acts on MC (ξ, bT ):

M sqrt
C (ξ, bT ) = MC (ξ, bT ) ×√

MS(bT ) . (65)

To conclude, we can compare the effect of using either one
of two different TMD definitions in the cross section. Had
we used the square root definition, its net effect in Eq. (62)
would have been the replacement:
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MC+(ξ+, bT ) MC−(ξ−, bT ) MS(bT )

→ M sqrt
C+ (ξ+, bT ) M sqrt

C− (ξ−, bT ) . (66)

Clearly the square root definition offers an ideal framework
to perform the phenomenological study of the 2-h class of
processes: it solves the soft factor problem by reabsorbing it
in the TMD definition and allows to extract the model func-
tions M sqrt

C1, 2
from experimental data. However, this operation

makes it impossible to disentangle the non-perturbative soft
effects due to MS which, instead, remains explicit when using
the factorization definition for the TMD.

Equation (66) is particularly important from the phe-
nomenological point of view, as it relates the TMDs obtained
from data analyses based on the square root definition (which
has been very widely used in the last 10 years) to the TMDs
extracted using the factorization definition. In this regard, the
methodology proposed in this paper allows to profit of the
past experience and to benefit of all the results obtained in
previous analyses, while extending the scheme to all those
processes which could not be considered before, because they
belong to a different hadron class. A rather straightforward
example of this strategy will be the combined analysis of the
BELLE measurements of the polarization of Λ hyperons [17]
in e+e− → Λπ(K )X processes (2-h class), already studied
in Ref. [21] within a generalized-parton model approach, and
in e+e− → ΛX , i.e. in a 1h-class process. This will be pre-
sented in a forthcoming paper.

6 Factorization of e+e− → H X

In this section we will focus on the e+e− → H X process,
which belongs to the 1-hadron class according to the classi-
fication of Sect. 4. Here we have only one true collinear part,
associated to the reference hadron H , which can be quark- or
gluon-initiated; beside, in any case, there is always at least
one hard real emission that gives a collinear contribution
crossing the final state cut, hence included in the hard factor,
which can then be interpreted as a partonic cross section. The
soft factor of the process is unity according to the collinear
factorization scheme, see Ref. [2].

The thrust T will be included in the derivation of the final
result. It is an event-shape variable that describes the topology
of the final state, i.e. the number of observed jets. It can
take values from 0.5 to 1.0: the lower limit corresponds to a
spherical distribution of particles in the final state, while the
upper limit indicates an exact two-jet configuration (pencil-
like events). Among all jets, only one is related to the collinear
part, while the others have to be included in the partonic cross
section. Therefore, the value of thrust will determine which
Feynman graphs have to be considered in the calculation of
the hard part, that will acquire a non-trivial dependence on
T .

Similar cross sections have been studied in the frame-
work of Soft Collinear Effective Theories (SCET), within a
TMD-like factorization scheme. The relations connecting the
SCET to the CSS definition of TMDs have been investigated
in Refs. [22,23], where perfect equivalence has been found
with the square root definition, see Eq. 58. In particular, the
cross section for e+e− → H (jet) X has been considered in
Refs. [24–26]. In these papers the dependence on thrust T
is not considered; instead the radius R of the jet is intro-
duced as a reference for the transverse momentum of the
detected hadron. For the case of e+e− event shape angulari-
ties, but with no dependence on transverse momentum, one
could refer for example to Ref. [27].

In the (thrust dependent) cross section of e+e− → H X ,
the leptonic tensor Lμν , corresponding to the initial state
contribution, is Lorentz contracted with the hadronic tensor
Wμν

H , associated to the final state (see for example Ref. [2]).
The cross section is then written as:

dσ

d3P/2EP dT
= 2α2

Q6 LμνW
μν
H (T ). (67)

Since the coupling of QED is much smaller than αS , the
leptonic tensor can be well approximated by its lowest order:

Lμν = lμ1 l
ν
2 + lμ2 l

ν
1 − gμνl1 · l2, (68)

where l1 and l2 are the momenta of the incoming electron
and positron, and the electron mass is neglected.

The hadronic tensor Wμν
H depends on the momentum P

of the outgoing hadron and on the momentum q of the boson
connecting the initial with the final state. Furthermore, it
depends on thrust, T . Its definition is:

Wμν
H (P, q, T )

= 4π3
∑
X

δ(4) (pX + P − q)

× 〈0| jμ(0)| P, X, out 〉T T 〈P, X, out| jν(0)| 0〉
= 1

4π

∑
X

∫
d4z eiq·z〈0| jμ (z/2) | P, X, out 〉T T

× 〈P, X, out| jν (−z/2) | 0〉, (69)

where jμ are the electromagnetic currents for the hadronic
fields and the final states have been labeled by “T” in order to
recall that their topology is fixed by the value of thrust. The
factor 1/(4π) in the last line coincides with the normalization
choice of Ref. [2]. The hadronic tensor can be decomposed
in terms of structure functions:

Wμν
H =

(
−gμν + qμqν

q2

)
F1, H

+
(
Pμ − qμ P·q

q2

) (
Pν − qν P·q

q2

)

P · q F2, H . (70)
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Thanks to this decomposition and by using the definition of
the fractional energy z = 2 P · q/Q2, see Eq. (148), we can
easily compute the projections:

−gμνW
μν
H = 3F1, H −

(
2

z

M2

Q2 − z

2

)

F2, H = 3F1, H + z

2
F2, H + O

(
M2

Q2

)
; (71)

PμPν

Q2 Wμν
H =

(
−M2

Q2 +
( z

2

)2
)

× F1, H +
(

2

z

P4

Q4 − z
P2

Q2 +
( z

2

)3
)

F2, H

=
( z

2

)2 [
F1, H + z

2
F2, H

]
+ O

(
M2

Q2

)
. (72)

6.1 Factorization of the hadronic tensor

The factorization procedure allows to factorize the hadronic
tensor Wμν

H into hard, collinear and soft parts, as shown in
Fig. 5a. According to Ref. [2] and by using dimensional reg-
ularization, we have:

Wμν
H (P, q, T )

=
∑
N≥2

∑
j1

∫
dDk1

(2π)D

×
∑
j2

∫
dDk2

(2π)D

N∏
α=3

∫
dDkα

(2π)D
Cα(kα) jα

× TrD
{
P1C1(k1, P) j1, HP1H

μ
j1,... jN

(̂k1, . . . k̂N , T )

× P2C2(k2) j2P2 (H†)νj1 ... jN (̂k1, . . . k̂N , T )
}

×
∫

dDkS
(2π)D

SN−h j1 ... jN (kS) δ(n)

×
(
q − k̂1 − k̂2 −

∑
α

k̂α

)
. (73)

In Eq. (73) the collinear parts are represented by C j : they
depend only on the entering total momentum k j and on
the type j of the corresponding parton (either a gluon or
a quark/antiquark of flavor j / j̄), and they are averaged over
the color of the initiating parton. Among them, C1 and C2

are associated to the fermionic legs of the quark and the anti-
quark, hence they appear associated to the fermionic pro-
jectors, P j and P j , which connect them to the hard parts
and make the jet partons on-shell. Since the hard part and
the collinear parts are computed in the same frame (the h-
frame, as defined in Appendix C) the expressions for these
projectors are simply

P = γ − γ +

2
and P = γ + γ −

2
. (74)

Furthermore, by charge conjugation, j2 = j1. The projectors
defined above will be fundamental in extracting the leading
twist FFs of the quark and the anti-quark in the cross section.
All the other collinear parts, Cα , are generated by gluons. In
this case, the role of the fermionic projectors of Eq. (74) is
played by a gluon density matrix ρ j ′ j that encodes the infor-
mation about the gluon polarization. In the following, we will
consider the case of a fragmenting quark, corresponding to
the collinear part C1 as depicted in Fig. 5.

In Eq. (73) the hard parts are represented by H and its
hermitian conjugate, H†: they encode the kinematics of the
process. Momentum conservation is ensured by the appro-
priate delta function. However, in the hard contributions, the
parton momenta are approximated, in that only their leading
components are considered, as stressed by the “∧” hats on
them. In practice, the momentum k̂α is kα projected onto the
(unknown) direction of its corresponding collinear part:

k̂α = wα

kα · w̃α

wα · w̃α

, (75)

where wα and w̃α are the light-like vectors corresponding
to the plus and the minus directions, respectively, in the ref-
erence frame of Cα . The approximated momentum of the
fragmenting quark is simply:

k̂1 =
(̂
k+

1, h, 0, 0T
)
h
, (76)

where k̂+
1, h = k+

1, h , since the reference frame of the fragment-
ing parton corresponds (by definition) with the hadron frame.
Furthermore, kinematics impose constraints on the possible
values that k+

1, h can assume, since P+
h < k+

1, h < P+
h /z (see

Eqs. (144), (146) and (147)).
Finally, the soft contribution is a N -h soft factor, where

N is the total number of partons exiting the hard scattering.
It depends on the collinear parton type only through their
color representation. Notice that the total soft momentum kS
cannot be involved in the kinematics of the process, since it
is washed out by the real hard emission (at least one, C2).
In fact, none of the kS components appear in the conserva-
tion delta. As a consequence, SN−h is integrated over all the
components of kS and its contribution becomes trivial. As
expected for a process belonging to the 1-hadron class, the
soft factor is unity and can be omitted in the leading region
representation. This is a common feature in a collinear fac-
torization scheme, see Ref. [2], but it requires a more careful
treatment in this case. In fact, the cross section we are dealing
with is also sensitive to the value of thrust, which provides
a precise indication about the topology of the final state. In
other words, we know exactly the total number N of partons
that generate the collinear blobs Ci in Fig. 5a. For instance,
if T ∼ 1, then the topology of the final state is 2-jet like,
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Fig. 5 a Leading momentum regions for the hadronic tensor Wμ ν
H as

they appear in the first step of factorization. b Actual representation
of the leading momentum regions of the hadronic tensor Wμ ν

H . All the

collinear factors corresponding to real emissions have been included
into the hard part. The soft factor of the process is equal to one, as
expected for a 1-hadron class process (see Sect. 4)

and only C1 and C2 are allowed to be represented as leading
regions. Despite its strong influence on the whole process,
the explicit information about T is solely encoded into the
hard parts. Therefore, the soft factor SN−h is totally blind to
the precise value of T (see the definition of Eq. (4)) hence,
ultimately, it can be integrated out. It is important to stress,
however, that this does not imply that the soft radiation does
not contribute to the final cross section. Rather, it means
that the contribution of the soft gluons has to be considered
in association to the information on thrust. In fact, it turns
out that a soft function S(T ), explicitly depending on T and
totally predicted by perturbative QCD, will be one of the
ingredients appearing in the final cross section. An explicit
computation of such soft function is presented in Ref. [28],
for the case of a 2-jet like topology of the final state.

A similar argument applies for all the collinear parts
except C1, which is the only one associated to the final,
detected hadron H that makes the sum over the final states
incomplete. In all other cases, the blobs Ci �=1 are totally
crossed by the final state cut (see Fig. 5a). According to a
collinear factorization scheme, such contributions are sup-
pressed in the collinear region they are supposed to describe,
and can actually be considered hard contributions. Again, this
does not imply that the radiation collinear to other direction
than that of the detected hadron does not give any contribution
to the final cross section. Rather, it means that such contri-
butions cannot be disentangled from the information about
thrust. Indeed, they will be represented in the final cross sec-

tion by jet functions Ji (T ), explicitly depending on T and
totally predicted by perturbative QCD. An explicit example
is presented in Ref. [28], for the case of a 2-jet like topology
of the final state.

Following the previous argument, all the soft and collinear
contributions (exceptC1) can be recast, together with the pure
hard vertices H and H

†, into one single factor, as depicted in
Fig. 5b. The final result is then given by:

Wμν
H (P, q, T )

=
∑
j1

∫
dk̂+

1, h

∫ dk−
1, h d

D−2k1, T, h

(2π)D
TrD

×
{
P1C1(k1, P) j1, HP1Hμν

j1
(Q, k̂+

1, h, T )
}
. (77)

In the above equation, all the contributions that can be totally
predicted by perturbative QCD have been collected in the
hard coefficient Hμν . Notice that, here, “hard” indicates
that Hμν is completely computable by using perturbative
techniques; hence it can be considered a “hard contribution”
according to the naive classification introduced in Sect. 1.1.
In fact, despite the label “hard”, it encodes all the thrust
dependent soft and collinear terms that have been recast into
the large blob of Fig. 5b. Notice that, while the collinear part
C1 depends on all the components of k1, the hard contribu-
tion depends only on its leading component, k+

1, h . Then, C1

and Hμν are not completely disentangled, because a convo-
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lution over k+
1, h will survive. In the following we will drop

the index “1” related to the fragmenting parton, which has
become redundant. Applying the fermionic projectors and
parity conservation, the only surviving contribution in the
case of e+e− → H X is given by the coefficient of γ − in
the expansion of Eq. (23):

PC(k, P) j, HP = γ − TrD
4

{
γ +

C(k, P) j, H

}
. (78)

The Dirac trace of γ +
C(k, P) j, H defines two TMD FFs (as

in Eq. (24)):

1

ẑ

∫
dk−

h

(2π)D

TrD
4

{
γ +

C(k, P) j, H

}

= D1, H/j (̂z, | − ẑ kh, T |)
− 1

M
|ST × kh, T |D⊥

1T, H/j (̂z, | − ẑ kh, T |), (79)

where M and ST are the mass and the transverse spin of the
detected hadron, while ẑ = P+

h /k+
h . The function D1, H/j⊥

is the unpolarized TMD FF, while D1T, H/j is the Sivers-like
TMD FF. For simplicity, in the following we will collectively
indicate with Dj, H (̂z, −̂z kh, T ) the sum of the two contri-
butions in the r.h.s. of Eq. (79). Therefore:

Wμν
H (P, q, T ) =

∑
j

∫
dk̂+

h ẑ

×
∫

dD−2kh, T D j, H (̂z, −̂z kh, T )

× TrD
{
γ −Hμν(Q, k̂+

h , T ) j

}

=
∑
j

∫ 1

z
d ẑ Ŵμν

j (z/̂z, Q, T )

×
∫

dD−2kh, T D j, H (̂z, −̂z kh, T ), (80)

where the kinematics constraints over ẑ have been taken into
account. The role of the hard factor in the previous equation is
played by the function Ŵμν

j , which is the partonic analogue

of the full hadronic tensor Wμν
H . It is defined as:

Ŵμν
j (̂k, q, T ) = TrD

{̂
k+
h γ −Hμν

j (Q, k̂+
h , T )

}
, (81)

Notice that since the approximated parton momentum has
only a plus component, we can write k̂+

h γ − = /̂k =∑
spin u( k̂ )u( k̂ ). Therefore, Ŵ j is the algebraic expression

corresponding to the pictorial representation given in Fig. 6a.
Its actual definition has to be equipped with the subtraction of
the double counting due to the overlapping with the collinear
momentum region (see Sect. 6.3). As already stressed, the
label “hard” associated to Ŵ j only refers to its perturbative
nature, since it is totally predicted by perturbative QCD. It
encodes all the contributions related to soft and collinear

radiation, properly expressed by soft and jet functions that
explicitly depend on the thrust T . In fact, the factorization
procedure can be further applied to Ŵ j , in order to expose
all the soft/collinear terms which are implicitly written in
Eq. (81). This is shown in Fig. 6b. In the following, we will
not use the factorized form for the partonic final state tensor,
since we are not interested in any particular final state topol-
ogy. An explicit example, valid in the 2-jet case, is presented
in Ref. [28].

In Eq. (80), the dependence on the parton transverse
momentum is only in the collinear part and, in principle, the
integrand of Wμν

H could be defined as the hadronic tensor
differential in kh, T . However, although the parton transverse
momentum is not a physical observable, kinematics relates
kh, T with the transverse momentum P p, T of the outgoing
hadron in the parton frame, i.e. measured with respect to its
final state jet axis, that we identify with the thrust axis (see
Appendix C). This can be measured (as it has been done
by the BELLE Collaboration, Ref. [1]) and the definition of
the hadronic tensor differential in Pp, T is obtained by the

change of variables kh, T = − 1
ẑ P p, T

[
1 + O(

P2
p, T

Q2 )

]
(see

Eq. (154)). Therefore:

dWμν
H (z, Q, T )

d2P p, T

=
∑
j

∫
dẑ

ẑ2 Ŵμν
j (z/̂z, Q, T ) Dj, H (̂z, P p, T )

×
[

1 + O
(
P2
p, T

Q2

)]
. (82)

The differential of P p, T carries information about two vari-
ables: the modulus Pp, T and the azimuthal angle β in the x y-
plane of the parton frame. While the first can be measured,
the angle β cannot be determined experimentally. In fact,
an angular dependence in the TMD contribution Dj, H can
originate from the Sivers-like contribution |ST × P p, T | (see
Eq. (79)). However, as explained in Ref. [17], the transverse
spin of the hadron is orthogonal to its transverse momentum
with respect to the axis of the jet, identified with the thrust
axis. Hence |ST × P p, T | = ±ST Pp, T for any choice of the
x-axis in the parton frame. Therefore, the integration over β

is trivial and results just in a 2π factor on the r.h.s of Eq. (82):

dWμν
H (z, Q, T )

dP2
p, T

= π
∑
j

∫
dẑ

ẑ2 Ŵμν
j (z/̂z, Q, T ) Dj, H (̂z, Pp, T )

×
[

1 + O
(
P2
p, T

Q2

)]
, (83)
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Fig. 6 a Pictorial representation of Ŵμ ν
j . b Factorization of Ŵμ ν

j , in which soft and collinear contributions are explicitly represented, according
to the topology of the final state associated to the value of the thrust T . All the quantities are totally predicted by perturbative QCD

where:

Dj, H (̂z, Pp, T ) = D1, H/j (̂z, Pp, T )

∓ ẑ

M
ST Pp, T D⊥

1T, H/j (̂z, Pp, T ). (84)

6.2 Factorized cross section

The full cross section is obtained by contracting the hadronic
tensor of Eq. (83), and its partonic counterpart, Eq. (81), with
the leptonic tensor, as in Eq. (67):

dσ

(d3P/2EP ) dP2
p, T dT

= π
∑
j

∫ 1

z

d ẑ

ẑ2

dσ̂ j

d3̂k/2Ek̂ dT
D j, H (̂z, Pp, T )

×
[

1 + O
(
P2
p, T

Q2

)]
, (85)

where the dependence on thrust has been made explicit. Let’s
focus on the r.h.s. of the previous equation. The only non-
zero component of the approximated parton momentum k̂ is
in the plus direction, as defined in Eq. (76). Therefore, its
Lorentz invariant phase space measure can only be written
as:

d3
̂k/2Ek̂ = 1

2
d |̂k| |̂k| dcos θ dφ

= Q2

8

z

ẑ
d

(
z

ẑ

)
dcos θ dφ, (86)

and carries information about the polar angle θ and the
azimuthal angle φ with respect to the beam axis (LAB frame,
see Appendix C). On the l.h.s the same variables have to
appear explicitly. Hence, the Lorentz invariant phase space
of the detected hadron is written in the LAB frame as well:

d3P/2EP = Q2

8
z dz dcos θ dφ

[
1 + O

(
M2

Q2

)]
. (87)

Finally, the cross section is given by:

dσ

dz dcos θ dφ dP2
p, T dT

= π
∑
j

∫ 1

z

d ẑ

ẑ

dσ̂ j

d(z/̂z) dcos θ dφ dT
D j, H (̂z, Pp, T )

×
[

1 + O
(
P2
p, T

Q2 ,
M2

Q2

)]
. (88)

There are five independent observables:

1. The fractional energy z = 2|P|/Q.
2. The polar angle θ of the outgoing hadron with respect to

the electron.
3. The azimuthal angle φ of the outgoing hadron with respect

to the x-axis in the LAB frame. This is significant only if
such axis can be defined unambiguously, as in the case of
polarized leptons. Otherwise, we can simply drop dφ on
both sides of Eq. (88) as a result of integration, which is
our case.
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4. The thrust T , defined in Eq. (156).
5. The (modulus of the) transverse momentum of the outgo-

ing hadron Pp, T with respect to its final state jet axis, that
we identify with the thrust axis.

Common scenarios are those in which experiments provide
two or three of the variables listed above:

– z and θ are measured, but the thrust axis is not recon-
structed, hence Pp, T is unknown. In this case, in addition
to the integration over T , the previous cross section has
to be integrated over all possible values of the transverse
momentum Pp, T , restoring the integrated TMDs as in
Eq. (80):

dσ

dz dcos θ
=
∑
j

∫ 1

z

d ẑ

ẑ

dσ̂ j

dz/̂z d cos θ
d j/H (̂z)

×
[

1 + O
(
M2

Q2

)]
, (89)

where we used the results of Appendix B.2. This result
coincides with the cross section presented in Chapter 12
of Ref. [2]. The convolution over ẑ is between renormal-
ized quantities, as we did for the OPE of TMDs at small
bT in Eq. (140).
The dependence on θ , both in the partonic and in the full
cross section, can expressed in terms of longitudinal (L)
and transverse (T) contributions:

dσ

dx d cos θ
= 3

8
(1 + cos2 θ)

dσT

dx
+ 3

4
sin2 θ

dσL

dx
, (90)

where x can be z in the full cross section, or z/̂z in its
partonic counterpart. The structure functions are related
to the transverse and the longitudinal component of the
cross section as follows:

dσT

dx
= 4πα2

3Q2 xF1(x, Q
2), (91)

dσL

dx
= πα2

3Q2

[
2xF1(x, Q

2) + x2F2(x, Q
2)
]
. (92)

– z and Pp, T are measured, but the polar angle θ of the out-
going hadron with respect to the beam axis is integrated
over. Indeed, the measurement of the transverse momen-
tum Pp, T has to be done with respect to the jet axis,
which for our purposes coincides with the thrust axis.
Therefore, if the cross section is differential in Pp, T , it
also has to be differential in T (or in an analogous vari-
able that allows to determine the axis of the jet).8

8 On the contrary, clearly, it is possible to measure T regardless of
Pp, T .

The integration of the partonic cross section with respect
to θ is straightforward and follows from Eqs. (90), (91)
and (92):

∫ 1

−1
d cos θ

dσ̂ j

dx d cos θ dT
= dσT

dz
+ dσL

dz

= 4πα2

3Q2 x

(
3

2
F1, j (x, Q2, T ) + x

4
F2, j (x, Q2, T )

)
.

(93)

For simplicity, in the following we will collectively indi-
cate with dσ/dx the sum of the two contributions on the
r.h.s. of Eqs. (93). Therefore:

dσ

dz dP2
p, T dT

= π
∑
j

∫ 1

z

d ẑ

ẑ

dσ̂ j

d(z/̂z) dT
D j, H (̂z, Pp, T )

×
[

1 + O
(
P2
p, T

Q2 ,
M2

Q2

)]
. (94)

Since TMDs are defined in the Fourier conjugate space,
see Eq. (25), it is more convenient to write the cross sec-
tion using their bT -space counterparts:

∫
dD−2P p, T ei P p, T ·bT D j, H (z,P p, T )

×
[

1 + O
(
P2
p, T

Q2

)]

= zD−2
∫

dD−2kT, h ei kT, h ·(−zbT )Dj, H (z,−zkT, h)

= zD−2 D̃ j, H (z, −z bT ), (95)

where Dj, H is actually only a function of the modulus
of P p, T . Hence:

Dj, H (z, Pp, T )

[
1 + O

(
P2
p, T

Q2

)]

=
∫

d2bT
(2π)2 ei

Pp, T
z ·bT D̃ j, H (z, bT ). (96)

Notice that all definitions in Eqs. (25) and (38) hold for
the Fourier transformed TMD FFs D̃ j, H . Finally, the
cross section in its final form is given by:

dσ

dz dP2
p, T dT

= π
∑
j

∫ 1

z

d ẑ

ẑ

dσ̂ j

d(z/̂z) dT

×
∫

d2bT
(2π)2 ei

Pp, T
ẑ ·bT D̃ j, H (̂z, bT )

×
[

1 + O
(
M2

Q2

)]
. (97)

123



   96 Page 24 of 38 Eur. Phys. J. C            (2021) 81:96 

In this final cross section, all the non-perturbative infor-
mation about the hadronization is contained in the TMD
FFs. On the other hand, the partonic cross section is
totally predicted by perturbative QCD, despite it encodes
the contributions associated to both the soft radiation and
the radiation collinear to the directions of the observed
jets. In fact, the factorization of the partonic final state
tensor depicted in Fig. 6b automatically extends to the
full partonic cross section. In this regard, shortly after
the publication of this work, the transverse momentum
spectrum of single-hadron production in e+e− has been
investigated in two papers, Refs. [29,30], both based on a
SCET treatment. In this framework, all soft/collinear con-
tributions appear explicitly in the final cross section, in
contrast to Eq. (97) in which they are implicitly contained
in the partonic cross section. The underlying structure of
the cross section formulae presented in these articles are
consistent with our results: an explicit comparison up to
NLO may be obtained by using the results of Ref. [28].
As for the cross section in Eq. (89) the convolution in
Eq. (97) is between renormalized quantities, as we will
discuss in the next Section. Furthermore, in contrast to
Eq. (94), the cross section written in terms of the Fourier
transform is a function defined for any value of Pp, T

and in fact the errors are only sized as M2/Q2. However,
the physical meaning is lost for large values of the trans-
verse momentum of the outgoing hadron, as the TMDs
themselves become non physical in the large Pp, T region
(see the discussion at the end of Appendix B.2). Hence,
the cross section of Eq. (97) can only be trusted where
Pp, T � Q or, more precisely, where Pp, T � P+ =
z Q/

√
2, which is the actual condition that allows to con-

sider the outgoing hadron as a collinear particle, accord-
ing to the power counting rules.

6.3 Subtraction mechanism

As it is clear from Eq. (97), the e+e− → HX cross section,
differential in z, in thrust T and in the transverse momen-
tum of the detected hadron with respect to the thrust axis,
Pp, T , offers a direct probe of the transverse motion of par-
tons. Recently the BELLE Collaboration has provided high
statistics experimental data corresponding to such cross sec-
tion [1]. Although the final result of Eq. (97) is simply the
Fourier Transform of the convolution of a TMD FF and
a thrust-dependent hard factor, i.e. the partonic cross sec-
tion integrated over θ , the phenomenological application of
Eq. (97) requires special care.

The final cross section is RG invariant if the anomalous
dimension of the hard factor is exactly equal and opposite
to that of the TMD FF, order by order in perturbation the-
ory. This argument applies to renormalized quantities, i.e.
functions provided of the proper UV counterterm. Further-

more, the hard factor in Eq. (97) has to be properly sub-
tracted to avoid double counting due to the overlapping with
the collinear momentum region. Therefore, the hard factor
of the final cross section is defined in two steps: first it is
equipped with subtractions, then it is renormalized.

The unsubtracted analogue of the hard factor in Eq. (97)
is the partonic version of the full cross section. Being a
partonic quantity, it is completely unaware of the outgo-
ing hadron. It describes the process at partonic level, which
means e+e− → f X , where f is a parton of type f that
replaces the detected hadron. The most convenient frame
where to compute σ̂ unsub is the analogue of the hadron frame,
where the momentum of f lies along the plus direction. The
expression of its final state tensor Ŵμν

f
,unsub is obtained from

the integrand of Eq. (80). For a given value of T , the phase
space available for real emissions is restricted, because only
the final state topology associated with that particular value
of thrust can be reached. A simple way to force the phase
space to describe only the region of interest is introducing
sharp cut-offs that shrink the available range of values of T.
For instance, if we are interested in the quasi 2-jet limit, we
can force T to remain in the neighborhood of 1 by defining a
minimal value of T , TMIN ≤ 1. In practice, the unsubtracted
final state tensor is obtained by computing the contribution
of all the Feynman graphs needed when T lies in the range
defined by the topology cut-offs, in the massless limit and
by setting all the soft/collinear divergent quantities to their
lowest order (in the language of Ref. [2], this corresponds
to the application of the hard approximator TH , modified to
include the introduction of the cut-offs for thrust). Since the
lowest order for the collinear part is just a product of delta
function that sets the momentum of the fragmenting parton to
be equal to that of the outgoing parton, and the lowest order
for the soft factor is unity, in kT -space we simply have:

dŴμ ν
f

,unsub(ε; z, T ; Tc)

d2−2εkT

=
∑
j

∫ 1

z

d ẑ

ẑ
Ŵμ ν

j
,unsub(ε; z/̂z, T ; Tc) δ j f δ(1 − ẑ) δ2−2ε(kT ),

(98)

where Tc stands for a generic topology cut-off for thrust. As
a consequence, the Fourier transform of the previous expres-
sion does not depend on bT . In Eq. (98) we explicitly showed
the dependence on ε, which is the regulator used in dimen-
sional regularization (where the spacetime dimension is set
to D = 4 − 2ε). In fact, the unsubtracted final state ten-
sor is collinear divergent and presents poles in ε. The stan-
dard subtraction procedure removes the overlapping with the
momentum region described by the collinear part, that rep-
resents the boundary of the phase space corresponding to the
emissions along the direction of the outgoing parton f , and
hence it also removes the collinear divergences of Ŵμν

f
,unsub.
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The subtraction term is obtained by considering the collinear
approximation of the unsubtracted final state tensor and it
coincides with the partonic version of the (bare) TMD FFs,
that will be denoted by D(0)

f/j (in the language of Ref. [2], the
subtraction term is obtained by applying TATH , i.e. apply-
ing both the approximator collinear to the outgoing particle
and the hard approximator). However, due to the presence of
topology cut-offs, represented by Tc in Eq. (98), we have to
slightly modify the subtraction mechanism. In particular, it is
not the whole partonic TMD has to be subtracted out, but only
the part that actually overlaps. This coincides with the contri-
bution given by the transverse momenta that lie in the power
counting momentum region, i.e. where kT is at most of order
λ, with λ being some IR energy scale. Order by order we can
relate λ and Tc by a precise kinematic relation. As a conse-
quence, the Fourier transform of the partonic TMD cannot
cover the whole range of kT , but it stops when kT reaches λ.
The resulting quantity does not depend on bT , nevertheless
it shows an explicit dependence on the transverse momen-
tum cut-off and, ultimately, on Tc. Summarizing, the (bare)
Fourier transformed subtraction term is defined by:

D̃(0), (λ)
f/j (ε; z, λ(Tc), ζ )

=
∫

d2−2εkT e−i kT ·bT D(0)
f/j (ε; z, kT , ζ ) θ (λ(Tc) − kT )

(99)

This quantity is both collinear and UV divergent. Since the
poles of D̃(0), (λ)

f/j are the same that would be obtained by a
complete Fourier transform, the UV divergence is renormal-
ized by using the same UV counterterm that heals the UV
divergence in the usual TMDs (i.e. those defined without a
cut-off on transverse momentum). In this regard, as a conse-
quence of the mechanism of subtractions, the subtracted final
state tensor acquires the same UV divergences of D̃(0), (λ)

f/j ,
but with opposite signs. Then we can easily renormalize it by
using the inverse of the TMD UV counterterm. In bT -space
we have the following factorization formula:

Ŵμν
f

,unsub(ε; z, T, Tc)︸ ︷︷ ︸
coll. divergent

=
∑
j

∫ 1

z

d ẑ

ẑ
Ŵμν

j
,sub,(0)(ε; z/̂z, T, λ(Tc), ζ )

︸ ︷︷ ︸
UV divergent

× ẑ D̃(0), (λ)
j, f (ε; ẑ, λ(Tc), ζ )

︸ ︷︷ ︸
UV divergent and coll. divergent

=
∑
j

∫ 1

z

d ẑ

ẑ

×
{
Ŵμν
k

,sub,(0)(ε; z/̂z, T, λ(Tc), ζ )Z−1
TMD

k
j (ε; μ, ζ )

}

×
{
ẑ ZTMD

l
j (ε; μ, ζ ) D̃(0), (λ)

l, f (ε; ẑ, λ(Tc), ζ )
}

=
∑
j

∫ 1

z

d ẑ

ẑ
Ŵμν

j
,sub(z/̂z, T, μ, λ(Tc), ζ )

× ẑ D̃(λ)
j, f (ε; ẑ, μ, λ(Tc), ζ )

︸ ︷︷ ︸
coll.divergent

, (100)

where we simply used the associative property of convolu-
tions and a sum over repeated upper-lower flavor indices is
implicit. Notice that at this stage the renormalized, subtracted
final state tensor has acquired a dependence on both the topol-
ogy cut-off Tc and on the rapidity cut-off ζ . Order by order
in perturbation theory, the functions Ŵμν

j
,sub are determined

recursively by using:

Ŵμν, [n]
j

,sub(z, T, μ, λ(Tc), ζ )

= Ŵμν, [n]
f

,unsub(ε; z, T, Tc)+

−
∑
j

n∑
m=1

∫ 1

z

d ẑ

ẑ
Ŵμν, [n−m]

j, R
,sub(z/̂z, T, μ, λ(Tc), ζ )

×
[
ẑ D̃[m], (λ)

j, f (ε; ẑ, μ, λ(Tc), ζ )
]
, (101)

In the previous result, we used the fact that the lowest order
of the partonic TMDs equipped with λ is just a delta function,
D̃[0], (λ)

f/j (̂z ) = δ f j δ(1−ẑ), as in the case in which there is no
cut-off on transverse momenta. From now on, when the labels
“sub” and “R” are not explicitly indicated, Ŵ j will be implic-
itly considered both subtracted and renormalized. Once the
expression of Ŵ j is known, the full subtracted, renormal-
ized cross section is computed straightforwardly through the
partonic structure functions F̂1, j and F̂2, j , obtained as in
Eqs. (71) and (72).

The partonic cross section resulting from the previous sub-
traction procedure obeys the following RG evolution equa-
tion:

∂

∂ log μ
log

(
dσ̂ j (μ, λ(Tc), ζ )

dz dT

)

= −γD, j

(
αS(μ), ζ/μ2

)
, (102)

where γD, j is the anomalous dimension of the TMD FF of
flavor j . The RG invariance of the full cross section fol-
lows straightforwardly, as the anomalous dimensions of the
partonic cross section and of the full TMD FF appearing
in Eq. (97) are equal and opposite. The derivative of the
partonic cross section with respect to the rapidity cut-off
ζ plays the same role of the CS evolution for the TMD
(see Eq. (26)). Then, in analogy with the soft kernel K̃ , we
define the rapidity-independent kernel that determines the
CS-evolution for the partonic cross section as:

∂

∂ log
√

ζ
log

(
dσ̂ j (μ, λ(Tc), ζ )

dz dT

)
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= 1

2
K̂
(
αS(μ), μ2/λ(Tc)

2
)

. (103)

The kernel K̂ has an additive anomalous dimension:

∂

∂ log μ
K̂
(
αS(μ), μ2/λ(Tc)

2
)

= γK (αS(μ)) . (104)

This anomalous dimension is equal and opposite toγK , which
is associated to the soft kernel K̃ (see Eq. (11)). Finally, the
partonic cross section shows an explicit dependence on the
scale λ(Tc) used to constrain the transverse momentum of
the fragmenting parton. The corresponding evolution has no
analogue in the TMDs. It is given by:

∂

∂ log λ
log

(
dσ̂ j (μ, λ(Tc), ζ )

dz dT

)

= G
(
αS(μ), μ2/Q2, ζ/μ2, μ2/λ(Tc)

2
)

. (105)

The λ-evolution kernel G is RG invariant. Furthermore, it
obeys the following CS-evolution:

∂

∂ log
√

ζ
G
(
αS(μ), μ2/Q2, ζ/μ2, μ2/λ(Tc)

2
)

= 1

2

∂

∂ log λ
K̂
(
αS(μ), μ2/λ(Tc)

2
)

. (106)

Finally, the solution to the evolution equations Eqs. (102),
(103) and (105) gives:

dσ̂ j (μ, λ(Tc), ζ )

dz dT
= dσ̂ j

dz dT

∣∣∣
ref.

× exp

{∫ Q

μ

dμ′

μ′ γD

(
αS(μ

′), ζ/(μ′)2
)}

× exp

{
1

4
K̂ (αS(Q), 1) log

ζ

Q2

−
∫ Q

λ(Tc)

dλ′

λ′ G
(
αS(Q), 1, ζ/Q2, Q2/(λ′)2

)}
, (107)

where we have also used the RG-invariance of the kernel G.
The label “ref.” stands for the energy scales at the reference
values μ = Q, ζ = Q2 and λ(Tc) = Q.

So far, we have considered λ and ζ as independent. As a
consequence, the evolution of the partonic cross section can
be written in perfect analogy to the TMD evolution. Further-
more, this approach makes the RG-invariance of the final
cross section explicit, see Eq. (102). However, the correct
separation between hard and collinear momentum regions,
represented by the partonic cross section and the TMD FFs
respectively, can only be obtained by setting ζ = λ(Tc)2.
This is due to the presence of an upper boundary for the trans-
verse momentum of the fragmenting parton, which automat-
ically reflects onto a lower limit for the rapidity of the pro-

Fig. 7 Amplitude squared for the LO partonic tensor, in the limit
T → 1

duced particles. Therefore, the only cut-off left in the final
cross section is the topology cut-off Tc. It enters in the final
formula of Eq. (97) through the partonic cross section and
through the rapidity cut-off of the TMD FFs. Its value has
to be chosen according to the topology of the final state and,
ultimately, it depends on the kinematics of the process.

6.4 A simple example of the rapidity dilation mechanism

A crude example of the thrust-dependent cross section of
e+e− → H X process can be obtained from a basic QCD
approximation in the 2-jet limit, i.e. T → 1. At lowest order,
the subtraction mechanism is trivial and the subtracted, renor-
malized hard coefficient are easily computed from Eq. (101):

(
Ŵμν

f

)[0]
(z, T ) =

(
Ŵμν

f
,unsub

)[0]
(z, T ). (108)

In the 2-jet limit, the only Feynman diagram contributing to
the l.h.s of the previous equation is given by Fig. 7. It is an
exact 2-jet configuration, hence T = 1. As a consequence,
the phase space integration is trivial and does not require the
introduction of the topology cut-off Tc. The actual computa-
tion is easier for the projections (see Eqs. (71) and (72)):

− gμν

(
Ŵμν

f

)[0]
(z, T )

= (1 − ε) δ
q

f e2
q 2NC δ(1 − z) δ(1 − T ); (109)

kμkν

Q2

(
Ŵμν

f

)[0]
(z, T ) = 0. (110)

Notice that the gluon contribution is always suppressed in a
2-jet configuration. Then we can compute the lowest order
subtracted, renormalized structure functions:

F̂ [0]
1, f (z, T ) = δ

q
f e2

q NC δ(1 − z) δ(1 − T ); (111)

F̂ [0]
2, f (z, T ) = −2

z
F̂ [0]

1, f (z, T ). (112)
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Finally, by using Eqs. (91), (92) and (93), the LO subtracted
and renormalized partonic cross section appearing in the final
result of Eq. (97) is given by:

dσ̂
[0]
f

dz dT
= aT

4πα2

3Q2 z F̂ [0]
1, f (z, T )

= aT
4πα2

3Q2 NC δ
q

f e2
q δ(1 − z) δ(1 − T ), (113)

where the factor aT accounts for the limited acceptance in
the polar angle θ . In the following, the detected hadron will
be considered spinless for simplicity. Hence, the Sivers-like
contribution disappears and in the cross section will remain
only the unpolarized TMD FF D1. Its crudest estimate is the
Leading Log (LL) approximation, given by:

D̃LL
1 j/H (z, bT ; Q, ζ )

= 1

z2 d j (z, μb)

× exp
{
Lb g

LL
1 (aS(Q)Lb)

+gLL
2

(
aS(Q)Lb, log

(
ζ/Q2

))}

× (
MD1

)
j, H (z, bT )

× exp

{
−1

4
gK (bT ) log

(
z2 ζ

M2
H

)}
, (114)

where Lb = log (Q/μb) and the functions gLL
1 , gLL

2 are
given in Eq. (137). Notice that, since there is no need for
a topological cut-off, the rapidity cut-off ζ is unconstrained
in the LO, LL approximation. This is a consequence of the
low degree of information encoded in the perturbative part
of the TMD. Basically, all the constraints on the rapidity of
the collinear particles are contained in the non-perturbative
part of the TMD FFs. Therefore, any modification of ζ has
to be traced back to a modification of the non-perturbative
model MD1 that describes the fragmentation mechanism. The
rapidity dilation transformation discussed in Sect. 3.2 allows
to choose the rapidity cut-off consistently with the choice of
the model. Therefore, the LO, LL cross section is written in
terms of a generic ζ . It is given by:

dσ
[0], LL
2−jet

dz dP2
T dT

= π
∑
j

∫ 1

z

d ẑ

ẑ

dσ̂
[0]
j

d(z/̂z) dT

×
∫

d2bT
(2π)2 ei

Pp, T
ẑ ·bT D̃LL

j, H (̂z, bT , Q, ζ )

×
[

1 + O
(
M2

Q2

)]

= aT
4π2α2

3Q2 NC δ(1 − T )
∑
q

e2
q

×
∫

d2bT
(2π)2 ei

Pp, T
z ·bT 1

z2 dq(z, μb)

× exp
{
Lb g

LL
1 (aS(Q)Lb)

+gLL
2

(
aS(Q)Lb, log

(
ζ/Q2

))}

× (
MD1

)
q, H (z, bT )

× exp

{
−1

4
gK (bT ) log

(
z2 ζ

M2
H

)}

×
[

1 + O
(
M2

Q2

)]
(115)

Notice that this formula represents the simplest, non triv-
ial approximation beyond the parton model picture. It holds
valid to LO in the perturbative expansion and at T = 1, hence
it only has illustrative purposes. A reliable phenomenologi-
cal analysis should not rely on Eq. (115), but rather on the
full NLO expression, with the appropriate accuracy in the
order of logarithms, which will soon be presented in Ref.
[28]. In the following, we will give a prototypical applica-
tion of this LO cross section formula to a small sub-sample of
the BELLE data [1], which should only serve as an example
of the rapidity dilation mechanism discussed in Sect. 3. The
simplicity of its usage and the small number of free parame-
ters involved in the fitting procedure are indeed the points of
strength of Eq. (115).

For our example, we will consider only the subset of
the BELLE e+e− → HX cross sections, corresponding to
0.55 < z < 0.6, 0.85 < T < 0.90, in 20 PT bins ranging
from 0.06 to 2.5 GeV. For the BELLE experiment Q = 10.58
GeV. This data sub-sample is shown in Fig. 8. Statistical and
systematical errors are added in quadrature. The analysis will
be performed using the NNFF10 fragmentation function set
at LO [31], and fixing the values of bMIN and bMAX as fol-
lows: bMIN = C1/Q ∼ 0.1 GeV−1 and bMAX = 1 GeV−1.

Let’s now suppose that, somewhere around the globe,
Group A performs a phenomenological analysis of the above
BELLE data subset using a power-law parameterization of
the model in PT -space which, in the bT space, corresponds
to a Bessel-K function, normalized in such a way that it is 1
at bT = 0:

MA(bT , m, p) = 22−p

Γ (−1 + p)
(bT m)−1+p K−1+p(bT m)

(116)

where K−1+p is the modified Bessel function of the second
kind. This model was successfully used in Ref. [32] to fit
the e+e− → HX cross sections measured by the TASSO
and MARKII Collaborations [33,34]. Group A knows that
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Fig. 8 e+e− → HX LO cross
section computed according to
Eq. (115) using two different
parameterizations for its
non-perturbative part, and at two
different values of the rapidity
cut-off (ζ = Q2

0 solid black line,
ζ = Q2

0/4 dashed green line).
See text for more details

the TMD cross section will become unphysical as PT grows
larger, as it is only valid in the TMD region where PT << P+
(here P+ = z Q/

√
2 ∼ 4.3 GeV). Therefore they fix

PT,MAX = 1.8 GeV. After this point the cross section
will rapidly fall to zero and become negative. Having set
their rapidity cut-off at ζ = Q2, Group A best fit returns
mA = 0.35 and pA = 3.00 for their two free parameters.
The resulting cross section is shown in Fig. 8 (red, solid
line).

On the other side of the planet Group B, totally unaware of
the work of Group A, performs a fit on the same data sample,
but they choose a Gaussian parameterization for the model
of their cross section (clearly the perturbative part has the
same functional form in both cases)

MB(bT , m, p) = e−m bT 2
. (117)

Here there is only one free parameter, m, as the power p
has been fixed to 2 to obtain a Gaussian form. They set their
rapidity cut-off to ζ = Q2/4 and decide to be conservative
on their TMD-regime requirement, so they fix PT,MAX = 1.3
GeV. Their fit has only one free parameter, mB , which the
χ2 minimization procedure sets to 0.12. The corresponding
cross section is shown in Fig. 8, by the green dashed line.

Notice that, in principle, there is at least one more free
parameter in both analyses, which is used to model the gK
function, see Eq. (115). As explained in Sect. 3, however, gK
does not depend on the rapidity cut-off, nor on the flavour j of
the fragmenting quark. Therefore, it does not play any active
role in a rapidity dilation and is not relevant in this example.
We will therefore suppose it to be the same for Group A and
B and parameterize it as gK = a b2

T with a = 0.11, fixed “a
priori”.

As it is clearly shown in Fig. 8, the results obtained by
Group A and B are consistent, within errors, as they fit the
same data sample. Similarly, also the TMD fragmentation
functions extracted by the two groups will be consistent at
small PT , where they carry a truly physical information about
the transverse motion of the hadronizing parton. In bT -space,

the two TMDs are very similar at small bT but they may differ
in their large bT behaviour, because of the different choices
of models, MA(bT ) and MB(bT ).

It is at this point that Eq. (49) becomes crucial: in fact,
it allows the two Groups to relate their independent extrac-
tions through a rapidity dilation. The two extractions will
not correspond to a one-to-one relation in bT -space, never-
theless rapidity dilations preserve the physical meaning of
TMDs. First of all, Group A performs a rapidity shift on
their extraction: as expected the cross section is not invari-
ant for a variation of the rapidity cut-off. This is illustrated
in Fig. 9. However, by applying a full rapidity dilation, i.e.
transforming their TMD according to Eq. (42), Group A can
match their results to those obtained by Group B, in the range
of small PT where the TMD approximation holds valid and
where information from the experimental data is able to con-
strain the model. In fact, according to Eq. (49), here we have:

FT
[
σNP
ζ ′, MB

(bT )
]

∼ FT
[
σNP
ζ, MA

(bT ) exp
{

− 1

2
θ K̃ (b�

T )
}]

at small PT . (118)

Here θ = log 2.
This is shown in Fig. 10, where the black solid line repre-

sents the results of Group B for the non-perturbative contri-
bution to the full cross section (left hand side of Eq. (118)),
while the green line corresponds to the results of Group A
for the analogous quantity after the application of a rapid-
ity dilation (right hand side of Eq. (118)). Notice that σ N P

A
is related to σ N P

B by a factor which is purely perturbative
and therefore calculable and totally model independent, see
Eq. (118).

Figure 11 shows the ratio of these two curves as a function
of PT , RNP. In an ideal world, where all extraction converged
to the same model, RNP would be 1 at all values of PT (dashed
red line). However, in a realistic case RNP is very close to 1
only at small PT , as it should, and it starts deteriorating as
PT grows larger. It is not by chance that it stays close to 1
up to PT ∼ 1.3, which corresponds to the value of PT,MAX

set by group B. After that point, the cross section starts to
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Fig. 9 The effect of a rapidity
shift from ζ = Q2 to ζ = Q2/4
on the cross section extracted by
Group A. As expected the cross
section is not invariant under
this transformation

Fig. 10 Left panel: non perturbative contribution to the LO cross sec-
tion, corresponding to the same choice of rapidity cut-off. The solid
black line represents the extraction of Group B, while the dashed green
line is obtained from the extraction of group A by applying a rapidity

dilation, i.e. through a transformation that brings ζ = Q2
0 to ζ = Q2

0/4
and compensates this variation by changing the value of the free param-
eters of the model MA. See text for more details

become unphysical and the ratio itself becomes meaningless.
In Fig. 11 a thin gray vertical line marks PT,MAX = 1.3 GeV.
Notice that the invariance under rapidity dilation is consid-
erably powerful: it allows to preserve the physical part of the
cross section, embodied by the TMD function at small PT ,
even in a realistic situation in which a very limited range of
PT is constrained by experimental information, while com-
pensating for the variation of the rapidity cut-off in the per-
turbative part by a transformation of the non-perturbative
model.

7 Conclusions

In this paper we have extended the TMD factorization mecha-
nism to processes belonging to different hadron classes. This
is potentially a very powerful tool, as it allows us to exploit
the same definition of TMD parton densities in different pro-
cesses, which up to now could not be used in a simultaneous
data analysis. With this extended definition of TMD, in par-
ticular, we have been able to apply the TMD formalism to
the process of one hadron production from e+e− scattering,

Fig. 11 The ratio between the non pertubative contributions to the
cross sections calculated according to the extraction of Group B and
the rapidity dilated extraction of Group A

belonging to the 1-h hadron class. Within this scheme, the
TMD FFs extracted from a phenomenological analysis of the
PT dependent e+e− → HX cross sections, can be related to

123



   96 Page 30 of 38 Eur. Phys. J. C            (2021) 81:96 

the analogous TMD FFs as extracted in a 2-h class process,
like SIDIS or e+e− → HA HBX .

Clearly the extension of the factorization scheme comes
to a price, a price that in this case turns out to be rather large
and two-folded. First of all the soft factor, which is responsi-
ble for a (partial) breaking of universality, cannot be included
in the definition of the TMD, as it is elegantly done in the
standard TMD factorization through the “square-root” TMD
definition. Freed by its soft contribution, TMD becomes truly
universal and can be used in any class of processes. The soft
factor, however, assumes a fundamental role as it becomes
a pivotal ingredient of the factorized cross section, where
the non-perturbative effects of soft physics are encoded in
the soft model MS . It will have to be extracted within its
corresponding hadron class and should only be used within
that class. The process e+e− → HX is a slightly excep-
tional case, as the soft factor here becomes unity, as shown
in Sect. 6.

Having recovered a solid and truly universal definition of
TMD, we can factorize cross sections as that of e+e− →
HX , where there is only one single TMD embodying the
long-distance contributions. The all-order expression of this
cross section has been obtained in Sect. 6 following a fac-
torization scheme derived from the CSS factorization pro-
cedure. As a rude, first estimate of the final cross section
we presented the result obtained to leading order (LO) and
leading log (LL) accuracy. Here we had to face an additional
problem: the arbitrariness in the choice of the rapidity cut-off
reflects in the LO result, undermining its predictive power.
To make the TMD independent of the choice of the rapid-
ity cut-off, they have to be made invariant under a specific
transformation, which we call “rapidity dilation”.

Such transformations regulate how the perturbative and
non-perturbative contributions are balanced within the TMD
itself. In fact, in physical observables the cut-off has to be
taken very large (y1 → ∞) but in the TMDs alone (which
are not physical observables) there is total arbitrariness in
choosing its particular value. Rapidity dilations control this
arbitrariness by acting both on the rapidity cut-off and on
the model MC . The larger y1 the more MC is suppressed,
and the TMD is, basically, only perturbative. Less extreme
values of y1, instead, will correspond to a more dominant
non-perturbative contribution.

Separating perturbative and non-perturbative contribu-
tions is a highly non-trivial problem, which affects any phe-
nomenological analysis. For example, ambiguities originate
when we have to fix the value of bMAX , which marks the crit-
ical value of the impact parameter at which non-perturbative
contributions start becoming non negligible. TMDs are well
defined within the approximation in which the partonic k+ is
very large while kT is small (i.e. collinear according to power
counting), they should therefore correspond to partons with a
very large rapidity and very small transverse momentum with

respect to the jet axis. The rapidity cut-off y1, formally, will
have to be taken to infinity but, in practice, the specific size of
y1 will determine how far we stretch the perturbative content
of the TMD and where the non-perturbative contribution will
become dominant.

To clarify the practical relevance of rapidity dilation
invariance, in the last Section of this paper we have presented
a simple example to show how rapidity dilations can offer
a tangible help in relating phenomenological analyses per-
formed using different non-perturbative model assumptions
and different values of the rapidity cut-off. This provides a
solid basis for the interpretation of the results of independent
TMD extractions.

Finally, we want to stress that the scheme we are proposing
does not require a new start in the phenomenological analy-
sis of all classes of hadronic processes. In fact, we can relate
the TMDs obtained from data analyses based on the square
root definition to the TMDs extracted using the factorization
definition. This allows us to benefit all previous phenomeno-
logical analyses and extend them to 1-h class processes. This
is indeed the strategy we are planning to pursue in the near
future.
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Appendix A: Wilson Lines

A Wilson line (or a gauge link) is a path-ordered exponential
operator defined by:

Wγ = P

{
exp

[
−ig0

∫ 1

0
ds γ̇ μ(s)Aa

(0) μ(γ (s))ta

]}
,

(119)

where γ is a generic path and P denotes the path ordering
(i.e. when the exponential is expanded the fields correspond-
ing to higher values of s are to be placed to the left). The
coupling constant and the gluon field are bare quantities, as
indicated by the label “0”. In the previous formula, ta are the
generating matrices of the gauge group, in the appropriate
representation. The Wilson lines guarantee that PDFs and
FFs (in both collinear and TMD cases) are gauge invariant,
by linking the quark to the anti-quark fields in the defini-
tion of the collinear factor (see Eq. (22) ). The Wilson line
represents the (all order) propagation of a particle strongly
boosted in some direction n. If this direction is a straight line
the Wilson line depends only on the endpoints of the path
and can be written in a compact way as:

Wn (x2, x1, n)= P

{
exp

[
−ig0

∫ x2

x1

dλnμAa
(0) μ(λn)ta

]}
,

(120)

If the strongly boosted particle is a quark, the associated
Feynman rules are:

(121)

(122)

More details can be found for instance in Chapter 7 of Ref.
[2].

Appendix B: Perturbative QCD and small bT region

Soft factors and collinear parts are well defined functions
only over a rather small region in the transverse momentum
space, according to power counting rules. The Fourier trans-
form to the impact parameter space can be regarded as a kind
of analytic continuation, because at fixed bT we can roughly
access all transverse momenta with kT ≤ 1

bT
, even trespass-

ing the original momentum region. In particular, the small
bT region is associated with large transverse momenta, where
perturbative QCD can be applied and a power expansion in αs

allows us to perform explicit calculations. This can be proved

by a direct application of the factorization procedure to the
small bT approximation of the Fourier transformed function.
For the soft factor this can be found in Sect. 2, while for
collinear parts we refer to Chapter 13 of Ref. [2] and to Ref.
[35].

Despite the undeniable advantage provided by the possi-
bility to perform explicit calculations in the small bT region,
perturbative QCD is not enough to reproduce integrated
quantities, which correspond to the Fourier transformed func-
tions evaluated in bT = 0. These can be recovered from the
operator definitions, that obviously give a non-perturbative,
all-order point of view. Therefore in bT = 0, Eqs. (4) and (8)
simply confirm that the integrated soft factor is the identity
matrix, while Eq. (21) reproduces the integrated PDFs and
FFs. The failure of perturbative QCD in bT = 0 is due to the
fact that the integral over kT is intrinsically ill defined, since
it extends well beyond the physical momentum region where
the TMDs and the soft factor are defined. As a consequence,
new UV divergences arise and the counterterms in Eqs. (4)
and (21) are not sufficient to cancel them. Therefore, the
perturbative approach lead to definition of integrated func-
tions as bare quantities and they need a renormalization in
order to acquire physical meaning and reproduce the correct
results. In the following, such renormalization procedure will
be investigated for both the 2-h soft factor and the TMDs.

Appendix B.1: Small bT behaviour of 2-h Soft Factor

The Feynman graphs in Fig. 12 show that in the small bT
region the (renormalized) 2-h soft factor is given by:

S̃2−h(bT , μ, y1 − y2) = 1 − αS(μ)

4π
8CF (y1 − y2)

× log
μ bT
C1

+ O
(
α2
S, e−(y1−y2)

)
,

(123)

where C1 = 2e−γE . The perturbative expansion of the previ-
ous equation should be valid at small bT ; however in this
region log(μbT /C1) becomes large and sufficiently near
to bT = 0 it completely oversizes αS so that the expan-
sion becomes meaningless. Resummation in principle solves
this problem. The soft kernel can be directly obtained from
Eq. (123) by using the definition of Eq. (9) or of Eq. (10):

K̃ (bT , μ) = −αS(μ)

4π
16CF log

μ bT
C1

+ O
(
α2
S

)
. (124)

This expressions implies that K̃ (bT , μ) is large and posi-
tive as bT decreases. Therefore, the resummed soft factor of
Eq. (18) vanishes in bT = 0. An improvement can be reached
by using a leading log estimate of K̃ by using its evolution
equation solution, Eq. (12). Actually, it is inappropriate to
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Fig. 12 Feynman graphs
contributing to the small bT
behavior of the 1 loop soft factor
S̃2−h. a Virtual diagrams (zero
in dimensional regularization). b
Real diagrams

count the logs of a quantity, like the soft kernel, which is
already the result of a resummation procedure. Despite this,
we can apply the same recipe and set all terms to order α0

S
except γK , which has to be taken to 1 loop. This gives:

K̃ LL(bT , μ) = γ
[1]
K

2β0
log

(
1 − αS(μ)

4π
log

μ bT
C1

)
, (125)

that coincides with Eq. (124) in the limit αS → 0. With this
estimate, the divergence of K̃ is much less severe but it is
still there. calculations. An easy way to solve the problem
and ensure that the perturbative QCD computation agrees
with the operator definition prediction is to introduce a cut-
off that prevents the soft transverse momentum to reach the
UV region when it is integrated out. This can be implemented
in bT -space by introducing a new parameter bMIN �= 0 that
provides a minimum value for bT . A modification of the b�

prescription, Eq. (6), is a simple way to insert this cut-off
directly in the definition of the soft factor. For example, we
can use the modified b� prescription of Ref. [14]:

b�
T (bc(bT )) = b�

T

(√
b2
T + b2

MIN

)
. (126)

Then, the integrated soft factor is given by the uninte-
grated S̃2−h evaluated in b�

T (bc(0)) = bMIN. If μ can be
considered a large energy scale (e.g. if it can be set equal
to the hard energy scale Q of the process) then we can set
bMIN ∝ 1/μ. Consequently, all logs in Eqs. (123) and (124)
are heavily suppressed and the soft kernel is zero at small bT ,
while the soft factor is unity, see Fig. 13. Despite this kind
of regularization has been devised for the 2-h soft factor, it
applies equally well to the general soft factor SN−h, where
N can be any integer.

Appendix B.2: Small bT behaviour of TMDs

Formally, the integrated TMD is the Fourier transformed
TMD computed at bT = 0. In order to recover this result
from Eq. (38) by applying perturbative QCD, the Fourier
transformed TMD has to be renormalized, otherwise it would
vanish in bT = 0. This result can be proved by following the
procedure described in Ref. [14]. First of all, thanks to the

properties of the model MC , Eq. (35), and of gK , we can
neglect all the non-perturbative content in Eq. (38) at small
bT . Furthermore, in this region we can approximate b�

T with
bT . Then, it is a standard result that the αS expansion of
Wilson coefficients can be written as:

C̃ j
f (ρ, bT ; μ, ζ ) =

∞∑
n=0

(
αS(μ)

4π

)n

×
2n∑
k=0

[k/2]∑
l=0

C̃ j [n, k−l, l]
f (ρ)

×
(

log
μ

μb

)k−l
(

log
ζ

μ2
b

)l

, (127)

where [k/2] denotes the integer part of k. If the scales are
fixed according to the standard choices of Eqs. (32) and (33),
all the logs disappear and the only bT dependence in the
Wilson coefficients is given by αS(μb). Since μb ∝ 1/bT ,
when bT → 0 the energy scale becomes very large and αS

can be considered a small parameter. For example, at 1 loop:

αS(μb)

4π

low bT∼ 1

2β0 log μb/ΛQCD
. (128)

Then, the Wilson coefficients evaluated at the scales μb, ζb
are well approximated at small bT by their lowest order term,
which is simply a delta function:

C̃ k
j (ρ, bT ; μb, ζb) = δ k

j δ(1 − ρ) + O
(

1

log μb
ΛQCD

)
(129)

On the other hand, K̃ , which is at exponent, allows for a
different number of logarithms in front of each power of αS :

K̃ (bT ; μ) =
∑
n=1

(
αS(μ)

4π

)n n∑
l=0

K̃ [n,l]
(

log
μ

μb

)l

. (130)

As in the previous case, all the explicit dependence onbT van-
ishes if μ = μb and K̃ at small bT is well approximated by its
lowest order term. However, since in this case the series starts
from O (αS(μb)), we can simply neglect this contribution.
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Fig. 13 Leading Log (LL)
Fourier Transformed 2-h Soft
Factor in the small bT region.
The introduction of bMIN (blue
solid line) allows to recover a
full agreement with the operator
definition of Eq. (8). If the
regularization is not introduced
(red dashed line), S̃2−h vanishes
in bT = 0. Here bMAX = 1
GeV−1

Finally, the anomalous dimensions have a simple expansion
in αS :

γC (αS(μ), 1) =
∑
n=1

(
αS(μ)

4π

)n

γ
[n]
C , (131)

γK (αS(μ)) =
∑
n=1

(
αS(μ)

4π

)n

γ
[n]
K . (132)

The easiest way to study the behavior of their contribution in
Eq. (38) at small bT is to consider its derivative with respect
to log bT . Since ∂/∂ log bT = −∂/∂ log μb, we can compute
with the help of Eq. (128):

∂

∂ log bT

∫ μ

μb

dμ′

μ′
∑
n=1

(
αS(μ

′)
4π

)n

×
[
γ

[n]
C − 1

4
γ

[n])
K log

ζ

μ′2

]

=
∑
n=1

(
αS(μb)

4π

)n
[
γ

[n])
C − 1

4
γ

[n]
K log

ζ

μ2
b

]

= 1

4

γ
[1]
K

β0
+ O

(
1

log bT ΛQCD

)
. (133)

This behavior affects the whole TMD at small bT , giving:

C̃(ξ, bT ; μ, ζ )
low bT∼ (bT )

1
4

γ
[1]
K
β0 × log corrections . (134)

From Eq. (124) γ
[1]
K = 16CF , then the TMDs goes to zero

when bT → 0 with a power-law behavior.
This is also confirmed by a direct computation of the lead-

ing log (LL) estimate of Eq. (38). In this approximations, all
the quantities are taken at order α0

S , except γK which instead
is computed at 1 loop. The result is:

C̃ f, H (ξ, bT ; μ, ζ )
low bT∼

(
δ

j
f ⊗ c j (μb)

)
(ξ)

× exp
{
Lb g

LL
1 (aS(μ)Lb) + gLL2 (aS(μ)Lb)

}
(135)

where Lb = log μ/μb, aS = αS/4π and:

gLL1 (x) = γ
[1]
K

4β0
+ γ

[1]
K

8 x β2
0

log (1 − 2β0x), (136)

gLL2 (x) = 1

8β0
γ

[1]
K log

ζ

μ2 log (1 − 2β0x). (137)

Notice that the function gLL2 contributes to the LL estimate
even if it typically appears at NLL. This is due to the presence
of three scales instead of two. In fact, if

√
ζ equals either μ

or μb, only gLL1 contributes to LL. sufficient to cancel them.
As a consequence of the previous arguments, integrated

TMDs are bare quantities when approached perturbatively.
Formally:

∫
dD−2kT C j, H (ξ, kT ; μ, ζ ) = c(0)

j, H (ξ, μ)

=
{
f (0)
j/H (x, μ) initial state;

z−2+2εd(0)
H/j (z, μ) final state.

(138)

The bare integrated TMDs in the equation above acquire their
dependence on μ through the renormalized fields used to
compute them. Real bare quantities are defined through bare
fields and are obtained by multiplying by Z2 as in Eq. (25).
Notice that integration makes the soft-collinear subtractions
trivial, because theS2−h appearing in the factorization defini-
tion is unity when integrated over all soft transverse momen-
tum. The required UV counterterm depends on the plus com-
ponent of the momentum of the reference parton, i.e. on
the collinear momentum fraction ξ . Hence, the renormalized
quantities are not simple products of the bare quantities with
the UV counterterm, like in Eq. (25), but rather convolutions

c j, H (ξ, μ) =
(
(Z int)

k
j (αS(μ)) ⊗ c(0)

k, H

)
(ξ), (139)

where now c(0)
k, H denotes a bare quantity computed with bare

fields. With this definition, we can interpret the renormalized
integrated TMDs as the usual PDFs and FFs used in collinear
factorized cross sections as in Eq. (1).
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The factorization procedure applied to the TMD at small
bT does not give Eq. (36) directly. Instead, it expresses the
final result as a convolution between a collinear part, repre-
sented by the unrenormalized integrated TMDs, and a hard
factor H which has to be properly subtracted in order to can-
cel the double counting due to the overlapping between the
hard and the collinear momentum region. This subtraction
mechanism is completely anologous to that used in the def-
inition of the subtracted collinear part in Eq. (22). Roughly
speaking, the UV part of the bare integrated TMDs is (minus)
Z int, then the subtracted hard part acquires the divergence
induced by the counterterm. Despite this, we can still define
a finite hard part by interpreting H

sub as a bare quantity as
well, with its renormalized finite counterpart represented by
the Wilson Coefficients in the OPE. As a consequence, the
required counterterm will be exactly Z−1

int . Then, a straight-
forward application of the convolution property shows that:

C̃ j, H (bT ; μ, ζ )
low bT∼

(
H

sub
) k

j
(bT ; μ, ζ ) ⊗ c(0)

k, H

=
[(

H
sub
) k

j
(bT ; μ, ζ ) ⊗

(
Z−1

int

) l

k
(αS(μ))

]

⊗
[
(Z int)

m
l (αS(μ)) ⊗ c(0)

m, H

]

= C̃ k
j (bT ; μ, ζ ) ⊗ ck, H (μ). (140)

Therefore, the functions c j, H appearing in the OPE are the
renormalized integrated TMDs. Notice that the same proce-
dure is used in the cross sections where the usual PDFs and
FFs appear.

Different renormalizations of the integral over kT are
allowed. A common procedure, for instance, is to introduce
a cut-off as we did for the 2-h soft factor in B.1, by introduc-
ing a new parameter bMIN �= 0 that provides a minimum
value for bT , for istance as in Eq. (126). Then, the inte-
grated TMD is given by the unintegrated TMD evaluated
in b�

T (bc(0)) = bMIN:

∫
dD−2kT C f, H (ξ, kT ; μ, ζ ) = C̃ f, H (ξ, bMIN; μ, ζ )

∼
(
C̃ k
j (bMIN; μ, ζ ) ⊗ ck, H (μ)

)
(ξ), (141)

where in the last step we used the OPE expansion valid
at small bT . In general, this result does not coincide with
c f, H (ξ, μ), but it will do if the Wilson Coefficients can be
well approximated by their lowest order. If μ can be con-
sidered a large energy scale (e.g. if it can be set equal to
the hard energy scale Q of the process) then we can set
bMIN ∝ 1/μ. Then all the logs inside the Wilson Coeffi-
cients are heavily suppressed and the lowest order approxi-
mation is reliable. Therefore, if μ is large enough, the cut-
off approach gives the same result of the renormalization

Fig. 14 Momentum flow that determines the kinematics boundaries
on ẑ

Fig. 15 The LAB frame and the h-frame are both c.m. frames, but
differ by a spatial rotation

through the UV counterterm Z int. Thanks to bMIN, the sub-
traction mechanism implemented in the factorization proce-
dure applied to the TMD at small bT is now applied to the
collinear parts instead of the hard factor. Therefore, we do not
have to worry about subtracting the hard part. However, the
final result coincides with that of Eq. (36) because, trivially,
H

sub ⊗ C
unsub = H

unsub ⊗ C
sub.

The integration over kT of the TMD, actually gives the
area under the curve designed by the TMD in kT -space. Even
with the introduction of an explicit bMIN, the value of such
integral is very small. Since in momentum space, at small
kT , the TMD is positive (e.g. Gaussian behavior), the small
value of the integrand implies that the TMD has to change
sign at a certain kT . This is equivalent to say that the TMD
loses its physical meaning when kT becomes too large. In
fact, the power counting imposes kT ∼ λ, where λ is some
small IR energy scale.
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Appendix C: Kinematics

As stressed in Sect. 1.1, kinematics play a crucial role in fac-
torization, as it determines whether we need to apply a TMD
or a collinear factorization scheme. The study of kinematics
is strictly connected to the choice of the frame. In the case of
e+e− → H X , three four-vectors underlay the kinematical
configuration:

– The momentum k of the fragmenting parton.
– The momentum P of the outgoing detected hadron H of

mass M , P2 = M2.
– The momentum q of the highly virtual time-like pho-

ton that makes the partonic state. Its squared momentum
gives the square of the center of mass energy Q >> M ,
q2 = Q2.

Clearly, the choice of the frame is completely arbitrary since
the cross section will be Lorentz invariant. Three main frames
are useful in deriving the final form of the factorized cross
section: in this appendix we will provide a short description
of all of them.

1. Hadron frame, labeled by h. This is the frame where the
outgoing hadron H has no transverse components and it
moves very fast along the (positive) zh-direction:

PT, h = 0T . (142)

Furthermore, since H is strongly boosted in the plus direc-
tion its plus component is very large, of order ∼ Q. As a
consequence, its minus component has to be very small in
order to satisfy the on-shell condition P2 = 2P+

h P−
h =

M2. Therefore, in this frame, the full four-momentum P
can be written as:

P =
(
P+
h ,

M2

2P+
h

, 0T

)

h

∼ Q

(
1,

M2

Q2 , 0

)
. (143)

The fragmenting parton belongs by definition to the same
collinear group of the outgoing hadron, hence it is almost
collinear to it: it has a very large plus component, a low
transverse momentum and an even lower minus compo-
nent. It is almost on-shell, with a very low virtuality.
Power counting (see Chapter 5 in Ref. [2]) allows us
to quantify the sizes of these quantities by introducing
a small infrared scale λ << Q. Then k2 = λ2, which
means k+

h ∼ Q, k−
h ∼ λ2/Q and kh, T ∼ λ. Neglecting

all the suppressed components, k and P become exactly
collinear, i.e. k ∝ P . This can be made explicit by setting:

k+
h = 1

ẑ
P+
h , (144)

Therefore P ∼ ẑk, and

k =
(
P+
h

ẑ
, k−

h , kT, h

)

h

∼ Q

(
1,

λ2

Q2 ,
λ

Q

)
. (145)

Since power counting rules are defined in the hadron
frame, this is the most appropriate frame where to imple-
ment factorization. We can interpret ẑ as the collinear
momentum fraction that the outgoing hadron takes off the
fragmenting parton. Clearly ẑ has kinematics boundaries,
due to the requirement that all the particles crossing the
final state cut are physical, i.e. they have positive energy.
With the help of Fig. 14 and by applying the power count-
ing rules, we obtain the following constraints:

– Positive energy for the final state of the jet

(k − P)0
h ∼ k+

h − P+
h = P+

h

(
1

ẑ
− 1

)
≥ 0, (146)

which gives ẑ ≤ 1.
– Positive energy in the hard part of the process (given

that q−
h > 0)

(q − k)0
h ≥ 0 → q+

h − k+
h

= Q√
2

(
1 −

√
2P+

h

Q

1

ẑ

)
≥ 0. (147)

The fractional energy z is defined as

z = 2
P · q
Q2 = 2

ECM

Q
∼

√
2P+

h

Q
,

(148)

where ECM is the energy of the detected hadron in
the center of mass frame. Then Eq. (147) gives the
kinematics boundary: ẑ ≥ z, with z ≤ 1.

The scaling of the components of the four-momentum q
is obtained from the momentum conservation relation:

q = k +
∑
α

kα, (149)

where kα is the momentum of a generic real emission. As
explained in Sect. 1.1, since the process e+e− → HX
belongs to the 1-hadron class, there is always at least one
real emission (in this case the anti-quark leg that does not
fragment) with a hard momentum, i.e. with all compo-
nents very large, at least of order Q. As a consequence,
the only component of k that survives in Eq. (149) is k+

h ,
while all the others are strongly suppressed by the large
momenta kα .
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2. c.m. frame, labeled by γ . In this frame the spatial momen-
tum of q is zero

qγ = 0 , (150)

which means

q = (Q, 0)γ =
(

Q√
2
,

Q√
2
, 0T

)

γ

. (151)

Since rotations send null spatial vectors into null spa-
tial vectors, the condition in Eq. (150) is defined mod-
ulo a rotation in space. Therefore, if we set the z-axis of
this frame to be the direction of the outgoing hadron, we
can identify the hadron frame with the c.m. frame and
apply power counting and the whole factorization proce-
dure directly in this frame. This is a big advantage, since
usually the calculation of the hard part of the cross section
is much easier in the c.m. frame but in general it does not
coincide with the hadron frame, which on the other hand
makes simpler the application of the factorization pro-
cedure.9 Then we can write the components of q in the
h-frame as in Eq. (151). From Eq. (149) it follows that the
total transverse momentum of the real emissions exactly
cancels the contribution ofkT, h , hence |∑α kα, T, h | ∼ λ.
Notice that the LAB frame, in which the z-axis coincide
with the beam axis, is a valid c.m. frame but it is not the
hadron frame, as they differ by a spatial rotation, as shown
in Fig. 15.
The lepton pair is back-to-back in both the frames, but the
direction of their spatial momenta is different.

3. Parton frame, labeled by p. As explained in Ref. [2],
in order to properly define a fragmentation function we
need a frame in which the fragmenting parton has zero
transverse momentum. This is the parton frame, defined
by requiring

kT, p = 0T . (152)

In principle we have two Lorentz transformations avail-
able that we can use to reach the parton frame from the
hadron frame: a rotation of the (small) angle between
the fragmenting parton and the outgoing hadron and a

9 For example, this is the case of e+e− → HA HB X , with the two
hadrons almost back-to-back. In this case, the hadron frame is defined
as the frame in which both hadrons have zero transverse momentum,
i.e. where they are exactly back-to-back. However, a spatial rotation can
fix only one hadron and the c.m. frame cannot be identified with the
h-frame. The two frames are actually connected by a light boost in the
transverse direction, where the boost parameter is (proportional to)qT, h .
As a consequence, we need boost-dependent projectors connecting the
collinear and the hard parts of the cross section. In principle, we can use
a boost also in the case of the production of a single hadron, however
the boost will depend on qT, h which, in this case, is not observed.

(light) transverse boost in the kT, h direction. By defining
k = kT, h/k

+
h , the angle of the rotation is α = −√

2k,
while the parameter of the boost is β = √

2k. The two
choices give the same result:

k =
(
k+
h , k−

h − k2
h, T

2k+
h

, 0T

)

p

+ O
(

λ2

Q2

)(
1,

λ2

Q2 , 1

)
; (153)

P =
(
ẑ k+

h ,
M2 + ẑ2 k2

h, T

2̂z k+
h

, −̂z kT, h

)

p

+ O
(
M2, λ2

Q2

)(
1,

M2, λ2

Q2 , 1

)
. (154)

Notice that the plus components remain the same in the
two frames (apart from power suppressed corrections). In
this frame we can identify the z p-axis as the axis of the
experimental jet of hadrons in which H is detected. In fact,
all the (almost) collinear particles in the jet have been gen-
erated by the same fragmenting parton and hence the sum
of their spatial momenta has to be equal to kp = |k| ẑ p,
that lies on the (positive) z direction in this frame. There-
fore, measuring Pp, T gives the transverse momentum of
the outgoing hadron with respect the jet axis. By defini-
tion, this axis coincides with the partonic thrust axis n̂ p,
which is the direction that maximizes the partonic thrust
Tp defined as

Tp =
∑

i |kh, i · n̂ p|∑
i |kh, i | , (155)

where the sum runs over all the partons produced in the
hard scattering, and kh, i is the spatial momentum in the
c.m. frame of the i th outgoing hard parton. For exam-
ple, in the case of two (back-to-back) partons Tp = 1
and n̂ p is the axis of the parton pair, while for three par-
tons Tp = max{x1, x2, x3} ≥ 2/3, with xi = 2|kh, i |/Q,
and n̂ p is the direction of the i-th parton. Since Pp, T

is strictly connected to kh, T , as shown in Eq. (154), its
measurement offers powerful information on the partonic
variables. However, the experimental measurement is on
the transverse momentum of the outgoing hadron with
respect to the hadron thrust axis n̂h , which is the direc-
tion that maximizes the hadronic thrust Th defined as

Th =
∑

i |PCM, i · n̂h |∑
i |PCM, i | , (156)

where now the sum runs over all the detected particles in
the center of mass frame (e.g. the LAB frame). Its value
is close to its partonic counterpart, but they are not the
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same. As shown in Ref. [36], the observed distribution of
hadronic thrust is related to the distribution with respect to
the partonic thrust (which can be computed in perturbation
theory) by a correlation functionC(Th, Tp) that is sharply
peaked around Th ∼ Tp. Therefore, roughly speaking, we
can set C(Th, Tp) ∼ δ(Th − Tp) and the direction which
maximizes the hadronic thrust is approximately the same
axis that maximizes the partonic thrust, i.e. n̂ p ∼ n̂h . The
estimate of how much they differ can be made more quan-
titative in the simple case of a 2-jet configuration. In fact,
in this case we have Tp = 1 and Th ∼ 1−(M2

1 + M2
2 )/Q2

(see Ref. [36]), where M1, 2 is the invariant mass of the
hadronic jets, hence Tp−Th ∼ O(M2/Q2). In this paper,
we consider Pp, T as a valid estimate of the transverse
momentum of the outgoing hadron with respect to the
hadronic thrust axis.
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