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Abstract We consider time-dependent orbifolds in String
Theory and we show that divergences are not associated with
a gravitational backreaction since they appear in the open
string sector too. They are related to the non existence of the
underlying effective field theory as in several cases fourth
and higher order contact terms do not exist. Since contact
terms may arise from the exchange of string massive states,
we investigate and show that some three points amplitudes
with one massive state in the open string sector are divergent
on the time-dependent orbifolds. To check that divergences
are associated with the existence of a discrete zero eigenvalue
of the Laplacian of the subspace with vanishing volume, we
construct the Generalized Null Boost Orbifold where this
phenomenon can be turned on and off.
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1 Introduction and conclusion

String Theory is often considered to be one, if not the best,
candidate to describe quantum gravity and therefore the
Big Bang singularity. Unfortunately and puzzlingly, the first
attempts to consider space-like [1] or light-like singularities
[2,3] by means of orbifold techniques yielded divergent four
points closed string amplitudes (see [4,5] for reviews). This
is somewhat embarrassing for a theory touted as a theory of
quantum gravity. The aim of this paper is to elucidate the
origin of these singularities in amplitudes.
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A number of reasons are cited in the literature for the exis-
tence of these singularities. The most widespread is that they
are due to large backreaction of the incoming matter into the
singularity due to the exchange of a single graviton [6,7].
This claim was already questioned in the literature where the
O-plane orbifold was constructed. This orbifold should be
stable against the gravitational collapse but it exhibits diver-
gences in the amplitudes (see the discussion in [4]). We will
show in a more direct way that this claim is false.

What has gone unnoticed is that in the Null Boost Orbifold
(NBO) [2] even the four open string tachyons amplitude is
divergent. Since we are working at tree level this means that
gravity is not the problem. In fact in Eq. (6.16) of [2], the
four tachyons amplitude in the divergent region reads

A4 ∼
∫
q∼∞

dq

|q| A(q) with

Aclosed ∼ q
α′
(

4
α′ − �p2⊥t

)
and

Aopen ∼ qα′( 1
α′ − �p2⊥t ) tr ({T1, T2}{T3, T4}) ,

where T are the Chan-Paton matrices. Moreover divergences
in string amplitudes are not limited to four points: interest-
ingly we show that the open string three point amplitude with
two tachyons and the first massive state may be divergent
when some physical polarization are chosen.

The true problem is therefore not related to a gravitational
issue, but to the non existence of the effective field theory.
In fact when we express the theory using the eigenmodes
of the kinetic terms some coefficients do not exist, even as
a distribution. This is true for both open and closed string
sectors since it manifests also in the four scalar contact term.
This problem can be roughly traced back to the vanishing
volume of a subspace and the existence of a discrete zero
mode of the Laplacian on this subspace.

In Sect. 2 in order to elucidate the problem of singularities
in open string we start by considering the NBOwhere we try
to construct a scalar QED theory. However, even the four
scalars vertex is ill defined.

Divergences in scalar QED are due to the behaviour of the
eigenfunctions of the scalar d’Alembertian near the singular-
ity but in a somehow unexpected way. Near the singularity

u = 0 all but one eigenfunctions behave as 1√|u|e
i Au with

A �= 0. The product of N eigenfunctions gives a singular-
ity |u|−N/2 which is technically not integrable. However the

exponential term ei
A
u allows for an interpretation as distri-

bution when A = 0 is not an isolated point. When A = 0 is
isolated the singularity is definitely not integrable and there
is no obvious interpretation as a distribution. Specifically in
the NBOA ∼ l2

k+ with l the momentum along the compact
direction therefore there is one eigenfunction with isolated
A = 0: the one which is associated with the discrete momen-

tum l = 0 along the orbifold compact direction. It is the
eigenfunction which is constant along that direction and it
is the root of all divergences. If the direction were not com-
pact or there were at least one another non compact direction
contributing to A we could avoid the problem.

We then check whether the most obvious ways of regular-
izing the theory by making A not vanishing may work. The
first regularization we try is to use a Wilson line along the
compact direction. It works for the scalar QED and almost for
string theory but not completely. The diverging three point
string amplitude involves an anti-commutator of the Chan-
Paton factor therefore it is divergent also for a neutral string,
i.e. for a string with both ends attached to the same brane.
This kind of string does not feel Wilson lines. Moreover anti-
commutators are present in amplitudes with massive states in
unoriented and supersymmetric strings and therefore neither
worldsheet parity nor supersymmetry help. The second obvi-
ous regularization is to use higher derivatives couplings to
Ricci tensor which is the only non vanishing tensor associated
with the (regularized) metric. Unfortunately if we assume
that the parameter entering the metric regularization is of
the order of the string scale these terms do not help. In any
case it seems that a sensible regularization must couple to all
open string in the same way and this suggests a gravitational
coupling. Therefore we then give a cursory look to whether
closed string winding modes could help [8], as already sug-
gested in [1,3] in analogy with the resolution of static sin-
gularities. Twisted closed strings become massless near the
singularity and they should in some way be included. They
generate a background potential Bμν which is equivalent to
a electromagnetic background from the open string perspec-
tive. Under a plausible modification of the scalar action which
is suggested by the two tachyons – two photons amplitude
the problems seem to be solvable.

In any case we now understand the origin of the string
divergences from the point of view of non existence of con-
tact terms in the effective field theory. String theory diver-
gences come from ill defined contact terms which must be
reproduced by string amplitudes. In the effective field the-
ory contact terms arise from String Theory also through the
exchange of massive string states and this suggests to exam-
ine three point amplitudes with one massive state.

To do so, even if not strictly necessary to show the exis-
tence of divergences, we want to understand how to write
the polarizations for the massive state on orbifold from the
Minkowski ones. This is tackled in Sect. 3.

In Sect. 4 we consider overlaps of different wave functions
and derivatives thereof. These overlaps are related in fact to
the coefficients of the expansions of the effective theory in
eigenfunctions of the kinetic terms and therefore they are
strictly related to string amplitudes on orbifolds.

In Sect. 5 we go back to String Theory and we use the result
of the previous section in order to verify that in the NBOthe
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open string three points amplitude with two tachyons and
one first level massive string state does indeed diverge when
some physical polarization are chosen. An intuitive reason
is that we have an infinite number of images and the delta
functions associated with momentum conservation have an
accumulation point of their support. Nevertheless the exis-
tence of the accumulation point is not sufficient since three
tachyons amplitude converges: the coefficients of the deltas
matter too, and the convergence must be verified.

As stated above, if the directions with vanishing volume
were not compact or a “mixture” of compact ones and at least
one non compact we could avoid the divergences. To check
this point, in Sect. 6 we introduce the Generalized Null Boost
Orbifold (GNBO) as a generalization of the NBOwhich still
has a light-like singularity and is generated by one Killing
vector. However in this model there are two directions asso-
ciated with A, one compact and one non compact. We can
then construct the scalar QED and the effective field theory
which extends it with the inclusion of higher order terms
since all terms have a distributional interpretation. However
if a second Killing vector is used to compactify the formerly
non compact direction, the theory has again the same prob-
lems as in the NBOcase. In the literature there are also other
attempts at regularizing the NBOsuch as the Null Brane. This
kind of orbifold was originally defined in [9,10] and studied
in perturbation theory in [3]. This orbifold shares with the
GNBOthe fact that there is a non compact direction as dis-
cussed in this section. In this case it is indeed possible to build
single particle wave functions which leads to the convergence
of the smeared amplitudes on the Null Brane.

In Sect. 7 we then quickly examine the Boost Orbifold
(BO) where the divergences are generically milder [11,12].

The scalar eigenfunctions generically behave as |t |±i l
� near

the singularity but there is one eigenfunction which behaves
as log(|t |) and again it is the constant eigenfunction along
the compact direction which is the origin of all divergences.
In particular the scalar QED can be defined and the first term
which gives a divergent contribution is of the form |φ φ̇|2, i.e
divergences are hidden into the derivative expansion of the
effective field theory. Again three points open string ampli-
tudes with one massive state diverge.

The lessons to be learnt from these examples are many.
First, it seems that String Theory cannot do better than

field theory when the latter does not exist, at least at the
perturbative level where one deals with particles.

Second, when spacetime becomes singular, the string mas-
sive modes are not anymore spectators.

Third and related to the last point, the previous prob-
lems seem to suggest that issues with spacetime singulari-
ties are hidden into contact terms and interactions with mas-
sive states. This would explain in an intuitive way why the
eikonal approach to gravitational scattering seems to work

well: eikonal is indeed concerned with three point massless
interactions. In fact it appears [13] that the classical and quan-
tum scattering on an electromagnetic wave [14] or gravita-
tional wave [15] in BOand NBOare well behaved. From this
point of view the ACV approach [16,17], especially when
considering massive external states [18], may be more sen-
sible.

Finally it seems that all issues are related with what hap-
pens to the Laplacian associated with the spacelike subspace
with vanishing volume at the singularity. If there is a discrete
zero eigenvalue the theory develops divergences.

2 Scalar QED on NBOand divergences

As we discussed in the Introduction, the four open string
tachyons amplitude diverges in the NBO. Given the sugges-
tion in the literature [4] that this can be cured by the eikonal
resummation, we would like to consider the scalar QED on
the NBO. Another reason is that all eigenmodes can be writ-
ten using elementary functions thus making the issues more
transparent. Its action is given by

SsQED =
∫

�

dDx
√− det g

×
(

−(Dμφ)∗Dμφ−M2φ∗φ−1

4
f μν fμν−g4

4
|φ|4

)
,

(2.1)

with

Dμφ = (∂μ − i e aμ)φ, fμν = ∂μaν − ∂νaμ. (2.2)

We reserve small letters for quantities defined on the orbifold
and capital ones for those defined in Minkowski. Moreover
� denotes the orbifold. We will construct directly both the
scalar and the spin-1 eigenfunctions which we can use as a
starting point for the perturbative computations.

2.1 Geometric preliminaries

InR1,D−1 with coordinates (xμ) = (x+, x−, x2, �x) and met-
ric

ds2 = −2dx+dx− + (dx2)2 + ηi jdx
idx j , (2.3)

we consider the following change of coordinates to (xα) =
(u, v, z, �x)
⎧⎪⎨
⎪⎩
x− = u

x2 = �uz

x+ = v + 1
2�2uz2

⇔

⎧⎪⎨
⎪⎩
u = x−

z = x2

� x−

v = x+ − 1
2

(x2)2

x−

. (2.4)

Then the metric becomes:

ds2 = −2 du dv + (�u)2(dz)2 + ηi jdx
idx j , (2.5)
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along with the non vanishing geometrical quantities

− det g = (�u)2, (2.6)

and

	v
zz = �2u, 	z

uz = 1

u
. (2.7)

Riemann and Ricci tensor components however vanish since
at this stage we only performed a change of coordinates from
the original Minkowski spacetime: locally it is the same as the
NBOand they must have the same local differential geometry.

The NBOis introduced by identifying points along the
orbits of the Killing vector:

κ = −i(2π�)J+2

= (2π�)(x2∂+ + x−∂2)

= 2π∂z,

(2.8)

in such a way that

xμ ≡ Knxμ, n ∈ Z, (2.9)

where Kn = enκ , leads to the identifications

x =

⎛
⎜⎜⎝
x−
x2

x+
�x

⎞
⎟⎟⎠ ≡ Knx

=

⎛
⎜⎜⎝

x−
x2 + n(2π�)x−

x+ + n(2π�)x2 + 1
2n

2(2π�)2x−,

�x

⎞
⎟⎟⎠

(2.10)

or to

(u, v, z, �x) ≡ (u, v, z + 2πn, �x) (2.11)

in the coordinates (xα) where κ = 2π∂z is a global Killing
vector.

For future use in Sect. 2.6, we notice that we could regu-
larize the metric as

ds2 = −2 du dv + �2(u2 + ε2)(dz)2 + ηi jdx
idx j . (2.12)

Then the non vanishing geometrical quantities are

− det g = �2(u2 + ε2), (2.13)

and

	v
zz = �2u, 	z

uz = u

u2 + ε2 , (2.14)

which lead to the following Riemann and Ricci tensor com-
ponents:

Rz
uzu = − ε2

(u2 + ε2)2 , Rv
zzu = − �2ε2

u2 + ε2 ,

Ricuu = − ε2

(u2 + ε2)2 .

(2.15)

Since δreg(u) = 1
π

ε
u2+ε2 this means that Rz

uzu ∼ [δreg(u)]2.

2.2 Free scalar action

We now want to find the eigenmodes of the Laplacian in order
to write in a diagonal way the scalar kinetic term given by1

Sscalar kin

=
∫

�

dDx
√− det g

(
−gαβ∂αφ∗∂βφ − M2φ∗φ

)

=
∫

dD−3 �x
∫

du
∫

dv

∫ 2π

0
dz |�u|

×
(

∂uφ
∗ ∂vφ + ∂vφ

∗ ∂uφ − 1

(�u)2 ∂zφ
∗ ∂zφ

− ∂iφ
∗∂iφ − M2φ∗φ

)
.

(2.16)

The solution to the equation of motion is enough when we
want to perform the canonical quantization. Since we want
to use the Feynman diagrams, we consider the path integral
approach: we take off-shell modes and solve the eigenvalue
problem �φr = rφr . By comparing with the flat case we see
that r is 2k−k+−�k2 when k is the flat coordinates momentum.
We therefore have

−2∂u∂vφr − 1

u
∂vφr + 1

(�u)2 ∂2
z φr + ∂2

i φr = rφr . (2.17)

Using Fourier transforms, it then easily follows that the
eigenmodes are

φ{k+ l �k r}(u, v, z, �x) = eik+v+ilz+i �k·�x φ̃{k+ l �k r}(u), (2.18)

with

φ̃{k+ l �k r}(u) = 1√
(2π)D 2|�k+| |u|e

−i l2

2�2k+
1
u +i

�k2+r
2k+ u

,

(2.19)

and

φ∗
{k+ l �k r}(u, v, z, �x) = φ{−k+ −l −�k r}(u, v, z, �x), (2.20)

1 The factor −gαβ is due to the choice of the East coast convention for
the metric, i.e.:

−gαβ∂αφ∗∂βφ − M2φ∗φ ∼ +|φ̇|2 − M2|φ|2 ∼ E2 − M2.
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where we have chosen the numeric factor in order to get a
canonical normalization:

(φ{k(1)+ l(1)
�k(1) r(1)}, φ{k(2)+ l(2)

�k(2) r(2)})

=
∫

dD−3 �x
∫

du
∫

dv

×
∫ 2π

0
dz |�u|φ{k(1)+ l(1)

�k(1) r(1)} φ{k(2)+ l(2)
�k(2) r(2)}

= δD−3(�k(1) + �k(2)) δ(r (1) − r (2))

× δ(k(1)+ + k(2)+) δl(1),−l(2)
.

(2.21)

We can then perform the off-shell expansion

φ(u, v, z, �x) =
∫

dD−3�k
∫

dr
∫

dk+

×
∑
l∈Z

A{k+ l �k r} φ{k+ l �k r}(u, v, z, �x), (2.22)

so that the scalar kinetic term becomes

Sscalar kin =
∫

dD−3�k
∫

dr
∫

dk+

×
∑
l∈Z

(r − M2)A{k+ l �k r} A∗
{k+ l �k r}. (2.23)

2.3 Free photon action

The photon action can be written as

Sspin-1 kin =
∫

�

dDx
√− det g

×
(
−1

2
gαβgγ δDαaγ (Dβaδ − Dδaβ)

)
.

(2.24)

If we choose the Lorenz gauge2

Dαaα = − 1

u
av − ∂uav − ∂vau + 1

�2u2 ∂zaz

+ηi j∂i a j = 0 (2.25)

and remember that covariant derivatives commute since we
are locally flat, the equations of motion read (�a)α = 0.

2 Indeed it is exactly the usual Lorenz gauge since locally the space is
Minkowski.

Explicitly we have:

(�a)u = 1

u2 av − 2

�2u3 ∂zaz

+
[
−2∂u∂v − 1

u
∂v + 1

�2u2 ∂2
z + ηi j∂i∂ j

]
au,

(�a)v =
[
−2∂u∂v − 1

u
∂v + 1

�2u2 ∂2
z + ηi j∂i∂ j

]
av,

(�a)z = −2

u
∂zav

+
[
−2∂u∂v + 1

u
∂v + 1

�2u2 ∂2
z + ηi j∂i∂ j

]
az,

(�a)i =
[
−2∂u∂v − 1

u
∂v + 1

�2u2 ∂2
z + ηi j∂i∂ j

]
ai .

(2.26)

As in the scalar case we are actually interested in solving
the eigenmodes problem (�a)α = r aα . We proceed hier-
archically: first we solve for av and ai whose equations are
the same as the one for the scalar field, then we insert the
solutions as a source in the equation3 for az and eventually
we solve for au . We get the solutions:

‖ ã{k+ l �k r} α
(u)‖=

⎛
⎜⎜⎝
ãu
ãv

ãz
ãi

⎞
⎟⎟⎠

=
∑

α∈{u,v,z,i}
E{k+ l �k r} α

‖ ãα

{k+ l �k r} α
(u)‖

= E{k+ l �k r} u

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ φ̃{k+ l �k r}(u)

+ E{k+ l �k r} v

⎛
⎜⎜⎜⎜⎝

i
2k+u + 1

2

(
l

�k+

)2
1
u2

1
l
k+
0

⎞
⎟⎟⎟⎟⎠ φ̃{k+ l �k r}(u)

+ E{k+ l �k r} z

⎛
⎜⎜⎝

l
�k+|u|

0
�|u|

0

⎞
⎟⎟⎠ φ̃{k+ l �k r}(u)

+ E{k+ l �k r} j

⎛
⎜⎜⎝

0
0
0
δi j

⎞
⎟⎟⎠ φ̃{k+ l �k r}(u),

(2.27)

3 Notice that inside the square brackets of the differential equation for
az there is a different sign for the term 1

u ∂v with respect to the equation
for the scalar field.
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then we can expand the off-shell fields as

aα(u, v, z, �x) =
∫

dD−3�k
∫

dr
∫

dk+
∑
l∈Z

∑
α∈{u,v,z,i}

E{k+ l �k r} α
a

α

{k+ l �k r} α
(u, v, z, �x), (2.28)

where a
α

{k+ l �k r} α
(u, v, z, �x) = ã

α

{k+ l �k r} α
(u) ei(k+v+lz+�k·�x).

We can also compute the normalization as

(a(1), a(2)) =
∫

dD−3 �x
∫

du
∫

dv

∫ 2π

0
dz |�u|

×
(
gαβa{k(1)+ l(1)

�k(1) r(1)} α
a{k(2)+ l(2)

�k(2) r(2)}β

)

= E{k(1)+ l(1)
�k(1) r(1)} ◦ E{k(2)+ l(2)

�k(2) r(2)}
× δD−3(�k(1) + �k(2))

δ(r (1) − r (2)) δ(k(1)+ + k(2)+) δl(1),−l(2)
,

(2.29)

with4

E(1) ◦ E(2) = −E(1) u E(2) v − E(1) v E(2) u

+ E(1) z E(2) z + ηi j E(1) iE(2) j .
(2.30)

Finally the Lorenz gauge reads

ηi j ki E{k+ l �k r} j − k+E{k+ l �k r} u

− �k2+r
2k+ E{k+ l �k r} v

= 0, (2.31)

which does not impose any constraint on the transverse polar-
ization E{k+ l �k r} z , while the photon kinetic term becomes

Sspin-1 kin =
∫

dD−3�k
∫

dr
∫

dk+
∑
l∈Z

1

2
r E{k+ l �k r} ◦ E∗

{k+ l �k r}. (2.32)

2.4 Cubic interaction

With the definition of the d’Alembertian eigenmodes we can
now examine the cubic vertex which reads

Scubic =
∫

�

dDx
√− det g

(
−i e gαβ

aα(φ∗ ∂βφ − ∂βφ∗ φ)
)
. (2.33)

4 We use a shortened version of the polarizations E for the sake of
readability. Specifically we writeE(n) α = E{k(n)+ l(n)

�k(n) r(n)} α
thus hiding

the understood dependence of the components of E(n) on the momenta.

Its computation involves integrals such as

∫
du |�u|

(
l

u

)2 3∏
i=1

φ̃{k(i)+ l(i) �k(i) r(i)}

∼
∫
u∼0

du

(
l2

|u|5/2

)
e
−i

∑3
i=1

l(i)
2

2�2k(i)+
1
u
, (2.34)

and

∫
du |�u|

(
1

u

) 3∏
i=1

φ̃{k(i)+ l(i) �k(i) r(i)}

∼
∫
u∼0

du

(
1

u|u|1/2

)
e
−i

∑3
i=1

l(i)
2

2�2k(i)+
1
u
, (2.35)

which can be interpreted as hints that the theory may be
troublesome. The first integral would diverge if the factor

ei
A
u were equal 1. Fortunately it happens when all l(∗) = 0

but in this case the integral vanishes (if we set l(∗) = 0 before
its evaluation). This however suggests that when all l(∗) = 0,
i.e. when the eigenfunctions are constant along the compact
direction z, something is happening. On the other side when
at least one l is different from zero we have an integral such
as∫
u∼0

du |u|−ν ei
A
u ∼

∫
t∼∞

dt tν−2 eiAt . (2.36)

All l(∗) are discrete but k(∗)+ are not, therefore A has an
isolated zero but otherwise it has continuous value and may
be given a distributional meaning, similar to a derivative of
the δ.

The second integral has again issues when all l(∗) = 0 and
since it is not proportional to any l as it stands it is divergent
unless we take a principal part regularization which may be
meaningful.

With all these warnings we can give anyhow meaning to
the cubic terms and we get5

Scubic =
3∏

i=1

⎡
⎣
∫

dD−3�k(i) dr(i) dk(i)+
∑
l(i)

⎤
⎦

× (2π)D−1δ
(∑ �k(i)

)
δ
(∑

k(i)+
)

× δ(
∑

l(i))e (A{−k(2)+ −l(2) −�k(2) r(2)})
∗A{k(3)+ l(3)

�k(3) r(3)}

×
{
E{k(1)+ l(1)

�k(1) r(1)} u k(2)+ I[0]
{3}

+ E{k(1)+ l(1)
�k(1) r(1)} z

k(2)+l(1) − l(2)k(1)+
�k(1)+

J [−1]
(3)

5 The notation (2) → (3) means that all previous terms inside the curly
brackets appear again in exactly the same structure but with momenta
of particle (3) in place of those of particle (2).
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+ E{k(1)+ l(1)
�k(1) r(1)} v

×
[ �k2

(2) + r(2)

2k(2)+
I[0]

{3} + i
k(2)+

2k(1)+
I[−1]

{3}

+ 1

2

k(2)+
�2

(
l(1)

k(1)+
− l(2)

k(2)+

)2

I[−2]
{3}

]

− ηi j E{k(1)+ l(1)
�k(1) r(1)} i k(2) j I[0]

{3} −
(
(2) → (3)

)}
,

(2.37)

where we have defined also for future use

I[ν]
(1)...(N ) = I[ν]

{N }

=
∫ +∞

−∞
du |�u| uν

N∏
i=1

φ̃{k(i)+ l(i) �k(i) r(i)}

=
∫ +∞

−∞
du |�u| uν

N∏
i=1

φ̃(i),

J [ν]
(N ) =

∫ +∞

−∞
du |�||u|ν+1

N∏
i=1

φ̃{k(i)+ l(i) �k(i) r(i)}, (2.38)

where φ̃(i) = φ̃{k(i)+ l(i) �k(i) r(i)} and φ̃(i) = φ̃{k(i)+ l(i) �k(i) r(i)}
which will be used when not causing confusion.

2.5 Quartic interactions and divergences

In the previous section we have seen that the theory may have
issues when all l = 0, i.e. with eigenfunctions independent
of the compact direction z because some integrals were on
the verge of diverging. The divergence issue will appear in
a clear and unavoidable way when considering the quartic
terms:

Squartic =
∫

�

dDx
√− det g

×
(
e2 gμν aμaν |φ|2 − g4

4
|φ|4

)
, (2.39)

which can be expressed using the modes as

Squartic =
4∏

i=1

⎡
⎣
∫

dD−3�k(i) dk(i)+ dr(i)
∑
l(i)

⎤
⎦

× (2π)D−1δ
(∑ �k(i)

)
δ
(∑

k(i)+
)

δ∑ l(i), 0

×
{
e2 (A{−k(3)+ −l(3) −�k(3) r(3)})

∗A{k(4)+ l(4)
�k(4) r(4)}

×
[
(E{k(1)+ l(1)

�k(1) r(1)} ◦ E{k(2)+ l(2)
�k(2) r(2)} ) I

[0]
{4}

− i
1

2
E{k(1)+ l(1)

�k(1) r(1)} v
E{k(2)+ l(2)

�k(2) r(2)} v

×
(

1

k(2)+
+ 1

k(1)+

)
I[−1]

{4}

+ 1

2

E{k(1)+ l(1)
�k(1) r(1)} v

E{k(2)+ l(2)
�k(2) r(2)} v

�2

×
(

l(1)

k(1)+
− l(2)

k(2)+

)2

I[−2]
{4}

]

− g4

4
(A{−k(1)+ −l(1) −�k(1) r(1)})

∗

× (A{−k(2)+ −l(2) −�k(2) r(2)})
∗

A{k(3)+ l(3)
�k(3) r(3)}A{k(4)+ l(4)

�k(4) r(4)} I
[0]
{4}
}
. (2.40)

Now when setting l(∗) = 0 all the surviving terms are

divergent, explicitly I[0]
{4} ∼ ∫

du |u|1−4× 1
2 and I[−1]

{4} ∼∫
du |u|1−4× 1

2 1
u since φ̃|l=0 ∼ |u|− 1

2 .
Obviously higher order terms in the effective field theory

will behave even worse. This makes the theory ill defined
and the string theory which should give this effective theory
ill defined too.

2.6 Failure of obvious divergence regularizations

From the discussion in the previous section it is clear that
the origin of the divergences is the sector l = 0. When l =
0 the highest order singularity of the Fourier transformed
d’Alembertian equation vanishes. Explicitly we have:

A∂u φ̃{k+ l �k r} + B(u)φ̃{k+ l �k r}
= Ae− ∫ u B(u)

A du∂u

[
e+ ∫ u B(u)

A du φ̃{k+ l �k r}
]

= 0, (2.41)

with

A = (−2i k+),

B(u) = (−�k2 − r) + (−ik+)
1

u
+ −l2

�2

1

u2 , (2.42)

and this in turn implies the absence of the oscillating factor

ei
A
u when l vanishes. It follows that any deformation which

makes the coefficient of the highest order singularity not van-
ishing will do the trick.

The first and easiest possibility is to add a Wilson line
along z, i.e. a = θdz. This shifts l → l − eθ and regularizes
the scalar QED. Unfortunately this does not work for String
Theory where Wilson lines on D25 branes are not felt by the
neutral strings starting and ending on the same brane. This
happens because not all interactions involve commutators of
the Chan-Paton factors which vanish for neutral strings. For
instance the interaction among two tachyons and the first
massive state involves an anti-commutator as we discuss
later. The anti-commutators are present also in amplitudes
of supersymmetric strings with massive states and therefore
the issue is not solved by supersymmetry.

A second possibility is to think about higher derivative
couplings to curvature which is also natural in String Theory
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If we regularize the metric in a minimal way as shown at the
end of Sect. 2.1, we see that only Ricuu is non vanishing,
therefore it would be natural to introduce

Shigher R =
∫

�

dDx
√− det g

×
⎛
⎝∑

k≥1

α′2k−1
k∏
j=1

gμ j ν j gρ jσ j Ricμ jρ j

×
(

2k∑
s=0

ck s∂
2k−sφ∗∂sφ

))

=
∫

�

dDx
√− det g

(
α′gμν gρσ Ricμρ

× (c12φ
∗∂2

νσ φ + c11∂νφ
∗∂σ φ + c10∂

2
νσ φ∗φ)

)
, (2.43)

where α′ has been introduced for dimensional reasons and
in order to have all c’s adimensional. Since only Ricuu is
non vanishing and it depends only on u, the regularized
d’Alembertian eigenmode problem would now read

− 2∂u∂vφr − u

u2 + ε2 ∂vφr + 1

�2(u2 + ε2)
∂2
z φr

+
∑
k≥1

α′2k−1Ck Ric
k
uu ∂2k

v φ + ∂2
i φr − rφr = 0, (2.44)

with Ck = ∑2k
s=0(−)sck s . We can perform the usual Fourier

transform and the function B(u) becomes

B(u) = (−�k2 − r) + (−ik+)
u

u2 + ε2 + −l2

�2

1

u2 + ε2

+
∑
k≥1

α′2k−1Ck

(
ε2

(u2 + ε2)2

)k

(−ik+)2k .

(2.45)

Then we examine what happens when u = 0:

B(0) ∼ −l2

�2

1

ε2 +
∑
k≥1

α′2k−1Ck (−ik+)2k 1

ε2k . (2.46)

Even though it looks as if it presents the possibility to cure
the issue, unfortunately it is not so. If we consider α′ and ε2

uncorrelated we lose predictability but if we consider α′ ∼
ε2, as it is natural in String Theory, we do not solve the
problem since B(0) ∼ −l2

�2
1
ε2 + ∑

k≥1 Ck (−ik+)2kε2k−2

and the curvature terms are not anymore singular.

2.7 A hope from twisted state background

It is clear from the previous discussion that the true problem
is associated with the dipole string and its charge neutral
states since the charged ones can be cured rather trivially by
a Wilson line.

On the other side we know that the usual time-like orb-
ifolds are well defined because of a presence of a Bμν back-
ground and this field is sourced by strings. So we can think
of switching on such a background in the open string. For
open strings B is equivalent to F so we can consider what
happens to an open string in an electromagnetic background.

The choice of such a background is limited first of all by
the request that it must be an exact string solution, i.e. that
it satisfies the e.o.m derived from the DBI. If a closed string
winds the compact direction z is coupled to Bzu , Bzv and Bzi

but if we choose

1

2πα′ B = f (u)du ∧ dz. (2.47)

then

det(g + 2πα′ f ) = det(g), (2.48)

therefore it is a solution of open string e.o.m. for any
f (u, v, z, xi ). Suppose that the action for a real neutral scalar
φ is given by (as the 2 tachyons – 2 photons amplitude sug-
gests)

Sscalar kin =
∫

�

dDx
√− det g

1

2

×
(
−gαβ∂αφ ∂βφ − M2φ2 + c1α

′2 ∂μφ∂νφ f μκ f ν
κ

)

=
∫

dD−3 �x
∫

du
∫

dv

∫ 2π

0
dz |�u|1

2

×
(

2∂uφ ∂vφ − 1

(�u)2 (∂zφ)2

− (�∂φ)2 − M2φ2 + c1α
′2 1

(�u)2 (∂vφ)2 f 2(u)

)
,

(2.49)

Performing the same steps as before we get

B(u) = (−�k2 − r) + (−ik+)
1

u

+ (−l2 + c1α
′2 f (u)2k+2)

�2 u2 , (2.50)

so even for a constant f (u) = f0 we get a solution which
solves the issues. Notice however that the “trivial” solution
f = f0du ∧ dz is not so trivial in Minkowski coordinates
f = f0

x− dx−∧dx2. Though appealing, the study of the string
in the presence of this non trivial background needs a deeper
analysis which goes beyond the scope of this paper.

3 NBOeigenfunctions from covering space

In this section we recover the eigenfunctions from the cov-
ering Minkowski space in order to elucidate the connection
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between the polarizations in NBOand in Minkowski. More-
over we want to generalize the result to a symmetric two
index tensor which is the polarization of the first massive
state to compute the two tachyons one massive state in the
next section and to show that it diverges.

3.1 Spin 0 wave function from Minkowski space

We start with the usual plane wave in flat space and we
express it in the new coordinates (we do not write the depen-
dence on �x since it is trivial)

ψk+ k− k2(x
+, x−, x2)

= ei
(
k+x++k−x−+k2x2

)
= ψk+ k− k2(u, v, z)

= e
i

[
k+v+ 2k+k−−k2

2

2k+ u+ 1
2 �2k+u

(
z+ k2

�k+
)2
]
. (3.1)

The corresponding wave function on the NBOis obtained by
making it periodical in z. This can be done in two ways either
in x coordinates or in uvz ones. The first way is more useful in
deducing how the passage to the orbifold makes the function
depend on the equivalence class of momenta. Implementing
the projection on periodic z functions we get

�[k+ k− k2]([x+, x−, x2]) =
∑
n∈Z

ψk+ k− k2(Kn(x+, x−, x2))

=
∑
n∈Z

ψK−n(k+ k− k2)(x
+, x−, x2),

(3.2)

where we write [k+ k− k2] because the function depends on
the equivalence class of k+ k− k2 only. The equivalence rela-
tion is given by

k =
⎛
⎝k+
k−
k2

⎞
⎠ ≡ K−nk

=
⎛
⎝ k+
k− + n(2π�)k2 + 1

2n
2(2π�)2k+

k2 + n(2π�)k+

⎞
⎠ , (3.3)

and allows to choose a representative with{
0 ≤ k2

� |k+| < 2π k+ �= 0

0 ≤ k−
� |k2| < 2π k+ = 0, k2 �= 0

. (3.4)

If we perform the computation in uvz coordinates we get

�[k+ k− k2](u, v, z)

=
∑
n∈Z

ψk+ k− k2(u, v, z + 2π n)

=
∑
n∈Z

e
i

{
k+v+ r

2k+ u+ 1
2 (2π�)2k+u

[
n+ 1

2π

(
z+ k2

�k+
)]2

}
, (3.5)

with r = 2k+k− − k2
2 and Im(k+u) > 0, i.e. k+u =

|k+u|eiε and π > ε > 0. Notice that there is no separate
dependence on z and on k2

�k+ therefore one could fix the

range 0 ≤ z+ k2
�k+ < 2π . However this symmetry is broken

when considering the photon eigenfunction.
We can now use the Poisson resummation

∑
n

eia(n+b)2 =
∫

ds δP (s)eia(s+b)2

= (2π)2 e
−i

(
π
4 + 1

2 arg(a)
)

2
√

π |a|
∑
m

e+ π2m2
ia +i2πbm,

(3.6)

to finally get, reintroducing the other variables �k, �x and set-
ting therefore r = 2k+k− − k2

2 − �k2,

�[k+ k− k2 �k](u, v, z, �x)

= (2π)2

√
2

π

e−iπ/4

(2π�)

×
∑
l

⎡
⎣ 1√|k+u|e

i

{
k+v+lz− l2

2�2k+
1
u + r+�k2

2k+ u+�k·�x
}⎤
⎦ e

il
k2

�k+

= N
∑
l

φ{k+ l �k r}(u, v, z, �x)eil
k2

�k+ when k+ �= 0,

(3.7)

with

N =
√

(2π)D

π�

e−iπ/4

π
. (3.8)

The fact that � depends only on the equivalence class
[k+ k− k2 �k] allows to restrict to 0 ≤ k2

� |k+| < 2π so that
we can invert the previous expression and get

φ{k+ l �k r}(u, v, z, �x)

= 1

N
∫ 2π�|k+|

0

dk2

2π�|k+| e
−il

k2
�k+ �[k+ k− k2 �k](u, v, z, �x).

(3.9)

3.2 Spin 1 wave function from Minkowski space

We can repeat the steps of the previous section in the case of
an electromagnetic wave. Again we concentrate on x+, x−
and x2 coordinates and reinstate �x at the end. We start with
the usual plane wave in flat space ψ

[1]
k+ k− k2,ε+ ε− ε2

and we
express it in both Minkowskian and orbifold coordinates.
We use the notation ψ

[1]
k+ k− k2,ε+ ε− ε2

to stress that it is the
eigenfunction and not the field which is obtained as

Aμ(x) dxμ =
∫

d3k
∑

ε

ψ
[1]
k+ k− k2,ε+ ε− ε2

, (3.10)
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where the sum is performed over ε which are independent
and compatible with k. The explicit expression for the eigen-
function with ε constant is6

Nψ
[1]
k+ k− k2,ε+ ε− ε2

(x+, x−, x2)

= (ε+dx+ + ε−dx− + ε2dx
2)ei

(
k+x++k−x−+k2x2

)

= Nψ
[1]
k+ k− k2,ε+ ε− ε2

(u, v, z)

= (εu du + εz dz + εv dv)

e
i

[
k+v+ 2k+k−−k2

2

2k+ u+ 1
2 �2k+u

(
z+ k2

�k+
)2
]
, (3.11)

with

εv = ε+,

εu(z) = ε− + (� z)ε2 +
(

1

2
�2 z2

)
ε+,

εz(u, z) = (� u)(ε2 + � z ε+). (3.12)

Notice that we are not yet imposing any gauge and also that
if (ε+, ε−, ε2) are constant (εu, εv, εz) are generically func-
tions but it is worth stressing that (εu, εv, εz) are not the
polarizations in the orbifold which are anyhow constant, the
fact that they depend on the coordinates is simply the state-
ment that not all eigenfunctions of the vector d’Alembertian
are equal.

Building the corresponding function on the orbifold
amounts to summing the images

N�
[1]
[k, ε]([x]) =

∑
n

ε · (K−ndx) ψk(K−nx)

=
∑
n

Knε · dx ψKnk(x), (3.13)

this expression makes clear that under the action of the
Killing vector ε transforms exactly as the k since it is induced
by ε · Kndx = K−nε · dx , i.e.

ε =
⎛
⎝ε+

ε2

ε−

⎞
⎠ ≡ K−nε

=
⎛
⎝ ε+

ε2 + n(2π�)ε+
ε− + n(2π�)ε2 + 1

2n
2(2π�)2ε+

⎞
⎠ , (3.14)

however the pair (k, ε) transforms with the same n since both
are “dual” to x , i.e. their transformation rules are dictated by
the x . Therefore there is only one equivalence class [k, ε] and

6 We introduce the normalization factor N in order to have a less clut-
tered relation between ε and E .

not two [k], [ε]. Said differently, a representative of the com-
bined equivalence class is the one with 0 ≤ k2 < 2π�|k+|
when k+ �= 0.

We now proceed to find the eigenfunctions on the orbifold
in orbifold coordinates. We notice that du, dv and dz are
invariant and therefore their coefficients in a are as well. So
we write

N�
[1]
[k, ε]([x])

=
∑
n

ε · (Kndx) ψk(Knx)

= dv

[
ε+

∑
n

ψk(Knx)

]
+ dz (�u)

[
ε2

∑
n

ψk(Knx) + ε+�
∑
n

(z + 2πn)ψk(Knx)

]

+ du

[
ε−

∑
n

ψk(Knx) + ε2�
∑
n

(z + 2πn)ψk(Knx)

+1

2
ε+�2

∑
n

(z + 2πn)2ψk(Knx)

]
. (3.15)

From direct computation we get7

∑
n

(z + 2πn)ψk(Knx) =
(

1

i� u

∂

∂k2
− k2

�k+

)
�[k]([x])

∑
n

(z + 2πn)2ψk(Knx) =
(

1

i� u

∂

∂k2
− k2

�k+

)2

�[k]([x]).
(3.16)

Then it follows that

N�
[1]
[k, ε]([x])

= dv
[
ε+ �[k]([x])

] + dz (�u)[
ε2k+ − ε+k2

k+
�[k]([x]) + ε+

−i

u

∂

∂k2
�[k]([x])

]

+ du

[(
ε− − ε2

k2

k+
+ 1

2
ε+

(
k2

k+

)2
)

�[k]([x])

+ i

2u

ε+
k+

�[k]([x])

+ ε2k+ − ε+k2

k+
−i

u

∂

∂k2
�[k]([x])

+ 1

2
ε+

−1

u2

∂2

∂k2
2 �[k]([x])

]
, (3.17)

where many coefficients of � or its derivatives contain k2.
They cannot be expressed using the quantum numbers of

7 Notice that these expressions may be written using Hermite polyno-
mials.
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the orbifold {k+ l �k r} but are invariant on the orbifold and
therefore are new orbifold quantities which we can interpret
as orbifold polarizations. Using (3.7) we can finally write

�
[1]
[k, ε]([x])
=
∑
l

φ{k+ l �k r}(u, v, z, �x)eil
k2

�k+

×
{

dv
[
ε+
]

+ dz (�u)

[
ε2k+ − ε+k2

k+
+ ε+

1

�u

l

k+

]

+ du

[(
ε− − ε2

k2

k+
+ 1

2
ε+

(
k2

k+

)2
)

+ i

2u

ε+
k+

+ ε2k+ − ε+k2

k+
1

u

l

�k+

+ ε+
1

2u2

(
l

�k+

)2]}
. (3.18)

If we compare with (2.27) we find

E{k+ l �k r} v
= ε+

E{k+ l �k r} z = sgn(u)
ε2k+ − ε+k2

k+

E{k+ l �k r} u = ε− − ε2
k2

k+
+ 1

2
ε+

(
k2

k+

)2

, (3.19)

which implies that the true polarizations (ε+, ε−, ε2)

and E{k+ l �k r} ∗ are constant as it turns out from direct com-
putation.

A different way of reading the previous result is that the
polarizations on the orbifold are the coefficients of the highest
power of u.

We can also invert the previous relations to get

ε+ = E{k+ l �k r} v

ε2 = E{k+ l �k r} zsgn(u) + k2

k+
E{k+ l �k r} v

ε− = E{k+ l �k r} u + k2

k+
E{k+ l �k r} zsgn(u)

+ 1

2

(
k2

k+

)2

E{k+ l �k r} v
, (3.20)

and use them in Lorenz gauge k · ε = 0 in order to get
the expression of Lorenz gauge with orbifold polarizations.
If the definition of orbifold polarizations is right the result
cannot depend on k2 since k2 is not a quantum number of

orbifold eigenfunctions. Taking in account k− = �k2+k2
2+r

2k+

in k · ε = 0 we get exactly the expression for the Lorenz
gauge for orbifold polarizations (2.25).

3.3 Tensor wave function from Minkowski space

Once again, we can use the analysis of the previous section in
the case of a second order symmetric tensor wave function.
Again we suppress the dependence on �x and �k with a caveat:
the Minkowskian polarizations S+ i , S− i and S2 i do trans-
form non trivially, therefore we give the full expressions in
Appendix A even if these components contribute in a some-
what trivial way since they behave effectively as a vector of
the orbifold.

We start with the usual wave in flat space and we express
either in the Minkowskian coordinates

Nψ
[2]
k S(x+, x−, x2) = Sμν ψk (x) dxμ dxν

= (S+ + dx+ dx+ + 2S+ 2 dx+ dx2

+ 2S+ − dx+ dx−

+ 2S2 2 dx2 dx2 + 2S2 − dx2 dx−

+ 2S− − dx− dx−)e
i
(
k+x++k−x−+k2x

2
)

, (3.21)

or in orbifold coordinates

Nψ
[2]
k S(x) = Sαβ ψk(x) dxα dxβ

=
{
(dv)2 [S++]
+ dv dz �u[2S+ 2 + S++�z]
+ dv du [2S+− + 2S+ 2�z + S++�2z2]
+ dz2 �2u2 [S2 2 + 2S+ 2�z + S++�2z2]
+ dz dv �u

× [2S− 2 + 2(S2 2 + S+−)�z + 3S+ 2�2z2 + S++�3z3]
+ du2 [S−− + 2S− 2�z + (S2 2 + S+−)�2z2

+ S+ 2�3z3 + 1

4
S++�4z4]

}

× e
i

[
k+v+ 2k+k−−k2

2

2k+ u+ 1
2 �2k+u

(
z+ k2

�k+
)2
]
. (3.22)

Now we define the tensor on the orbifold as a sum over all
images as

N�
[2]
[k S]([x]) =

∑
n

(Kndx) · S · (Kndx) ψk(Knx)

=
∑
n

dx · (K−n S) · dx ψK−nk(x). (3.23)
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In the last line we have defined the induced action of the
Killing vector on (k, S) which can be explicitly written as

K−n

⎛
⎜⎜⎜⎜⎜⎜⎝

S++
S+2

S+−
S22

S2−
S−−

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

S++
S+2 + n�S++
S+− + n�S+2 + 1

2 n
2�2S++

S22 + 2n�S+2 + n2�2S++
S2− + n�(S22 + S+−) + 3

2 n
2�2S+2 + 1

2 n
3�3S++

S−− + 2n�S−2 + n2�2(S22 + S+−) + n3�3S+2 + 1
4 n

4�4S++

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(3.24)

In orbifold coordinates to compute the tensor on the orb-
ifold simply amounts to sum over all the shifts z → (z+2πn)

and the use of the generalization of (3.16), i.e. to substitute

(� z) jψk →
(

1
iu

∂
∂k2

− k2
�k+

) j
�[k]([x]). When expressing

all in the φ basis this last step is equivalent to (� z) jψk →(
l

� u k+

) j + . . . . We identify the basic polaritazions on the

orbifold by considering the highest power in u and get

Su u = 1

4
K 4 S++ + K 2 S+− − K 3 S+ 2

+ S−− − 2 K S− 2 + S2 2 K
2

Su v = 1

2
K 2 S++ + S+− − K S+ 2

Su z = −1

2
K 3 S++ − K S+− + 3

2
K 2 S+ 2 + S− 2 − K S2 2

Sv v = S++
Sv z = S+ 2 − K S++
Sz z = K 2 S++ − 2 K S+ 2 + S2 2. (3.25)

with K = k2
k+ . The previous equations can be inverted into

S−− = K 2 (Sz z + Su v) + K 3 Sv z

+ 1

4
K 4 Sv v + 2 K Su z + Su u

S+− = K Sv z + 1

2
K 2 Sv v + Su v

S− 2 = K (Sz z + Su v) + 3

2
K 2 Sv z + 1

2
K 3 Sv v + Su z

S++ = Sv v

S+ 2 = Sv z + K Sv v

S2 2 = Sz z + 2 K Sv z + K 2 Sv v. (3.26)

Since we plan to use the previous quantities in the case of the
first massive string state we compute the relevant quantities:

the trace

tr(S) = Sz z − 2Su v (3.27)

and the transversality conditions

trans Sv = (k · S)+ = − (r + �k2)

2 k+
Sv v − k+ Su v,

trans Sz = (k · S)2 − K (k · S)+

= − (r + �k2)

2 k+
Sv z − k+ Su z,

trans Su = (k · S)− − K (k · S)2 + 1

2
K 2(k · S)+

= − (r + �k2)

2 k+
Su v − k+ Su u . (3.28)

where we used k− = (r + �k2 + k2
2)/(2k+). These condi-

tions correctly do no depend on K since k2 is not an orbifold
quantum number.

The final expression for the orbifold symmetric tensor is

�
[2]
[k, S] ([x]) =

∑
l

φ{k+ l �k r}(u, v, z, �x)eil
k2

�k+

×
{
(dv)2 [Svv] + 2� u dv dz

[
Sv z +

(
LSv v

�

)
1

u

]

+ 2dv du

×
[
Su v +

(
L Sv z

�
+ i Sv v

2 k+

)
1

u
+
(
L2 Sv v

2 �2

)
1

u2

]

+ (� u)2dz2

×
[
Sz z +

(
2 L Sv z

�
+ i Sv v

k+

)
1

u
+
(
L2 Sv v

�2

)
1

u2

]

+ 2�u dz du

×
[
Su z +

(
L Sz z

�
+ 3 i Sv z

2 k+
+ L Su v

�

)
1

u

+
(

3 L2 Sv z

2 �2 + 3 i L Sv v

2 � k+

)
1

u2 +
(
L3 Sv v

2 �3

)
1

u3

]

+ du2
[
Su u +

(
i Sz z

k+
+ 2 L Su z

�
+ i Su v

k+

)
1

u

+
(
L2 Sz z

�2 + 3 i L Sv z

� k+
− 3Sv v

4 k2+
+ L2 Su v

�2

)
1

u2

+
(
L3 Sv z

�3 + 3 i L2 Sv v

2 �2 k+

)
1

u3 +
(
L4Sv v

4�4

)
1

u4

]}
,

(3.29)

with L = l
k+ .
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4 Overlap of wave functions and their derivatives

In this section we compute overlaps of wave functions
and give their expressions both using integrals over the
eigenfunctions and sum of products of δ. The latter is the
expression which is naturally obtained by computing tree
level string amplitudes on the orbifold when one starts
with Minkowski amplitudes and adds the amplitudes due to
images. This is equivalent to compute emission vertices on
the orbifold and then compute their correlations since this
amounts to transferring the sum over the spacetime images
to the sum of the polarizations images. We show this care-
fully in the next section. We consider also when and if they
diverge. Finally we use the wording wave function for the
functions on Minkowski space because we do not assume
any constraint on polarizations.

4.1 Overlaps without derivatives

Let us start with the simplest case of the overlap of N scalar
wave function. We compute the overlap of orbifold wave
functions and then we re-express it as sum of images of the
corresponding Minkowski overlap thus establishing a dictio-
nary between Minkowski and orbifold overlaps. Explicitly
we consider the following overlap where all the polarizations
A(i) have been set to one

I (N ) =
∫

�

d3x
√− det g

×
N∏
i=1

�[k(i)+ k(i)− k(i)2]([x+, x−, x2]))

=
∫
R1,2

d3x
√− det g ψk(1)+ k(1)− k(1)2(x

+, x−, x2))

×
N∏
i=2

∑
m(i)∈Z

ψk(i)+ k(i)− k(i)2(Km(i) (x+, x−, x2))

=
∫
R1,2

d3x
√− det g ψk(1)+ k(1)− k(1)2(x

+, x−, x2))

×
N∏
i=2

∑
m(i)∈Z

ψKm(i) (k(i)+ k(i)− k(i)2)
(x+, x−, x2)

= (2π)3δ

(∑
i

k(i)+

)
N∏
i=2

∑
m(i)∈Z

δ

×
(∑

i

Km(i)k(i)2

)
δ

(∑
i

Km(i)k(i)−

) ∣∣∣∣
m(1)=0

,

(4.1)

where � = R
1,2/	 is the orbifold identified with the fun-

damental region of R1,2/	. We used the unfolding trick to

rewrite the integral as an integral over R1,2 thus dropping
the sum over the images of particle (1). Then we moved the
action of the Killing vector from x to k and finally we used
the usual δ definition. The previous integral can be expressed
explicitly as

I (N ) = N N
∑

{l(i)}∈ZN

e
i
∑N

i=1 l(i)
k(i)2

�k(i)+

∫
�

d3x
√− det g

N∏
i=1

φ{k(i)+ k(i)− l(i) r(i)}([x]))

= N N
∑

{l(i)}∈ZN

e
i
∑N

i=1 l(i)
k(i)2

�k(i)+ (2π)2δ

(∑
k(i)+

)
δ∑ l(i) I[0]

{N }, (4.2)

from which we can reexpress the overlap of the wave func-
tions using integrals over the infinite sum δ2 as

∫
�

d3x
N∏
i=1

φ{k(i)+ k(i)− l(i) r(i)} ([x]))

= 1

N N

N∏
i=1

∫ 2π�|k(i)+|

0

dk(i)2

2π�|k(i)+| e
−il(i)

k(i)2
�k+i I (N )

= (2π)3δ

(∑
i

k(i)+

)
1

N N

×
N∏
i=1

∫ 2π�|k(i)+|

0

dk(i)2

2π�|k(i)+| e
−il(i)

k(i)2
�k(i)+

×
N∏
j=2

∑
m( j)∈Z

δ

⎛
⎝∑

j

Km( j)k( j)2

⎞
⎠ δ

⎛
⎝∑

j

Km( j)k( j)−

⎞
⎠ .

(4.3)

In particular it follows from the explicit expression of I[0]
{n}

that all overlaps I (N ) for N ≥ 4 are infinite.
Is there any intuitive reason for the divergence of the over-

lapping? We are summing over infinite distributions with
accumulation points of their support. Nevertheless the exis-
tence of the accumulation point is not sufficient since the
three scalars overlap, i.e. the three tachyons amplitude con-
verges: the coefficients of the deltas matter, too, and the con-
vergence must be verified.

4.2 An overlap with one derivative

Since we will also compute the amplitude involving two
tachyons and one photon, as a preliminary step we consider
the overlap in Minkowski space
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JMink = i (ε(1) · k(2)2) (2π)3δ

(∑
i

k(i)+

)

δ

(∑
i

k(i)2

)
δ

(∑
i

k(i)−

)
. (4.4)

Applying the recipe of summing over momentum and polar-
izations images of all but one particle, we can produce an
expression which depends on equivalence classes as

J ([k(1), ε(1)], [k(2)], [k(3)]) = i (2π)3δ

(∑
i

k(i)+

)

×
∑

{m(i)}∈Z3

δm(1),1 (Km(1) ε(1) · Km(2)k(2)2)

× δ

(∑
i

Km(i)k(i)2

)
δ

(∑
i

Km(i)k(i)−

)
.

(4.5)

This expression depends only on equivalence classes, for
example under (k(1), ε(1)) → Ks(k(1), ε(1)), we can use
Ksa · b = a · K−sb and the invariance of deltas δ3(Ksa) =
δ3(a) to demonstrate it.

Now it is not difficult to show that the previous expression
can be written as

J =
∫

�

d3x ημν �
[1]
[k(1),ε(1)]μ([x]) ∂ν�[k(2)]([x])�[k(3)]([x])

(4.6)

where we performed the unfolding using a[k(1),ε(1)]μ([x]).
Obviously we can perform the unfolding using whichever
other field and this amount to keep the corresponding m(i)

fixed in place of m(1).
Notice that the previous expression is invariant despite

the fact that the derivatives ∂μ are not well defined on the
orbifold since not invariant and would hamper the use of the
unfolding trick. The expression is invariant because �

[1]
μ is

not invariant too and compensates.
We can then evaluate the previous expression with

Minkowskian polarizations using (3.18) which is nothing
else but a rearrangement of terms of (4.5) to write

J = i N 2
∑

{l(i)}∈Z3

e
i
∑3

i=1 l(i)
k(i)2

�k(i)+ (2π)2δ
(∑

k(i)+
)

δ∑ l(i)

×
∫

�

d3x
3∏

i=1

φ{k(i)+ k(i)− l(i) r(i)}([x]))

×
{
ε(1)+

[
+ i

2u
+ l(2)

2

k(2)+
1

2�2 u2 + r(2)

2k(2)+

]

+ 1

� u

[
ε(1)2 + 1

�u
ε(1)+

l(1)

k(1)+

]
l(2)

+
[
ε(1)− + ε(1)2

1

�u

l(1)

k(1)+
+ ε(1)+

1

2(�u)2

l(1)
2

k(1)+2

]

k(2)+
}
. (4.7)

Possible divergences come when l = 0 because the absence

of the factor ei
A
u , however all explicit factor 1

u come always
with l therefore when l = 0 they do not give any contribu-
tion. A divergence when l = 0 comes actually only from the
contribution of the first line ∂uφ|l=0 = − 1

2uφ|l=0 but this
cancels in scalar QED or with abelian tachyons because we
have to subtract the contribution obtained exchanging (2) and
(3). Because of color factors it does not cancel when consid-
ering the non abelian case unless one uses a kind of prin-
cipal part prescription since replacing

∫ |b|
−|a| du sgn(u)

|u|3/2 with

lim
δ→0

[∫ −|δ|
−|a| + ∫ |b|

−|δ|
]

du sgn(u)

|u|3/2 gives a finite result.

4.3 An overlap with two derivatives

We can generalize the previous expressions to more general
cases. Since we use the results from Sect. 3 we miss some
non trivial contributions from polarizations like Svi . These
contributions do not alter the discussion. However for com-
pleteness we give the lengthy full expression in Appendix B.

Having in mind the amplitudes with two tachyons and one
massive state, we can consider an expression like

K =
∫

�

d3x
√− det g ημν ηρσ �

[2]
[k(3),S(3)]μρ([x])

∂2
νσ �[k(2)]([x])�[k(1)]([x]), (4.8)

in Minkowskian coordinates or

K =
∫

�

d3x
√− det g gαβ gγ δ �

[2]
[k(3),S(3)]αγ ([x]) Dβ

∂δ�[k(2)]([x])�[k(1)]([x]) (4.9)

in orbifold coordinates where we need to use covariant
derivatives. Using the unfolding trick over (3) we get

K = (2π)3δ

(∑
i

k(i)+

)

×
N∏
i=2

∑
m(i)∈Z

S(3)μρ (Km(2)k(2)2)
μ(Km(2)k(2)2)

ρ

× δ

(∑
i

Km(i)k(i)2

)
δ

(∑
i

Km(i)k(i)−

)
. (4.10)

Explicitly in orbifold coordinates we can write
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K =
∫

�

d3x
√− det g

[
+�

[2]
[k(3),S(3)] uu ∂2

v�[k(2)]

− 2
1

(�u)2 �
[2]
[k(3),S(3)] uz ∂v∂z�[k(2)]

+ 2�
[2]
[k(3),S(3)] uv ∂v∂u�[k(2)]

+ 1

(�u)4 �
[2]
[k(3),S(3)] zz (∂2

z �[k(2)] − �2u∂v�[k(2)])

− 2
1

(�u)2 �
[2]
[k(3),S(3)] zv (∂z∂u�[k(2)] − 1

u
∂z�[k(2)])

+ �
[2]
[k(3),S(3)] vv ∂2

u�[k(2)]
]
�[k(1)]. (4.11)

Keeping the terms which do not vanish when all l = 0 and
considering only the leading order in 1

u we get

K ∼
∫

du |u| 3

4

(k(2)+ + k(3)+)2

k(3)+2 Svv(3)

1

u2

3∏
i=1

φ(i)

∣∣∣
l(∗)=0

,

(4.12)

which is divergent as 1
|u|5/2 .

5 String three points amplitudes with one massive state

In this section we consider string amplitudes including string
massive states. They are obtained using the inheritance prin-
ciple and therefore they are connected to the integrals and
relations derived in Sect. 4.

In particular we want to use the inheritance principle on
the momenta and polarizations, i.e. we start form amplitudes
in Minkowski expressed with momenta and polarizations and
then we implement on them the projection to the orbifold. In
particular it is worth stressing that as there is one Killing
vector acting on the spacetime coordinates there is only one
common Killing vector action on all the momenta and polar-
izations of each field as discussed in the spin-1 and spin-
2 cases. Moreover this approach gives the complete answer
only tree level amplitudes since inside the loops twisted states
may be created in pairs.

The final result is that the open string amplitude with two
tachyons and the first massive (level 2) state diverges and
there is no obvious way of curing it since the divergence is
also present in the Abelian sector.

The open string expansion we use is

X (u, ū) = x0 − i 2α′ p ln(|u|)
+i

√
α′
2

∑
n �=0

αn

n

(
u−n + ū−n) . (5.1)

5.1 Level 2 massive state

Before computing the amplitude we would like to review the
possible polarizations of the first massive state in open string.
The first massive vertex is

VM (x; k, S, ξ) = :
(

i√
2α′ ξ · ∂2

x X (x, x)

+
(

i√
2α′

)2

Sμν∂x X
μ(x, x)∂x X

ν(x, x)

)

×eik·X (x,x) : , (5.2)

and the corresponding state is

lim
x→0

VM (x; k, S, ξ)|0〉
= |k, S, ξ 〉 = (ξ · α−2 + α−1 · S · α−1) |k〉. (5.3)

The physical conditions read

(L0 − 1)|k, S, ξ 〉 = 0 ⇒ α′k2 = −1

L1|k, S, ξ 〉 = 0 ⇒ S · k + ξ = 0

L2|k, S, ξ 〉 = 0 ⇒ k · ξ + tr(S) = 0. (5.4)

String gauge invariance allows to add

L−1(χ · α−1|k〉) = (χ · α−2 + χ · α−1 k · α−1)|k〉, (5.5)

subject to the physical constraints, i.e.

α′k2 = −1, χ · k = 0. (5.6)

Actually in critical string theory there is another gauge invari-
ance generated by L−2 + 3

2 L
2−1, in this case we can add a

multiple of

(
L−2 + 3

2
L2−1

)
|k〉

=
(

5

2
k · α−2 + 3

2
(k · α−1)

2 + 1

2
α2−1

)
|k〉, (5.7)

to set a = 0. Therefore the only non trivial d.o.f. are ST T ,
i.e.

tr(STT ) = k · ST T = ξ = 0. (5.8)

In view of the computation for the orbifold we can check
that given k = (k+, k−, k2, �k) (−2k+k− + k2

2 + �k2 = −1)
we can find a non trivial STT with non vanishing components
in the directions ±, 2 only. We find in fact a two parameters
family of solutions. The parameters may be taken to be S++
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and S+ 2. Explicitly

⎛
⎜⎜⎜⎜⎜⎜⎝

S++
S+−
S+ 2

S−−
S− 2

S2 2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
− k−

k+
0

k−(k−k+−2k2
2)

k+3

−2 k−k2

k+2

−2 k−
k+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S++

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
k2
k+
1

2k2(−k−k++k2
2)

k+3

k−k+−2k2
2

k+2

2 k2
k+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

S+ 2 (5.9)

There is even a non trivial solution for the more special case
k = (k+, k− = 1/k+, k2 = 0, �0).

Similarly using the expressions for ST T in orbifold coor-
dinates we check that there are two possible independent
polarizations Svv and Svz which correspond to the the ones
used above. Then the non trivial solution is

⎛
⎜⎜⎜⎜⎜⎜⎝

Svv

Suv

Svz

Suu

Suz

Szz

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

− r+�k2

2k+2

0(
r+�k2

2k+2

)2

0

−2 r+�k2

2k+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Svv +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

− r+�k2

2k+2

1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
Svz . (5.10)

5.2 Two tachyons first massive state amplitude

This Minkowskian full amplitude is given by the sum of two
color ordered ones as

AT T M = AT(1)T(2)M(3)
tr(T(1)T(2)T(3))

+AT(2)T(1)M(3)
tr(T(2)T(1)T(3)), (5.11)

where an easy computation gives

AT(1)T(2)M3)

= 〈〈k(1)| VT (1; k(2)) (α−1 · ST T(3) · α−1|k(3)〉)
= 〈〈k(1)| ei k(2)·x0e−√

2α′k(2)·α1(α−1 · ST T(3) · α−1|k(3)〉)
= (2π)DδD

(∑
k(i)

)
(
√

2α′)2 k(2) · ST T(3) · k(2). (5.12)

Because of transversality of ST T(3) the other term gives the
same result of this one, hence the final Minkowskian ampli-
tude is

AT T M = (2π)DδD
(∑

k(i)

)
2(

√
2α′)2 k(2) · STT(3)

·k(2) tr
({T(1), T(2)}T(3)

)
. (5.13)

Then we can compute the orbifold amplitude as

AT T M = (2π)D−2δD−3
(∑ �k(i)

)
δ
(∑

k(i)+
)

2(
√

2α′)2
∑

{m(1),m(2),m(3)}∈Z3

δm(3),1 (Km(2)k(2)) · STT(3)

· (Km(2)k(2))δ
(∑

(Km(i)k(i)2

)
δ
(∑

(Km(i)k(i)−
)

tr
({T(1), T(2)}T(3)

)
.

The previous amplitude can then be expressed using an over-
lap as

AT T M = 2(−i
√

2α′)2
∫

�

d3x gμν gρσ �
[2]
[k(3),S(3)]μρ([x])

∂2
νσ �[k(2)]([x])�[k(1)]([x])tr

({T(1), T(2)}T(3)

)
,

= 2(−i
√

2α′)2

∫
�

d3x gαβ gγ δ �
[2]
[k(3),S(3)]αγ ([x]) Dβ

∂δ�[k(2)]([x])�[k(1)]([x])tr
({T(1), T(2)}T(3)

)
.

(5.14)

As discussed in the Sect. 4 the last integral is divergent when
S++ = Svv �= 0 and the divergence cannot be avoided
even introducing a Wilson line around z since the ampli-
tude involves an anticommutator which does not vanish in
the Abelian sector.

6 Scalar QED on GNBOand divergences

As seen in the previous sections, the issues related to the
vanishing volume of the compact directions lead to incur-
able divergences. We introduce the GNBOby inserting one
additional non compact direction with respect to the NBOand
show that divergences no longer occur.

As a parallel discussion to the NBO, we introduce the
geometry of the GNBOand study scalar and spin-1 eigen-
functions to build the sQED on the orbifold. We then show
how the presence of a non compact direction (we will stress
the key differences from the NBO) can cure the theory when
considering amplitudes and overlaps.

6.1 Geometric preliminaries

Consider Minkowski spacetime R
1,D−1 and the change of

coordinates from the lightcone set (xμ) = (x+, x−, x2, x3, �x)
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to (xα) = (u, v, w, z, �x):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x− = u

x+ = v + �2
2

2 u(z + w)2 + �2
3

2 u(z − w)2

x2 = �2u(z + w)

x3 = �3u(z − w)

⇔

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u = x−

v = x+ − 1
2x−

(
(x2)2 + (x3)2

)
w = 1

2x−
(

x2

�2
− x3

�3

)

z = 1
2x−

(
x2

�2
+ x3

�3

)

(6.1)

where we do not perform any change on the transverse coor-
dinates �x . The metric in these coordinates is non diagonal:

ds2 = −2dudv + (�2
2 + �2

3)u
2(dw2 + dz2)

+2(�2
2 − �2

3)u
2dwdz + ηi jdx

idx j , (6.2)

and its determinant is:

− det g = 4�2
2�

2
3u

4. (6.3)

From the previous expressions we can also derive the non
vanishing Christoffel symbols:

	v
ww = 	v

zz = (�2
2 + �2

3)u,

	v
wz = (�2

2 − �2
3)u,

	w
uw = 	z

uz = 1

u
,

(6.4)

which however produce a vanishing Ricci tensor and curva-
ture scalar, since we are considering Minkowski spacetime
anyway.

We now introduce the GNBOby identifying points in
space along the orbits of the Killing vector:

κ = −2π i(�2 J+2 + �3 J+3)

= 2π(�2x
2 + �3x

3)∂+
+ 2π�2x

−∂2 + 2π�3x
−∂3

= 2π∂z

(6.5)

in such a way that

xμ ∼ enκ xμ, n ∈ Z (6.6)

leads to the identifications

x =

⎛
⎜⎜⎜⎜⎝

x−
x2

x3

x+
�x

⎞
⎟⎟⎟⎟⎠ ≡ Knx

=

⎛
⎜⎜⎜⎜⎜⎝

x−
x2 + 2πn�2x−
x3 + 2πn�3x−

x+ + 2πn�2x2 + 2πn�3x3 + (2πn)2 �2
2+�2

3
2 x−

�x

⎞
⎟⎟⎟⎟⎟⎠

,

(6.7)

or to the simpler

(u, v, w, z) ∼ (u, v, w, z + 2πn) (6.8)

using the map to the orbifold coordinates (6.1) where the
Killing vector κ = 2π∂z does not depend on the local space-
time configuration. As in the previous case, the difference
between Minkowski spacetime and the GNBOis therefore
global.

The geodesic distance between the nth copy and the base
point on the orbifold can be computed in any set of coordi-
nates and is:

�s2
(n) = (�2

2 + �2
3)(2πnx−)2 ≥ 0. (6.9)

Closed time-like curves are therefore avoided on the GNBO,
but there are closed null curves on the surface x− = u = 0
where the Killing vector κ vanishes.

6.2 Free scalar field

In order to build a quantum theory on the GNBOusing Feyn-
man’s approach to quantization, we first solve the eigenvalue
equations for the fields and then build their off-shell expan-
sion. We start from a complex scalar field and then consider
the free photon before moving to the sQED interactions on
the GNBO.

Consider the action for a complex scalar field:

Sscalar kin

=
∫

�

dDx
√− det g

(
−gμν∂μφ∗∂νφ − M2φ∗φ

)

=
∫
RD−4

dD−4 �x
∫ +∞

−∞
du

∫ +∞

−∞
dv

∫ +∞

−∞

dw

∫ 2π

0
dz 2 |�2�3| u2

×
[
∂uφ

∗∂vφ + ∂vφ
∗∂uφ

− 1

4u2

(( 1

�2
2

+ 1

�2
3

)(
∂wφ∗∂wφ + ∂zφ

∗∂zφ
)

+
( 1

�2
2

− 1

�2
3

)(
∂wφ∗∂zφ + ∂zφ

∗∂wφ
))

− ηi j∂iφ
∗∂ jφ − M2φ∗φ

]
.

(6.10)
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As in the case of the NBO, the solutions to the equations of
motion are necessary to provide the modes of the quantum
fields. We study the eigenvalue equation �φr = rφr , where
r is 2k+k− − �k by comparison with the flat case (k is the
momentum associated to the flat coordinates). We therefore
need solve:

{
−2∂u∂v − 2

u
∂v + 1

4u2

[( 1

�2
2

+ 1

�2
3

)(
∂2
w + ∂2

z

)

+ 2

(
1

�2
2

− 1

�2
3

)
∂w∂z

]
+ ηi j∂i∂ j − r

}
φr = 0.

(6.11)

To this purpose, we introduce a Fourier transformation over
v,w, z, �x :

φr (u, v, w, z, �x) =
∑
l∈Z

∫
RD−4

dD−4�k
∫ +∞

−∞
dk+

∫ +∞

−∞
dp e

i
(
k+v+pw+lz+�k·�x

)
φ̃{k+ p l �k r}(u), (6.12)

where we defined k+, p, l, �k as associated momenta to
v,w, z, �x respectively, and we find:

φ{k+ p l �k r}(u, v, w, z, �x)

= e
i
(
k+v+pw+lz+�k·�x

)
φ̃{k+ p l �k r}(u). (6.13)

where

φ̃{k+ p l �k r}(u) = 1

2
√

(2π)D|�2�3k+|
1

|u|

×e
−i

(
1

8k+u

[
(l+p)2

�2
2

+ (l−p)2

�2
3

]
− �k2+r

2k+ u

)
. (6.14)

These solutions present the right normalization, as we can
verify through the product:

(
φ{k(1)+ p(1) l(1)

�k(1) r(1)}, φ{k(2)+ p(2) l(2)
�k(2) r(2)}

)
= 2 |�2�3|

×
∫
RD−4

dD−4 �x
∫
R3

du dv dw

∫ 2π

0
dz u2 φ{k(1)+ p(1) l(1)

�k(1) r(1)} φ{k(2)+ p(2) l(2)
�k(2) r(2)}

= δD−4(�k(1) + �k(2)) δ(k(1)+ + k(2)+) δ(p(1) + p(2))

× δ(r(1) + r(2)) δl(1),l(2)
.

(6.15)

Then we have the off-shell expansion:

φr (u, v, w, z, �x)
= 1

2
√

(2π)D |�2�3k+|
×
∑
l∈Z

∫
RD−4

dD−4�k
∫ +∞

−∞
dk+

∫ +∞

−∞
dp

∫ +∞

−∞
dr

× A{k+ p l �k r}
|u|

× e
i

(
k+v+pw+lz+�k·�x− 1

8k+u

[
(l+p)2

�2
2

+ (l−p)2

�2
3

]
+ �k2+r

2k+ u

)
.

(6.16)

6.3 Free photon action

We then study the action of the free photon field a using the
Lorenz gauge which in the orbifold coordinates it reads:

Dαaα = −2

u
av − ∂vau − ∂uav

+ 1

4u2

(( 1

�2
2

+ 1

�2
3

)(
∂waw + ∂zaz

)

+
( 1

�2
2

− 1

�2
3

)(
∂waz + ∂zaw

))

+ ηi j∂i a j = 0.

(6.17)

We then solve the eigenvalue equations (�ar )ν = r ar ν ,
which in components read:

(�ar )u = 2

u2 ar v − 1

2u3

×
[(

1

�2
2

+ 1

�2
3

)
(∂war w + ∂zar z)

+
(

1

�2
2

− 1

�2
3

)
(∂war z + ∂zar w)

]

+
{
−2∂u∂v − 2

u
∂v + 1

4u2

×
[(

1

�2
2

+ 1

�2
3

)(
∂2
w + ∂2

z

)
+
(

1

�2
2

− 1

�2
3

)
2∂w∂z

]

+∇2
T

}
ar u ,

(�ar )v =
{
−2∂u∂v − 2

u
∂v + 1

4u2[(
1

�2
2

+ 1

�2
3

)(
∂2
w + ∂2

z

)
+
(

1

�2
2

− 1

�2
3

)
2∂w∂z

]

+∇2
T

}
ar v,

(�ar )w = − 2

u
∂war v +

{
−2∂u∂v + 1

4u2[(
1

�2
2

+ 1

�2
3

)(
∂2
w + ∂2

z

)
+
(

1

�2
2

− 1

�2
3

)
2∂w∂z

]

+∇2
T

}
ar w,
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(�a)z = − 2

u
∂zar v +

{
−2∂u∂v + 1

4u2[(
1

�2
2

+ 1

�2
3

)(
∂2
w + ∂2

z

)
+
(

1

�2
2

− 1

�2
3

)
2∂w∂z

]

+∇2
T

}
ar z ,

(�a)i =
{
−2∂u∂v − 2

u
∂v + 1

4u2[(
1

�2
2

+ 1

�2
3

)(
∂2
w + ∂2

z

)
+
(

1

�2
2

− 1

�2
3

)
2∂w∂z

]

+∇2
T

}
ar i , (6.18)

where ∇2
T = ηi j∂i∂ j is the Laplace operator in the transverse

coordinates �x . These equations can be solved using standard
techniques through a Fourier transform:

ar α(u, v, w, z, �x)
=
∑
l∈Z

∫
RD−4

dD−4�k
∫ +∞

−∞
dk+

∫ +∞

−∞
dp

×e
i
(
k+v+pw+lz+�k·�x

)
ã{k+ p l �k r} α

(u). (6.19)

We first solve the equations for ã{k+ p l �k r} v
and ã{k+ p l �k r} i

since they are identical to the scalar equation (6.11). We
then insert their solutions as sources for the equations for
ã{k+ p l �k r} u , ã{k+ p l �k r} w

and ã{k+ p l �k r} z . The solutions can
be written as the expansion:

‖ ã{k+ p l �k r} α
(u) ‖=

⎛
⎜⎜⎜⎜⎝

ãu
ãv

ãw

ãz
ãi

⎞
⎟⎟⎟⎟⎠

=
∑

α∈{u,v,w,z,i}
E{k+ p l �k r} α

‖ ã
α

{k+ p l �k r} α
(u) ‖

= E{k+ p l �k r} u

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎠ φ̃{k+ p l �k r} + E{k+ p l �k r} v

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i
2k+u + 1

8k+2u2

(
(l+p)2

�2
2

+ (l−p)2

�2
3

)

1
p
k+
l
k+
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

φ̃{k+ p l �k r}

+ E{k+ p l �k r} w

⎛
⎜⎜⎜⎜⎜⎜⎝

1
4k+|u|

(
l+p
�2

2
− l−p

�2
3

)

0
|u|
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

φ̃{k+ p l �k r}

+ E{k+ p l �k r} z

⎛
⎜⎜⎜⎜⎜⎜⎝

1
4k+|u|

(
l+p
�2

2
+ l−p

�2
3

)

0
0
|u|
0

⎞
⎟⎟⎟⎟⎟⎟⎠

φ̃{k+ p l �k r}

+ E{k+ p l �k r} j

⎛
⎜⎜⎜⎜⎝

0
0
0
0
δi j

⎞
⎟⎟⎟⎟⎠ φ̃{k+ p l �k r} (6.20)

Consider the Fourier transformed functions:

a
α

{k+ p l �k r} α
(u, v, w, z, �x)

= ei(k+v+pw+lz+�k·�x)ãα

{k+ p l �k r} α
(u), (6.21)

then we can expand the off shell fields as

aα(x) =
∑
l∈Z

∫
dD−4�k

∫
dk+

∫
dp

∫
dr

∑
α∈{u,v,w,z,i}

E{k+ l �k r} α
a

α

{k+ p l �k r} α
(x). (6.22)

We can compute the normalization as:

(
a(1), a(2)

)

=
∫
RD−4

dD−4 �x
∫
R3

du dv dw

∫ 2π

0
dz 2|�2�3|u2

×
(
gαβ a{k(1)+ p(1) l(1)

�k(1) r(1)}α
a{k(2)+ p(2) l(2)

�k(2) r(2)} β

)

= δD−4(�k(1) + �k(2)) δ(p(1) + p(2))

δ(k(1)+ + k(2)+) δl(1)+l(2),0δ(r1 − r2)

×E{k(1)+ p(1) l(1)
�k(1) r(1)} ◦ E{k(2)+ p(2) l(2)

�k(2) r(2)}, (6.23)

where

E(1) ◦ E(2)

= −E(1) u E(2) v − E(1) v E(2) u

+1

4

[(
1

�2
2

+ 1

�2
3

)(
E(1) w E(2) w + E(1) z E(2) z

)

+
(

1

�2
2

− 1

�2
3

)(
E(1) w E(2) z + E(1) z E(2) w

)]

(6.24)

is independent of the coordinates. The Lorenz gauge now
reads:
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ηi j ki E{k+ p l �k r} j − k+E{k+ p l �k r} u

− �k2 + r

2k+
E{k+ p l �k r} v

= 0. (6.25)

As in the previous case, it does not pose any constraint on
the transverse polarizations E{k+ p l �k r} w

and E{k+ p l �k r} z .

6.4 Cubic interaction

As previously studied on the NBO, we can now show the
sQED 3-points vertex computation using the previously com-
puted eigenmodes. The presence of a continuous momentum
in the non compact direction plays a major role in saving
the convergence of the integrals. In the case of the GNBOwe
find:

Scubic =
∫

�

dDx
√− det g

(−iegμνaμ

(
φ∗∂νφ − ∂νφ

∗φ
))

=
3∏

i=1

∑
l(i)∈Z

∫
dD−4�k(i)

∫
dk(i)+

∫
dp(i)

∫
dr(i)

× (2π)D−1 δD−4

(
3∑

i=1

�k(i)

)
δ

(
3∑

i=1

p(i)

)

δ

(
3∑

i=1

k(i)+

)
δ 3∑
i=1

l(i), 0

× eA∗
{−k(2)+ −kwN2 −l(2) −�k(2) r(2)}A{k(3)+ p(3) l(3)

�k(3) r(3)}

×
{
E{k(1)+ p(1) l(1)

�k(1) r(1)} u k(2)+ I[0]
{3}

+ E{k(1)+ p(1) l(1)
�k(1) r(1)} v[( �k2

(2) + r(2)

2k(2)+

)
I[0]

{3} + i
k(2)+
k(1)+

I[−1]
{3} + k(2)+

8[
1

�2
2

(
l(1) + p(1)

k(1)+
+ l(2) + p(2)

k(2)+

)2

+ 1

�2
3

(
l(1) − p(1)

k(1)+
+ l(2) − p(2)

k(2)+

)2
]

I[−2]
{3}

]

+
(
E{k(1)+ p(1) l(1)

�k(1) r(1)}w
− E{k(1)+ p(1) l(1)

�k(1) r(1)} z
)

×
[

1

�2
2

(
k(1)+(l(2) + p(2)) + k(2)+(l(1) + p(1))

k(1)+

)

− 1

�2
3

(
k(1)+(l(2) − p(2)) + k(2)+(l(1) − p(1))

k(1)+

)]

J [−1]
(3) +

(
(2) ↔ (3)

)}
(6.26)

where we defined:

I[ν]
{N } =

∫
R

du 2|�2�3|u2 uν
N∏
i=1

φ̃{k(i)+ p(i) l(i) �k(i) r(i)},

J [ν]
(N ) =

∫
R

du 2|�2�3|u2 |u|ν
N∏
i=1

φ̃{k(i)+ p(i) l(i) �k(i) r(i)}.

(6.27)

While in the NBOcase we need to regularize the integrals
at least taking their principal part when all l(∗) = 0 in (2.35),
the GNBOdoes not need any specific manipulation. In fact the
form of φ̃{k(i)+ p(i) l(i) �k(i) r(i)} in (6.14) prevents the formation

of isolated zeros in the phase factor proportional to u−1: the
presence of the continuous momentum p, contrary to the
NBOwhere all momenta are discrete, gives the integrals a
distributional interpretation, similar to a derivative of a Dirac
δ function.

6.5 Quartic interactions

As for the NBO, we consider the quartic interaction for the
sQED action:

Squartic =
∫
�

dDx
√− det g

(
e2 gμν aμaν |φ|2 − g4

4
|φ|4

)

×
3∏

i=1

⎛
⎝ 1

4π

√
((2π)D |�2�3k(i)+|

⎞
⎠

×
∑

l(i)∈Z

∫
dD−4�k(i)

∫
dk(i)+

∫
dp(i)

∫
dr(i)

× (2π)D−1 δD−4

⎛
⎝ 3∑
i=1

�k(i)
⎞
⎠ δ

⎛
⎝ 3∑
i=1

p(i)

⎞
⎠

δ

⎛
⎝ 3∑
i=1

k(i)+

⎞
⎠ δ 3∑

i=1
l(i), 0

×
{
e2A∗

{−k(3)+ −kwN3 −l(3) −�k(3) r(3)}A{k(4)+ p(4) l(4)
�k(4) r(4)}

×
[
E{k(1)+ p(1) l(1)

�k(1) r(1)} ◦ E{k(2)+ p(2) l(2)
�k(2) r(2)} I

[0]
{4}

− iE{k(1)+ p(1) l(1)
�k(1) r(1)} v

E{k(2)+ p(2) l(2)
�k(2) r(2)} v((

1

k(1)+
+ 1

k(2)+

)
I[−1]

{4}

− i

(
G+ (1,2)

�2
2

+ G− (1,2)

�2
3

)
I[−2]

{4}
)

+ 1

4

(
Ẽ+ (1,2)

G+ (1,2)

�2
2

− Ẽ− (1,2)

G− (1,2)

�2
2

)
J [−1]

(4)

]

− g4

4
A∗

{−k(1)+ −kwN1 −l(1) −�k(1) r(1)}
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A∗
{−k(2)+ −kwN2 −l(2) −�k(2) r(2)}

× A{k(3)+ p(3) l(3)
�k(3) r(3)}A{k(4)+ p(4) l(4)

�k(4) r(4)}I
[0]
{4}

}
,

(6.28)

where we defined:

G± (a,b) = l(a) ± p(a)

k(a)+
− l(b) ± p(b)

k(b)+
,

Ẽ± (a,b) = E{k(a)+ p(a) l(a)
�k(a) r(a)} v

×
(
E{k(b)+ p(b) l(b) �k(b) r(b)} w

± E{k(b)+ p(b) l(b) �k(b) r(b)} z
)

−E{k(b)+ p(b) l(b) �k(b) r(b)} v

×
(
E{k(a)+ p(a) l(a)

�k(a) r(a)} w
± E{k(a)+ p(a) l(a)

�k(a) r(a)} z
)

(6.29)

for simplicity.
As the four points function in the NBOcase shows with

clear evidence the presence of divergences when all l(∗) = 0,
the GNBOallows a distributional interpretation of the inte-
grals I[ν]

{N } and J [ν]
(N ) in the previous expression. In fact the

regularization occurs in the same way as in the three points
function in the GNBO: the phase factor proportional to u−1

has a continuous value due to the continuous momentum p
and it does not present isolated zeros which would prevent
the interpretation as distribution.

6.6 Resurgence of divergences

Looking back at the metric (6.2) and at the identifications
(6.8) where we compactified only the coordinate z through
the Killing vector 2π∂z it seems reasonable to wonder what
would happen if we acted in the same way over w, since 2π∂w

is a Killing vector as well and it commutes with 2π∂z . How-
ever the lesson we learnt from our whole study on NBOand
GNBOis that in absence of at least one continuous transverse
direction it is not possible to avoid the divergences associ-
ated with discrete zero energy modes and this is exactly what
happens.

6.7 A comment on the null brane regularization

As mentioned in the introductory section, there have been
attempts to regularize the NBOusing the Null Brane. Dif-
ferently from the NBO, in this case the orbifold generator
(2.8) includes an additional translation along an extra spatial
dimension, namely

κ = −2π i�J+2 − 2π i RP3

= 2π(�∂z + R∂3).
(6.30)

with metric

ds2 = −2dudv + �2u2(dz)2 + (dx3)2 + ηi jdx
idx j . (6.31)

Even though similar in appearance to the GNBOKilling vec-
tor, this Killing vector is substantially different from (6.5).

The scalar field satisfies the same equation of motion as
in the NBO

−2∂u∂vφr − 1

u
∂vφr + 1

(u�)2 ∂2
z φr + ∂2

x3φr + ηi j∂i∂ jφr

= rφr , (6.32)

where i, j = 4, 5, . . . D − 1. The solution is as usual

φ̃{k+ kz k3 �k r}(u) ∝ 1√|u|e
−i

k2
z

2k+
1
u +i

k2
3+�k2+r

2k+ u
. (6.33)

but with different periodicity conditions:

ei2πn(�kz+Rk3) = 1. (6.34)

This obscures the issue of the presence of a non compact
direction. To show the non compact direction hidden in this

system we may define the coordinates ẑ = 1
2

(
x3

R + z
�

)
and

x̂3 = 1
2

(
x3

R − z
�

)
such that κ = 2π∂ẑ and

(
ẑ
x̂3

)
≡
(
ẑ + 2πn

x̂3

)
(6.35)

upon the orbifold identification. Then the momenta are k̂ẑ =
l̂ ∈ Z and k̂3 ∈ R and they are related to the the momenta of
the other coordinates as

k3 = l̂ + k̂3

2R
, kz = l̂ − k̂3

2�
, (6.36)

so that the solution can be written as

φ̃{k+ l̂ k̂3 �k r}(u) ∝ 1√|u|e
−i

(l̂−k̂3)2

8�2k+
1
u +i

(2R)−2(k̂3−l̂)2+�k2+r
2k+ u

, (6.37)

which shows in a clear way that there is a non compact direc-
tion which allows a distributional interpretation as discussed
in [3]. However this direction cannot be easily decoupled
from the compact one.

7 Quick analysis of the BO

In this section we would like to quickly show the analysis
performed in the previous sections for the NBObut in the
case of the BO. The results are not very different apart from
the fact that divergences are milder, in fact it is possible to
construct the full sQED but nevertheless it is impossible to
consider higher derivative terms in the effective theory and
some three point amplitudes with a massive state diverge.
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7.1 Geometric preliminaries

In R
1,1 we consider the change of coordinates:

{
x+ = te+�ϕ

x− = σ− te−�ϕ
⇔

⎧⎪⎪⎨
⎪⎪⎩

t = sgn(x+)
√|x+x−|

ϕ = 1
2�

log
∣∣∣ x+
x−
∣∣∣

σ− = sgn(x+x−)

(7.1)

where σ− = ±1 and t, ϕ ∈ R. The metric reads

ds2 = −2dx+ dx+

= −2σ−(dt2 − (�t)2 dϕ2), (7.2)

and its determinant is:

− det g = 4�2t2. (7.3)

In orbifold coordinates the non vanishing Christoffel symbols
are:

	t
ϕ ϕ = �2t, 	

ϕ
t ϕ = 1

t
. (7.4)

Using the orbifold coordinates (t, ϕ), the BOis obtained
by requiring the identification ϕ ≡ ϕ + 2π along the orbit of
the global Killing vector κϕ = 2π∂ϕ . We will therefore use
the recurrent parameter � = e2π� in what follows.

7.2 Free scalar action

The action for a complex scalar φ is given by

Sscalar kin =
∫

dDx
√− det g

(
−gμν∂μφ∗∂νφ − M2φ∗φ

)

=
∑

σ−∈{±1}

∫
dD−2 �x

∫ +∞

−∞
dt

∫ 2π

0
dφ �|t |

(
1

2
σ− ∂tφ

∗ ∂tφ + 1

2
σ−

1

(�t)2 ∂ϕφ∗ ∂ϕφ

− ∂iφ
∗∂iφ − M2φ∗φ

)
, (7.5)

As before we solve the associated eigenfunction problem for
the d’Alembertian operator

−1

2
σ−∂2

t φr − 1

2
σ−

1

t
∂tφr + 1

2
σ−

1

(� t)2 ∂2
ϕφr + ∂2

i φr = rφr .

(7.6)

with

r = 2k+k− − �k2 = 2ς−m2 − �k2 (7.7)

where for later convenience (see the transformation of k
under the induced action of the Killing vector (7.17)) we

parameterize the momenta as the coordinates

{
k+ = m e+�β

k− = ς−m e−�β
⇔

⎧⎪⎪⎨
⎪⎪⎩

m = sgn(k+)
√|k+k−|

β = 1
2�

log
∣∣∣ k+
k−

∣∣∣
ς− = sgn(k+k−)

(7.8)

where ς− = ±1 and m, β ∈ R. To solve the problem we
use standard techniques and perform the Fourier transform
wrt �x and φ as

φ(t, ϕ, �x) =
∫

dD−2 �x
∑
l∈Z

ei
�k·�x eilϕHl �k r σ−(t), (7.9)

so that the new function Hl �k r σ− satisfies

∂2
t Hl �k r σ− + 1

t
∂t Hl �k r σ−

+
[

l2

(� t)2 + 2σ−(r + �k2)

]
Hl �k r σ− = 0, (7.10)

which upon the introduction of the natural quantities (see
also (7.19) for an explanation of the naturalness of λ)

τ = mt, λ = e�(ϕ+β), σ̂− = σ−ς−, (7.11)

shows that the actual dependence on parameters is

Hl �k r σ−(t) = φ̃l σ̂−(τ ), (7.12)

so that

∂2
τ φ̃l σ̂− + 1

τ
∂τ φ̃l σ̂− +

[
l2

(� τ)2 + 4σ̂−
]

φ̃l σ̂− = 0. (7.13)

The solutions have asymptotics

φ̃l σ̂− ∼
{
A+|τ |i l

� + A−|τ |−i l
� l �= 0

A+ log(|τ |) + A− l = 0
, (7.14)

and we will be more concerned on the l = 0 case as before.

7.3 Eigenmodes on BOfrom covering space

We now repeat the essential part of the analysis performed in
the NBOcase. As in the NBOcase we use the wording wave
function and not the eigenfunction because eigenfunctions
for non scalar states require some constraints on polarizations
which we do not impose.

7.3.1 Spin 0

We start as usual with the Minkowskian wave function and
we write only the dependence on x+ and x− since all the
other coordinates are spectators
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ψk+k−(x+, x−) = ei(k+x++k−x−)

= ψk+k−(t, ϕ, σ−)

= eimt
[
e+�(ϕ+β)+σ̂−te−�(ϕ+β)

]
. (7.15)

We can compute the wave function on the orbifold by sum-
ming over all images

�[k+k−]([x+, x−]) =
∑
n∈Z

ψk+k−(Kn(x+, x−))

=
∑
n∈Z

ψk+k−(x+e2π� n, x−e−2π� n)

=
∑
n∈Z

ei
{[k+e2π� n ]x++[k−e−2π� n ]x−}

=
∑
n∈Z

ψK−n(k+k−)(x
+, x−), (7.16)

where we write [k+k−] because the function depends on the
equivalence class of k+k− only. The equivalence relation is
given by

k =
(
k+
k−

)
≡ K−nk =

(
k+e2π� n

k−e−2π� n

)
. (7.17)

The previous equation explains the rationale for the parametriza-
tion (7.8) so that we can always choose a representative

0 ≤ β < 2π, m �= 0, (7.18)

or differently said β ≡ β + 2π and therefore we can use the
dual quantum number l using a Fourier transform. Using the
well adapted set of coordinates we can write the spin-0 wave
function in a way to show the natural variables as

�[k+k−]([x+, x−]) =
∑
n

ei τ
[
λe+2π� n+σ̂−λ−1e−2π� n

]

= �̂(τ, λ, σ̂−). (7.19)

Again the scalar eigenfunction has a unique equivalence class
which mixes coordinates and momenta.

Now we use the basic trick used in Poisson resummation

�[k+k−]([x+, x−])
=
∫ ∞

−∞
ds δP (s) ei{k+x+�s+k−x−�−s}

= 1

2π

∑
l∈Z

∣∣∣∣k+x+

k−x−

∣∣∣∣
−i l

2�

∫ ∞

−∞
ds ei 2πlsei sgn(k+x+)

√|k+k−x+x−|{�s+σ−ς−�−s}

= 1

2π

∑
l∈Z

(
e�(ϕ+β)

)−i l
�

∫ ∞

−∞
ds ei 2πlsei mt {�s+σ−ς−�−s}

= 1

2π

∑
l∈Z

eilβ
[
eilϕ

∫ ∞

−∞
ds e−i 2πlsei mt {�s+σ−ς−�−s}

]
,

(7.20)

where the last line represents the change of quantum number
from mβ to ml and allows us to identify

NBO φ̃l σ̂−(τ ) = 1

2π

∫ ∞

−∞
ds e−i 2πlsei τ {�s+σ̂−�−s}, (7.21)

whereNBO is a constant which depends on the normalization
chosen for φ̃l σ̂− . This expression gives an integral represen-
tation of the o.d.e. solutions.

7.3.2 Spin 2

We start with the Minkowskian tensorial wave function where
we suppress all directions but x+, x− and x2 since all other
directions behave as x2. In this case differently from spin
0 we need to keep the dependence on x2 since it is needed
for non trivial physical polarizations since it enters in the
transversality conditions. Explicitly

NBOψ
[2]
k S(x

+, x−, x2)

= Sμν dxμdxν ψk(x)

=
[
S++ (dx+)2 + 2S+− dx+dx− + +2S+2 dx+dx2

+ S−− (dx−)2 + 2S−2 dx2dx2 + +S22 (dx2)2
]

ei
(
k+x++k−x−+k2x2

)
, (7.22)

which we rewrite in orbifold coordinates

NBOψ
[2]
k S(t, ϕ, x2, σ−)

= Sαβ dxαdxβ ψk(x)[
dt2

(
2 S+− σ− + S++ e2 �ϕ + S−− e−2 �ϕ

)

+ 2 � t dt dϕ
(
S++ e2 �ϕ − S−− e−2 �ϕ

)

+ �2 t2dϕ2
(
−2 S+− σ−+S++ e2 �ϕ+S−− e−2 �ϕ

)

+ 2dt dx2 (
S− 2 e

−�ϕ σ− + S+ 2 e
�ϕ

)
+ 2� t dx2 dϕ

(
S+ 2 e

�ϕ − S− 2 e
−�ϕ σ−

)

+ (dx2)2 S2 2

]
eimt

[
e+�(ϕ+β)+σ̂−e−�(ϕ+β)

]+ik2x2
.

(7.23)
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Now we define the tensor wave on the orbifold as a sum
over all images as

NBO�
[2]
[k S]([x]) =

∑
n

(Kndx) · S · (Kndx) ψk(Knx)

=
∑
n

dx · (K−n S) · dx ψK−nk(x). (7.24)

In the last line we have defined the induced action of the
Killing vector on (k, S) which can be explicitly written as

K−n

⎛
⎜⎜⎜⎜⎜⎜⎝

S++
S+−
S−−
S+2

S−2

S22

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

e2n�ϕS++
S+−

e−2n�ϕS−−
en�ϕ�S+2

e−n�ϕS−2

S22

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7.25)

and it amounts to a trivial scaling.
In orbifold coordinates computing the tensor wave on the

orbifold simply amounts to sum over all the shifts ϕ → ϕ +
2πn. Then we have to give a close expression for the sum
involving powers e2π�n , explicitly we find

∑
n

(
e2π�n

)N
e
i τ

[
λe+2π� n+σ̂− 1

λ
e−2π� n

]

=
⎧⎨
⎩
[ 1

2

( 1
λ
∂τ + 1

τ
∂λ

)]N
�̂(τ, λ, σ̂−) N > 0[

1
2

(
λ∂τ − λ2

τ
∂λ

)]N
�̂(τ, λ, σ̂−) N < 0

, (7.26)

where τ derivatives higher than 2 of φ̃l σ̂− can be reduced
with the help of the differential equation (7.13).

We now have to identify the basic polaritazions on the
orbifold. There are three basic observations. The quantum
number β is no longer a good quantum number on the orb-
ifold and it is replaced by l. The relations among orbifold
polarizations and Minkowski polarizations may depend on
β as long as the traceless and transversality conditions on
the orbifold are independent of it. These conditions may be
a linear combinations of the ones in Minkowski. Finally it
seems reasonable to use the natural variable λ = e�(ϕ+β).
Therefore, as we could guess, we have:

St t = e−2 �β S++
St ϕ = S+−
St 2 = e−�β S+ 2

Sϕ ϕ = e2 �β S−−
Sϕ 2 = e�β S− 2

S2 2 = S2 2, (7.27)

which can be trivially inverted as

S++ = e2 �β St t

S+− = St ϕ

S+ 2 = e�β St 2

S−− = e−2 �β Sϕ ϕ

S− 2 = e−�β Sϕ 2

S2 2 = S2 2. (7.28)

When they are inserted into the trace condition they give

tr(S) = −2St ϕ + S2 2, (7.29)

while the transversality conditions become

(k · S)+ = − e�β
(
m σ̂− σ− St t + m St ϕ − k2 St 2

)
(k · S)− = − e−�β

(
m σ̂− σ− St ϕ + m Sϕ ϕ − k2 Sϕ 2

)
(k · S)2 = − (

m σ̂− σ− St 2 + m Sϕ 2 − k2 S2 2
)
, (7.30)

which are independent of β when set to zero.
The final expression for the wave function for the sym-

metric tensor on the orbifold reads

�
[2]
[k S]([x]) =

∑
l∈Z

eilβ
[
Sml ,t t (dt)

2 + 2Sml ,tϕ dtdϕ+

+ 2Sml ,t2 dtdx2 + Sml ,ϕϕ (dϕ)2

+ 2Sml ,ϕ2 dϕdx2+
+ Sml ,22 (dx2)2

]
, (7.31)

where the explicit expressions for the components are

Sml ,t t = +
⎡
⎣− φ̃l σ̂− (τ ) l λ

i l
�

(
l St t + i �St t + l Sϕ ϕ − i �Sϕ ϕ

)
2 �2

⎤
⎦ 1

τ2

+
[

1

2 �

d

d τ
φ̃l σ̂− (τ ) λ

i l
�

(
i l St t − i l Sϕ ϕ − �St t − �Sϕ ϕ

)] 1

τ

+
[
φ̃l σ̂− (τ ) λ

i l
�

(
σ̂− St t + 2 σ− St ϕ + σ̂− Sϕ ϕ

)]
, (7.32)

and

Sml ,tϕ = +
⎡
⎣− φ̃l σ̂− (τ ) l λ

i l
�

(
l St t + i �St t − l Sϕ ϕ + i �Sϕ ϕ

)
2 �m

⎤
⎦ 1

τ

+
⎡
⎣ d

d τ
φ̃l σ̂− (τ ) λ

i l
�

(
i l St t − �St t + i l Sϕ ϕ + �Sϕ ϕ

)
2m

⎤
⎦

+
⎡
⎣� σ̂− φ̃l σ̂− (τ ) λ

i l
�

(St t − Sϕ ϕ

)
m

⎤
⎦ τ, (7.33)
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and

Sml ,ϕϕ = +
[
− 1

2m2 φ̃l σ̂− (τ ) l λ
i l
�

(
l (St t + Sϕ ϕ) + i �(St t − Sϕ ϕ)

)]

+
[

1

2m2 �

(
d

d τ
φ̃l σ̂− (τ )

)
λ

i l
�

(
i l St t − i l Sϕ ϕ − �St t − �Sϕ ϕ

)]
τ

+
[

1

m2 �2 φ̃l σ̂− (τ ) λ
i l
�
(
σ̂− St t + σ̂− Sϕ ϕ − 2 σ− St ϕ

)]
τ 2, (7.34)

and the effectively vector components in the orbifold direc-
tions

Sml ,t2 = +
[

i

2 �
φ̃l σ̂−(τ ) l λ

i l
�
(St 2 − Sϕ 2 σ−

)] 1

τ

+
[

1

2

d

d τ
φ̃l σ̂−(τ ) λ

i l
�
(St 2 + Sϕ 2 σ−

)]
, (7.35)

and

Sml ,ϕ2 = +
[

i

2m
φ̃l σ̂−(τ ) l λ

i l
�
(St 2 + Sϕ 2 σ−

)]

+
[

1

2m
�

(
d

d τ
φ̃l σ̂−(τ )

)
λ

i l
�
(St 2 − Sϕ 2 σ−

)]
τ,

(7.36)

and finally the effectively scalar component

Sml ,22 =S2 2 φ̃l σ̂−(τ ) λ
i l
� . (7.37)

7.4 Overlap of wave functions and their derivatives and a
divergent three points String Amplitude

Now we consider some overlaps as done for the NBO. The
connection between the overlaps on the orbifold and the sums
of images remains unchanged when we change the Killing
vectorK, hence we can limit ourselves to discuss the integrals
on the orbifold space.

7.4.1 Overlaps without derivatives

Let us start with the simplest case of the overlap of N scalar
wave functions

I (N ) =
∫

�

d3x
√− det g

N∏
i=1

�[k+(i)k−(i)]([x+, x−, x2]))

= N N
BO

∑
{l(i)}∈ZN

ei
∑N

i=1 l(i)β(i)

∫
�

d3x
√− det g

N∏
i=1

φl(i) σ̂−(i)
. (7.38)

This is always a distribution since the problematic l(∗) = 0
sector gives a divergence like (log(|t |))N around zero. All
other sectors have no issues because of the asymptotics
(7.14).

7.4.2 An overlap with two derivatives

We consider in orbifold coordinates the overlap needed for
the amplitude involving two tachyons and one massive state,
i.e.

K =
∫

�

d3x
√− det g gαβ gγ δ �

[2]
[k(3),S(3)]αγ ([x])

Dβ∂δ�[k(2)]([x])�[k(1)]([x]). (7.39)

Since we want to use the traceless condition we need to keep
all momenta and polarizations and not only the ones along
the orbifold, then we can write

K =
∫

�

d3x
√− det g

[
+�

[2]
[k(3),S(3)] t t ∂

2
t �[k(2)]

− 2

(
1

�t

)2

�
[2]
[k(3),S(3)] t ϕ

(
∂t∂ϕ�[k(2)] − 1

t
∂ϕ�[k(2)]

)

+
(

1

�t

)4

�
[2]
[k(3),S(3)]ϕ ϕ

(
∂2
ϕ�[k(2)] − �2t∂t�[k(2)]

)

− 2�
[2]
[k(3),S(3)] t 2 ∂t∂2�[k(2)]

+ 2

(
1

�t

)2

�
[2]
[k(3),S(3)]ϕ 2 ∂ϕ∂2�[k(2)]

+ �
[2]
[k(3),S(3)] 2 2 ∂2

2 �[k(2)]
]
�[k(1)]. (7.40)

Now consider the behavior for l(∗) = 0 for small t . All
the ∂ϕ can be dropped since they lower a l(2). The lead-
ing contributions from spin 2 components are Sml tt ∼ 1

t2
,

Sml ϕϕ, Sml 2 2 ∼ 1 and Sml t2 ∼ 1
t therefore the leading 1

t4
reads

K ∼
∫
t∼0

dt |t |
[
−1

2

d

d τ
φ̃l σ̂− (St t + Sϕ ϕ)

1

τ
× ∂2

t �[k(2)]

+
(

1

�t

)4

× −�2

2m2

d

d τ
φ̃l σ̂− (St t + Sϕ ϕ) τ

×
(
−�2t∂t�[k(2)]

)]
�[k(3)] (7.41)

In the limit of our interest �[k]|l=0 ∼ φ̃l σ̂−|l=0 ∼ log(|t |)
then the two terms add together because of sign of the covari-
ant derivative to give
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K ∼ ∫
t∼0 dt |t |[( 1

2 + 1
2

) St t+Sϕ ϕ

m4
log(|t |)

t4
+ O

(
log2(|t |)

t

)]
, (7.42)

which is divergent for the physical polarizationSt t = Sϕ ϕ =
−σ̂−σ−St ϕ = − 1

2 σ̂−σ−S22.

Acknowledgements We thank Marco Billó and Domenico Orlando
for discussions. The work is partially supported by the MIUR PRIN
Contract 2015 MP2CX4 “Non-perturbative Aspects Of Gauge Theories
And Strings”.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Author’s comment: No data have
been generated.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

A Complete tensor wave function in the NBO

For the sake of completeness we report the expression of the
full NBOtensor wave function (= l

k+ ):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Suu
Suv

Suz
Sui
Svv

Svz

Svi

Szz
Szi
Sii

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Suu

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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i
k+ u + L2

�2 u2

1
L
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

φ{k+ l �k r}

+ Suz

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 L
� u
0

� u
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

φ{k+ l �k r} + Sui

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

φ{k+ l �k r}

+ Svv

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
4 k2+ u2 + 3 i L2

2 �2 k+ u3 + L4

4 �4 u4

i
2 k+ u + L2

2 �2 u2

3 i L
2 k+ u + L3

2 �2 u2

0
1
L
0

i �2 u
k+ + L2

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

φ{k+ l �k r}

+ Svz

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 i L
� k+ u2 + L3

�3 u3

L
� u

3 L2

2 � u + 3 i �
2 k+

0
0

� u
0

2 � L u
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

φ{k+ l �k r}

+ Svi

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

i
2 k+ u + L2

2 �2 u2

0
0
1
0
L
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

φ{k+ l �k r}

+ Szz

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i
k+ u + L2

�2 u2

0
L
0
0
0
0

�2 u2

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

φ{k+ l �k r}

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2020) 80 :476 Page 27 of 28 476

+ Szi

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
L

� u
0
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0

� u
0
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+ Si j

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
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0
δi j

⎞
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φ{k+ l �k r}. (A.1)

B Complete overlap with two derivatives in the NBO

For the sake of completeness we report the full expression of
the overlap with two derivatives considered in the main text
which corresponds to the colour ordered amplitude of two
tachyons and one level 2 massive state:

K = N 2
∫

dDx
√− det g

[
s(−3)

(
{k(i)+ l(i) �k(i) r(i)}i=1, 2, 3, {S}

)
u−3

+ s(−2)
(
{k(i)+ l(i) �k(i) r(i)}i=1, 2, 3, {S}

)
u−2

+ s(−1)
(
{k(i)+ l(i) �k(i) r(i)}i=1, 2, 3, {S}

)
u−1

+ s(0)
(
{k(i)+ l(i) �k(i) r(i)}i=1, 2, 3, {S}

)

+ s(1)
(
{k(i)+ l(i) �k(i) r(i)}i=1, 2, 3, {S}

)
u

]

3∏
i=1

φ{k(i)+ l(i) �k(i) r(i)}

(B.1)

where:

s(−3) =
(

− k4
(2) + l(3)

4 − 4 k3
(2) + k(3) + l(2) l(3)

3

4 k2
(2) + k4

(3) + �3

− 6 k2
(2) + k2
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2 l(3)
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4

4 k2
(2) + k4

(3) + �3

)
Sv v , (B.2)
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=
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−
i
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3 k2
(2) + k(3) + l(3)
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)
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)
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