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Abstract

We analyze a purely dynamic model of public debt stabilization under ambiguity. We
assume that the debt to GDP ratio is described by a random variable, and thus it can
be characterized by investigating the evolution of its density function through iteration
function systems on mappings. Ambiguity is associated with parameter uncertainty which
requires policymakers to respond to such an additional layer of uncertainty according to
their ambiguity attitude. We describe ambiguity attitude through a simple heuristic rule
in which policymakers adjust the available vague information (captured by the empirical
distribution of the debt ratio) with a measure of their ignorance (captured by the uniform
distribution). We show that such a model generates fractal-type objects that can be char-
acterized as fixed-point solutions of iterated function systems on mappings. Ambiguity is
a source of unpredictability in the long run outcome since it introduces some singularity
features in the steady state distribution of the debt ratio. However, the presence of some
ambiguity aversion removes such unpredictability by smoothing our the singularities in
the steady state distribution.

Keywords: Ambiguity; Iterated Function Systems on Density Functions; Public Debt
JEL Classification: C61, E60, H63

1 Introduction

Uncertainty and randomness are important determinants of economic activities and macroe-
conomic dynamics, and thus do affect and need to be accounted for in the design of macroe-
conomic policy (Brock and Mirman, 1972; Rodrik, 1991; Olson and Roy, 2005; Baker et al.,
2016). Recent phenomena, including the financial crisis, the climate change and the outbreak
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of epidemics, have renewed the concerns about the drastic short and long run consequences of
random shocks on macroeconomic outcomes, and in particular on economic growth. In order
to facilitate the policymaking process, it is thus essential to understand the implications of
different kinds of uncertainty on economic activities, going well beyond the typical scenario
analysis employed in economic growth theory. Indeed, in the economic growth literature ran-
domness is typically modeled by assuming that the occurrence of shocks is associated with
some variable taking on some specific value with a specific probability. However, in reality
parameter values are to a large extent unknown and thus policymakers need to formally take
into account such a parameter uncertainty in their policy decisions (Brainard, 1967; Brock and
Durlauf, 2006; Hansen and Sargent, 2007; Born and Pfeifer, 2014). How to effectively deal
with such information-based uncertainty in macroeconomic modeling is still an open question
but it clearly requires to deal with ambiguity. With some exception in the field of economic
growth (Cozzi and Giordani, 2011), most of the attempts to address ambiguity issues focus on
monetary and fiscal countercyclical policy (Karantounias, 2013; Caprioli, 2015; Hollmayr and
Matthes, 2015). Our paper aims to contribute to this literature by developing a novel approach
based on iteration function systems on density functions in the context of economic growth
and public debt stabilization. Unlike extant works which focus on how optimal policymaking
is affected by ambiguity, we concentrate on a purely dynamic setting in order to characterize
the policymaker’s reaction to ambiguity by the means of a heuristic rule which allows us to
identify the implications of ambiguity attitude on the steady state outcome and to investigate
its eventual fractal properties.

Our paper is therefore related to the literature on the fractal nature of the steady state
in macroeconomic models, which mainly focuses on economic growth setups. Several works
analyze how random shocks in economic growth models may eventually generate trajectories
converging to invariant measures supported on fractal sets, and thus how their steady states
can thus be characterized in terms of their fractal features (Montrucchio and Privileggi, 1999;
Mitra et al., 2003). Most of the papers focus on one- and multi-sector growth frameworks driven
by different forms of capital accumulation in which stochasticity affects productivity (La Torre
et al., 2011, 2015, 2018b), while only few are those in which randomness influences some other
macroeconomic variable, like polluting emissions (Privileggi and Marsiglio, 2013; La Torre et
al., 2018a). Such studies show that the support of the invariant measure may take the form of
different fractal sets, including the famous Cantor set, the Sierpinski gasket and the Barnsley’s
fern. All these works assume that uncertainty is entirely captured by the occurrence of a limited
number of alternative scenarios, each of which takes place with a known probability, and thus
cannot analyze the implications of ambiguity on steady state outcomes.

The works on ambiguity go back to Ellsberg (1961) who firstly shows that people tend to
neatly distinguish between known (i.e., unambiguous or objective) probabilities and unknown
(i.e., ambiguous or subjective) probabilities. The definition of ambiguity is not unique and
different types of ambiguities have been considered in literature (see Camerer and Weber, 1992;
and Etner et al., 2012, for concise surveys), but in general terms “ambiguity is uncertainty
about probability created by missing information that is relevant and could be known” (Frisch
and Baron, 1988). Agents’ reaction to such an ambiguity is referred to as ambiguity attitude,
which, as shown in experimental studies, may change from aversion to attraction (Ghirardato
et al., 2004). Different types of ambiguity attitude may play an important role in driving
macroeconomic dynamics, but to the best of our knowledge the only attempt to analyze its
consequences in an economic growth setup is represented by Cozzi and Giordani’s (2011),
which introduces ambiguity in a Schumpeterian growth framework to describe the innovation
process showing that ambiguity aversion plays a detrimental role on economic performance. We
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contribute to this literature by analyzing the implications of ambiguity and ambiguity attitude
on the steady state of stochastic growth models by focusing in particular on their implications
for public debt.

Specifically, different from extant literature which focuses on traditional economic growth
models, we embed a simplified growth setup into a model of public debt stabilization to investi-
gate the impact of ambiguity on debt dynamics. We analyze a purely dynamic setting in which
fiscal policy instruments are determined through a rule of thumb such that the debt dynamics
is exogenously given and generated through an iterated function system on density functions.
The level of public debt is no longer described by a number but, instead, it is modeled through
a random variable and then by means of its density function. Public debt can be modeled
as a random variable to take into account the uncertainty associated with the formation of
expectations in modern economies, which by determining the cost of borrowing crucially deter-
mines the evolution of debt. Different from previous works in which the noise is modeled by a
Bernoulli process (see La Torre et al., 2015, 2018b), we do not make any specific assumption on
the underlying stochastic process and thus our results are more widely applicable. Apart from
the uncertainty associated with the formation of expectations in the financial market which
per se makes public debt a random variable, we consider an additional layer of uncertainty
related to vague information about the relevant parameter values. This introduces ambiguity
in the sense that policymakers need to develop some subjective assessments to forecast the
values of such parameters. This implies that its empirical distribution provides only partially
reliable information regarding the evolution of public debt, and thus policymakers may need
to respond to this additional layer of uncertainty according to their ambiguity attitude. We
describe ambiguity attitude through a simple heuristic rule in which policymakers adjust the
empirical distribution of the debt ratio with a a measure of their ignorance, captured by the
uniform distribution. We show that ambiguity is a source of unpredictability since it intro-
duces some singularity features in the steady state distribution of the debt ratio and as such
the equilibrium outcome is extremely uncertain. However, the presence of some ambiguity
aversion removes such unpredictability by smoothing out the singularities in the steady state
distribution reducing thus the degree of uncertainty associated with the equilibrium outcome.
Therefore, ambiguity aversion plays an important role since it allows to reduce the variability
in the evolution of public debt.

The paper is organized as follows. Section 2 discusses the mathematical tools that we will
employ in our analysis, presenting the theories of generalized fractal transforms, of iterated
function systems on maps and density functions. Section 3 presents our debt stabilization
model in its simplest form (in which ambiguity is not taken into account) to clarify how the
debt dynamics allows us to infer the evolution of its density. Section 4 introduces ambiguity
related to the fact that parameter values are only vaguely known, showing how the presence
of ambiguity affects the evolution of the density of the public debt. Section 5 considers poli-
cymakers’ response to ambiguity formalized through a simple rule in which the empirical and
the uniform distribution of the public debt are combined together to determine the evolution
of the density of the public debt. Section 6 presents some numerical simulations to exemplify
the implications of our modeling approach and the dynamic evolution of the distribution of the
public debt under different circumstances. Section 7 as usual concludes and proposes directions
for future research.
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2 Mathematical Preliminaries

We now discuss the main mathematical tool that we will later use in our analysis, that is
iterated function systems on density functions. We will take for granted basic concepts on
iterated function systems and fractal attractors (see, among others, La Torre et al., 2015, for a
concise review of these notions; a more formal presentation can be found in Kunze et al., 2012),
and we will focus on the theory of generalized fractal transforms, and the theory of iterated
function systems on maps and how the operator of iterated function systems on maps works
on the set of density functions.

2.1 Generalized Fractal Transforms

Let (X, d) be a metric space. The action of a generalized fractal transform (GFT) T : X → X

on an element u of the complete metric space (X, d) is described by the following steps: it
produces a set of N spatially-contracted copies of u; then it modifies the values of these copies
by means of a suitable range-mapping; finally, it recombines them using an appropriate operator
in order to get the element v ∈ X, v = Tu (Barnsley, 1989; Kunze et al., 2012). In all these
cases, under appropriate conditions, the fractal transform T is a contraction and thus Banach’s
fixed point theorem guarantees the existence of a unique fixed point ū = T ū.

Definition 1. (Contraction mapping) [Banach, 1922] Let T : X → X be a mapping on a
complete metric space (X, d). Then T is said to be contractive if there exists a constant c ∈ [0, 1)
such that d (Tx, Ty) ≤ cd (x, y) for all x, y ∈ X.

The contraction factor of T is the smallest such c ∈ [0, 1) for which the above inequality
holds true. We now come to what is perhaps the most famous theorem regarding contraction
maps on metric spaces and certainly central to fractal-based methods.

Theorem 1. (Banach’s Fixed Point Theorem) [Banach, 1922] Let T : X → X be a contraction
mapping on X with contraction factor c ∈ [0, 1) mapping on X. Then,

1. There exists a unique element x̄ ∈ X, the fixed point of T , for which T x̄ = x̄.

2. Given any x0 ∈ X, if we form the iteration sequence xn+1 = T (xn), then xn → x̄, i.e.,
d (xn, x̄) → 0 as n → ∞. In other words, the fixed point x̄ is globally attractive.

Theorem 1 states that, under the contractivity condition, there exists a unique fixed point
of T , which any orbit in X is converging to. When the operator T is not a contraction but it is
only a Lipschitz map (that is, c is not necessarily less than 1) we can still prove the following
result.

Corollary 1. Let T : X → X be a Lipschitz mapping on X with Lipschitz factor C ≥ 0 and
xn+1 = Txn be the orbit generated from x0 ∈ X. If xn → x̄, then x̄ is a fixed point of T .

Proof. The proof follows from the following sequence of calculations:

d(x̄, T x̄) ≤ d(x̄, xn+1) + d(xn+1, T x̄)

= d(x̄, xn+1) + d(Txn, T x̄)

≤ d(x̄, xn+1) + Cd(xn, x̄)

and, by taking the limit when n → +∞, we get that d(x̄, T x̄) = 0, that is x̄ is a fixed point of
T . �
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Corollary 1 states that, in the absence of the contractivity condition, the uniqueness of the
fixed point of T cannot be ensured, but nevertheless the limit point of any converging orbit in
X is a fixed point of T .

2.2 Iterated Function Systems on Mappings

We now focus on the method of iterated function systems on mappings (IFSM), as formulated in
Forte and Vrscay (1995). IFSMs extend the classical notion of iterated function systems (IFS)
to the case of space of functions (Kunze et al., 2012) and can be used to generate integrable
“fractal” functions. An IFSM can be used to approximate a given element u of Lp ([0, 1]), with
p ≥ 1. As usual Lp is equipped with the ‖ · ‖p norm and then the induced distance dp. In the
sequel, using the notation presented earlier, we define X = Lp ([0, 1]). The ingredients of an
N -map IFSM on Lp ([0, 1]) are:

1. a set of N contractive mappings w = {w1, w2, . . . , wN}, wi (x) : [0, 1] → [0, 1], most often
affine in form:

wi (x) = six+ ai, 0 ≤ |si| < 1, i = 1, 2, . . . , N ; (1)

2. a set of associated functions—the greyscale maps—φ = {φ1, φ2, . . . , φN}, φi : R → R.
Affine maps are usually employed:

φi (y) = αiy + βi. (2)

Associated with the N -map IFSM (w, φ) is the fractal transform operator T , the action of
which on a function u ∈ X is given by:

(Tu) (x) =
N
∑

i=1

′φi

(

u
(

w−1
i (x)

))

, (3)

where the prime means that the sum operates only on those terms for which w−1
i is defined.

The following result in Proposition 1 states that T is a Lipschitz map on Lp ([0, 1]).

Proposition 1. [Forte and Vrscay, 1995] For any p ≥ 1 we have that T : Lp ([0, 1]) → Lp ([0, 1])
and for any u, v ∈ Lp ([0, 1]) we have:

dp (Tu, Tv) ≤ Cdp (u, v)

where:

C =
N
∑

i=1

s
1
p

i |αi| .

Corollary 2. Suppose that C =
∑N

i=1 s
1
p

i |αi| < 1. Then T has a unique fixed point ū ∈
Lp ([0, 1]) and, for any u0 ∈ Lp, the orbit generated un+1 = Tun converges to ū whenever
n → +∞.

The above corollary states that if
∑N

i=1 s
1
p

i |αi| < 1 then the IFSM operator is a contraction
on Lp and hence it has a unique fixed point ū that is attracting any orbit T nu0 generated
starting from any point u0 ∈ Lp. Notice that if ū ∈ Lp, p ≥ 1, then ū ∈ Lq for any 1 ≤ q ≤ p.
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2.3 Iterated Function Systems on Density Functions

We are now ready to show that, under certain hypotheses, an IFSM operator is a contraction
with respect to the usual norm introduced into the space of density functions.

Definition 2. For any p ≥ 1, the space of density functions Up is defined as follows:

Up =

{

u : [0, 1] → R, u ∈ Lp ([0, 1]) , u (x) ≥ 0 ∀x ∈ [0, 1] ,

∫

[0,1]

u (x) dx = 1

}

,

where dx denotes the Lebesgue measure on [0, 1].

Let us notice that Up ⊆ U q for any 1 ≤ q ≤ p. Now we show that under certain conditions
the IFSM operator T earlier defined is a contraction mapping on U . It is trivial to prove that
U ⊂ Lp ([0, 1]) as defined earlier.

Proposition 2. The space Up is complete with respect to the usual dp norm.

Proof. The proof of this result follows from the following two facts: if fn is a converging
sequence of (a.e.) positive functions in Lp to f then there exists a subsequence that is a.e.
pointwise converging to f and this implies the positivity of f . Furthermore, if fn has integral
over [0, 1] equal to 1 then the Lp limit also possesses this property. �

In the rest of the paper we suppose that the non-overlapping property holds, which means
that the following assumption on the maps wi is satisfied.

A. 1. The maps wi, for i = 1, . . . , N , satisfy the following conditions:

i) ∪N
i=1wi [0, 1] = [0, 1],

ii) dx (wi ([0, 1]) ∩ wj ([0, 1])) = 0 for any i 6= j, where dx denotes the Lebesgue density on
[0, 1].

Proposition 3. Under Assumption A.1 suppose that the following conditions are satisfied:

i) αi, βi ∈ R+ for all i = 1...N ,

ii)
∑N

i=1 si (αi + βi) = 1.

Then the operator T defined as:

(Tu) (x) =
N
∑

i=1

′φi

(

u
(

w−1
i (x)

))

, (4)

maps U into itself. Furthermore, if:
N
∑

i=1

s
1
p

i αi < 1 (5)

then T is a contraction over U . This implies that T has a unique fixed point ū that is also a
global attractor for any sequence taking the form:

un+1 = Tun

for any initial condition u0 ∈ Up.
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Proof. The only property that needs to be proved is that T maps Up into itself. From the
hypotheses on the signs of αi, βi it follows that Tu is positive whenever u is positive. To show
that the integral is one, let us do some computations:

∫

[0,1]

(Tu) (x) dx =

∫

[0,1]

N
∑

i=1

′φi

(

u
(

w−1
i (x)

))

dx

=
N
∑

i=1

∫

[0,1]

′φi

(

u
(

w−1
i (x)

))

dx

=
N
∑

i=1

∫

wi([0,1])

φi

(

u
(

w−1
i (x)

))

dx

=
N
∑

i=1

si

∫

[0,1]

φi (u (x)) dx

=
N
∑

i=1

si

[

αi

∫

[0,1]

u (x) dx+ βi

∫

[0,1]

dx

]

= 1

�

Proposition 3 states that the operator T maps Up into itself and the fixed point equation
Tu = u has a unique solution that is attracting any orbit T nu0 for any u0 ∈ Up. In the sequel
we will suppose, for simplicity, p = 2 and we denote U2 by U . All the results can be easily
extended to the case p 6= 2.

3 The Benchmark Model

We now present our benchmark model abstracting completely from ambiguity, which will be in-
troduced later. We analyze a purely dynamic model of economic growth and public debt, along
the lines of La Torre and Marsiglio (2019). We consider a small open economy in which the inter-
est rate on international borrowing is exogenously given and public debt is used to finance pub-

lic spending. Households consume completely their disposable income: Ct =
[

1− τ
(

Bt

Yt

)]

Yt,

where Ct denotes consumption, Yt income, Bt public debt, and τ
(

Bt

Yt

)

∈ (0, 1) is the tax rate,

which is an increasing function of the debt-to-GDP ratio. The tax revenue Rt = τ
(

Bt

Yt

)

Yt is

entirely devoted to repay public debt. Income grows exogenously at the rate γ > 0 as follows:
Yt+1 = (1 + γ)Yt. An exogenous share of such an income, 0 < g < 1, is devoted to public
spending, Gt = gYt, which is entirely financed via debt accumulation. Public debt accumula-
tion increases with interest payments, (1 + r)Bt, and public spending, gYt, while it decreases
with the tax revenue, as follows: Bt+1 = (1 + r)Bt +Gt − Rt. We assume that the tax rate is

a linear function of debt-to-GDP ratio as follows: τ
(

Bt

Yt

)

= τ Bt

Yt
where 0 < τ ≤ 1 is a scale pa-

rameter. This assumption is consistent with the results in La Torre and Marsiglio (2019), which
show that if policymakers determine optimally the tax rate in order to minimize the social costs
associated with debt accumulation they will find it optimal to set the tax rate proportionally
to the debt-to-GDP ratio. We also assume that 0 ≤ Bt ≤ Yt, such that the debt-to-GDP ratio
is bounded between zero and one, that is Bt

Yt
∈ [0, 1], which simply means that we normalize

the values of the debt ratio to represent with Bt

Yt
= 1 its maximum (unsustainable) level.
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Given the dynamic equations for income and debt, it is straightforward to derive the law of
motion of the debt-to-GDP ratio, xt =

Bt

Yt
, which reads as follows:

xt+1 = w (xt) (6)

where w : [0, 1] →
[

g

1+γ
, 1+r−τ+g

1+γ

]

is defined as:

w (x) =
1 + r − τ

1 + γ
x+

g

1 + γ
. (7)

Similar to La Torre and Marsiglio (2019), equations (6) and (7) suggest that, intuitively, a higher
growth rate reduces the accumulation of the debt ratio by increasing the amount of resources
available to debt repayment activities; a higher interest rate increases the accumulation of the
debt ratio by increasing interest payments; a higher income share of public spending increases
the accumulation of the debt ratio by deteriorating the public budget balance position; a higher
tax coefficient reduces the accumulation of the debt ratio by improving the public budget
balance position. If the public budget balance were in equilibrium, Gt = Rt, then the evolution
of public debt would depend only on the gap between the interest and the growth rates, and in
particular the debt ratio would tend to increase (decrease) over time whenever the interest rate
is larger (smaller) than the growth rate. Disequilibrium in the public budget balance position
introduces a wedge between the growth and interest rate gap and its impact on the debt ratio.

If fiscal policy instruments (i.e., the tax rate parameter, τ , and the government spending
to GDP ratio, g) are appropriately chosen in order to stabilize public debt, then the following
parameter restriction will apply 0 < 1+r−τ+g

1+γ
< 1, ensuring that in the long run the public debt

will converge to a positive finite value. Therefore, in the following we shall assume that:

0 ≤
1 + r − τ

1 + γ
<

1 + r − τ + g

1 + γ
≤ 1, (8)

which implies that the function w is a contraction map transforming [0, 1] into (a subset of)
itself. In this case we can interpret w as a (unique) map of the type defined by (1) with
s = 1+r−τ

1+γ
and a = g

1+γ
. In such a specific framework, (6) describes a very simple dynamical

system which is globally convergent to the fixed point:

x̄ =
g

γ − r + τ
, (9)

which, under condition (8), is interior to the interval [0, 1] because 0 < g < 1. Therefore,
under the assumption of effectiveness in the debt stabilization policy instruments, in the long
run the public debt-to-GDP ratio will converge to a strictly positive level, which intuitively
increases with the government spending to GDP ratio and the interest rate on borrowing, while
it decreases with the growth rate and the tax rate parameters.

Thus far we have simply assumed that there is no uncertainty and thus that the debt ratio is
a completely deterministic variable. However, the international financial market is characterized
by a large degree of randomness, and as the expectations within the market change (driven by
the financial agents’ speculative or hedging motives) the interest rate may change as well and
thus the debt ratio turns out to be stochastic. In light of such expectations-driven changes in
the interest rate, we now suppose that the debt ratio is no longer deterministic but instead
a random variable with an associated density function ut. Different from extant works which
assume that the noise is driven by a Bernoulli process we do not make any specific assumption
about the process underlying such a stochasticity, thus our following discussion and results
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apply in general terms. If xt is a random variable depending on the underlying probability
space and ut its density, then, for any θ1 ≤ θ2, we can perform the following calculations:

∫ θ2

θ1

ut+1 (y) dy = Pr (θ1 ≤ xt+1 ≤ θ2)

= Pr

(

θ1 ≤
1 + r − τ

1 + γ
xt +

g

1 + γ
≤ θ2

)

= Pr

(

θ1 −
g

1 + γ
≤

1 + r − τ

1 + γ
xt ≤ θ2 −

g

1 + γ

)

= Pr

(

(1 + γ) θ1 − g

1 + r − τ
≤ xt ≤

(1 + γ) θ2 − g

1 + r − τ

)

=

∫
(1+γ)θ2−g

1+r−τ

(1+γ)θ1−g

1+r−τ

ut (y) dy . (10)

If we set:

y = w−1 (z) =
(1 + γ) z − g

1 + r − τ
⇐⇒ z = w (y) =

1 + r − τ

1 + γ
y +

g

1 + γ
,

the integral on the LHS of (10) boils down to:

∫ θ2

θ1

ut+1 (y) dy =

∫
(1+γ)θ2−g

1+r−τ

(1+γ)θ1−g

1+r−τ

ut (y) dy =

∫ w−1(θ2)

w−1(θ1)

ut (y) dy =

∫ θ2

θ1

ut

[

w−1 (z)
] (

w−1
)

′

(z) dz

=
1 + γ

1 + r − τ

∫ θ2

θ1

ut

[

w−1 (z)
]

dz .

Since this is true for any pair θ1, θ2 such that θ1 ≤ θ2, we can summarize the temporal
evolution of the density ut of xt by means of the following operator T ∗ : U → U defined as:

ut+1 = T ∗ut =
1 + γ

1 + r − τ
ut ◦ w

−1, (11)

resembling an embryo of the more general operator T defined in (4) whose constituents are the
map w (x) = sx+ a with s = 1+r−τ

1+γ
and a = g

1+γ
, together with a greyscale map φ (y) = αy+β

of the type defined by (2) with α = 1+γ

1+r−τ
and β = 0. The above equation (11) states that at

each iteration, the density of the debt ratio at time t+ 1 is obtained as a modified (distorted)
copy of the empirical distribution of the debt ratio at time t, ut, since the composition with
the inverse of wi times the greyscale parameter α allows for possible shifting and rescaling of
the density function. Specifically, the composition of the density with the inverse of wi shrinks
its support while coefficient α = 1+γ

1+r−τ
rescales the marginal densities.

Note that the operator in (11), although it maps U into itself, unfortunately it is not a
contraction over U , as it does not satisfy condition (5) in Proposition 3, because under our
parameter restriction (8) the following holds true:

s
1
2α =

(

1 + r − τ

1 + γ

)
1
2 1 + γ

1 + r − τ

(

1 + γ

1 + r − τ

)
1
2

=

(

1 + γ

1 + r − τ

)
1
2

> 1.

However, despite the absence of contractivity, the fixed point equation;

ū = T ∗ū =
1 + γ

1 + r − τ
ū ◦ w−1, (12)
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has a solution ū in some extended sense. In fact, the Dirac distribution concentrated at the
fixed point x̄ of the map w defined in (9), which we will denote by δ g

γ−r+τ
(x), is the fixed point

of (12), but unfortunately, δ g
γ−r+τ

(x) is not an element of U . This can be proved more formally

by transforming the operator in (12) into its equivalent counterpart in the space of cumulative
distribution functions. Let us define the cumulative distribution function associated to u as
F (x) =

∫ x

0
u (v) dv. Simple calculations show that:

Ft+1 (x) =

∫ x

0

ut+1 (v) dv =

∫ x

0

T ∗ut (v) dv =

∫ x

0

1 + γ

1 + r − τ
ut

[

w−1 (v)
]

dv

=
1 + γ

1 + r − τ

∫ w−1(x)

w−1(0)

ut (z)w
′ (v) dz =

1 + γ

1 + r − τ

(

1 + r − τ

1 + γ

)
∫ w−1(x)

0

ut (z) dz

= Ft

[

w−1 (x)
]

, (13)

where in the third equality we use the definition in (11), while the fifth equality follows from
w′ (v) ≡ 1+r−τ

1+γ
and the fact that w−1 (0) ≤ 0, so that the interval [w−1 (0) , 0] lies outside the

support of ut. Because w (x) = sx+ a is a contraction with (constant) slope s = 1+r−τ
1+γ

< 1 the

image set w ([0, 1]) is a proper subset of [0, 1], w ([0, 1]) ⊂ [0, 1], which collapses to the fixed
point x̄ = g

γ−r+τ
defined in (9) as t → ∞. Therefore, after each iteration of operator T ∗ in (11),

the support of the marginal density ut keeps shrinking as t increases, which, in turn, implies
that the associated cumulative distribution function Ft becomes steeper on such a support as
t increases, eventually collapsing to the Dirac distribution δ g

γ−r+τ
(x) defined as:

F̄ (x) =











0 if 0 ≤ x <
g

γ − r + τ

1 if
g

γ − r + τ
≤ x < 1,

which is the unique fixed point of the equation F (x) = F [w−1 (x)]. To see that F̄ is unique
note that the support of the marginal density ut along the trajectory generated by system (11)
converges to the single point x̄ defined in (9), so that as t → ∞ the whole probability must
necessarily be concentrated on the point x̄ itself. In such a benchmark case in which the only
source of uncertainty is the randomness in the financial market’s expectations, then the model’s
equilibrium coincides with the deterministic steady state, such that the long run value of the
debt-to-GDP ratio can be perfectly predicted.

Besides the benchmark model defined by operator T ∗ in (11) under the parameter restriction
(8), which guarantees the contractivity condition, it is worth to explore the model’s behavior
in the specific case in which g = 0 and τ = r − γ (under the assumption that r > γ). Such a
special case corresponds to s = 1+r−τ

1+γ
= 1 and a = g

1+γ
= 0, such that the map w defined in

(7) ceases to be contractive and becomes the identity map w (x) = x. Of course, by losing the
contractivity property, the fixed point of operator T ∗ in (11) is no longer unique and becomes
dependent of the initial density u0. Specifically, the fixed point is the initial density u0 itself,
since:

T ∗u0 (x) =
1 + γ

1 + r − τ
u0

[

w−1 (x)
]

= u0 (x)

because 1+γ

1+r−τ
= 1

s
= 1 and w−1 (x) = x. In other words, in this peculiar case any density u

turns out to be invariant under operator T ∗.

10



4 The Model under Ambiguity

Thus far, the only form of uncertainty in our model is related to the randomness in the financial
market’s expectations which makes the interest rate and thus the debt ratio random variables.
There is however an additional layer of uncertainty that we need to take into account, related to
the limited knowledge on parameter values. Indeed, policymakers need to set the fiscal policy
instruments to stabilize the public debt by considering the possible values of the growth rate
and the interest rate: the interest rate is unpredictable due to the frequent changes in financial
market’s expectations but also the growth rate cannot be taken for granted since economic
production is highly volatile. Therefore, in order to account for such a vague knowledge on
the relevant parameters, policymakers need to rely on their subjective assessment to forecast
them despite such assessment may or may not be met in reality. In particular, they need to
form some synthetic assessment of the interest rate (i.e., the mean) to quantify how it may be
affected by the stochasticity in the financial market’s expectations.

We now add such an additional layer on uncertainty by introducing ambiguity in our frame-
work. Specifically, policymakers develop N different assessments of the parameters r and γ,
setting accordingly the value of the fiscal policy tools τ and g. In our setup this process
translates into the existence of N maps:

wi (x) :=
1 + ri − τi

1 + γi
x+

gi

1 + γi
, (14)

associated with the different assessments developed by the policymakers, such that each map is
characterized by a different set of interest rate on borrowing, ri, growth rate of output, γi, tax
rate parameter, τi, and public spending share of GDP, gi. As a matter of analytical simplicity,
we assume that these maps satisfy the almost non-overlapping property stated in Assumption
A.1.

Since the different policymakers’ assessments are subjectively formed and thus it is impos-
sible to state which of them may be most likely, for the sake of simplicity we average them to
determine the evolution of the density of the debt ratio. Therefore, we take the average and
reassemble the actions of the different maps wi on ut to produce ut+1, such that our ambiguity-
extended model reads as follows:

ut+1 = T ∗

Nut (15)

where:

T ∗

Nu :=
1

N

N
∑

i=1

′
1 + γi

1 + ri − τi
u ◦ w−1

i , (16)

where, as usual, the prime means that the sum operates only on those terms for which w−1
i ∈

[0, 1]. According to (15) and (16), at each iteration, the density of the debt ratio at time t+ 1
is obtained by averaging modified copies of the empirical distribution of the debt ratio under
the different assessments during the previous period.

We can easily prove that T ∗

N maps the space of densities U into itself and it is Lipschitz
with Lipschitz constant equal to:

C =
1

N

N
∑

i=1

(

1 + γi

1 + ri − τi

)
1
2

.

Because for all i = 1, . . . , N condition (8) must hold, it follows that C is greater than one and
thus T ∗

N is not a contraction on the space of densities U , as it does not satisfy condition (5) in

11



Proposition 3. However, such a feature, rather than determining multiple fixed points for T ∗

N ,
allows the limit of the orbit generated through the iterations ut+1 = T ∗

Nut to lay outside the
space of densities U . Specifically, again borrowing from the space of cumulative distribution
functions associated to each marginal density ut as in the previous section, we can establish the
uniqueness of the fixed point for the orbit of cumulative distribution functions associated with
the orbit generated by ut+1 = T ∗

Nut. This, in turn, implies that such orbit of densities cannot
converge to two distinct invariant distributions, even if such limits do not belong to U .

Recall that the cumulative function F of u is defined as F (x) =
∫ x

0
u (v) dv and let us define

the space of cumulative distribution functions as:

F = {F : [0, 1] → [0, 1] , F (0) = 0, F (1) = 1, F is right-continuous, F is increasing} .

Through steps similar to those in (13) and recalling that 1+γi
1+ri−τi

= 1
si
, we can integrate operator

T ∗

N in (16) and get its equivalent in terms of cumulative distribution functions:

Ft+1 (x) =

∫ x

0

ut+1 (v) dv =

∫ x

0

T ∗

Nut (v) dv =
1

N

N
∑

i=1

′

∫ x

0

1

si
ut

[

w−1
i (v)

]

dv

=
1

N

N
∑

i=1

′
1

si

∫ w−1
i (x)

w−1
i (0)

ut (z)w
′

i (v) dz =
1

N

N
∑

i=1

′

∫ w−1
i (x)

w−1
i (0)

ut (z) dz

=
1

N

{

i− 1 + Ft

[

w−1
i (x)

]}

for x ∈ [wi (0) , wi (1)] , i = 1, . . . , N

where in the third equality we use the definition of T ∗

N in (16), the fifth equality follows from
w′

i (v) ≡ si, and the last equality holds because, under the almost non-overlapping property

(Assumption A.1), for all i = 1, . . . , N it follows that
∫ w−1

i (x)

w−1
i (0)

ut (z) dz = 1 if x ≥ wi (1) and
∫ w−1

i (x)

w−1
i (0)

ut (z) dz = 0 if x ≤ wi (0). Hence, we can define the operator T#
N : F → F as:

T
#
N F (x) =

1

N

{

i− 1 + F
[

w−1
i (x)

]}

for x ∈ [wi (0) , wi (1)] , (17)

whose fixed-point equation reads as:

F (x) =

∫ x

0

ū (v) dv = T
#
N F (x) =

1

N

{

i− 1 + F
[

w−1
i (x)

]}

for x ∈ [wi (0) , wi (1)] ,

where ū is the fixed point of the operator T ∗

N . The following proposition shows that the space
F is complete with respect to the standard d∞ metric defined as:

d∞ (F,G) = sup
x∈[0,1]

|F (x)−G (x)| . for any F,G ∈ F .

Proposition 4. The space (F , d∞) is a complete metric space.

Proof. It is well known that d∞ is a metric. To show that F is complete, let us take a Cauchy
sequence Fn in F and let us show that Fn → F with F ∈ F . For any x ∈ [0, 1], let us define
the pointwise limit as F (x) = limn→+∞ Fn(x). It is also clear that d∞ (Fn, F ) → 0 whenever
n → +∞. The only thing to be proved is that F ∈ F . The pointwise convergence implies that
F is increasing, F (0) = 0, and F (1) = 1. Finally, the uniform convergence allows to conclude
that F is right-continuous. �
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Proposition 5. The operator T
#
N : F → F defined in (17) is contractive with respect to the

d∞ metric and thus it has a unique fixed point.

Proof. Direct computation leads to

d∞

(

T
#
N F, T

#
NG

)

= sup
x∈[0,1]

∣

∣

∣

∣

1

N

{

i− 1 + F
[

w−1
i (x)

]}

−
1

N

{

i− 1 +G
[

w−1
i (x)

]}

∣

∣

∣

∣

=
1

N
sup

x∈[wi(0),wi(1)]

∣

∣F
[

w−1
i (x)

]

−G
[

w−1
i (x)

]
∣

∣

=
1

N
sup

y∈[0,1]

|F (y)−G (y)|

=
1

N
d∞ (F,G) ,

where in the first two equalities index i ∈ {1, . . . , N} is determined by x as the unique i

satisfying x ∈ [wi (0) , wi (1)]. This establishes the result whenever N ≥ 2. �

Proposition 5 guarantees existence and uniqueness of the fixed point F of T#
N over F ; it

actually strengthens Corollary 1 for the case of cumulative distribution functions. This result
allows us to conclude that the fixed point of operator T ∗

N defined in (16) acting over the
space U of densities exists and is unique as well. In fact, if two different fixed points of T ∗

N

existed, there would be two separate fixed points for operator T
#
N as well, thus contradicting

Proposition 5. However, when the limit distribution of operator T ∗

N does not lie in the space U ,
the invariant distribution exhibits singularities at some points of [0, 1], possibly being a whole
singular probability measure with respect to the Lebesgue measure dx, like in the case of the
Dirac distribution obtained in section 3. Despite knowing that such a limit distribution exists
and is unique, whenever ambiguity over assessments is introduced, its singularity traits (which
definitely follow a much more complex pattern when N ≥ 2 than the Dirac distribution arising
when N = 1) make it less predictable than if it were itself a density belonging to the space U .1

Specifically, probabilities concentrated on single points (or on a zero Lebesgue measure subset
of [0, 1]) make the estimation of the probability that in the long run the debt ratio lies in some
subinterval of [0, 1] more difficult than in the case of a fixed point which is a density laying in
the space U . We shall see in the next section that the presence of some ambiguity aversion
allows to smooth such a degree of unpredictability out.

5 Ambiguity Attitude

Thus far, we have simply focused on how the presence of ambiguity affects the public debt ratio
by affecting the evolution of its density. We now analyze policymakers’ reaction to ambiguity
and its consequences on the public debt dynamics. Since our framework is purely dynamic
abstracting completely from an optimal decision making process, we assume that a simple
rule characterizes entirely policymakers’ ambiguity attitude. Specifically, we suppose that they
adjust the available vague-information embedded in the empirical distribution with a measure of

1To overcome any issue related to the existence of a density in the L2 space and its interpretation along with
the difference between the space of L2 densities and the space of cumulative distributions, we could formulate
an extended operator on the space of distributions D([0, 1]). This space include, in fact, regular Lp densities as
well as singular Dirac-type functionals. An IFS-type operator on D([0, 1]) has been defined in Forte and Vrscay
(1998), but its mathematical formalism and theory go beyond the scope of this paper.
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their ignorance embedded in the uniform distribution. Formally, we assume that the N different
assessments are associated with weights ωi

N
, i = 1, . . . , N , and maps wi (x) = 1+ri−τi

1+γi
x + gi

1+γi

satisfying the almost non-overlapping property (Assumption A.1), such that our extended model
to account for ambiguity attitude reads as:

ut+1 =
1

N

N
∑

i=1

′

[

ωi

(

1 + γi

1 + ri − τi

)

ut ◦ w
−1
i + (1− ωi)

1 + γi

1 + ri − τi

]

, (18)

where ωi ∈ [0, 1]. Instead of relying on the arithmetic mean assigning the same weights 1
N

for all i as in the previous section, in (18) at each iteration the density of the debt ratio at
time t + 1 is obtained as a weighted average of the previous period’s modified copies of its
empirical distribution by means of different weights ωi

N
, each of them determined by ωi ≤ 1,

for all i = 1, . . . , N . In the definition of such weights, ωi < 1 suggests that the policymakers
assign only a certain level of reliability to the information provided by the empirical density
ut when assessment i is considered. Such partial reliability of the empirical distribution is
adjusted through a term which measures policymakers’ ignorance regarding the true parameter
values, captured by the second additive term in the square bracket in (18). Whenever ωi < 1,

the positive constant (1− ωi)
1+γi

1+ri−τi
is (uniformly) added to each term

(

1+γi
1+ri−τi

)

ut ◦ w−1
i ,

the latter being itself diminished by the multiplicative coefficient ωi < 1. We may therefore
interpret ωi as the “degree of ambiguity tolerance” and its complement to 1, (1− ωi), as the
“degree of ambiguity aversion”. Note that when ωi = 1 for all i = 1, . . . , N this model boils
down to the one presented in the previous section.

Our above model’s specification states that whenever ωi < 1 the dynamic described in (18) at
time t+1 produces a distorted copy of ut for assessment i exhibiting a larger level of uncertainty
than that observed at time t through ut; such an increase in uncertainty is obtained by adding
the constant (uniform) probability (1− ωi)

1+γi
1+ri−τi

to each value of ut (x), for all x ∈ [0, 1].
The latter constant term adds some measure of ignorance to the distribution in the current
period, ut, determining a next period’s density, ut+1, which becomes flatter (i.e., closer to the
uniform density u (x) ≡ 1) than the distorted copy of ut that would result without such additive
constant. This means that the i-th assessment exhibits an increasing level of uncertainty as
time elapses, or, equivalently, that, after each iteration of system (18), the probability of less
likely outcomes becomes proportionally larger than that of more likely outcomes in relative
terms. Therefore, our setup suggests that the presence of ambiguity aversion increases the level
of uncertainty by increasing the weight of unlikely outcomes. The following example may help
to interpret this property.

Example 1. Let v : [0, 1] → R+ be defined by v (x) = 2x; clearly v (x) is a density because
∫ 1

0
2x dx = 1. Let ω = 1

2
and consider the transformation u (x) = ωv (x) + (1− ω) = x + 1

2
;

clearly u (x) is still a density on [0, 1] as
∫ 1

0

(

x+ 1
2

)

dx = 1. However, with respect to v (x),
u (x) represents a flatter density concentrating larger probabilities on values x closer to 0 and
lower probabilities on values x closer to 1 than v (x) does.

Our extended model can thus be written as a dynamical system by defining the following
operator T :

Tu :=
1

N

N
∑

i=1

′

[

ωi

(

1 + γi

1 + ri − τi

)

u ◦ w−1
i + (1− ωi)

1 + γi

1 + ri − τi

]

. (19)

where, again, the prime means that the sum operates only on those terms for which w−1
i ∈ [0, 1].

Given that u0 ∈ U is the density of x0, the density ut+1 can be obtained by the action of the
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operator T on ut, that is, ut+1 = Tut. This means that operator T is defined according to (4)
whose constituents are the maps wi (x) = six+ ai of the type defined by (1) with

si =
1 + ri − τi

1 + γi
and ai =

gi

1 + γi
, (20)

together with greyscale maps φi (y) = αiy + βi of the type defined by (2) with

αi =
ωi

N

(

1 + γi

1 + ri − τi

)

and βi =
1− ωi

N

(

1 + γi

1 + ri − τi

)

(21)

for all i = 1, . . . , N .
We are now ready to establish our main result. It states that, unlike the model based on

a simple average of assessments discussed in section 4 in which the limiting distribution may
exhibit singularity features that increase its level of unpredictability, the ambiguity aversion
characterizing the policymakers’ response to vagueness in past information, represented by the
terms ωi, under certain conditions may ensure that the dynamic generated by (19) converges
to a unique invariant density characterizing a much smoother tool to estimate probabilities in
the long run. The conditions needed broadly require that on average there is enough ambiguity
aversion in the response to the vague information associated with the i assessments, for i =
1, . . . , N . Let U be the space of all densities functions as introduced in Definition 2 and note
that the parameters’ choices in (20) and (21) satisfy property ii) of Proposition 3, so that the
following proposition is just an application of the previous Proposition 3.

Proposition 6. Suppose that Assumption A.1 holds true together with the following conditions:

i) parameters ri, γi, τi and gi satisfy condition (8), that is,

0 ≤
1 + ri − τi

1 + γi
<

1 + ri − τi + gi

1 + γi
≤ 1 for i = 1...N,

ii)

1

N

N
∑

i=1

ωi

(

1 + γi

1 + ri − τi

)
1
2

< 1.

Then the debt-to-GDP ratio dynamics model defined by

ut+1 = Tut =
1

N

N
∑

i=1

′

[

ωi

(

1 + γi

1 + ri − τi

)

ut ◦ w
−1
i + (1− ωi)

(

1 + γi

1 + ri − τi

)]

has a unique fixed (steady-state) point ū ∈ U that is also a global attractor, namely:

un →
L2

ū,

for any initial condition u0 ∈ U . Moreover, ū is characterized by the following expression:

ū =
1

N

N
∑

i=1

′

[

ωi

(

1 + γi

1 + ri − τi

)

ū ◦ w−1
i + (1− ωi)

(

1 + γi

1 + ri − τi

)]

. (22)
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Unlike what we have seen in section 4, Proposition 6 shows that the unique fixed point for
our extended model is still an element of the space U , that is, a density, as under assumption ii)
operator T defined in (19) is a contraction according to Proposition 1 and thus all the results
in Proposition 3 directly extend to our model as well. Moreover, equation (22) shows that ū

is a self-similar object as it is the sum of distorted copies of itself. Note that condition ii)
requires ambiguity tolerance coefficients ωi to be sufficiently small on average. In other words,
a sufficient level of ambiguity aversion—represented by the complement coefficients (1− ωi)—is
necessary in order to smooth out singularities upon the limiting density that may appear in
the model without ambiguity attitudes of section 4. Paradoxically, the unpredictability of a
stochastic dynamic like that defined by (15) is being smoothed out by adding more uncertainty
to the system. Of course there is a trade-off: on the one hand, the additional uncertainty
originated by the constant terms (1− ωi)

1+γi
1+ri−τi

in the operator T defined by (19) leads to a
limiting density that is flatter (closer to the uniform density), and thus less informative, than
the fixed points of operator T ∗

N defined in (16); on the other hand, whenever assumption ii)
in Proposition 6 is met—that is, in presence of a sufficient level of ambiguity aversion—the
limiting density becomes perfectly predictable. Hence, there is a price to pay for predictability:
a flatter (more uniform), less informative limiting density that, however, can be completely
foregone.

The following corollary helps us to appreciate how adding more uncertainty to the system
after each iteration according to operator T in (19) when the contractivity assumption ii) of
Proposition 6 is satisfied affects the limiting density by showing that, when the assessments
considered by policymakers are “symmetric” (specifically, the maps wi are wavelets), the fixed
point of operator T in (19) is the uniform density itself regardless of the initial density u0, that
is, the system always converges to the most uninformative distribution.

Corollary 3. Under conditions i) and ii) of Proposition 6 assume further that the maps wi are
wavelets, that is, suppose that

si =
1 + ri − τi

1 + γi
=

1

N
and ai =

gi

1 + γi
=

i− 1

N
for i = 1, . . . , N. (23)

Then operator T defined in (19) has always the uniform density ū (x) ≡ 1 as its unique fixed
point for any initial density u0 (x).

Proof. As under condition ii) of Proposition 6 operator T in (19) is a contraction, to guarantee
existence and uniqueness of its fixed point it is enough to find a density ū satisfying equation
(22):

ū = T ū =
1

N

N
∑

i=1

′

[

ωi

(

1 + γi

1 + ri − τi

)

ū ◦ w−1
i + (1− ωi)

(

1 + γi

1 + ri − τi

)]

=
1

N

N
∑

i=1

′
[

ωiNū ◦ w−1
i + (1− ωi)N

]

=
N
∑

i=1

′
[

ωiū ◦ w−1
i + (1− ωi)

]

(24)

where in the third equality we used the first condition in (23). If we replace ū (x) ≡ 1 into the
last term of (24) we have ū ◦ w−1

i ≡ 1 for all i = 1, . . . , N , so that

ū (x) = (T ū) (x) =
N
∑

i=1

′ [ωi + (1− ωi)] =
N
∑

i=1

′1 = 1 ≡ ū (x) ,
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where the fourth equality holds because the prime in the sum implies that we are actually
taking the union of the constant 1 over the partition of [0, 1] formed by the subintervals of
size 1

N
that, according to condition (23), are the sets wi ([0, 1]) for i = 1, . . . , N ; specifically,

w1 ([0, 1]) =
[

0, 1
N

]

, w2 ([0, 1]) =
[

1
N
, 2
N

]

, . . . , wN ([0, 1]) =
[

N−1
N

, 1
]

. �

Note that calculations similar to those in the last part of the proof of Corollary 3 hold also
for operator T ∗

N defined (16) for the model discussed in section 4, so that, whenever the the maps
wi are wavelets, the unique fixed point for T ∗

N does belong to the space U of densities, being it
always the uniform density regardless of the initial density u0. This fact will be illustrated in
the next section.

6 Numerical Simulations

Thanks to the “piecewise” routine embedded in Maple we built a simple algorithm that directly
iterates the definition of operator T in (19) by transforming any density ut into its next step
density ut+1.

2 There is no need to keep track of all intervals in each pre-fractal (i.e., the
images of the maps wi after each iteration) as the piecewise function routine in Maple does it
automatically. This feature together with the symbolic computation of integrals in Maple allows
us to start from any initial density u0 on [0, 1] which is integrable in closed-form and follow its
transformation after each iteration to appreciate how exactly operator T shrinks ‘horizontally’
and modifies ‘vertically’ the marginal density ut. While the algorithm works also under the
strong no overlap condition—introducing ‘holes’ among the image sets wi ([0, 1]) after each
iteration so to have a Cantor-like set as support for the limiting distribution—we will consider
only examples satisfying the almost non-overlapping property (Assumption A.1). We follow
the order in which we introduced the three operators T ∗ according to (11), T ∗

N according to
(16) and T according to (19) in sections 3, 4 and 5 respectively. We consider at most three
different assessments i = 1, 2, 3, and in all assessments we fix the exogenous growth rate at the
constant level γ = 0.02 while the exogenous international interest rate is assumed to take the
following three different values r1 = 0.02, r2 = 0.05, r3 = 0.08.

Our first exercise aims at illustrating the behavior of the algorithm in the benchmark model
considered in section 3, that is, we apply it to operator T ∗ defined in (11). Assuming γ = 0.02
and r = 0.02, we set τ = 0.51 and g = 0.255, so that the (unique) map w (x) = sx + a

has parameters s = 1+r−τ
1+γ

= 1
2
and a = g

1+γ
= 1

4
respectively, while its unique fixed point is

x̄ = g

γ−r+τ
= 1

2
; the (unique) greyscale map φ (y) = αy + β has parameters α = 1+γ

1+r−τ
= 1

s
= 2

and β = 0. In this case operator T ∗ does not satisfy Assumption A.1 because the image set
of the map w (x) is a proper subset of [0, 1] and is not contractive; however, it has the unique
fixed point represented by the Dirac distribution δ 1

2
(x) concentrating all the probability on

the fixed point x̄ = 1
2
, regardless of the initial density u0. Figure 1 plots the first 7 iterations

of operator T ∗ starting from the bimodal initial density u0 (x) = 12
(

x− 1
2

)2
as obtained by

running our Maple algorithm: after each iteration operator T ∗ clearly shrinks the support of
the marginal density ut while augmenting its height, letting the dynamic converge to δ 1

2
(x) as

t → ∞. Figure 2 plots the evolution of the corresponding cumulative distribution functions Ft

associated to the densities ut in Figure 1.

2The detailed code is available upon request.
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Figure 1: First 7 iterations of operator T ∗ defined in (11) for the only map w (x) = 1
2x+ 1

4 together

with the only greyscale map φ (y) = 2y starting from u0 (x) = 12
(

x− 1
2

)2
.
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Figure 2: cumulative distribution functions associated to the densities ut in Figure 1.

18



x

u0

0 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

(a)

x

u1

0 0.2 0.4

0.5

0.6 0.8 1

1

1.5

2

(b)

x

u2

0 0.2 0.4 0.6 0.8 1

1

2

3

4

(c)

x

u3

0 0.2 0.4 0.6 0.8 1

2

4

6

8

(d)

x

u4

0 0.2 0.4 0.6 0.8 1

5

10

15

(e)

x

u5

0 0.2 0.4 0.6 0.8 1

10

20

30

(f)

x

u6

0 0.2 0.4 0.6 0.8 1

20

40

60

(g)

x

u7

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

120

(h)

Figure 3: First 7 iterations of operator T ∗

2 defined in (16) for the maps w1 (x) =
1
4x and

w2 (x) =
3
4x+ 1

4 together with greyscale maps φ1 (y) = 2y and φ2 (y) =
2
3y starting from u0 (x) ≡ 1.
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Figure 4: cumulative distribution functions associated to the densities ut in Figure 3.
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Figure 5: First 7 iterations of operator T ∗

2 defined in (16) for the maps w1 (x) =
1
4x and

w2 (x) =
3
4x+ 1

4 together with greyscale maps φ1 (y) = 2y and φ2 (y) =
2
3y starting from

u0 (x) = 3.3852e−(6x−3)2 .
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Figure 6: cumulative distribution functions associated to the densities ut in Figure 5.

Next, we apply our algorithm to an example with N = 2 assessments of the type discussed
in section 4 for which we consider the following pair of parametrizations.: γ = 0.02, r1 = 0.02,
τ1 = 0.765, g1 = 0, and γ = 0.02, r2 = 0.05, τ2 = 0.285, g2 = 0.255, so that the maps
wi (x) = six + ai have parameters s1 = 1+r1−τ1

1+γ
= 1

4
, a1 = g1

1+γ
= 0 and s2 = 1+r2−τ2

1+γ
=

3
4
, a2 = g2

1+γ
= 1

4
respectively, while the greyscale maps φi (y) = αiy + βi have parameters

α1 = 1+γ

2(1+r1−τ1)
= 1

2s1
= 2 and α2 = 1+γ

2(1+r2−τ2)
= 1

2s2
= 2

3
with β1 = β2 = 0. In this case
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the operator T ∗

2 defined in (16) satisfies Assumption A.1—so that the union of the images
of the maps w1 ([0, 1]) ∪ w2 ([0, 1]) is the whole interval [0, 1] while such images almost do no
overlap—but again it is not a contraction. Figure 3 plots the first 7 iterations of operator T ∗

2 as
obtained by running our Maple algorithm starting from the uniform initial density u0 (x) ≡ 1,
while Figure 4 reports the corresponding cumulative distribution functions Ft associated to
them. Figure 5 shows the first 7 iterations of the same operator T ∗

2 but now starting from the

bell-shaped initial density u0 (x) = 3.3852e−(6x−3)2 , while Figure 6 reports the corresponding
cumulative distribution functions Ft. Clearly, Figures 3 and 5—as well as Figures 4 and 6 for
the cumulative distribution functions—report different graphs for the first iterations because
the algorithm starts from different initial densities u0; however, already after the 5th iteration
they start looking similar in qualitative terms. Although the spike of the first modified copy
of the initial density u0—that closest to 0 in Figure 5(b)—in Figure 5 keeps being more than
three times taller than the analogous one in Figure 3 after each iteration, Proposition 5 assures
that both sequences of marginal densities ut must converge to the same fixed point as t → ∞,
which may possibly be a singular measure.
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Figure 7: a) 5th and b) 7th iteration of operator T ∗

2 defined in (16) for the wavelets maps
w1 (x) =

1
2x and w2 (x) =

1
2x+ 1

2 together with greyscale maps φ1 (y) = φ2 (y) = y starting from
u0 (x) = 3x2, c) and d) cumulative distribution functions associated to the densities u5 and u7.

As observed at the end of section 5 after Corollary 3, if the maps wi are wavelets the uniform
density is the unique fixed point for the operator T ∗

N defined in (16). Of course, if the initial
density is the uniform density itself our algorithm just replicates the same uniform density after
each iteration; hence, it is more interesting to check the evolution of the transition densities
when the initial density u0 is different than u0 (x) ≡ 1. Suppose that N = 2 with the following
pair of parametrizations.: γ = 0.02, r1 = 0.02, τ1 = 0.51 g1 = 0, and γ = 0.02, r2 = 0.05,
τ2 = 0.54, g2 = 0.51, so that the maps wi (x) = six + ai turn out to be wavelets defined by

21



s1 = s2 =
1+r1−τ1

1+γ
= 1+r2−τ2

1+γ
= 1

2
, a1 =

g1
1+γ

= 0, a2 =
g2
1+γ

= 1
2
respectively, while the greyscale

maps φi (y) = αiy + βi have parameters α1 = α2 = 1
2s1

= 1
2s2

= 1 with β1 = β2 = 0. Figures

7(a) and 7(b) show the 5th and the 7th iterations of operator T ∗

2 respectively as obtained by
running our Maple algorithm starting from the increasing initial density u0 (x) = 3x2, while, as
usual, Figures 7(c) and 7(d) reports the associated cumulative distribution function. In Figure
7(a) the 25 = 32 shrunk copies of the initial increasing density u0 (x) = 3x2 (the half parabolas)
are still apparent, while in Figure 7(b) there are 27 = 128 (more squeezed) copies so that they
become hard to discern. Clearly, because α1 = α2 = 1 and β1 = β2 = 0, the spikes of all half
parabolas remain at level u0 (1) = 3 > 1 after all iterations, thus misleading into the wrong
conclusion that the limiting fixed point should be something different than the uniform density.
However, Proposition 5, establishing uniqueness of the fixed point, together with our knowledge
of u0 (x) ≡ 1 being a fixed point, guarantee that also the marginal densities in Figure 7 must
converge to the uniform density as t → ∞. This implies that after a sufficiently large number
of iterations operator T ∗

2 tends to concentrate all probability into the square [0, 1]2, that is, on
the lower third portion of all the half parabolas visible in Figure 7(a).

The next example considers N = 3 assessments of the type discussed in section 4 for
which we consider the following set of parametrizations.: γ = 0.02, r1 = 0.02, τ1 = 0.8925
g1 = 0, γ = 0.02, r2 = 0.05, τ2 = 0.6675, g2 = 0.1275, and γ = 0.02, r3 = 0.08, τ3 = 0.57,
g3 = 0.51 so that the maps wi (x) = six + ai have parameters s1 =

1+r1−τ1
1+γ

= 1
8
, a1 =

g1
1+γ

= 0,

s2 = 1+r2−τ2
1+γ

= 3
8
, a2 = g2

1+γ
= 1

8
and s3 = 1+r3−τ3

1+γ
= 1

2
, a3 = g3

1+γ
= 1

2
respectively, while the

greyscale maps φi (y) = αiy+ βi have parameters α1 =
1

3s1
= 8

3
, α2 =

1
3s2

= 8
9
and α3 =

1
2s3

= 2
3

with β1 = β2 = β3 = 0. Again the operator T ∗

3 defined in (16) satisfies Assumption A.1 and
it is not a contraction; nonetheless, existence and uniqueness of its fixed point are ensured by
Proposition 5. Figure 8(a) shows the 5th iteration of operator T ∗

3 as obtained by running our
Maple algorithm starting from the uniform initial density u0 (x) ≡ 1, while Figure 8(b) reports
the corresponding cumulative distribution function. With N = 3 maps the algorithm quickly
fills the whole plot after just few iterations, fact that slows it considerably, this is why with
three maps we stop it at most after 5 iterations.
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Figure 8: a) 5th iteration of operator T ∗

3 defined in (16) for the maps w1 (x) =
1
8x, w2 (x) =

3
8x+ 1

8
and w3 (x) =

1
2x+ 1

2 together with greyscale maps φ1 (y) =
8
3y, φ2 (y) =

8
9y and φ3 (y) =

2
3y starting

from u0 (x) ≡ 1, b) its associated cumulative distribution function.

We now focus on the role played by ambiguity attitudes as introduced in section 5 to define
operator T according to (19). We apply our algorithm to the same example with N = 2
assessments considered in Figures 3–6, that is, for γ = 0.02, r1 = 0.02, τ1 = 0.765, g1 = 0, and
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γ = 0.02, r2 = 0.05, τ2 = 0.285, g2 = 0.255, so that again s1 = 1
4
, a1 = 0 and s2 = 3

4
, a2 = 1

4
.

Now the parameters of the greyscale maps φi (y) = αiy+βi depend on the degree of ambiguity
tolerance ωi and its complement to 1, (1− ωi): in this first approximation we assume that all
ambiguity aversion is associated to the first assessment by setting ω1 =

1
5
, while no ambiguity

aversion is associated to the second assessment, so that ω2 = 1. Hence, α1 = ω1

2

(

1+γ

1+r1−τ1

)

=

ω1

2s1
= 2

5
and β1 = 1−ω1

2

(

1+γ

1+r1−τ1

)

= 1−ω1

2s1
= 8

5
, while α2 = ω2

2

(

1+γ

1+r2−τ2

)

= ω2

2s2
= 2

3
and β2 =

1−ω2

2

(

1+γ

1+r2−τ2

)

= 1−ω2

2s2
= 0. With such a parameterization operator T defined in (19) satisfies

Assumption A.1 and it is a contraction, as 1
2

∑2
i=1 ωi

(

1+γi
1+ri−τi

)
1
2
= 1

2

∑2
i=1 ωis

−
1
2

i = 0.78 < 1, so

that, according to Proposition 6, its fixed point not only is unique, but is itself a density in the
space U starting form any initial density u0. Figure 9 plots the first 7 iterations of operator T as
obtained by running our Maple algorithm starting from the uniform initial density u0 (x) ≡ 1,
while Figure 10 reports the corresponding cumulative distribution functions Ft. Figure 11
shows the first 7 iterations of the same operator T but now starting from the bell-shaped
initial density u0 (x) = 3.3852e−(6x−3)2 , while Figure 12 reports the corresponding cumulative
distribution functions Ft. It is clear from all four figures that now operator T converges to the
same invariant density exhibiting a somewhat decreasing pattern reported in both Figures 9(h)
and 11(h).
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Figure 9: First 7 iterations of operator T defined in (19) for the maps w1 (x) =
1
4x and

w2 (x) =
3
4x+ 1

4 together with greyscale maps φ1 (y) =
2
5y +

8
5 and φ2 (y) =

2
3y starting from

u0 (x) ≡ 1.
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Figure 10: cumulative distribution functions associated to the densities ut in Figure 9.
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Figure 11: First 7 iterations of operator T defined in (19) for the maps w1 (x) =
1
4x and

w2 (x) =
3
4x+ 1

4 together with greyscale maps φ1 (y) =
2
5y +

8
5 and φ2 (y) =

2
3y starting from

u0 (x) = 3.3852e−(6x−3)2 .
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Figure 12: cumulative distribution functions associated to the densities ut in Figure 11.

We now proceed with the same parameters’ values for the maps wi used in the last example
described in Figures 9–12 but assume the same ambiguity aversion for both assessments: ω1 =
ω2 = 1

2
. In this case the greyscale maps have parameters α1 = ω1

2s1
= 1 and β1 = 1−ω1

2s1
= 1,

while α2 = ω2

2s2
= 1

3
and β2 = 1−ω2

2s2
= 1

3
. With such a parameterization operator T defined in

(19) satisfies Assumption A.1 and is still a contraction, as 1
2

∑2
i=1 ωis

−
1
2

i = 0.79 < 1, so that its
fixed point exists, is unique, and is a density in the space U starting form any initial density
u0. Figure 13(a) reports the 7th iteration of operator T as obtained by running our Maple
algorithm starting from the uniform initial density u0 (x) ≡ 1, which is an approximation of
the unique fixed point of operator T , while Figure 13(b) reports the associated cumulative
distribution function. Clearly, even if density u7 in Figure 13(a) still resembles a somewhat
decreasing pattern, due to the ambiguity aversion more spread across the two assessments it
exhibits a flatter graph than that in Figures 9(h) and 11(h); such a feature emphasizes the role
of ambiguity aversion in letting the limit invariant distribution be closer to the uniform density.
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Figure 13: a) 7th iteration of operator T defined in (19) for the maps w1 (x) =
1
4x and

w2 (x) =
3
4x+ 1

4 together with greyscale maps φ1 (y) = y + 1 and φ2 (y) =
1
3y +

1
3 starting from

u0 (x) ≡ 1, b) its associated cumulative distribution function.
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To illustrate Corollary 3 assume that the N = 2 maps wi are wavelets; such a configuration,
for example, is obtained with γ = 0.02, r1 = 0.02, τ1 = 0.51, g1 = 0, and γ = 0.02, r2 = 0.05,
τ2 = 0.54, g2 = 0.51, so that s1 = s2 = 1

2
, a1 = 0 and a2 = 1

2
. If the ambiguity aversion

parameters are ω1 = 2
5
and ω2 = 4

5
the greyscale maps φi have parameters α1 = ω1

2s1
= 2

5
and

β1 = 1−ω1

2s1
= 3

5
, while α2 = ω2

2s2
= 4

5
and β2 = 1−ω2

2s2
= 1

5
. Operator T defined in (19) still

satisfies Assumption A.1 and it is a contraction, as 1
2

∑2
i=1 ωis

−
1
2

i = 0.85 < 1, so that, according
to Corollary 3, must have the uniform density as the unique limit distribution starting form
any initial density u0. Figure 14(a) reports the 7th iteration of operator T as obtained by

running our Maple algorithm starting from the bimodal initial density u0 (x) = 12
(

x− 1
2

)2
,

which provides an approximation of the unique fixed point of operator T , while Figure 14(b)
reports the associated cumulative distribution function. Figure 14(a) shows that subsequent
iterations of operator T tend to smooth out the spikes of the initial bimodal density, which are
maintained in all finite marginal densities ut, and let them disappear in the limit to converge
to the unique fixed point ū (x) ≡ 1.
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Figure 14: a) 7th iteration of operator T defined in (19) for the maps w1 (x) =
1
2x and

w2 (x) =
1
2x+ 1

2 together with greyscale maps φ1 (y) =
2
5y +

3
5 and φ2 (y) =

4
5y +

1
5 starting from

u0 (x) = 12
(

x− 1
2

)2
, b) its associated cumulative distribution function.

If the assumption of having N = 2 wavelets maps, w1 (x) =
1
2
x and w2 (x) =

1
2
x+ 1

2
, as in the

last example is coupled with the same ambiguity aversion for both assessments, ω1 = ω2 = 1
2
,

the greyscale maps’ parameters turn out to be α1 = α2 =
ωi

2si
= 1

2
and β1 = β2 =

1−ωi

2si
= 1

2
, so

that operator T , which is still a contraction as 1
2

∑2
i=1 ωis

−
1
2

i = 0.71 < 1, becomes perfectly
symmetric. In this case, whenever the initial density u0 is different than the uniform density,
convergence toward the (unique) fixed point, which, by Corollary 3, must be the uniform density
ū (x) ≡ 1, becomes smoother than the transition path described in Figure 14(a), where the taller
spikes of the finite marginal densities are concentrated toward the right endpoint of the interval
[0, 1]: Figure 15(a) shows that the 7th iteration of operator T as obtained by running our

Maple algorithm starting from the same bimodal initial density u0 (x) = 12
(

x− 1
2

)2
. Unlike

the marginal density in Figure 14(a) has spikes which are smaller and uniformly distributed
over the whole interval [0, 1], while the associated cumulative distribution function reported in
Figure 15(b) looks quite the same as that in Figure 14(b). Such a configuration envisages a
faster convergence toward the unique fixed point ū (x) ≡ 1.
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Figure 15: a) 7th iteration of operator T defined in (19) for the maps w1 (x) =
1
2x and

w2 (x) =
1
2x+ 1

2 together with greyscale maps φ1 (y) = φ2 (y) =
1
2y +

1
2 starting from

u0 (x) = 12
(

x− 1
2

)2
, b) its associated cumulative distribution function.

The next example recalls the same N = 3 assessments considered in Figures 8 and 9 to
which ambiguity aversion is being added. Specifically, we set γ = 0.02, r1 = 0.02, τ1 = 0.8925
g1 = 0, γ = 0.02, r2 = 0.05, τ2 = 0.6675, g2 = 0.1275, and γ = 0.02, r3 = 0.08, τ3 = 0.57,
g3 = 0.51 so that the maps wi (x) = six + ai have parameters s1 =

1+r1−τ1
1+γ

= 1
8
, a1 =

g1
1+γ

= 0,

s2 =
1+r2−τ2

1+γ
= 3

8
, a2 =

g2
1+γ

= 1
8
and s3 =

1+r3−τ3
1+γ

= 1
2
, a3 =

g3
1+γ

= 1
2
respectively. By assuming

ω1 = 1
5
, ω2 = 2

5
and ω3 = 1, so that in the third assessment there is no ambiguity aversion,

the greyscale maps φi (y) = αiy + βi have parameters α1 = ω1

3s1
= 8

15
and β1 = 1−ω1

3s1
= 32

15
,

α2 = ω2

3s2
= 16

45
and β2 = 1−ω2

3s2
= 8

15
, α3 = ω3

3s3
= 2

3
and β3 = 1−ωi

3si
= 0. Again the operator T

defined in (19) satisfies Assumption A.1 and is a contraction as 1
2

∑2
i=1 ωis

−
1
2

i = 0.88 < 1, so that
its fixed point exists, is unique and is a density starting form any initial density u0. Figure 16(a)
shows the 5th iteration of operator T as obtained by running our Maple algorithm starting from
the uniform initial density u0 (x) ≡ 1, while Figure 16(b) reports the corresponding cumulative
distribution function.
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Figure 16: a) 5th iteration of operator T defined in (19) for the maps w1 (x) =
1
8x, w2 (x) =

3
8x+ 1

8
and w3 (x) =

1
2x+ 1

2 together with greyscale maps φ1 (y) =
8
15y +

32
15 , φ2 (y) =

16
45y +

8
15 and

φ3 (y) =
2
3y starting from u0 (x) ≡ 1, b) its associated cumulative distribution function.

Finally, we consider the same N = 3 assessments just studied but by exchanging the levels of
ambiguity aversion across assessments; that is, to the same maps wi taken above we set ω1 =

4
5

(low ambiguity aversion) and ω2 = ω3 =
1
10

(high ambiguity aversion associated to the last two
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assessments),3 Then, the greyscale maps φi (y) = αiy + βi have parameters α1 =
ω1

3s1
= 32

15
and

β1 =
1−ω1

3s1
= 8

15
, α2 =

ω2

3s2
= 4

45
and β2 =

1−ω2

3s2
= 4

5
, α3 =

ω3

3s3
= 1

15
and β3 =

1−ωi

3si
= 3

5
. Operator

T defined in (19) is a contraction as 1
2

∑2
i=1 ωis

−
1
2

i = 0.86 < 1, and the limit distribution exists,
is unique and is a density starting form any initial density u0. Figure 17(a) reports the 5th

iteration of operator T as obtained by running our Maple algorithm starting from the uniform
initial density u0 (x) ≡ 1, while Figure 17(b) plots the corresponding cumulative distribution
function. Now the largest share of ambiguity aversion is attributed to the (last two) maps that
are steeper: because they shrink slower horizontally and a larger constant probability is added
to them after each iteration, the resulting marginal density after 5 iterations of T in Figure
17(a) turns out to be characterized by a higher spike close to the 0 endpoint and by a flatter
pattern on most other points than that in Figure 16(a).
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Figure 17: a) 5th iteration of operator T defined in (19) for the maps w1 (x) =
1
8x, w2 (x) =

3
8x+ 1

8
and w3 (x) =

1
2x+ 1

2 together with greyscale maps φ1 (y) =
32
15y +

8
15 , φ2 (y) =

4
45y +

4
5 and

φ3 (y) =
1
15y +

3
5 starting from u0 (x) ≡ 1, b) its associated cumulative distribution function.

Note that in all examples featuring ambiguity aversion, in order to satisfy the contractivity
condition ii) of Proposition 6 the coefficients ωi must be on average sufficiently small; this
requirement becomes stricter as the number N of assessments—i.e., of the maps wi—increases.

7 Conclusion

Uncertainty is an essential characteristic of macroeconomic dynamics and thus it is important
to understand the implications of different sources of uncertainty on economic activities. In the
economic growth literature randomness is typically modeled with a scenario-based approach,
in which the occurrence of shocks is associated with variables taking on specific values with
specific probabilities. However, parameter values are largely unknown and thus this approach
does not allow to account for such information-based uncertainty, which instead introduces am-
biguity in the picture. Our paper analyze the implications of ambiguity and ambiguity attitude
on macroeconomic dynamics by developing a novel approach based on iteration function sys-
tems on density functions in the context of economic growth and public debt stabilization. We
assume that the debt-to-GDP ratio is described by a random variable to take into account the
randomness associated with the formation of expectations, but it is also affected by ambiguity

3We cannot use just the opposite levels of the previous case because with ω1 = 1, ω2 = 2

5
and ω3 = 1

5
the

contractivity condition ii) of Proposition 6 would be violated.
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since policymakers need to develop subjective assessments to forecast unknown parameter val-
ues. We formalize policymakers’ response to ambiguity with a simple heuristic rule in which
the empirical distribution of the debt ratio is adjusted with an ignorance measure, captured
by the uniform distribution. We show that ambiguity is a source of unpredictability since it
introduces some singularities in the steady state distribution of the debt ratio. Policymakers’
ambiguity aversion removes such an unpredictability by smoothing out the singularities in the
steady state distribution reducing thus the degree of uncertainty associated with the equilib-
rium outcome. However, this comes at the cost of a more uniform and less informative steady
state distribution.

We exemplify the implications of our analysis through numerical simulations showing the
large variability of the long run outcomes in the debt-to-GDP level. Apart from the cases
of convergence to the uniform density characterized by wavelets maps wi, all our simulations
exhibit approximations of the invariant distribution consisting of densities which are decreasing
on average, independently of policymakers’ ambiguity attitude. Such a property arises not by
coincidence: it depends on the choice of having always flatter maps wi closer to the left endpoint
0 of the interval [0, 1] than those closer to the right endpoint 1. This suggests that the slope
of the maps wi could in principle be tuned by appropriate choices on the policy parameters
τi and gi (specifically, by choosing high and zero—or close to zero—values for each of them
respectively). In other words, a simple rule of thumb, rather than a sophisticated optimality
criterion, on the choice of parameters τi and gi in some assessments may prove effective enough
in containing the long-run debt-to-GDP level. It may be interesting thus to analyze how fine-
tuning of the policy parameters may lead to long-run distributions which tend to concentrate
more mass (probability) on lower values of the debt-to-GDP ratio xt, providing some level of
containment of the public debt from a probabilistic perspective. Extending the analysis along
this direction is left for future research.
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