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Abstract
Given a finite order ideal O in the polynomial ring K[x1,… , x

n
] over a field K, let �O be 

the border of O and PO the Pommaret basis of the ideal generated by the terms outside O . 
In the framework of reduction structures introduced by Ceria, Mora, Roggero in 2019, we 
investigate relations among �O-marked sets (resp. bases) and PO-marked sets (resp. bases). 
We prove that a �O-marked set B is a marked basis if and only if the PO-marked set P 
contained in B is a marked basis and generates the same ideal as B. Using a functorial 
description of these marked bases, as a byproduct we obtain that the affine schemes respec-
tively parameterizing �O-marked bases and PO-marked bases are isomorphic. We are able 
to describe this isomorphism as a projection that can be explicitly constructed without the 
use of Gröbner elimination techniques. In particular, we obtain a straightforward embed-
ding of border schemes in affine spaces of lower dimension. Furthermore, we observe 
that Pommaret marked schemes give an open covering of Hilbert schemes parameterizing 
0-dimensional schemes without any group actions. Several examples are given throughout 
the paper.
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1  Introduction

Let K be a field and RA ∶= A[x1,… , xn] the polynomial ring over a Noetherian K-algebra 
A in the variables x1 < ⋯ < xn . Let �  denote the set of terms, i.e. monic monomials, in RA.

Given an order ideal O ⊆ �  , the ideals I ⊂ RA such that O is an A-basis of RA∕I have 
been extensively investigated and characterized in literature, for instance because they are 
suitable tools for the study of Hilbert schemes. These ideals can be identified by means 
of particular sets of generators called marked bases. Probably the most popular marked 
bases are Gröbner bases, which need a term order, but they are not particularly suitable for 
studying Hilbert schemes, because in general they provide locally closed subsets covering 
a Hilbert scheme instead of open subsets [21, Theorem 6.3 i)]. Two types of term order 
free marked bases proved to be more suitable to investigate Hilbert schemes parameter-
izing 0-dimensional schemes (for example, see [4, 6, 13, 14, 18, 19, 24] and the references 
therein). In this paper we focus on these latter ones.

If O is a finite order ideal, then also the border �O is finite and the ideal generated by 
the terms outside O admits a Pommaret basis PO , which is contained in �O . Hence, in this 
paper we consider finite order ideals and focus on the known characterizations of the ide-
als I ⊂ RA , such that O is an A-basis of RA∕I , that have been obtained by using either bor-
der bases ( �O-marked bases in this paper) or marked bases over a quasi-stable ideal ( PO

-marked bases in this paper). We explicitly describe a close relation between these types of 
marked bases.

Given a finite order ideal O , �O-marked sets and bases are made of monic marked poly-
nomials [30], whose head terms form �O . Border bases were first introduced in [23, page 
110], in the context of Gröbner bases, for computing a minimal basis of an ideal of poly-
nomials vanishing at a set of rational points, also using duality. They were then reconsid-
ered in [27, page 110]. Border bases were also investigated from a numerical point of view 
because of their stability with respect to perturbation of the coefficients [25, 31]. In this 
paper we focus on border bases from an algebraic point of view, because this algebraic 
perspective allows to see that, given a finite order ideal O , the �O-marked bases describe 
an open subset of a Hilbert scheme parameterizing 0-dimensional schemes (e.g. [13, 20]). 
As O varies in the set of order ideals of a prescribed cardinality, the corresponding border 
schemes give an open cover of the Hilbert scheme parameterizing 0-dimensional schemes 
of �n

K
 of degree |O| ([18, Remark 3.2 items (b) and (e)], [19, Remark 2.8] and [20, Proposi-

tion 1]). This approach is the one considered in [16, 17, Section 6.4], [29], and was also 
used, for instance, to investigate elementary components of these Hilbert schemes in [14].

Recall that every Artinian monomial ideal in RK has a Pommaret basis. So, given a finite 
order ideal O , we can consider the Pommaret basis PO of the monomial ideal generated by 
� ⧵O and construct PO-marked sets and bases, i.e. sets and bases made of monic marked 
polynomials whose head terms form PO . We recall that every strongly stable ideal, also in 
the non-Artinian case (i.e.  if the order ideal O is not finite), has a finite Pommaret basis. 
Hence, working on strongly stable ideals, PO-marked bases were first introduced in [10] 
and investigated in [6] with the aim to parameterize open subsets of a Hilbert scheme and 
study it locally. We highlight that PO-marked bases do not need any finiteness assumption 
on the underlying order ideal, nor do they need a term order, even though PO-marked bases 
have some nice properties similar to those of Gröbner bases (see for instance [4, Theorems 
3.5 and 4.10]). The PO-marked bases were considered in [3, 8] in the case of homogene-
ous polynomials. In [4] non-homogeneous PO-marked bases were studied, obtaining more 
efficient computational techniques than those in the homogeneous case. An affine scheme 
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parameterizing PO-marked bases has been already described and used, for instance in [2, 
5], to successfully investigate Hilbert schemes. These schemes give an open cover of Hil-
bert schemes for any dimension, up to suitable group actions.

The motivating question of our work is: what is the relation between �O-marked sets 
(and bases) and PO-marked sets (and bases) for a given finite order ideal O ? We answer 
this question, and as a byproduct we also establish the relation between the schemes para-
materizing these marked bases, giving also a computational Gröbner free method to elimi-
nate some variables from the equations defining one in order to obtain the other.

We use the framework of reduction structures introduced in [9] and a functorial 
approach in order to compare the schemes parameterizing these two different types of 
bases. We prove that there is a close relation among �O-marked bases and PO-marked 
bases (see Theorem 2) and observe that the affine schemes parameterizing the ideals gen-
erated by these two types of bases are isomorphic, also giving an explicit isomorphism 
(see Corollary 1, Theorem 4 and Corollary 2). We are able to describe this isomorphism 
as a projection that can be explicitly constructed without the use of Gröbner elimination 
techniques, obtaining an embedding of border schemes in affine spaces of lower dimension 
than the one where they are naturally embedded. Moreover, as we have already pointed out, 
we have an open cover of Hilbert schemes parameterizing 0-dimensional schemes, made of 
marked schemes, without the use of any group actions which are instead needed for Hilbert 
schemes parameterizing schemes of positive dimension (see Proposition 5). Several exam-
ples are exhibited throughout the paper.

The paper is organized in the following way.
In Sect. 1 we recall some general notations and facts, the framework of reduction struc-

tures introduced in [9] and some known results for the Pommaret reduction structure.
In Sect.  2 we focus on �O-marked bases. Observing that a set B of marked polynomi-

als on �O always contains a set P of marked polynomials on PO , we prove that B is a �O
-marked basis if and only if P is a PO-marked basis and generates the same ideal as B (The-
orem 1). We also compare the border reduction structure implicitly considered in [17] with 
the one we give in Definition 11. In particular, we relate the border division algorithm of 
[17, Proposition 6.4.11] to the reduction relation induced by the border reduction structure, 
where the terms of the border are ordered according to the degree. In this setting, we can 
prove a Buchberger’s criterion for �O-marked bases (Proposition 4), which is alternative to 
that of [17, Proposition 6.4.34].

In Sect.  3, using a functorial approach, we easily prove that the scheme parameteriz-
ing �O-marked bases, called border marked scheme, and the scheme parameterizing PO

-marked bases, called Pommaret marked scheme, are isomorphic (Corollary 1). The monic-
ity of the marked sets we consider is crucial for the use of functors. In fact, although in [9] 
the authors deal with the polynomial ring RK , everything works also in RA thanks to the 
monicity of marked polynomials and sets. In Proposition 5, as a byproduct of our investi-
gation we easily obtain an open cover of a Hilbert scheme parameterizing 0-dimensional 
schemes by marked schemes.

In Sect. 4, we explicitly exhibit an isomorphism between the border marked scheme and 
the Pommaret marked scheme using Theorem 1. As a byproduct, we prove that there is 
always a subset of the variables involved in the generators of the ideal defining the border 
marked scheme that can be eliminated (see Theorem  4), obtaining in this way the ideal 
defining the Pommaret marked scheme. This elimination does not use Gröbner elimina-
tion techniques, which are in theory useful, but practically impossible to use (see Exam-
ple 8). Corollary 2 is the geometric version of Theorem 4. The number of parameters that 
can be eliminated from the ideal defining the border marked scheme and upper bounds 
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for the degrees of the polynomials involved in this computation are explicitely given in 
Corollary 3.

2 � Generalities and setting

Let K be a field, R ∶= K[x1,… , xn] the polynomial ring in n variables with coefficients in 
K, �  the set of terms in R . If Y is a subset of {x1,… , xn} , we denote by � [Y] the subset of 
�  containing only terms in the variables in Y. We denote by A a Noetherian K-algebra with 
unit 1K and set RA ∶= A⊗K R . When it is needed, we assume x1 < … < xn (this is just 
an ordering on the variables, this is not a term order). For every term � in �  we denote by 
min(�) the smallest variable appearing in � with non-null exponent.

Definition 1  A monomial ideal J ⊂ R is quasi-stable if, for every term � ∈ J and for every 
xi > min(𝜏) , there is a positive integer s such that xs

i
�∕min(�) belongs to J.

It is well known that a quasi-stable ideal J has a special monomial generating set that is 
called Pommaret basis and has a very important role in this paper. The terms in the Pom-
maret basis of J can be easily detected thanks to the following property (see [8, Definition 
4.1 and Proposition 4.7]). For every term � ∈ J,

Definition 2  A set O of terms in �  is called an order ideal if

Given a monomial ideal J ⊆ R , the set of terms outside J is an order ideal. On the other 
hand, if O is an order ideal, then J is the monomial ideal such that J ∩ � = � ⧵O.

In this paper we only consider finite order ideals O . This is equivalent to the condition 
that the Krull dimension of the quotient ring R/J is zero, i.e R/J is Artinian. In this case, J 
is quasi-stable [4, Corollary 2.3]. So, given a finite order ideal O , we can always consider 
the Pommaret basis of the ideal generated by � ⧵O in R and we denote it by PO.

Definition 3  [28, 17, Definition 6.4.4, Proposition 6.4.6] Given a finite order ideal O , the 
border of O is

Since O ∪ �O is an order ideal too, for every integer k ≥ 0 we can also define the k-th bor-
der �kO of O in the following way:

For every � ∈ � ⧵O , the integer indO(�) ∶= min{k | � ∈ �
kO} is called the index of � 

with respect to O.

For every finite order ideal O ⊂ �  , it is immediate to observe that PO is contained in 
�O , thanks to (1).

(1)� belongs to the Pommaret basis of J ⇔
�

min(�)
∉ J.

∀ � ∈ � ,∀ � ∈ O, � ∣ � ⇒ � ∈ O.

�O ∶= {xi ⋅ � | � ∈ O, i ∈ {1,… , n}} ⧵O.

�
0
O ∶= O and �kO ∶= �(�k−1O ∪… ∪ �

0
O).
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Example 1  If we consider R = K[x1, x2] and O = {1, x1, x2, x1x2} , then the Pommaret basis 
of the ideal (� ⧵O) is PO = {x2

1
, x2

1
x2, x

2
2
} and the border of O is �O = {x2

1
, x2

1
x2, x1x

2
2
, x2

2
}.

Given a subset T ⊆ �  of terms, we denote by ⟨T⟩A the module generated by T over A. 
Moreover, for every term � , the set CT (�) ∶= {�� | � ∈ T} is called cone of � by T.

Definition 4  [9, Definition 3.1] A reduction structure J  (RS, for short) in �  is a 3-uple 
J ∶= (H,L ∶= {L

�
| � ∈ H}, T ∶= {T

�
| � ∈ H}) where:

•	 H ⊆ �  is a finite set of terms;
•	 for every � ∈ H , T

𝛼
⊆ �  is an order ideal, called the multiplicative set of � , such that 

∪
�∈HCT

�

(�) = (H);
•	 for every � ∈ H , L

�
 is a finite subset of � ⧵ CT

�

(�) called the tail set of �.

Given a reduction structure J = (H,L, T) , we say that: J  has maximal cones if, for 
every � ∈ H , T

�
= �  ; J  has disjoint cones if, for every �, �� ∈ H , CT

�

(�) ∩ CT
��
(��) = � ; 

J  has multiplicative variables if, for every � ∈ H , there is Y
𝛼
⊂ {x1,… , xn} such that 

T
�
= � [Y

�
].

Recall that the support of a polynomial f ∈ RA is the finite subset supp(f ) ⊆ �  of those 
terms that appear with non-null coefficients in f.

Definition 5  [30] A marked polynomial is a polynomial f ∈ RA together with a specified 
term of supp(f ) which appears in f with coefficient 1K . It will be called head term of f and 
denoted by Ht(f ).

Definition 6  [9, Definitions 4.2 and 4.3] Given a reduction structure J = (H,L, T) , a set 
F of exactly |H| marked polynomials in RA is called an H-marked set if, for every � ∈ H , 
there is f

�
∈ F with Ht(f

�
) = � and supp(f ) ⧵ {𝛼} ⊆ L

𝛼
.

Let OH be the order ideal given by the terms of �  outside the ideal generated by H . An 
H-marked set F is called an H-marked basis if OH is a free set of generators for RA∕(F) as 
A-module, that is (F)⊕ ⟨OH⟩A = RA.

Given a reduction structure J = (H,L, T) and an H-marked set F, a (H)-reduced form 
modulo (F) of a polynomial g ∈ RA is a polynomial h ∈ RA such that g − h belongs to (F) 
and supp(h) ⊆ OH . If there exists a unique (H)-reduced form modulo (F) of g then it is 
called (H)-normal form modulo (F) of g and is denoted by Nf(g).

In the following, when OH is finite, we will write OH-reduced form (resp. OH-normal 
form) instead of (H)-reduced form (resp. (H)-normal form). Furthermore, for any order 
ideal O , if h belongs to ⟨O⟩A , then we say that h is O-reduced.

Remark 1  Given a reduction structure J = (H,L, T) , if F is an H-marked basis, then every 
polynomial g ∈ RA admits the (H)-normal form Nf(g) modulo (F). This is a direct conse-
quence of the fact that RA decomposes in the direct sum (F)⊕ ⟨OH⟩A , so that for every 
g ∈ RA there is a unique writing g = h + h� with h ∈ (F) and h� ∈ ⟨OH⟩A . Hence, h′ is the 
(H)-normal form of g modulo (F).

The definition of a reduction relation over polynomials can be useful to computationally 
detect reduced and normal forms.
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Definition 7  [9, page 105] Given a reduction structure J = (H,L, T) and an H-marked set 
F, the reduction relation associated to F is the transitive closure →+

FJ
 of the relation on RA 

that is defined in the following way. For g, h ∈ RA , we say that g is in relation with h and 
write g →FJ h if there are terms � ∈ supp(g) and � ∈ H such that � = �� belongs to CT

�

(�) 
and h = g − c�f

�
 , where c is the coefficient of � in g.

Given a reduction structure J = (H,L, T) and an H-marked set F, the reduction relation 
→

+
FJ

 is Noetherian if there is no infinite reduction chain g1 →FJ g2 →FJ … . The reduction 
structure J  is said to be Noetherian if →+

FJ
 is Noetherian for every H-marked set F (see [9, 

Section 5]).
Moreover, →+

FJ
 is confluent if for every polynomial g ∈ RA there exists only one (H)

-reduced form h modulo (F) such that g →
+
FJ

h . The reduction structure J  is confluent if 
→

+
FJ

 is confluent for every H-marked set F (see [9, Definition 7.1]).

Remark 2  If →+
FJ

 is a reduction relation such that every polynomial g ∈ RA admits an 
(H)-reduced form modulo (F) then (F) + ⟨OH⟩A = RA . This holds in particular if →+

FJ
 is 

Noetherian and confluent.

Definition 8  Given a finite order ideal O , the Pommaret reduction structure 
JPO

= (H,L, T) is the reduction structure with H ∶= PO and, for every � ∈ PO , L
�
∶= O 

and T
�
∶= � ∩ K[x1,… , min(�)].

The Pommaret reduction structure was investigated in [4, Definition 4.2] for an arbitrary 
order ideal O , not necessarily finite. The reduction relation →+

FJPO

 is Noetherian and confluent 
for every PO-marked set F [4, Proposition 4.3]. Then, it is well-known that the Pommaret 
reduction relation can be used to characterize PO-marked bases in the following way.

Definition 9  Given two marked polynomials f , f ′ with Ht(f ) = � and Ht(f �) = �
� , the 

S-polynomial of f , f ′ is S(f , f �) = �f − �
�f � , where �Ht(f ) = �

�Ht(f �) = lcm(Ht(f ), Ht(f �)).

Definition 10  Let O be a finite order ideal and J = (H,L, T) a reduction structure such 
that (H) = (� ⧵O) . For every pair of terms �, �� ∈ H , (�, ��) is a non-multiplicative couple 
if there is xi ∉ T

�
 such that xi� ∈ CT

��
(��).

Proposition 1  (Buchberger’s criterion for Pommaret marked bases) [4, Proposition 5.6] Let 
O be a finite order ideal, consider the Pommaret reduction structure JPO

 and let P be a PO

-marked set. The following are equivalent: 

(1)	 P is a PO-marked basis;
(2)	 for every p, p� ∈ P such that (Ht(p), Ht(p�)) is a non-multiplicative couple, 

S(p, p�) →+
PJPO

0.
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3 � Border reduction structure

In this section, given a finite order ideal O , we focus on reduction structures such that H is 
the border of O and their relations with the Pommaret reduction structure.

Definition 11  [9, Table  1 and Lemma 13.2] Given a finite order ideal O , let the terms 
of the border �O be ordered in an arbitrary way and labeled coherently, i.e.  for every 
�i, �j ∈ �O , if i < j then �i precedes �j.

The border reduction structure J
�O ∶= (H,L, T) is the reduction structure with H = �O 

and, for every �i ∈ �O , L
�i
∶= O and T

𝛽i
∶= {𝜇 ∈ � | ∀j > i, 𝛽j does not divide 𝛽i𝜇}.

Remark 3  Given a finite order ideal O , in [17] the authors consider the reduction structure 
J
� = (H�,L�, T�) with H� = �O (ordered arbitrarily and labeled coeherently as in J

�O ), and 
L
�
�
= O , T�

�
= �  for every � ∈ �O . The border reduction structure J

�O given in Defini-
tion 11 is a substructure of J′ , because the multiplicative sets of J

�O are contained in those 
of J′ (see [9, Definition 3.4] for the definition of substructure).

As observed in [9, Remark 4.6], the definition of marked basis only depends on the 
ideal generated by the marked set we are considering, and this notion does not rely on the 
reduction relation associated to the reduction structure we are considering. However, in 
order to prove that the notions of �O-marked basis and PO-marked basis associated to J

�O 
and JPO

 , respectively, are closely related, we need the features of the reduction relation 
given by the Pommaret reduction structure.

Theorem 1  Let O be a finite order ideal, J
�O be the border reduction structure, with terms 

of �O ordered arbitrarily, and JPO
 be the Pommaret reduction structure. Let B be a �O

-marked set in RA , P the PO-marked set contained in B and B� = B ⧵ P . Then,

Proof  If B is a �O-marked basis, then RA = (B)⊕ ⟨O⟩A and, in particular, (B) ∩ ⟨O⟩A = {0} . 
Since the PO-marked set P is a subset of B, we also have (P) ∩ ⟨O⟩A = {0} . Furthermore, 
since the Pommaret reduction structure is Noetherian and confluent, every polynomial in 
RA has a O-reduced form modulo (P), that is (P) + ⟨O⟩A = RA by Remark  2. These two 
facts together imply that P is a marked basis.

Moreover, for every polynomial b� ∈ B� , let b̃� ∈ ⟨O⟩A be its O-normal form modulo 
(P), hence b� − b̃� belongs to (P) ⊂ (B) . This means that b̃′ is also the only O-normal form 
modulo (B), which is equal to 0 by hypothesis (see Remark 1). Hence, b′ belongs to (P).

Assume now that P is a PO-marked basis and B�
⊂ (P) . Observing that in the present 

hypotheses (P)⊕ ⟨O⟩A = RA and (P) = (P ∪ B�) = (B) , we immediately obtain that B is a 
�O-marked basis. 	� ◻

Example 2  Consider the finite order ideal O = {1, x1, x2, x1x2} ⊂ R = K[x1, x2] as in Exam-
ple 1, the �O-marked set Be1,e2

 given by the following polynomials

and the PO-marked set P = {b1, b2, b3}.

B is a 𝜕O-marked basis ⇔ P is a PO-marked basis and B�
⊂ (P).

b1 ∶= x2
1
− x1 − x2 − 1, b2 ∶= x2

2
− 3 x2, b3 ∶= x2

1
x2 − x1x2 − 4 x2,

b4 ∶= x1x
2
2
− e1x1x2 − e2 x1, e1, e2 ∈ K,
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For every e1, e2 ∈ K , P is a PO-marked basis, by Proposition 1. If e1 ≠ 3 or e2 ≠ 0 , then 
b4 does not belong to (P), hence, by Theorem 1, Be1,e2

 is not a �O-marked basis for these 
values of e1 and e2 . If e1 = 3 and e2 = 0 then b4 belongs to (P), hence B3,0 is a �O-marked 
basis.

In [17], the authors consider a procedure called border rewrite relation [17, page 
432] which is the reduction relation of the reduction structure J′ presented in Remark 3. 
The reduction structure J′ is not Noetherian, as highlighted in [17, Example 6.4.26]. 
This is due to the fact that J′ has maximal cones and, in general, there is no term order 
with respect to which, for every f in a �O-marked set F and for every � in O , the head 
term Ht(f ) of f is bigger than � (see [30] and [9, Theorem 5.10]).

In general, given a reduction structure J  , disjoint cones are not sufficient to ensure 
Noetherianity. For instance, the substructure J

�O of J′ is in general not Noetherian. We 
highlight this by rephrasing the above quoted example of [17] for the reduction structure 
J
�O.

Example 3  [17, Example 6.4.26] Consider the order ideal 
O = {1, x1, x2, x

2
1
, x2

2
} ⊂ RK = K[x1, x2] . The border of O id �O = {x1x2, x

3
1
, x2

1
x2, x1x

2
2
, x3

2
} . 

We consider the border reduction structure J
�O with the terms of the border ordered in the 

following way:

and the �O-marked set B given by the marked polynomials

The reduction structure J
�O has disjoint cones, however this does not imply Noetherian-

ity. Indeed, consider the term � = x1x
2
2
 . When we reduce � by →BJ

�O
 , we fall in the same 

infinite loop as using the border rewrite relation of [17]. Referring to Definition 7 for the 
reduction relation associated to a marked set of a reduction structure, and to Definition 11 
for the multiplicative set T

�i
 of the border reduction structure, a term � ∈ (�O) is reduced 

using the term �i with i = max{� | �
�
∈ �O divides �} . Hence, we obtain

In the following, we will order the terms of �O either increasingly by degree (terms 
of the same degree are ordered arbitrarily), or increasingly according to a term order 
≺ . In the first case, we will denote the reduction structure with J

�O,deg and, in the second 
case, with J

𝜕O,≺.
For every term order ≺ , the reduction structure J

𝜕O,≺ is Noetherian (see [9, 
page 127]). We now focus on properties of the reduction relation of a border reduction 
structure J

�O,deg and explicitly prove that J
�O,deg is Noetherian and confluent. We use 

properties of the border described in [17, Section 6.4.A] and results in [9].

Lemma 1  Let O be a finite order ideal. 

�1 = x3
1
, �2 = x2

1
x2, �3 = x1x

2
2
, �4 = x3

2
, �5 = x1x2,

bi = �i for i = 1,… , 4, b5 = �5 − x2
1
− x2

2
.

x1x
2
2
→BJ

�O
x1x

2
2
− x2b5 =x

2
1
x2 + x3

2
→BJ

�O
x2
1
x2 + x3

2
− b4 = x2

1
x2 →BJ

�O

→BJ
�O

x2
1
x2 − x1b5 =x

3
1
+ x1x

2
2
→BJ

�O
x3
1
+ x1x

2
2
− b1 = x1x

2
2
.
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(1)	 If � is a term in (� ⧵O) and � ∈ �O is a term of maximal degree dividing � , then 
indO(�) = deg(�∕�) + 1;

(2)	 if � ∈ O and � ∈ �  are terms such that �� belongs to (� ⧵O) and if � ∈ �O is a term 
of maximal degree dividing �� , then deg(𝜂) > deg(𝛿𝜂∕𝛽).

Proof  Item (1) is a direct consequence of [17, Proposition  6.4.8 a)]. For what con-
cerns item  (2), we have indO(��) = deg(��∕�) + 1 by (1) and conclude, because 
indO(��) ≤ deg(�) by [17, Proposition 6.4.8 b)]. 	�  ◻

Proposition 2  Given a finite order ideal O , consider the border reduction structure J
�O,deg 

and a �O-marked set B. Then, the reduction relation →+
BJ

�O,deg
 is Noetherian and confluent.

Proof  First we prove that J
�O,deg has disjoint cones, that is CT

�i

(�i) ∩ CT
�j

(�j) = � , for every 
�i, �j ∈ �O . Indeed, assume j > i and consider � ∈ CT

�i

(�i) . By definition of cone, there is 
� ∈ T

�i
 such that ��i = � and for every j > i , �j does not divide � . Hence, � does not belong 

to CT
�j

(�j).
Furthermore, J

�O,deg is Noetherian. It is sufficient to consider �  with the well founded 
order given by the index of a term with respect to O , and apply [9, Theorem 5.9]. Indeed, 
consider f , g ∈ RA such that f →BJ

�O,deg
g and let � = ��i ∈ supp(f ) ∩ CT

�i

(�i) be the term 
which is reduced, i.e.  f − c�bi = g , with c ∈ RA the coefficient of � in f and bi the polyno-
mial of B such that Ht(bi) = �i . Consider a term � ′ in supp(g) ⧵ supp(f ) . By construction we 
obtain that � ′ is divisible by � . So, if � ′ belongs to CT

�j

(�j) for some �j ∈ �O , then by 
Lemma  1indO(𝛾 �) = deg(𝛾 �∕𝛽j) + 1 < deg(𝜂) + 1 = indO(𝛾) . Hence, →

+
BJ

�O,deg
 is 

Noetherian.
Summing up, J

�O,deg has disjoint cones and it is Noetherian. Hence, we can conclude 
that →+

BJ
�O,deg

 is also confluent by [9, Remark 7.2]. 	�  ◻

We highlight that, given the border reduction structure J
�O,deg and a �O-marked set 

B, the reduction relation →+
BJ

�O,deg
 is equivalent to the border division algorithm of [17, 

Proposition 6.4.11], in the sense that the O-reduced forms obtained by the reduction 
relation →+

BJ
�O,deg

 are normal O-remainders of the border division algorithm (see [17, 
page 426]).

Recall that for a given finite order ideal O , every �O-marked set contains a PO

-marked set. Nevertheless, the different reduction relations applied on the same polyno-
mial in general give different O-reduced forms.

Example 4  Consider the order ideal O = {1, x1, x2, x1x2} ⊂ R = K[x1, x2] , as in Example 1, 
and the border reduction structure J

�O,deg and the Pommaret reduction structure JPO
 . Let 

B ⊂ R be the �O-marked set given by the following polynomials:

and P the PO-marked set given by the polynomials b1, b2, b3 . The �O-marked set B is 
obtained from that of Example 2 by replacing both e1 and e2 with 1. Consider the polyno-
mial f = x2

1
x2
2
 . We compute an O-reduced form modulo (B) of f in the following way:

b1 ∶= x2
1
− 1 − x1 − x2, b2 ∶= x2

2
− 3x2, b3 ∶= x2

1
x2 − 4x2 − x1x2, b4 ∶= x1x

2
2
− x1 − x1x2
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We also compute an O-reduced form modulo (P) in the following way:

We now focus on how the reduction relations corresponding to border reduction 
structures are used in order to obtain marked bases.

Definition 12  For every pair of terms �, �′ in a finite set M ⊂ �  , (�, ��) is a neighbour cou-
ple if either � = xj�

� for some variable xj or xi� = xj�
� for some couple of variables (xi, xj).

The definition of neighbour couple is due to [17, Definition 6.4.33 c)] in the frame-
work of border bases, however Definition 12 is given for any finite set of terms, not nec-
essarily the border of an order ideal. Furthermore, the notion of neighbour couple does 
not depend on the reduction structure we are considering.

Given a finite order ideal O and recalling Definition 10, if we consider the Pommaret 
reduction structure JPO

 , then a couple of terms in PO can be simultaneously non-multi-
plicative and neighbour, although this is not always the case (see Example 5).

We now investigate the non-multiplicative couples for the border reduction structure 
J
�O,deg , showing that non-multiplicative couples are always neighbour couples in this 

case.

Lemma 2  Given a finite order ideal O , consider the border reduction structure J
�O,deg , and 

let (�i, �j) be a non-multiplicative couple of �O , i.e. there is x
�
∉ T

�i
 such that 

x
�
�i ∈ CT

�j

(�j) . More precisely, x
�
�i = ��j for some x

�
∉ T

�i
 and � ∈ T

�j
 . Then j > i and 

deg(�) ≤ 1.

Proof  By definition of T
�j
 for a border reduction structure (Definition  11), the equality 

x
�
�i = ��j , with xl ∉ T

�i
 and � ∈ T

�j
 , implies that j > i . Furthermore deg(�i) ≤ deg(�j) , 

since in J
�O,deg the terms of �O are ordered according to increasing degree. This implies 

that deg(�) ≤ deg(x
�
) = 1 . 	�  ◻

As already observed in Remark 3, J
�O,deg is a substructure of J′ . So, we can rephrase 

Buchberger’s criterion for border marked bases given in [17, Proposition 6.4.34] in 
terms of the reduction relation given by J

�O,deg.

Proposition 3  (Buchberger’s criterion for border marked bases) [17, Proposition 6.4.34] 
Let O be a finite order ideal, and consider the reduction structure J

�O,deg . Let B be a �O
-marked set. The following are equivalent: 

(1)	 B is a �O-marked basis;
(2)	 for every b, b� ∈ B such that (Ht(b), Ht(b�)) is a neighbour couple, we have 

S(b, b�) →+
BJ

�O,deg
0.

f →+
BJ

�O

f − x1b4 =x
2
1
x2 + x2

1
→

+
BJ

�O

→
+
BJ

�O

x2
1
x2 + x2

1
− b3 − b1 =x1x2 + x1 + 5x2 + 1 ∈ ⟨O⟩K .

f →+
PJPO

f − x2
1
b2 = 3x2

1
x2 →

+
PJPO

3x2
1
x2 − 3b3 = 3x1x2 + 12x2 ∈ ⟨O⟩K .
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Applying [9, Theorem 11.6] to the reduction structure J
𝜕O,≺ , for some term order ≺ , an 

alternative Buchberger’s criterion can be obtained. However, this criterion might involve 
couples of terms in �O which are neither neighbour, nor non-multiplicative, unless J

𝜕O,≺ 
has multiplicative variables. For instance, if ≺lex is the lex term order, then the reduction 
structure J

𝜕O,≺lex
 has multiplicative variables (see [9, Theorem 13.5]).

In general, the reduction structure J
�O,deg does not have multiplicative variables, not 

even if we consider J
𝜕O,≺ for a degree compatible term order [9, Example 13.4]. Neverthe-

less, we now show that it is sufficient to consider non-multiplicative couples of terms �O 
in J

�O,deg in order to obtain another Buchberger’s criterion for border bases. In terms of 
continuous involutive division, this result also follows from results by Riquier and Janet 
(see [15, 11, Definitions 3.1 and 4.9, Theorem 6.5]). For the sake of completeness, we give 
a complete proof using the notions adopted in the present paper. More explicitely, we prove 
the equivalence of the following Proposition to Proposition 3.

Proposition 4  Let O be a finite order ideal, and consider the reduction structure J
�O,deg . 

Let B be a �O-marked set. The following are equivalent: 

(1)	 B is a �O-marked basis;
(2)	 for every b, b� ∈ B such that (Ht(b), Ht(b�)) is a non-multiplicative couple, we have 

S(b, b�) →+
BJ

�O,deg
0.

Proof  Here, we prove the equivalence between Proposition  3(2), and item (2). By 
Lemma  2, one implication is immediate, so we move to proving that item (2) implies 
Proposition 3(2).

Consider now a neighbour couple (�i, �j) which is not a non-multiplicative couple. Since 
�O is increasingly ordered by degree, if xs�i = �j then j > i , hence xs ∉ T

�i
 by definition of 

T  as given in Definition  11. Furthermore, if xs�i = xl�j , then it is not possible that xs 
belongs to T

�i
 and simultaneously x

�
∈ T

�j
 , again by Definition 11.

Hence, the only case of neighbour couple which is not non-multiplicative is xs�i = xl�j 
with xs ∉ T

�i
 and x

�
∉ T

�j
 . Let �k be the unique term in �O such that xs�i = x

�
�j = ��k with 

� ∈ T
�k

 . Hence both (�i, �k) and (�j, �k) are non-multiplicative couples and by Lemma  2 we 
obtain that i, j < k and deg(�) ≤ 1 . Let bi, bj, bk ∈ B be the marked polynomials such that 
Ht(bi) = �i , Ht(bj) = �j , and Ht(bk) = �k . Since S(bi, bk) and S(bj, bk) reduce to 0 
by  →

+
BJ

�O,deg
 , then also S(bi, bj) reduces to 0 by →

+
BJ

�O,deg
 , because 

S(bi, bj) = S(bi, bk) − S(bj, bk) and →+
BJ

�O,deg
 is confluent (see also [18, Proposition 4.5]). 	

� ◻

Remark 4  The most used effective criterion to check whether a �O-marked set is a basis is 
not a Buchberger’s criterion. The commutativity of formal multiplication matrices is usu-
ally preferred (see [28, Theorem 3.1]). This is simply due to the fact that the border reduc-
tion given in [17] is neither Noetherian nor confluent, hence when in a statement one finds 
“ f →+

BJ
�O

0 ”, one should read “it is possible to find a border reduction path leading f to 0”.

Example 5  [18, Example 4.6] Consider the finite order ideal

O = {1, x1, x2, x3, x2x3} ⊂ R = K[x1, x2, x3],
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so that �O ∶= {b1,… , b8} with b1 = x2
1
 , b2 = x1x2 , b3 = x1x3 , b4 = x2

2
 , b5 = x2

3
 , b6 = x1x2x3 , 

b7 = x2
2
x3 , and b8 = x2x

2
3
 , while PO = �O ⧵ {b8} = {b1,… , b7} . In this case the reduction 

structure J
�O,deg has multiplicative variables.

Inspired by Ufnarovski graphs [26, Definition 48.1.1], similarly to what is done in 
[31, Definition 8.5] (see also [7]), in Figs.  1,  2,  3 we represent graphs whose verti-
ces are the terms in �O (we use bullets for the terms in PO and a star for the unique 
term in �O ⧵ PO ), and whose edges are given by either neighbour couples of terms in 
�O (Fig. 1), or non-multiplicative couples of terms �O in J

�O,deg (Fig. 2) or non-mul-
tiplicative couples of terms PO in JPO

 (Fig.  3). In Figs.  2 and  3, we use arrows for 
edges; the arrow starts from bi and ends at bj if (bi, bj) is a non-multiplicative couple 
with x

�
bi = �bj.

Remark 5  Observe that the non-multiplicative couples of terms in PO of JPO
 which are not 

neighbour couples of terms in �O of J
�O,deg are such that x

�
bi = �bj with deg(𝛿) = s > 1 . 

In this case, there are bi2 ,… bis−1 ∈ �O ⧵ PO such that (bi, bi2 ) , (bis−1 , bj) and , for every 
t ≥ 2 , (bit , bit+1 ) are neighbour couples of terms in �O of J

�O,deg . In Example 5, this is the 
case for the non-multiplicative couples (b6, b5) and (b7, b5) of terms in PO of JPO

.
This means that in general there are fewer S-polynomials to consider in Proposition 1(2) 

than those in Proposition 3(2) or Proposition 4(2).

Fig. 1   Neighbour couples for 
J
�O,deg

b1

b3 b2

b6

b5 b8 b7 b4

Fig. 2   Non-multiplicative cou-
ples for J

�O,deg

b1

b3 b2

b6

b5 b8 b7 b4
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4 � Border and Pommaret marked functors and their representing 
schemes

From now on, for what concerns border reduction structures, given a finite order ideal O , 
we only consider the border reduction structure J

�O,deg , which will be simply denoted by 
J
�O.

Given a finite order ideal O , the goal of this section is proving that the two affine 
schemes, which respectively parameterize �O-marked bases and PO-marked bases, are 
isomorphic.

Definition 13  [9, Appendix A] Let O be a finite order ideal and J = (H,L, T) a reduction 
structure with (H) = (� ⧵O) . The functor

associates to every Noetherian k-Algebra A the set Ms
J
(A) consisting of all the ideals 

I ⊂ RA generated by an H-marked set, and to every morphism of Noetherian k-algebras 
� ∶ A → A� the morphism Ms

J
(�) ∶ Ms

J
(A) → Ms

J
(A�) that operates in the following 

natural way:

The following subfunctor of Ms
J

associates to every Noetherian k-Algebra A the set Mb
J
(A) consisting of all the ideals 

I ⊂ RA generated by an H-marked basis, and to every morphism of Noetherian k-algebras 
� ∶ A → A� the morphism Mb

J
(�) ∶ Mb

J
(A) → Mb

J
(A�) that operates in the following 

natural way:

Remark 6  The monicity of marked sets and bases ensures that marked sets and bases are 
preserved by extension of scalars (see also [9, Lemmas A.1 and A.2]).

Ms
J
∶ Noeth-k-Alg ⟶ Sets,

Ms
J
(𝜙)(I) = I ⊗A A

�.

Mb
J
∶ Noeth-k-Alg ⟶ Sets,

Mb
J
(𝜙)(I) = I ⊗A A

�.

Fig. 3   Non-multiplicative cou-
ples for JPO

b1

b3 b2

b6

b5 b8 b7 b4
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The functor Ms
J

 is the functor of points of an affine scheme MsJ  isomorphic to �N , 
for a suitable integer N. More precisely, if L

�
= O for every � ∈ H , then Ms

J
 is the func-

tor of points of the affine scheme MsJ ≃ �
|H|⋅|O| [9, Lemma A.1].

We now investigate Mb
J
�O

 and Mb
JPO

 more in detail in order to understand the relation 
among them.

Definition 14  Let O = {�1,… , �
�
} be a finite order ideal and J = (H,L, T) any reduction 

structure with H = {�1,… , �m} a set of generators of the ideal (� ⧵O) and L
�
∶= O , for 

every � ∈ H . Let C ∶= {Cij|1 ≤ i ≤ m, 1 ≤ j ≤ �} be a new set of parameters. The generic 
H-marked set is the set of marked polynomials {g1,… , gm} ⊂ RK[C] where

Observe that the generic H-marked set is an H-marked set in RA with A = K[C].
The idea of generic �O-marked set appears in the literature also with the name �O

-prebasis, for instance in [18, Definition 3.1] and earlier in [12, Section 7.1, in particular 
Equation (29)]. We denote the generic �O-marked set by B , and observe that, up to rela-
belling the parameters C, B always contains the generic PO-marked set, that we denote 
by P . From now on we denote by B′ the set B ⧵P and by C̃ the set of parameters in the 
polynomials of B′.

Example 6  We consider again the finite order ideal O = {1, x1, x2, x1x2} . Then, the generic 
�O-marked set B is given by the following polynomials:

Observe that in this case the generic PO-marked set P is equal to {b1, b2, b3} , B
′ is equal 

to {b4} , C consists of 16 parameters and C̃ = {C4,1,C4,2,C4,3,C4,4}.

The functor Mb
�O

 (resp. Mb
PO

 ) is the functor of points of a closed subscheme of 
Ms

�O = �
|O|⋅|�O| (resp. MsPO

= �
|O|⋅|PO| ), see [18, Proposition 4.1] and [20, Proposition 

3] (resp. [4, Theorem 6.6]). We now recall the construction of the two subschemes repre-
senting the functors Mb

�O
 and Mb

PO

.
Given a polynomial in K[C][x1,… , xn] , the coefficients in K[C] of the terms in the vari-

ables x1,… , xn are called �-coefficients.

Definition 15  Let P = {bi ∈ B|Ht(bi) ∈ PO} ⊂ B be the generic PO-marked set. For 
every pr, ps ∈ P such that (Ht(pr), Ht(ps)) is a non-multiplicative couple, consider the O
-reduced polynomial h�

rs
∈ ⟨O⟩A such that S(pk, ps) →+

PJPO

h�
rs

 . Let 𝔓 ⊂ K[C ⧵ C̃] be the 
ideal generated by the �-coefficients of the polynomials h′

rs
 . The affine scheme 

Spec (K[C ⧵ C̃]∕𝔓) is the Pommaret marked scheme of O.

Theorem 2  [4, Theorem 6.6] Mb
JPO

 is the functor of points of Spec (K[C ⧵ C̃]∕𝔓).

gi = �i −

�∑

j=1

Cij�j.

b1 ∶= x2
1
− C1,1 − C1,2x1 − C1,3x2 − C1,4x1x2,

b2 ∶= x2
2
− C2,1 − C2,2x1 − C2,3x2 − C2,4x1x2,

b3 = x2
1
x2 − C3,1 − C3,2x1 − C3,3x2 − C3,4x1x2,

b4 ∶= x1x
2
2
− C4,1 − C4,2x1 − C4,3x2 − C4,4x1x2.
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Definition 16  Let B = {bi}i=1,…,m be the generic �O-marked set. For every br, bs ∈ B 
such that (Ht(br), Ht(bs)) is a neighbour couple, consider the O-reduced polynomial such 
that S(br, bs) →+

BJ
�O

hrs . Let � ⊂ K[C] be the ideal generated by the �-coefficients of the 
polynomials hrs . The affine scheme Spec (K[C]∕�) is the border marked scheme of O.

The border marked scheme was introduced in [18], and it was further investigated in 
[13, 20]. In [20] the interested reader can find a different proof of the fact that Mb

J
�O

 is 
the functor of points of the border marked scheme. In [18, Definition 3.1], although the 
functor is not explicitly defined, the authors define the border marked scheme using the 
commutativity of formal matrices.

For the sake of completeness, we explicitly prove that the affine scheme defined by 
the ideal � of Definition 16 represents the functor Mb

J
�O

 just like the schemes in [18, 
Definition 3.1], [20, Proposition 3]. Our proof is inspired by [9, Appendix A].

Theorem 3  Mb
J
�O

 is the functor of points of Spec (K[C]∕�).

Proof  For every K-algebra A, there is a 1-1 correspondence between the set 
Hom(K[C]∕�,A) and Mb

J
�O

(A) . In fact, on the one hand we consider a morphism of 
K-algebras � ∶ K[C]∕� → A and extend it in the obvious way to a morphism between the 
polynomial rings RK[C]∕� and RA . Then, we can associate to every such morphism � the �O
-marked basis �(B) , where B is the generic �O-marked set. The ideal generated by �(B) 
belongs to Mb

J
�O

(A).
On the other hand, every �O-marked basis B = {bi = 𝜏i −

∑
cij𝜎j�cij ∈ A}i=1,…,m ⊂ RA 

generates an ideal belonging to Mb
J
�O

(A) and defines a morphism �B ∶ K[C]∕� → A 
given by �B(Ci,j) = ci,j , thanks to Proposition 3.

This 1-1 correspondence commutes with the extension of scalars, because 
for every morphism � ∶ A → A� and for every �O-marked basis B we have 
�(B) = {�(bi) = �i −

∑
�(cij)�j} , hence �

�(B) = �◦�(B) . 	�  ◻

The functorial approach combined with Theorem 1 gives the following result.

Corollary 1  For a given finite order ideal O , the border marked scheme and the Pommaret 
marked scheme are isomorphic.

Proof  By Theorem 1, for every K-algebra A the sets Mb
J
�O

(A) and Mb
JPO

(A) are equal. 
Hence, by Yoneda’s Lemma, Mb

J
�O

 and Mb
JPO

 are the functor of points of the same 
scheme, up to isomorphism. Hence, Spec (K[C]∕�) is isomorphic to Spec (K[C ⧵ C̃]∕𝔓) . 	
� ◻

In [4] and in [6] (in the latter case, under the hypothesis that K has characteristic 
0), the authors present an open cover for the Hilbert scheme parameterizing d-dimen-
sional schemes in ℙn

K
 with a prescribed Hilbert polynomial; the open subsets are Pom-

maret marked schemes, but in order to cover the whole Hilbert scheme, the action of 
the general linear group GLK(n + 1) is needed. We now highlight that, for the Hilbert 
scheme parameterizing 0-dimensional subschemes of length m in �n

K
 , the Pommaret 

marked schemes cover the whole Hilbert scheme without any group action. In the next 
statement, Proposition 5, we also recall the known analogous result for border marked 
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schemes, see [18, Remark 3.2 items b) and e)], [19, Remark 2.8] and [20, Proposition 
1].

Proposition 5  Consider the Hilbert scheme Hilbm(�n
K
) that parameterizes 0-dimensional 

schemes of �n
K

 of length m. Let O be the set containing the finite order ideals O in RK such 
that |O| = m . Then we have the two following open covers

where MbJ
�O

 (resp. MbJPO

 ) is the scheme defined in Definition 16 (resp. Definition 15) 
that represents the functor Mb

J
�O

 (resp. the functor Mb
JPO

 ). For every O ∈ O , the open 
subset MbJ

�O
 of Hilbm(�n

K
) is isomorphic to the open subset MbJPO

.

Proof  See [18, Remark 3.2 b)] and [20, Proposition 1] for the fact that, as O varies in O , 
the border marked schemes cover Hilbm(�n

K
) . The fact that also Pommaret marked schemes 

cover Hilbm(�n
K
) , as O varies in O , is a consequence of [4, Lemma 6.12 and Proposition 

6.13], combined with the fact that for every O ∈ O , the ideal generated by � ⧵O is quasi-
stable, i.e. has a Pommaret basis. The isomorphism between the open subsets of the open 
covers is that of Corollary 1. 	�  ◻

5 � The isomorphism between the border and Pommaret marked 
schemes

In the present section we explicitly present an isomorphism between the border and the 
Pommaret marked schemes of the same finite order ideal O . We describe the algebraic rela-
tion between the ideals � ⊂ K[C] and 𝔓 ⊂ K[C ⧵ C̃] defining the two schemes and, as a 
byproduct, obtain an effective method to eliminate the variables C̃.

Theorem 4  Let O be a finite order ideal. Let � ⊂ K[C] be the ideal defining the border 
marked scheme of O and 𝔓 ⊂ K[C ⧵ C̃] be the ideal defining the Pommaret marked scheme 
of O . Then,

Proof  Consider the generic �O-marked set B and the generic PO-marked set P contained 
in B . Let B� = {b�

i
} be the set of marked polynomials in B ⧵P and denote by C̃ the 

parameters appearing in the polynomials in B′ . Thanks to Theorem 1, we can obtain the 
ideal � defining the border marked scheme in the following alternative way with respect to 
Definition 16.

Consider ��
i
∈ �O ⧵ PO and let b′

i
 be the marked polynomial in B such that Ht(b�

i
) = �

�
i
 . 

By the Pommaret reduction relation, compute the unique O-reduced polynomial h′
i
 such 

that

Let �′ be the ideal in K[C] generated by the �-coefficients of b�
i
− (��

i
− h�

i
) , for 

�
�
i
∈ �O ⧵ PO . Observe that the �-coefficients of b�

i
− (��

i
− h�

i
) are of the form Cij − qij , 

Hilbm(�n
K
) = ∪O∈OMbJ

�O
= ∪O∈OMbJPO

,

𝔓 = 𝔅 ∩ K[C ⧵ C̃].

(2)�
�
i
→

+
PJPO

h�
i
.
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where Cij ∈ C̃ and qij ∈ K[C ⧵ C̃] . By Theorem 1, the following equality of ideals in K[C] 
holds:

Since the variables C̃ only appear in the generators of �′ and not in the generators we con-
sider for � , then we obtain the thesis. 	�  ◻

Corollary 2  Let O be a finite order ideal. There is a projection morphism from �|C| to �|C⧵C̃| 
such that its restriction to the border marked scheme is an isomorphism between the border 
marked scheme and the Pommaret one.

Proof  With the notation introduced in the proof of Theorem 4, let � be the K-algebra sur-
jective morphism K[C] → K[C ⧵ C̃] such that

The morphism � corresponds to the morphism 𝜙 ∶ �
|C⧵C̃|

→ �
|C| , which 

associates to a closed K-point P ∶= (a1,… , a|C⧵C̃|) the closed K-point 
Q ∶= (a1,… , a|C⧵C̃|, qi,j(a1,… , a|C⧵C̃|)).

The kernel of � coincides with the ideal �′ generated by the polynomials Ci,j − qi,j , as Ci,j 
varies in C̃ . Hence, from � we obtain a K-algebra isomorphism 𝛷̄ ∶ K[C]∕𝔅�

→ K[C ⧵ C̃] 
which corresponds to an isomorphism 𝜙̄ ∶ �

|C⧵C̃| = Spec (K[C ⧵ C̃]) → Spec (K[C]∕𝔅�) 
that is the inverse of the restriction to Spec (K[C]∕��) of the projection from A|C| to �|C⧵C̃| .

Since �(�) = � , from � we obtain a K-algebra isomorphism 
𝛹 ∶ K[C]∕𝔅 → K[C ⧵ C̃]∕𝔓 , which corresponds to the inverse of the desired projection 
from Spec (K[C]∕�) to Spec (K[C ⧵ C̃]∕𝔓) . 	�  ◻

In the next Example  7, the polynomials generating �′ are also generators of � , 
but this does not happen in general, although linear terms often appear in the gen-
erators of � , allowing the elimination of some variables in C. Actually, the polyno-
mials we consider to generate the ideal � have degree ≤ 2 [18, Remark  3.2 item  a)]. 
The generators of � have degree bounded from above by D(Dn − 1)∕(D − 1) , with 
D ∶= max{deg(�)|� ∈ O} + 1 [4, Corollary 7.8].

We can summarize the computational features of the elimination of parameters from 
� described in Theorem 4 with the following.

Corollary 3  Let O be a finite order ideal. Consider the ideal � ⊂ K[C] defining the border 
marked scheme as described in Definition 16 and the ideal �′ as defined in the proof of 
Theorem 4. 

(1)	 The number of parameters |C̃| that are eliminated from � in Theorem  4 is 
|O| ⋅ (|�O| − |PO|);

(2)	 for every � ∈ �O ⧵ PO , the generators of �′ obtained from � by (2) are polynomials in 
K[C] of degree bounded from above by (deg(�) − 1)(Dn − 1)∕(D − 1) , with D as above.

(3)� = �K[C] +��.

𝛷(Ci,j) ∶=

{
qi,j ∈ K[C ⧵ C̃], if Ci,j ∈ C̃

Ci,j, otherwise.
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Proof  Item (1) is immediate by looking at the generic �O-marked set B . For what con-
cerns item (2), it is sufficient to consider the polynomial h

�
∈ ⟨O⟩ such that � →

+
PJPO

h
�
 

and apply [4, Theorem 7.5]. 	�  ◻

So, in general the generators of �′ have degree strictly bigger than 2 and do not 
belong to the set of generators of � we consider, as Example 8 will show.

Finally, we underline that Corollary  2 gives an embedding of the border marked 
scheme Spec (K[C]∕�) in an affine space of dimension lower than |C| , namely of dimen-
sion |C ⧵ C̃| . However, there might be embeddings of the border marked scheme in aff-
ine spaces of even smaller dimension, as we highlight in the following Example 7. Nev-
ertheless, when |C ⧵ C̃| ≪ |C| , in general it is not possible to obtain an embedding in an 
affine space of dimension |C ⧵ C̃| with Gröbner elimination or direct computations, see 
Example 8.

Example 7  Consider the finite order ideal O = {1, x1, x2, x1x2} and the generic �O-marked 
set B as defined in Example 6. In this case, the ideal � ⊂ K[C] of Definition 16 is gener-
ated by the following polynomials:

They are obtained computing the O-reduced forms modulo B by →+
BJ

�O

 of the S-polyno-
mials of the neighbour couples (b1, b3) , (b2, b4) , (b3, b4) . The ideal 𝔓 ⊂ K[C ⧵ C̃] of Defini-
tion 15 is generated by the following polynomials

Among the generators of � , there are polynomials containing C4,i , i = 1,… , 4 . These vari-
ables do not appear in the generators of � , because the polynomial b4 is not involved in its 
construction. The polynomials that generate ��

⊂ K[C] as in Theorem 4 are

−C1,3C2,1 − C1,4C4,1 + C3,1, −C1,3C2,2 − C1,4C4,2 + C3,2,

−C1,3C2,3 − C1,4C4,3 − C1,1 + C3,3, −C1,3C2,4 − C1,4C4,4 − C1,2 + C3,4,

−C1,1C2,2 − C2,4C3,1 + C4,1, −C1,2C2,2 − C2,4C3,2 − C2,1 + C4,2,

−C1,3C2,2 − C2,4C3,3 + C4,3, −C1,4C2,2 − C2,4C3,4 − C2,3 + C4,4,

C1,1C4,2 − C2,1C3,3 + C3,1C4,4 − C3,4C4,1, C1,4C4,2 − C2,4C3,3 − C3,2 + C4,3

C1,2C4,2 − C2,2C3,3 + C3,2C4,4 − C3,4C4,2 + C4,1,

C1,3C4,2 − C2,3C3,3 + C3,3C4,4 − C3,4C4,3 − C3,1.

− C1,1C1,4C2,2 − C1,4C2,4C3,1 − C1,3C2,1 + C3,1,

− C1,3C1,4C2,2 − C1,4C2,4C3,3 − C1,3C2,3 − C1,1 + C3,3,

− C1,2C1,4C2,2 − C1,4C2,4C3,2 − C1,3C2,2 − C1,4C2,1 + C3,2,

− C1,4
2C2,2 − C1,4C2,4C3,4 − C1,3C2,4 − C1,4C2,3 − C1,2 + C3,4,

− C1,1C1,2C2,2 + C1,1C2,2C3,4 − C1,1C2,4C3,2 − C1,4C2,2C3,1 − C1,1C2,1

+ C2,1C3,3 − C2,3C3,1,

− C1,2
2C2,2 + C1,2C2,2C3,4 − C1,2C2,4C3,2 − C1,4C2,2C3,2 − C1,1C2,2+

− C1,2C2,1 + C2,1C3,4 + C2,2C3,3 − C2,3C3,2 − C2,4C3,1,

− C1,2C1,3C2,2 + C1,3C2,2C3,4 − C1,3C2,4C3,2 − C1,4C2,2C3,3 − C1,3C2,1 + C3,1,

− C1,2C1,4C2,2 − C1,4C2,4C3,2 − C1,3C2,2 − C1,4C2,1 + C3,2.
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The morphism � of Corollary 2 operates in the following way: �(Ci,j) = Ci,j for i = 1, 2, 3 
and every j, and

The morphism � embeds the border marked scheme Spec (K[C]∕�) ⊂ �
16 into an affine 

space of dimension |C ⧵ C̃| = 12 . We highlight that this is not the smallest possible embed-
ding for this border marked scheme, which is actually isomorphic to �8 , as shown by direct 
elimination in [18, Example 3.8].

Example 8  Consider the order ideal O = {1, x1, x2, x3, x
2
1
, x3

1
, x4

1
} in the polynomial ring 

RK = K[x1, x2, x3] . The border of O is

and the Pommaret basis of the ideal generated by � ⧵O is

Observe that, in this case, the Pommaret basis of the ideal generated by � ⧵O coincides 
with the minimal monomial basis, because (� ⧵O) is a stable ideal.

For the interested reader, ancillary files containing the generic marked sets B and P , 
the set of eliminable parameters C̃ and the generators of the ideals � , � and �′ are avail-
able at

https://sites.google.com/view/cristinabertone/ancillary/borderpommaret
Constructing � as in Definition 16 and thanks to Theorem 3, the border marked scheme 

of O is a closed subscheme of �|C| = �
84 , and its defining ideal is generated by a set of 126 

polynomials of degree 2.
Constructing � as in Definition  15 and thanks to Theorem  2, the Pommaret marked 

scheme of O is a closed subscheme of �|C⧵C̃| = �
42 , and its defining ideal is defined by a 

set of 56 polynomials of degree at most 5.
The polynomials Cij − qij , which generate the ideal �′ and allow the elimination of the 

42 parameters C̃ , have degrees between 2 and 4. In particular, there are 14 polynomials of 
degree 2 that generate �′ and also belong to the set of polynomials given in Definition 16 
generating � . Hence, 14 of the 42 variables in C̃ can be eliminated by some generators of 
� . Then among the polynomials generating �′ there are 14 polynomials of degree 3 and 14 
polynomials of degree 4, which do not belong to the set of the generators of � we consider, 
which have degree 2.

So, Theorem 4 has two important consequences on the elimination of variables from the 
border marked scheme. Firstly, it identifies C̃ as a set of eliminable variables. In the present 
example, if one only knows that 42 of the variables in C are eliminable, it is almost impos-
sible to find an eliminable set of this size without knowing that such a set is given by the 
variables appearing in marked polynomials with head terms in �O ⧵ PO . Secondly, even if 
one knows that the variables in C̃ can be eliminated, this is not feasible by a Gröbner elimi-
nation. We stopped the computation of such a Gröbner basis on this example after one hour 

C4,1 − C1,1C2,2 − C2,4C3,1, C4,2 − C1,2C2,2 − C2,4C3,2 − C2,1,

C4,3 − C1,3C2,2 − C2,4C3,3, C4,4 − C1,4C2,2 − C2,4C3,4 − C2,3.

�(C4,1) = C1,1C2,2 + C2,4C3,1, �(C4,2) = C1,2C2,2 + C2,4C3,2 + C2,1,

�(C4,3) = C1,3C2,2 + C2,4C3,3, �(C4,4) = C1,4C2,2 + C2,4C3,4 + C2,3.

�O = {x2x1, x
2
2
, x3x1, x3x2, x

2
3
, x2x

2
1
, x3x

2
1
, x2x

3
1
, x3x

3
1
, x5

1
, x2x

4
1
, x3x

4
1
},

PO = {x2
3
, x3x2, x

2
2
, x3x1, x2x1, x

5
1
}.
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of computation by CoCoA 5 (see [1]) and Maple 18 (see [22]), while it takes only a few 
seconds to compute the polynomials generating �′ by →+

PJPO

.
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