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REGULARITY OF GLOBAL SOLUTIONS OF PARTIAL DIFFERENTIAL
EQUATIONS IN NON ISOTROPIC ULTRADIFFERENTIABLE SPACES
VIA TIME-FREQUENCY METHODS

CLAUDIO MELE, ALESSANDRO OLIARO

ABSTRACT. In this paper we study regularity of partial differential equations with polynomial
coefficients in non isotropic Beurling spaces of ultradifferentiable functions of global type. We
study the action of transformations of Gabor and Wigner type in such spaces and we prove
that a suitable representation of Wigner type allows to prove regularity for classes of operators
that do not have classical hypoellipticity properties.
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1. Introduction

In this paper we are concerned with the regularity of linear partial differential operators with
polynomial coefficients in ultradifferentiable classes. The problem of regularity was first intro-
duced by Shubin [18] in the frame of Schwartz functions and tempered distributions; a linear
operator A : &' — &' is said to be regular if the conditions u € S, Au € S imply that
uw € §. In [18] Shubin formulates an hypoellipticity condition (in the global pseudodifferential
calculus developed there), proving that such condition is sufficient to have regularity of the
correponding operator. On the other hand, such hypoellipticity is far to be necessary, as there
are several examples of operators which are not hypoelliptic but are regular; for instance, in
[19] the regularity of the Twisted Laplacian

1 2 1 2
" L= (02 + (0 Do)

is proved, despite the fact that L is not hypoelliptic in the sense of Shubin; in [9], a class
of twisted operators containing the Twisted Laplacian is studied, and a characterization of
regularity for twisted differential operators of second order is provided; also in this case, the
twisted operators consider in [9] are never hypoelliptic in the sense of Shubin. On the other
hand, the problem of characterizing regularity for classes of operators is quite hard. Even in
very particular cases (as for ordinary differential operators with polynomial coeffcients) neces-
sary and sufficient conditions for regularity are not known; an interesting work in this sense
is [16], where necessary and sufficient conditions for ordinary differential operators are found,
but under additional conditions on the roots of their Weyl symbol. The notion of regularity (in
global sense) can be defined each time we have a (global) space of functions and a corresponding
space of (ultra)distributions, and operators acting on the ultradistribution space. In particular,
this problem can be considered in the frame of ultradifferentiable classes. Ultradifferentiable
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spaces have been widely studied, starting from the work of Gevrey [12], who introduced an
intermediate scales of spaces between real analytic and C* functions in order to analyze the
regularity of solutions of partial differential equations. Then Komatsu [15], and later Beurling
[1] and Bjorck [2] introduced a class of ultradifferentiable functions, where the regularity (and
eventually the growth, when treating global spaces) is controlled by suitable weight sequences
or suitable weight functions. In [8], general results on the spaces defined through weight func-
tions are proved, and in [7] a comparison between spaces defined by weight sequences and by
weight functions is provided, proving that the two approaches have an intersections but there
are spaces that can be defined only through one of them. Then, a large amount of papers on
spaces of this kind have been produced, on properties of the spaces themselves, in connection
with the behavior of solutions of partial differential equations, or more recently also in connec-
tion with time-frequency analysis.

In this paper we study non isotropic spaces of global ultradifferentiable functions of Beurling
type, following the approach of [2, 8], and we analyze how tools from time-frequency analysis
can be profitably used to find large classes of examples of partial differential equations that are
regular in this ultradifferentiable setting. The connection between the partial differential equa-
tions world and the time-frequency analysis world has been profitably investigated in the last
years, and has produced interesting results; we refer for instance to [17], where the Héormander
global wave front set has been re-defined through Gabor transform and Gabor frames, and
to [4] and [6], where tools from time-frequency analysis are used in order to study wave front
set and nuclearity properties in the frame of ultradifferentiable spaces. In this paper we fix a
collection of weight function w;,o; for j =1,..., N (see Definition 2.1), and we denote by (2
and Y the functions
Q=w @ Qwy, X2=01D - Do,

ie., Qz) :=wi(x1)+ - +wny(zn), and analogously for ¥; then we consider the Fréchet space
SZ(RYN), defined as the set of all functions f € L'(RN) such that f, f € C* and

| exp(AQ) D f||s < 00, for each A > 0, a € N,
| exp(AZ) D f||oo < 00, for each A >0, a € NY.

Each of the weight can be non-quasianalytic or quasianalytic, as the results of the present
paper hold in both cases; these spaces allow different behavior in different directions, as well
as different decays of the function f and of its Fourier transform f . Observe that the Fourier
transform is no longer an automorphism on S, as it is on the Bjorck space S,,, but maps S
into S§2. Moreover, the spaces S contain as particular cases Beurling spaces of Gelfand-Shilov
type. We give different equivalent systems of seminorms for the space S&(RY), in the spirit of
the results contained in [3, 5], and we consider the problem of regularity in this setting. We
say that an operator is Sg-regular if the conditions u € (S3)', Au € S imply that u € S5. We
consider here partial differential operators with polynomial coefficients; our approach follows
an idea that is already present in some works related to engineering applications, see [10], [11].
In these papers some equations are analyzed, looking for the Wigner transform of the solution.
Instead of finding first a solution u, and then computing its Wigner transform, the equation
itself is Wigner-transformed, and, in some cases, the new equation allow to find directly the
the exact expression of the Wigner transform of the solution. This approach works well in
the cases of partial differential equations with polynomial coefficients, and has been already
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used to study regularity properties of solutions of partial differential equations, see for instance
[3, 9], where regularity in classical Schwartz spaces and in isotropic ultradifferentiable classes
is analyzed in dimension 1. Here we study the action of transformations from time-frequency
analysis, namely the Gabor transform

Vof(w.6) = [ expl-ite) o)t m)de
R
and the following transform of Wigner type

Wiglu](z,&) = /RN exp(—it)u (:p + %,:p — %) dt,

on the spaces S5, and we prove general results in arbitrary dimension that allow us to find
large classes of partial differential operators that are S3-regular. More precisely, we consider
here operators P in R?Y with polynomial coefficients of the form

P(z,y,D,,D,) = Z caﬁwaso‘nyDZDéj,
|a+B+y+p[<m
with 2,5 € RY, ¢apyy € C, and m € N. We show that P is Sy-regular if and only if P is
Sgll—regular for suitable weights €2; and X, where P satisfies
Wig[Pu] = PWiglu].

This allows us to construct classes of operators that are regular in our ultradifferentiable setting.
For instance, we prove that given a polynomial p(z, () = Z|a+m<m caﬂzagﬁ in R?Y with ¢,5 € C
and z,¢ € RN, with p(z,¢) # 0 for every (z2,¢) € R?*"| then the following operators are S3-

regular:
t+y\* (D, —D,\"
Pl - Z Cap ( 9 y) ( 9 y) )

latB|<m

Py, = Y cas(Du+ D)y — ),

latB|<m

D\ D, \"
Py = Z ca/;(x—?y) (x%—?y) :

la+B]<m

D, \* (D, g
by = Z Caﬂ(y+7> <7—y) .

la+B|<m

Moreover, the Twisted Laplacian is Szigzg—regular, for every weight functions wy, ws, o1, 9.
We then prove similar results considering, instead of the transformation Wig, a general repre-

sentation in the Cohen class, defined as Q[u] = x x Wig|u], for a kernel k € S'(R?Y).

The paper is organized as follows. Section 2 is devoted to the study of the space 8 and is
properties. In Sections 3 we analyze the action of the Gabor and Wigner transform on 85 and
in Sections 4 and 5 we study the SF-regularity through Wigner-like transform and through
Cohen class representations, giving some examples.
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2. Weight functions and the space SJ(R")

In this section we introduce the non-isotropic space 83(R”) of ultradifferentiable functions of
Beurling type. We start with the definition of weight function in the sense of [§].

Definition 2.1. A continuous increasing function w : [0,00) — [0, 00) is called a weight func-
tion if it satisfies the following properties:

(a) there exists K > 1 such that w(2z) < K(1 + w(x)) for every x > 0;

(B) w(x) =o(x) as x — oo;

(y) there exist a € R, b > 0 such that w(x) > a + blog(1l + x), for every x > 0;
(0) pu(x) =woexp(x) is a convex function.

Given a weight function we can extend w : R — [0,00) by defining w(z) = w(|z|) for all
x € R (of course, in the same way we could extend w to RY for every N). The condition

(B) is weaker than the condition of non-quasianalyticity floo = JS)Q dt < oo. When the latter
condition is satisfied, the spaces that we are going to define shall contain non trivial compactly
supported functions. All the results of this paper hold under condition (3), i.e., both in the

non-quasianalytic and in the quasianalytic case.

As standard, we define the Young conjugate ¢} of ¢, as
(2.1) o (s) :==sup{ts — p,(t)}, s>0.
>0

We recall that ¢}, is an increasing convex function on [0, +00) and it satisfies ¢ = ¢,

We now recall some known facts that shall be useful in the following. At first, there is no
loss of generality in assuming that w|j1 = 0; as a consequence, we easily have from (2.1)
that ¢*(0) = 0. Moreover the properties in the next proposition hold; they are well-known
and can be found in many references, we refer for instance to [5], where (in Section 2 and
in the Appendix) several basic properties of weights are collected and proved with minimal
assumptions.

Proposition 2.2. Let w be a weight function. Then
(1) For each A >0, j € Ny and x > 0 we have

2’ exp(—Aw(z)) < exp (Aso* (i)) ;

(2) For each A >0 and x > 1 we have

e (3 (1)) <o (- (v )t 1),

where a,b are the constants appearing in condition (7y);
(3) There exists a constant L > 0, depending on w, such that for every A > 0, p > 1 and

J € Ny,
P p—

for each 0 < X < ﬁ and for a suitable constant C, x > 0;

log p+1
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(4) For each A >0 and j € Ny

jI < Cyexp <>\<p* <§>) ,

for a suitable constant Cy > 0;
(5) For each x,y >0

w(r+y) < K(1+w(@)+wy)),

where K is the constant appearing in condition («). Observe that this condition is
weaker than subadditivity (i.e. w(x+7y) < w(x)+w(y)). The weight functions satisfying
(o) are not necessarily subadditive in general.

Consider a collection of weight function w;,o; for j =1,..., N. We denote by €2 and ¥ the
functions on RY defined by

(2.2) Q:wl@"'@w]v, E:Ul@"'@UN,

in the sense that Q(z) := wi(z1) + -+ + wy(zy), and analogously for ¥, for z € RY. We
can suppose without loss of generality that all the w; and all the o; satisfy condition («) of
Definition 2.1 with the same constant K. Similarly we assume that w; and o; satisfy condition
() with the same constants a and b, for every j =1,..., N.

We define the following space of rapidly decreasing ultradifferentiable functions of Beurling
type.

Definition 2.3. Let Q, ¥ be weight functions as in (2.2). We define S5(RY) as the space of
all functions f € LY(RYN) such that f, f € C®(RY) and satisfy

(2.3) | exp(AQ) D f |l < 00, for each A >0, a € NYY,
(2.4) | exp(AZ) D f||oo < 00, for each A >0, o € NY.
The corresponding (countable) family of seminorms
lexp(n) D flloo, | exp(mE) D flo,
with n,m € N, a, 8 € NJ', induces a topology of Fréchet space on S5 (RY).
Remark 2.4. The weight functions w; and o; in (2.2) of course do not need to be different. In

the case when some of the w; (or some of the o;) coincide we can put together the corresponding
variables, in the following sense: if for instance wo = wq, we can choose
Q= wi(x1) +wi(xe) +ws(zs) + -+ +wy(zN),
as in (2.2), or also
Q= wi(|(z1, 22)|) +ws(xs) + - +wn(zn),
and the corresponding space S5(RY) does not change. We have indeed that

wi (1) +wi(z2) < 2w ([(z1, 22)]) < 2w (|21] + |22]) < 2K (1 + wi(21) + wi(z2)),

since wy s increasing and satisfies Proposition 2.2 (5). In particular, if wy = =Wy =01 =
- =0y = w, the space 8§ (RY) coincides with the space S,, considered for instance in [2], [3],

51, 4]
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Remark 2.5. The condition (vy) ensures us that, for Q and ¥ as in (2.2), the space S&(RY)
is contained in S(RY), with continuous inclusion. Indeed, since log|x| < Z;VZI log(1 + |z;]),
given f € S§(RY) and a, B € NI, we have that

a
%D o < s expaltog ) D) < € sup exp ((Hle) ) 1D 0] < o
zeRN rzeRN
for some constant C, where b is the constant appearing in condition (), common for all w;.

Then we can rewrite the definition of S5(RY) as the set of all the rapidly decreasing functions
that satisfy (2.3) and (2.4).
Remark 2.6. The following facts can be easily proved.

(a) Given f € S(RY), since FF(f) = 2m)NRf, where Rf(z) = f(—x) is the reflection
operator, we have that f € S5(RYN) if and only if f € SE(RYN). Moreover the Fourier
transform F : S5(RY) — SE(RYN) is a continuous isomorphism.

(b) The space S5(RY) is closed under convolution, arithmetic product of functions, trans-

lation and modulation, where the translation and modulation operators are defined by
T.f(z) := f(x — 8) and M, f(x) := e f(x), respectively, where s,t,z € RV,

Definition 2.7. Let Q, ¥ be weight functions as in (2.2). We define (S3)'(RY) as the set of
the linear and continuous maps from Sg(RY) to C.

The next two lemmas are proved in [14], in the case of subadditive weight functions; the
proof in our case is strictly analogous and is omitted.

Lemma 2.8. Let 2, X be weight functions as in (2.2) and consider f,g € SE(RN), A > 0
sufficiently large. Then

[ exp(AQ)(f % g)lloc < Cll exp(KAQ) f |l || exp(KAQ) g o,
1expOAE)(f % §)lloe < Call exp(EAL) flloc|| exp(KAL) oo,

for a suitable positive constant C).

Lemma 2.9. Let Q, ¥ be weight functions as in (2.2) and consider f,g € S5(RN), X > 0.
Then the following properties hold:

(1) For every a € NYY,
esp (N D (ML) (1) = 3 ()G M (exp002(e + D™ g(0) 0
BLla
(2) For every a € N

| exp(A) D (MTog)lo < Cexp(EAQ(2)) S (g) €]l exp(KAQ) D™ g .
BLa

Proposition 2.10. Let Q, ¥ be weight functions as in (2.2); consider g € S5(RY), and a
measurable function F : R*N — C such that for each A\ > 0 there exists a constant C > 0 so
that

(2.5) |F(z, )| < Cxexp(=A(€2(z) + X(S))),
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for each (x,&) € R?N. Then the integral

(26) 10 = [ P &McTug(t) dod
R2N

defines a function f € S5 (RY).

Proof. Observe that the integral in (2.6) is absolutely convergent, and we can differentiate
under the integral sign. Fix A > 0 and o € N). We get from Lemma 2.9

[exp(AQ) D flloo < /R . 1expAQ()) F(x, §) D*(MeTzg) (t)l| oo my) dds

<02 ( ) /RQN exp(KAQ ()| F(x, §)[1€7]|| exp(KXQ) D P g o dwd

B<a

<G [ P OIP(@.O drd

where Cﬁ\,a = C’I&ax | exp(KAQ)D* Fgl|s and

P(z,&) =) (g) 1€ exp(KAQ(x)) = exp(KAQUx)) [ (1 + &)

B<a j=1

From (2.5) we have that
[ 1P @016 dodt < o,
R2N
and so, for every A > 0 and a € N,

(2.7) | exp(AQ) D f | oo < 0.
Now we observe that, since for z,£ € RN, F(T,g) = M_,g and F(Mcg) = T¢g,

exp(AS(8)Df (1) = /R _ exp(AD()) F(x, ) Dy’ (exp(ix) M. Teg) (t) dud,

where we have used that T M_, = exp(iz§)M_,T¢. Then, proceedings as before, we get

[expOAS)D fllo < Do [ 1F(0,)Qa. &) o

RQ
with Dyq = C'max || exp(KAX) D4 and

Qz, ) =) (g) |27 exp(KAS(€)) = exp(KAD(¢ H (1+ ;)

B<a

Since g € S§(RY) and F satisfies (2.5) we obtain
lexp(AS) D* flloe < o0
for every A > 0 and o € N} which, together with (2.7), gives f € Sg(RY). O
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Theorem 2.11. Let Q, 3 be weight functions as in (2.2) and consider g € SS(RY), g # 0.
Then for f € (S3)' (RYN) the following conditions are equivalent:

(1) f € SGRY);
(2) V,f satisfies (2.5).

Proof. (1) = (2): fix A > 0. Then from Lemma 2.8

exp(2AQ(2))|Vy f(2,€)| < eXp(2>\Q(£B))/ | exp(—it€) f(t)g(t — )| dt

RN
< Ol exp(2KAQ) flloo || exp(2KAQ) Ry || < 00,
since f,g € S§(RY). So for each (z,&) € R?Y and for every A > 0,
Vo f(2,)] < Chexp(—20Q().
Analogously, using the foundamental identity of the STFT we get
Vo (2, )] = 12m) ™ exp(=iz€)V; (€, —a)| < Dy exp(—2A5(¢)),

where Dy = Oy, exp(2AKY) f|so || exp(2AK L) R§|| 0. Finally,

Vo (2, )] = \/IVa (,8) < /CiDx exp(=AQ(x)) exp(—=A%(E))-

(2) = (1): from Proposition 2.10, with V, f in place of F', and using the inversion formula
for the STFT (see for instance [13]) we get f € S5(RY). O

Remark 2.12. Observe that in the proof of Theorem 2.11, when we prove that (1) = (2),
we only use the conditions:

| exp(AQ) flloo < 00, for each X >0,

| exp()\Z)fHoo < o0, foreach\ > 0.

Then if f satisfies these conditions, f € S&(RY).

Now, for © and ¥ as in (2.2) we consider the Young conjugates O, and @y, of w; and o;

respectively, 5 = 1,..., N, and we define the following functions for y = (y1,...,yn) € RY,
y; > 0 for every j =1,..., N:

(2.8) Q" () = ¢, () + -+l (un),  X(y) = w5, (Y1) + - + 95, (Un)-

We have several equivalent conditions for f to belong to S (RY), summarized in the next
result. Observe that the following theorem is proved, in the case of a single weight function,
in [3] (for L* norms) and in [5] (for LP-L? norms with p,q < 0o). Here we propose a unified
proof for every 1 < p,q < oo, in the case of non isotropic ultradifferentiable spaces.

Theorem 2.13. Let 2, ¥ be weight functions as in (2.2) and consider f € S(RY); let moreover
1 <p,q <oo. Then the following conditions are equivalent:

(1) f € SHRN), i.e., it satisfies (2.3) and (2.4).
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(2) f satisfies the conditions:
| exp(AQ)D*f||, < o0, for eachA >0, a € NI,

| exp(AZ)Df||, < 00, for eachA >0, o € NY.
(3) f satisfies the conditions:

(2.9) ||l exp(AQ) fl|, < oo, for eachA > 0,
(2.10) | exp(AZ) f]lq < 00, for each A > 0.

(4) f satisfies the conditions:
(2.11) | exp(AQ)z“f||, < 00, for eachA >0, a € N}y,
(2.12) | exp(AD)EX S|y < 00, for eachA > 0, o € NY.

(5) f satisfies the conditions:
(a) For each A > 0 and each 8 € NI there exists Cs > 0 such that for each o € N} :

(2.13) ‘exp (—/\E* (%)) 2’ D™ f

(b) For each pn > 0 and each o € N} there exists Cy,,, > 0 such that for each 3 € NJ':
< Ca,,u-

exp (—,uQ* (é>) P Def
H q
(6) For each A\, > 0 there exists C,, » > 0 such that for each o, B € N} :
o B
exp | =AY [ —) — uf)” (—)) P Def
( <)\> W

Before proving Theorem 2.13 we need two lemmas.

Lemma 2.14. Let 2,% be weight functions as in (2.2) and f € S(RY). If f € SS(RYN) then
for each A\, pu > 0 there exists C,, \ > 0 such that for each a, 8 € N}

exp (—)\E* (%) — s <§)) P D f

Proof. We start by proving that for each p > 0 and each a € N’ there exists C, , > 0 such

that for each 8 € Nj’:
exp (—,uQ* (é>> 2D f
U

From Proposition 2.2 (1) we have

|27 | exp (—MQ* (g)) < exp(p€(z)),

< O y;
p

(2.14)

(2.15) < G

p

(2.16) < Oy

o0

(2.17)

S Ca?u.

‘ [e.e]

and so

27 D% £ ()] exp (—m* (§)> < exp(uQ@))| D F(2)] < | exp(uQ) D" fllae < Co
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then (2.17) holds. Now we want to prove that for each A > 0 and each 3 € N}’ there exists
Cs,x > 0 such that for each a € Név:

(2.18) Hexp (—)\E* (%)) PDof

We can write 27 D* f (z) = F¢. o Fioe (t°D* f(t)); then, using standard properties of the Fourier

transform and Leibniz rule we have

UUEDY (f) (o) / Dz lDE T (e)) e

‘ < Cpa
o0

v<a,B

= -N al a—y[| DB £

ZB 2w [ Sl IDg T ) de

<o 30 BT / 1D 7 (€)) exp(2B(E) — 2X5(e) de.
v<a,8

By (2.4) we have that for each v <
lexp@NE()) D¢ flloo < Chx
for some C7 ,, > 0. By Proposition 2.2 (1) we have that for each v < a
" exp(=N'E(©)) < exp (V' (7))

Therefore, we get
27D f ()| < Cf 2 exp (AE(A»/ exp(=A'2(¢)) d¢,

for some C ,, > 0. Using Proposition 2.2 (3), we obtain that for each 0 < X < L[log—zﬂ and for

eachj=1,....N
2l exp <)\’90UJ (’)\f’)) < Cy exp ()\cpa (’O;\j’)),

for some C, > 0. Since )\ is arbitrary we can choose also A in an arbitrary way; moreover, we
can choose X' sufficiently large in such a way that [y exp(—X'3(€)) d§ < co. We finally have
that for each A > 0 there exists Cg y > 0 such that

|2° D f ()| < Cp.x exp <)\E* (%)) ,
so we have proved (2.18).
Now let us remark that, setting (z) = /1 + |z[> and M = [2E] 4 1, we have
Iz Df |l < Clla™(2)* D f1%,.
Since (z)*" =37 o ﬁx%, we get
M)

l="Defl3 < C > S = ]

01 |72 D f||2,.
[vI<M
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From condition (2.18), we then have that for each A > 0 and 3 € N}’ there exists Cz , > 0 such
that for each a € NJY

(2.19) "D fll2 < Chrexp (A2 (5) )

where C , depends only on 3, A and M. Analogously, from condition (2.17), by the convexity

of the Young conjugate function, we get that for each 1/ > 0 and o € N}’ there exists C,, ,» > 0
such that for each 8 € N}

M! 2
#2115 < € D iar =i Cow P (2”9* (M' 7))

ly|<M K
2
S Céy,p,’ exXp (:u O < B)) )

i
where C7, .+ depends only on «, ¢/ and M. Then, setting u = &, we get that for every o € NY
and p > () there exists a constant C’&H > (0 such that for each B e NYY,
(2.20) |2° D fl| < Coy 1 €XD (MQ* (é)) .

’ 1

By integration by parts, Leibniz rule, Holder’s inequality, (2.19) and (2.20) we obtain

"D fl3 = [ T @0 fo) do

2
<y (3)( f)7!||02“‘”f||2||9525‘”f||2

« 2ﬁ ! " * 205_7 * 25_7
< 2 ()i (o (352) o (e (5))

Now by Proposition 2.2 (4) and (3), and using the convexity of the Young conjugate we get

| Dol < > (3) (Qf ) 02 C0uCxexp (AE* (27&)) — (“Q* (25 ))
v<a,2p8
9 2
<o (1 (22) oo (e (2))

Then for each A, 1 > 0 there exists a constant C} , > 0 such that

o * * ﬁ
(2.21) 127D f[|> < C4 , exp ()\2 <A>+ Q (ﬂ))

It is easy to show that the hypothesis z°D®f € L>®°(RY) for all o, 8 € NI implies 2°Df €
H*(RY) for all o, 8 € N}V and each s > 0, where H*(RY) is the standard Sobolev space.
Writing ||| gs for the Sobolev H® norm, by Sobolev inequality there exists C” > 0 such that for
s>

12D f|loe < C"[|2” D
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So in conclusion, fix an integer s > [§] + 1. Then by (2.21)

l2° D% fllo < C" Y |ID" (2" D )5

Iv|<s

8 ()i (o2 (2557 oo ()

|v|<s 6<v,8

Proceeding as in the previous steps, using Proposition 2.2 (4) and the convexity of the Young
conjugate function we get (2.16). O

Lemma 2.15. Let Q, 3 be weight functions as in (2.2) and f € S(RY). Suppose that [ satisfies
the following conditions:

(a) For each A\ > 0 and each 8 € NI there exists Cs > 0 such that for each o € N} :

(2.22) Hexp (—/\Z* (%)) P D f

‘ < Cg;
o0

(b) For each pn > 0 and each o € N} there exists Cy,, > 0 such that for each 8 € N} :

exp (—,uQ* (é>) P Def
1

(2.23) < Cop-

‘ o0

Then f € S§(RY).

Proof. We prove initially that (2.3) holds. Let o € N and fix u > 0. By (2.23),

exp (—yQ* (é)) xﬁDO‘f ’ |:17_B| exp (MQ* (é))
< Coplz "l exp (MQ* (é)> ,
1

for each 8 € N} and x # 0. Since C,, does not depend on 3, we have that

| D f ()] <

D f(2)| < Cay inf |o?]exp (MQ* (é)) |
BENY L

Using Proposition 2.2 (2), we get that

[l exp(u2) D flloe < C4

Q1
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i.e., (2.3) is satisfied. Let us now prove (2.4). Fix 8 € N)Y; for £ # 0 and o € N} we have

DA = | [ o) explmint)da| = | [ €70 0)DS (exp(=iat)) da
RN
p! a 1B=711| po—> —a| g
<> (5_7)!(7) [ el 1D e o
@ s [T s [ QT
<2|7<za:ﬁ G- / exp<—)\2< Y, ))exp()\E ( Y ))X
[B—y|+N+1
x %ID?W@HFQ\ i,
where as usual (x) = /1 + |z|2. By condition (2.22), we obtain that

<x>‘ﬁ‘”‘+N+l\D§‘”f(x)\ o (e (457)) = G

for some Cp > 0. Moreover, applying Proposition 2.2 (3), we have that for each 0 < \ <
)\/
[llog 2+1]

D7f(©)] < Chrexp (A2 () ) 16701

for some Cf 5, > 0. Since this holds for each a € N§', we get from Proposition 2.2 (2)

IDPFE)] < G inf 167 exp (= (5))

< Corexp (— (A - %) o1(6) - %) exp (— (A - %) on(Ew) - %) ,

lexp(uS) D’ flloo < Cis
for some C’g# > 0, i.e., (2.4) is satisfied, and so f € SF(RY). O

that implies

Remark 2.16. In view of Theorem 2.13 we have that, despite in Lemmas 2.14 and 2.15 we only
prove an implication in one direction, they express in fact necessary and sufficient conditions.

On the other hand, in order to prove Theorem 2.13 for every 1 < p,q < oo, we only need, for
L norms, the results of Lemmas 2.1/ and 2.15.

Remark 2.17. Let w be a weight function as in Definition 2.1 and consider 1 < p < oco. Then
exp(—Aw) € LP(RY) if and only if X > & ,» where b is the constant appearing in condition (7)
of Definition 2.1.

Proof of Theorem 2.13. (3) = (1): we want to use Theorem 2.11. In particular, we fix
g € S§(RY), g # 0 and we prove that (2.5) holds for V, f(z,&). Consider r > —, where p’ is

the conjugate exponent of p, (if p = 1 we choose any r > 0). Using Holder mequahty we have
| exp(AQ(2))Vy f (2, €)| < exp(ANK)|| exp((AK 4 7)Q)gl|oo || exp(AKQ) f ||| exp(—rE2) ||,y < oo,
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thanks to Remark 2.17 and since f satisfies (2.9), g satisfies (2.3). Analogously, using the
foundamental identity of the STFT and ¢ instead of p, we get, for r' > bﬁq,

| exp(AZ(E))Vy f (2, €)] <
< 2m) N exp(ANK) | exp((AK + 1) E)§ oo | exp(AKE) ]|l exp(=r"S) | < oo,
thanks to Remark 2.17 and since f satisfies (2.10), g satisfies (2.4).
Hence we have that for each A > 0

Vaf (2, )] = \/IVaf (2, > < Cxexp(=AQ(z)) exp(—AL(E))-

for some Cy > 0. From Theorem 2.11, we get f € S5(RY).
(2) = (3): it is trivial, taking a = 0.

(1) = (2): we suppose that p,q < oo (otherwise the corresponding implication is trivial).
Fix A > 0, a € N}V and consider r > b—]\;. We have

[exp(AQ) D fI[F < [ exp((A + r)Q) D f[Z || exp(=rQ) [} < oo.
In the same way, setting ' > %

lexp(AZ) D f[[2 < [l exp((A + 1)) D* fl|% || exp(—+'E) |14 < oo.

(4) = (3): it is trivial, taking oo = 0.
(3) = (4): fix @« € N} and A > 0. From condition () we get
exp(AQ(2))[z] < Cq exp(NQ(z)).

Then

lexp(A)z° fl, < Call exp(AQ) fl, < oo,
since f satisfies (2.9). Analogously

lexp(AL)E fllg < Call exp(NE) fl, < oo,
since f satisfies (2.10).

(5) = (1): by Remark 2.6 it is sufficient to show that f € SZ(RM). In order to do this,
we shall prove that f satisfies the hypotheses of Lemma 2.15 with 2 and ¥ interchanged. Fix

M > [2%] + 1. For each o, 8 € N} and each £ € RY we have

AN NS
€7D ()] < (1)~ M |y [1{x)* DI (@ )]l < Out YK z)* 2> D,
250

for some Cyy > 0. Since (2)*" =375, ﬁx%, substituting in the previous estimate and

using (2.13), we obtain that for each A > 0 and each «, 7, € N(Z)V there exists Cq—yq250 > 0
such that

102005 5 st (0)romen(o (57))

v<a,B |6|<M
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From the convexity of the Young conjugate function and by Proposition 2.2 (4), we see that

eorfl<on XY s 0)(C) e (b2 (3)) «

v<a,B |§|<M

X Co—ryras) €XP ()\2* (ﬁ_;W)) :

From the convexity of Py, and by Proposition 2.2 (3), we finally get

0RO < Chen (Y2 (7)),

for each X' > 0, a € N{, and for some C, ,, > 0. In particular, f satisfies (2.23) with X* in
place of Q*. In the same way, from (2.14) we get that f satisfies (2.22) with Q* in place of ¥*,
and so by Lemma 2.15 and Remark 2.6 we have the claim.

(1.) = (6.): from Lemma 2.14 we have that f satisfies (2.16). Fix A\, > 0 and consider

M > [Zp] + 1 and «a, 3 € N}Y. Observe that

127D fllp < (22|l (2)** 27 D f]| oo
then, applying the same technique as above, we have that f satisfies (2.15)
(6.) = (5.): trivial. O

Proposition 2.18. Let Q, 3 be weight functions as in (2.2). Then S5(RY) is closed under
differentiation D* and multiplication by z*, with o € NYY.

Proof. Let o € NY and fix f € SF(RY). Since F(D* f)(f) = ¢of(¢) and DP(D°f)(z) =
Do+B f(z), thanks to Theorem 2.13 we get that D*f € SF(RY). Analogously, F(z®f)(¢) =
(=Dl Daf(€) and the same theorem implies that zf € S&(RY). O

3. Time-frequency representations and non isotropic ultradifferen-
tiable classes

In this section we analyze the action of some transformations, namely the Short-time Fourier
transform and a transform of Wigner type, on the space Sg. Concerning the Short-time Fourier
transform we have the following remark.

Remark 3.1. Let Q and X be weight functions in RY as in (2.2). By Theorem 2.11, we know
that for a non-zero window g € S§(RY) and for f € SGF(RY) we have

(3.1) Vo f(z,§)] < Crexp(—=A(Q2(x) + X(€)))

for each X > 0. Now we observe that since g € S§(RY) then, from Remark 2.6, g € S$(RYN).
Hence for each X > 0 we have that

(3-2) [FVaf(ysm)l = 120)" fF(=ma(y)] < Chexp(=AQ(n)CY exp(=A%(y)).



16 CLAUDIO MELE, ALESSANDRO OLIARO

Then by Theorem 2.13 we have that V, f € S8 (R*V).

Observe that the Short-time Fourier transform is defined as a partial Fourier transform of a
function in R?Y. We now analyze the action of partial Fourier transforms on ultradifferentiable
spaces. Given F' € S(R?Y), we denote by F, F (resp. F»F) the partial Fourier transform with
respect to the first (resp. second) N-variables; explicitly,

F:6) = [ | expl=iay)F(a,6)da

FoF(z,n) = / exp(—i€n) F(z, €) d.
RN
Observe that F = FoF; = F1F» and hence F~! = fflf{1 = ]:{1.7:{1-

Now we consider a collection of weight functions w; ;, 0;; for i € {1,2} and j =1,...,N; we
write

(3.3) Qz,y) =wi(@1) + - Fwin(@y) +wo(yn) + - +wan(yn),
(3.4) (&) = o01a(&) + -+ oun(En) + o21(m) + -+ + o2n ().
(3.5) O (z,y) = wialzn) + - +win(ey) +o21() + -+ o2n (Yn),
(3.6) 1(&m) = 011(&) + - F o (En) +wai(m) + -+ wan ()

Observe that we use the same notation € and ¥ for weights of the form (2.2) in RY and of the
form (3.3)-(3.4) in R?M, since they are the same object. In R*" we shall need in the following
the associated weights €2y, ¥1; it will always be clear what we mean when we write 2, 3.

Theorem 3.2. Let Q, ¥ be weight functions in R*N as in (3.3) and (3.4). We have the
following continuous maps.

(1) Fp: SF(RM) — S5 (R2VY);
(2) Fi: SH(RN) — S&H(R).

Proof. The proofs of the two points are very similar; we show in detail point (1).

Consider F' € S§(R?*Y). Then F satisfies conditions (2.9) and (2.10). Now fix A > 0 sufficiently
large (of course it is sufficient to prove the corresponding estimates on Ff for A large). We
have

FoF(z,m)] < / F(x,€)|d < / Con exp(—2X(Qz, €))) de
RN RN
o €XP(—2A (w1 (@1) + - - +win(zn))).
Moreover
FF (o)l = P FF )| < a7 [ 1FFG )t

< (2m)" . Doy exp(=2X(3(t,n))) dt = Djyy exp(—=2X(o2,1(m) + -+ + o2,n(1n))).



REGULARITY OF GLOBAL SOLUTIONS... 17

Therefore, we have

[ FoF (2, 1) = V[ F2F (2, )2 < /Cy\Dhy exp(=Au(z, n)).

Now similarly, we obtain

FREy.m)| = |@0YFEy,-n) < @0 / \F(z, —n)|dx

RN

< @n" [ Coexp(-2000m) do

= Chyexp(=2A(wa,1(m) + - + wan(nn))),

and
FRFyn) = |FFFy.m)| < / FFy,€)| de
RN
< / Doy exp(—2M(S(y, €))) dé = Diyy exp(—2Mo11 (1) + - + 01w (y))-
RN
Hence
FFF ()| = VIFFF @ mE < /O Dy exp(—AS1 (4, ).
Then by Theorem 2.13 we get FoF' € Sgll (R2N). O

Remark 3.3. We have already shown in Remark 3.1, that if f,g € S5(RY), for Q and X as
n (2.2), then V,f € Soost(R?N). We can re-obtain this result by means of Theorem 3.2, since

Vyf(,€) = (FaF)(w,€), where F(x,t) = f(£)g(t — ) belongs to SEEE(R2Y).
By standard duality arguments we have the following result.

Theorem 3.4. Let 2, ¥ be weight functions as in (3.3), (3.4). Then
(1) Fo: (S5 (RPN) — (S51)" (R?N);
(2) Fi: (S5)(R™) — (S51)" (R*Y).
Now we introduce a Wigner-like transform and study the corresponding mapping properties

in weighted ultradifferentiable spaces, as a preparation for applications to PDEs that we develop
in the last part of the paper.

Definition 3.5. Given u € S(R?*), we define Wig[u] : R*N — C as

t t
(3.7) Wiglu(z, &) = / exp(—it&)u (x + -, — —) dt.
RN 2 2
Remark 3.6. Let us consider the symmetric coordinate change T, acting on a function F on
RN as
_ § §
T F(x,&)=F x+§,x—§ )

T, is a linear and bounded operator on L*(R?*N). Moreover it is invertible with inverse given by

T F(z,€) :F(xgg,x—f).
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We observe that for u € S(R?N), Wig[u] = Fo%.u, and since both Fy and T, can be extended
in a standard way to (ultra)distributions, we can consider Wiglu] acting on ultradistributions.
Moreover, Wig is invertible with inverse Wig™' = 71 F, .

Proposition 3.7. Let Q, ¥ be weight functions as in (3.3), (3.4). Then the following properties
hold:
) Wig : S(R?Y) — S(R?N);
(2) Wig : S'(R¥) — S'(RY);
(3) Wig : SHR) > S5 (R
(4) Wig: (S3)/(R™) — (53)) (®2Y).

Proof. It follows from Remark 3.6, Theorem 3.2 and Theorem 3.4. U

Similarly we have the following result.

Proposition 3.8. Let 2, ¥ be weight functions as in (3.3),(3.4). Then the following properties
hold:
) Wig™! : S(R®) — S(R?V);
(2) Wig™t: §'(R¥V) — S'(R?N);
(3) Wig™ : S§(R?M) — S5 (R?);
(4) Wig™": (SF)(RN) — (S51) (R*Y).

4. Regularity of PDE in weighted ultradifferentiable spaces

In this section we give an application of the results that we have proved to the theory of
PDEs. In particular we analyze the problem of regularity of solutions of partial differential
equations with polynomial coefficients, and see how representation of time-frequency type can
be profitably used in this field. Results in this direction have been studied in [9] and [3], in
the classical Schwartz space and in isotopic ultradifferentiable classes, in dimension 1; here we
provide a general framework for anisotropic spaces in arbitrary dimension N.

In order to state or results we need some notations. Let R : B — BY, L € N, be a vector
of L operators acting on a space B; then there exist R; : B —+ B, j = 1,..., L, and for every
w € B we have

Rw = (le, e ,RL”IU).
In the following B will be either C*°(RM), S(RM), or S5 (RM). Then for every v € N¥, following
the multi-index notation we define the operator R” : B — B as the composition

R"=R]"---R}".
Observe that for every j = 1,..., L we have R; = R%, wheree;, j =1,..., L, is the j-th vector

of the canonical basis of RY (i.e., the vector having 1 in the j-th position and 0 elsewhere), so
we can write
R=(R%,...,R).
If for every 7,5 = 1,..., L the commutation relation
(4.1) R;R; = R;R;
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holds, then for every v, u € N we have
(4.2) R'R" = R

Now let T = (11, ...,T) be another vector of L operators acting on B, and a,b € C; then for
every v € N} the operator (aR + bT)? is the composition

(4.3) (aR +bT)" = (aRy + bT7)" -+ - (aRyp + bTp) ™.
Definition 4.1. Let us consider a function F € C®(R*N), F = F(z,§) for v, € RY. We

define the multiplication and differentiation with respect to the first and second N wvariables as
the vectors of operators acting on F(x,§) as
M¢F(z,8) = (1 F(2,€),...,znF(x,§)),
M F(z,§) = (&F(2,6), ..., EnF(x,6)),
DeF(x,8) = (Do, F(2,6), ..., Doy F(,6)),
D F(z,§) = (De, F(2,6), . .., Dey F(2,£)).
Remark 4.2. For a function F € C*(R*), FF = F(x,§) for x,6 € RN, and a multi-index
a € NY we have
Mg F(z,8) = a*F(x,§),  MJF(x,§) = £"F(x,§),
D¢ F(x,&) = DyF(x,§),  DGF(x,§) = DgF(x,§).

Now consider an operator with polynomial coefficients

(4.4) P(z,y, Dy, D)) = Y cappua®y’ DYDY,
lat+B+y+ul<m

with 2,y € RV, ¢4p,, € C, and m € N. If, for j = 1,...,4, the operators AJ and BJ are any of
Mg, Mg, D¢, Dg and a;,b; € R, 5 =1,...,4, we denote

P (a;A" + b,;B", asA? + 0,B? a3 A® + b;B®, a,A* + b, B?) =
@5 = N (@A +5BY (a:A% + 0:B%) (a3 A% + 5;B%) (0, A® + by B,

|a+B+y+p[<m

with the meaning (4.3).

Proposition 4.3. Fiz u € S(R*Y), a € NY, and let Wig be the transformation defined by
(3.7). Then the following properties hold:

(1) DEWiglu] = Wig[(Dg 4 Ds)*u];

(2) DeWig[u] = Wig[(Mg — Mg)o‘u];

(3) MpWiglu] = Wig[(¥=7) " u];

(4) MWiglu] = Wig [(%) ul.

Proof. We first observe that both D¢ 4+ Dg, Mg — Mg, w, and % satisfy the commu-

tation relation (4.1), so it is enough to prove the thesis for || = 1 and then the general case
follows by (4.2).
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(1) Let a = e;, where ¢; is the j-th vector of the canonical basis of RY. We can differentiate
under the integral sign, obtaining

€itis- . t t
D¢ Wiglu|(z,§) = D, / exp(—ité)u (:p + 5%~ 5) dt
RN
t t
= / exp(—ité) D, . <u (3: + -, — —)) dt = Wig[(Dg + D)% ul(z, €).
N ; 2'" 7 2
(2) As in the previous case, differentiating under the integral sign we get

Dy Wiglul(z,§) = D, /IRN exp(—ité)u (x + ;,x - —) dt

t
= —U; ex —1 3 - = d
/RN tjexp( zt&)u(w—l—zx 2) t
t; t t
:/RNexp( it€) (xj—a)u(:c—l—?x—é) dt

- /RN exp(—it) ( t2> <x + ;,x — 5) dt = Wig[(Ms — Mg)“ul(x, §).

(3) We have

- exp(—ité)u (x B
= /RN exp(—it{)% <:cj - %) u (a: + %,x — %) dt
+ /]RN exp(—itﬁ)% (xj + tj) u <x + %,x - %) dt

2
i (M)

My Wiglul(2.6) = o, |

(4) By integration by parts we obtain

2 2

1 e t t

- —it&\ DY Zop— -

2/RN exp(—it§)D¢ u (x+ 5% 2) dt
1 t t D¢ — DG\ “

——/ exp(—it&)D%u [+ =, — = | dt = Wig || ————) u] (z,¢).
2 Jax 2773 2

Mo Wiglul(z,§) =& . exp(—it&)u <x + E, xr— E) dt
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Remark 4.4. From Proposition 4.3 (1) and (4) we get

D (e}
WigIDgu] — (M " Tf) Wiglu),

Wig[D%] = <& — Ms>a Wiglul;

2
analogously, from Proposition 4.3 (2) and (3) we get
D\
Wig[Mgu] - <M - 7) Wiglu),

Do\ ..
wighzul = (My+ 3¢ ) Wiglal
for every a € NY. Indeed, for a =e;, j=1,..., N, such formulas are an easy consequence of
Proposition 4.3, and the general case follows from (4.2), since all the operators in consideration
satisfy the commutation relation (4.1).

Remark 4.5. Note that for every o, 8 € NY and for every u € S(R*) we have

(4.6) (D¢ + Dg)*(Mg — M¢)Pu = (Mg — M;)? (D¢ + Dg)%u
and
(4.7) (Df — Dg)*(M; + M¢)u = (Mg + M;)?(Dg — Dg)%u.
Indeed, from Proposition 4.3 (1), (2), we have
Wig[(Ds + Ds)*(Ms — M¢)?u] = D;DgWiglu] = DfD;Wig[u]

= Wig[(Ms — M)’ (Ds + Ds)ul,
and applying Wig=" we get (4.6). Analogously, (4.7) follows from Proposition 4.3 (3), (4).

Given a linear partial differential operator with polynomial coefficients as in (4.4) we denote

— M;+ Mt Df—D
P(Mf,Ms,Df,Ds)zP( =

San+DsaMs_Mf)7

with the meaning (4.5).

Proposition 4.6. Let P(z,y, D,, D,) be a linear partial differential operator as in (4.4). Then
for each u € S(R*N), the following formula holds:

(4.8) P(My, M, D¢, Dg)Wiglu] = Wig [P(My, Mg, Dy, Dg)u] .

Proof. From Proposition 4.3 we have that for each a, 3,7, u € NY

M, + Mg\ /Ds — Dy \”
MEMIDIDE Wiglu] = Wig [(%) (P52) e+ Dy o, - Mfwu]
and hence the thesis, since Wig is linear. U
Analogously if we denote

~ Dy Dy D¢ D
P(M¢,M;, Dy, D;) = P (Mf =Mt M M) ,
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with the same scheme of the previous proof we can show the following result.

Proposition 4.7. Let P(z,y, D,, D,) be a linear partial differential operator with polynomial
coefficients. Then for each u € S(R?*N), the following formula holds:

(4.9) Wig [P (Mg, Mg, D¢, Dg) u] = P(Mg, Mg, D¢, D) Wig|u].

From now on, we consider a collection of weight functions w; ;, 0;; for ¢ € {1,2} and j =
1,..., N, and we fix the weights 2, 3, Q; and ¥; in R*Y as in (3.3), (3.4), (3.5) and (3.6). Let
P(z,y, Dy, D,) be a linear partial differential operator as in (4.4). As in the classical Schwartz
case, it is easy to show that

P: 85 (R*) — S5 (R*Y)

P (Sq) (RM) — (83) (R*™).
Definition 4.8. Let P(z,y,D,, D,) be a linear partial differential operator with polynomial
coefficients and let Q, 3 be weight functions. We say that P is Sg-reqular if
(4.10) Pu e S5R*™) = u € S5(R™), for eachu € (S3) (R*™).

Theorem 4.9. Let P(x,y,D,,D,) be a linear partial differential operator with polynomial
coefficients, and let 0, 3 be weight functions. If P is S&-reqular then P is 3511 -reqular.

Proof. Suppose that P is S§;-regular. Fix u € (Sg')'(R?"Y) and suppose that Pu € S5 (R?Y).
From Proposition 4.6 we know that

PWiglu] = Wig [Pu]

hence from Proposition 3.7 we have Wig [Pu| € S5(R*V). Moreover, again by Proposition
3.7, Wiglu] € (S5)'(R*Y). Since P is Sg-regular, we then get that Wiglu] € Sg(R*Y). Finally
applying Wig~! we obtain from Proposition 3.8 that u € S5 (R*"), and so P is Sg;'-regular. [

Theorem 4.10. Let P(x,y, D,,D,) be a linear partial differential operator with polynomial
coefficients and let 0, 3 be weight functions. If P is S5-reqular, then P is Sgll -reqular.

Proof. Suppose that P is S§-regular. Fix u € (Sg!)'(R*") and suppose that Pu e Sgl (R?N).
From Proposition 4.7 we know that for each w € S(R*Y)

Wig [Pw] = PWigw).
Consider w = Wig(u) € (83)'(R?*") from Proposition 3.8. Hence we obtain that
Wig [Pw] = Pu,

and so Wig [Pw] € S5 (R*). Applying again Wig~' we get from Proposition 3.8 that Pw €
S5 (R?N). Since P is S3-regular we then obtain that w = Wig=!(u) € S5 (R*Y). Applying the
operator Wig we get from proposition 3.7 that u € 8511 (R*Y), and so P is Sgll—regular. O

Now we give some examples of applications of our results in order to find classes of regular
partial differential operators with polynomial coefficients.
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Proposition 4.11. Consider a multiplication operator by a polynomial, i.e. P(x,y,D,, D,) =
p(x,y), for some polynomial p. Then P is S5-reqular if and only if p(x,y) # 0.

Proof. Suppose that there exists a point (7,y) € R* such that p(z,7) = 0. Then p-dz 5 =
i.e. Pdzy = 0. Therefore, P is not Sy-regular. In the opposite direction, fix u € (83)'(R?
and suppose that Pu € SF(R?"). Hence there exists w € S5 (R?™) such that p(z,y) - u(z,y)

w(z,y). Since p(z,y) # 0, it is easy to show that u(x,y) = % € SF(R?N).

2o

O

Proposition 4.12. Consider an operator with constant coefficients, i.e. P(z,y, D, D,)
P(D,, D,), with symbol the polynomial p(¢,n). Then P is S8&-reqular if and only if p(€,m) # 0.

Proof. We have that Pu = F!(p- Fu). Using the previous Proposition 4.11 and Remark 2.6
we get the claim. O
We then obtain the following result.

Corollary 4.13. Let p(z,C) = >, s1<m Capz®CP, for cap € C and z,¢ € RY a polynomial in
R with p(z,¢) # 0 for every (z,¢) € R?N. Then the following operators are S&-regular:

x#—yaDm—D’8
ne B w50 (7))

latB|<m

P, = Y cap(De+ D) (y ),

la+B|<m

D,\* D\’
e B eleg) (e

la+B|<m

D, \* (D, g
P4 = Z Cag(y+7> <7—y) .

la+-B|<m

Proof. It is an immediate consequence of Propositions 4.11, 4.12, and Theorems 4.9, 4.10. [

5. Regularity of time-frequency representations in the Cohen class
with kernel in &'

In this section we extend the results of the preceding section to the case of representations in
the Cohen class based on the transformation (3.7).

Definition 5.1. Given a kernel k € §'(R*N), we define the operator Qu] = k * Wiglu], for
each u € S(R?N). An operator Q is called a time-frequency representation in the Cohen class
with kernel k.
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We shall consider in particular kernels x(x,y) whose Fourier transform (&, n) is given by
N
(5.1) R(€ ) = exp (—izpj(fj,m)) ,
j=1

where p;, j = 1,..., N are polynomials in R? of any order, with coefficients in R.
Now consider the polynomial p; = p;(s,t), for s,t € R; we indicate with

@) (s, 1) = D (s.0), (0apy)(s,1) = P (s,1).

0s ot
Then, for j =1,..., N we define the operators
(5'2) Rj = Rj(D:E7Dy) = (alpj)(ij’Dyj>a
(5'3) 15 = Tj(DIvDy) = (anj>(D$j7Dyj)7
R; = R;(Dx’Dy) = (01pj)(Ds; + Dy, y5 — x5),

(
T; = T7(D.. D,) = (00,)(Ds, + Dyy.; — ).

for x,y € RN. Observe that R; and Tj, are partial differential operators with constant coeffi-
cients in R?V, while R and T are partial differential operators with polynomial coefficients in
R2Y. We then define the corresponding vectors of operators

(5.4) R=(Ry,...,Ry), T=(TY,....,Tn),

(5.5) R*"=(R],...,Ry), T"=(T7,...,Tx).

Remark 5.2. By Proposition 4.6 we have that for every u € S(RY)
RWig[u] = Wig|[R*u], and TWiglu] = Wig[T"ul,

where Wig applied to a vector is intended as the vector of Wig applied to the components,
so that the equalities above are intended componentwise. Then, since R and T are vectors of
operators with constant coefficients, by the properties of the convolution we also have

RQu] = k *x RWig[u] = k * Wig[R"u] = Q[R"ul,
and analogously
TQlu] = Q[T u].
Lemma 5.3. Let R, T as before, Mg, Mg as in Definition 4.1, and k as in (5.1). Then
Mk = Rk and Mgk = Tk.

Proof. In order to prove the equality Mgx = Rk we have to show that for every j =1,... N,
zik(,y) = (O1p;)(Day, Dy, )k (2, y).
Applying the Fourier transform to both sides, this in turn is equivalent to
i0¢,~(§,m) = (01p;) (&5, m)R(E,m),

and this last equality trivially follows from (5.1). The other relation Mgk = Tk can be proved
in the same way. 0
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Proposition 5.4. Fiz u € S(R?N), and let r be the kernel defined by (5.1). Then for every
a € NY the following properties hold:

(1> D?Q[u] = Q[(Df + Ds)au];

(2) DEQ[u] = Q[(Ms — M¢)ul;

(3) MPQu] = Q[(*5™ + R*)"];

(4) M2QIu] = Q[ (P52 + T7) ).

Proof. In the following the integrals are intended as the action of the distribution x when &
is not a function.
(1) and (2) are trivial consequences of Proposition 4.3, since D§Q[u] = k x D§¢Wig[u] and
D2Qu] = k x D¢Wig[ul.
Concerning point (3) we first observe that the vector of operators w + R* satisfies the
commutation relations (4.1), so it satisfies (4.2); this means that it is enough to prove the
thesis for |a| = 1, and the general case follows by induction.

For o =ej, j=1,...,N, we get that

M{ Qlu)(x, &) = / z;k(t, s)Wig(x —t,& — s) dtds

R2N

= [ (= (e s Wigla 1.6 — 5) deds
R2N

+ / tik(t, s)Wig(x —t,& — s) dtds
R2N
= r* (M¢ Wig[u]) + (M k) x Wiglu].

Now we observe that, by Lemma 5.3, M’k = R%r, and since R% is an operator with constant
coefficients we have that (M’ k) x Wig[u] = k x R%Wig[u]. Then, applying Proposition 4.3
and Remark 5.2 we get

naﬁcmuux,g)sz*vvay[(54133¥5)6ju}4-K*qunarw%u]

o[

To prove (4) we first observe that the vector of operators % + T* satisfies the commutation
relations (4.1), so it satisfies (4.2); as before it is enough to prove the thesis for |a| = 1, and
the general case follows by induction. For a =e¢;, j =1,..., N, we get that

MY Qlu)(x,&) = [ &n(t,)Wigle — 1,6 — s) dids

R2N

:/ (& — s,)i(t, s)Wig(x — 1.€ — 5) dtds
R2N

+ / s;ik(t, s)Wig(x —t,& — s) dtds
R2N
= rk* (MZWiglu]) + (MZ k) * Wig[u].
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By Lemma 5.3 we have Mg’k = Tk, and since T% is an operator with constant coefficients
we have that (Mg’ k) x Wiglu] = k « T%Wig[u]. Then, applying Proposition 4.3 and Remark
5.2 we get

Ds —

M Qlul(z,€) = # + Wig KTD) u} i % Wig[(T")%]

-Q [(—Df;DS +T*>ej u] .

Remark 5.5. The following relations hold:
D

56 QMp = (Me-DE-R) Q. oMz - (Mo D R) Q.

2 2

indeed, from Proposition 5.4 with o = e, j =1,..., N, Remark 5.2, and the linearity of Q), we
get

(5.7) @[D?u]:(ﬁms—tr)a@[u], @[Dsmz(ﬁ—msw)amu};

D¢ Qlu] = Q[D¢'u] + Q[Dg'ul,

Dy Q[u] = QMg u] — Q[My'u],
e; 1 e 1 e ..
M Qlu] = SQIMZ] + LQIMu] + RO Qlu),
. 1 e 1 . .
MEQI] = LoDy - LoiDg) + QU
Then, combining these last relations we easily get (5.6) and (5.7) for a = e;; the general

case follows from the fact that the four vectors of operators (Mg — B= — R), (Mg + B+ — R),

(Bt —M;—T) and (Bt —M,+T) satisfy the commutation relations (4.1), so they satisfy (4.2).

Remark 5.6. The reason for the particular choice of k as in (5.1), with each polynomial
depending only on a single couple of variables (&;,n;) is related to Proposition 5.4 and Remark
5.5, since this choice ensures us that all the vectors of operators that we consider in those results
satisfy the commutation relation (4.1). It would be interesting to analyze the case when Kk is
chosen in such a way that &(£,m) = exp(—ip(&,n)) for a generic polynomial p in R*N with real
coefficients. However, in this case it looks very difficult to have good formulas corresponding to
the ones of Proposition 5.4.

Proposition 5.7. Let B(x,y, D,, D,) be a linear partial differential operator with polynomial
coefficients and let the kernel k € S'(R?*N) be defined by (5.1). Then for each u € S(R?N), the

time-frequency representation Qw] = kx Wig[w| satisfies:
(58) B(Mf, MS, Df, DS)Q[U] = Q [E(Mf, MS, Df, DS)U] s

where B is the linear partial differential operator with polynomial coefficients defined by

— M, +M D¢ — D
(5.9)  B(My,M.,D;,Dy) = B (% SRS T Dy 4D, M, - Mf) |
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Proof. The proof follows immediately from Proposition 5.4 and the linearity of Q). (l

Proposition 5.8. Let B(x,y, D,, D,) be a linear partial differential operator with polynomial
coefficients and let the kernel k € 8'(R?N) be defined by (5.1). Then for each u € S(R?N), the
time-frequency representation Qw] = kx Wigl[w| satisfies:

(510) Q[B(Mf7 MS; Df7 DS)U] - E(Mfu MS; Df7 DS)Q[“L

where B is the linear partial differential operator with polynomial coefficients defined by

(5.11)

~ Dy Dy D¢ D¢
B(Mg, Mg, D¢, Dg) = B(Mf_T_RMf‘i_?_R + M, — TT_M —I—T)
Proof. The proof follows immediately from Remark 5.5 and the linearity of Q. U

Now we want to study the action of @ on the spaces S5 (R?V).

Theorem 5.9. Fiz the kernel k € S'(R*) as in (5.1). Then the following properties hold:
(1) Q:S'(R*) — &'(R2Y),
(2) Q: S(R*) = S(R*),
(3) Q: (S3)(R*N) — (S, ) (R*N),
(4) Q: SHR™) — S5l (R™Y),

and in all the cases () is invertible.

Proof. The proof of (1) and (2) can be found in [3], in the case N = 1, and the proof works
in the same way in higher dimension.
(3) Fix u € (SF)'(R*). We observe that F(Q[u]) = &F(Wiglu]) € (Su')'(R*), since &
has a polynomial growth and F(Wiglu]) € (Sg')'(R*V) from Proposition 3.7 and Remark 2.6
extended to ultradistributions. Applying 7~ we get that Q[u] € (Sg!)/(R*Y) as desired.
Now we prove the invertibility of (). The injectivity follows from the injectivity of the Wigner-
like transform. To prove the surjectivity, fix w € (8511)’ (RZY). Then w € (Sgll)’ (R?Y). Since
1/k has still a polynomial growth, then also w/i € (SQ;)’(RW). By the surjectivity of the
Fourier transform there exists v € (3511)’ (R?Y) such that © = w/k. By the surjectivity of the
Wigner-like transform, v = Wig[u] for some u € (83)'(R?") and therefore

w = ko = RF(Wiglu]) = F(k * Wiglu]) = F(Qlu])
and by the injectivity of the Fourier transform w = Q[u], for u € (8§)'(R*Y).
(4) Fix u € 85 (R*Y). We have that

Qu] = k x Wig[u] = FH(AF(Wiglu])) € 8311 (R2Y)

since & has a polynomial growth and F(Wig[u]) € S5 (R?V) for u € S5(R?Y). The invertibility
can be proved as in the previous point. O
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Remark 5.10. By the invertibility properties of Theorem 5.9 we have that if u € (S83)'(R*Y)
and Q[u] € S5 (R*N), then u € SF(R?Y).

Theorem 5.11. Let B(xz,y, D,, D,) be a linear partial differential operator with polynomial
coefficients, and fix the kernel k € S'(R*) as in (5.1). If B is S§-reqular then B is Sg'-
reqular.

Proof. Suppose that B is S;-regular. Fix u € (Sg!)'(R?V) and suppose that Bu € S5 (R?Y).
From Proposition 5.7 we know that

BQu] = Q [Bu] ,
hence from Theorem 5.9 we get Q [Bu] € S§(R*Y). Moreover, again by Theorem 5.9, we
have Q[u] € (S5)'(R*Y). Since B is Sg-regular, we then get that Q[u] € Sg(R*Y). Finally by
Remark 5.10 we obtain that u € S;'(R*"), and so B is Sg'-regular. O

Theorem 5.12. Let B(z,y, D,, D,) be a linear partial differential operator with polynomial
coefficients, and fix the kernel k € S'(R*Y) as in (5.1). If B is S-reqular then B is Sgll-
reqular.

Proof. Suppose that B is S3-regular. Fix u € (S5')'(R*Y) and suppose that Bu e Sol (R2N).
From Proposition 5.8 we know that for each w € S(R*Y)
Q [Bu] = BQ[w].
Consider w = Q~[u]; from Theorem 5.9 we have w € (S3)'(R?"). Hence we obtain that
Q [Bw] = Bu,

and so Q [Bw] € Sg'(R?Y). By Remark 5.10 we then have that Bw € SF(R*"). Since B is
S5-regular we then obtain that w = Q7 ![u] € S5(R?M). Applying the operator QQ we get from

Theorem 5.9 that u € Sg'(R*), and so B is Sg,'-regular. O

We can give a further generalization of the last results, by taking a kernel x; of the following
form; let x be defined as in (5.1), and let ¢ € C[¢,n] be a polynomial that never vanishes on
R2YN . We define ; by

(5.12) R1(€m) = a(§,mk(E n).

Then k1 (x,y) = ¢(D., Dy)k(z,y) and, by Proposition 4.6, we have

(5.13) Q1]u] = k1 x Wiglu] = k x (¢(Dg, Ds)Wig[u]) = k * Wig[Au] = Q[Au],
where

(5.14) A(Mg, My, D¢, D) = (D¢ + Dy, My — Mg).

We can give the following result.

Theorem 5.13. Fiz the kernel k1 € S'(R*) as in (5.12), where k is defined by (5.1). Writing
Q1[u] = k1 x Wiglu], we have the following properties:

(1) Qi: S'(R*) — &' (R*Y),
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(2) Q1 : S(R*Y) — S(RY),

(3) Qi : (SR (R*N) — (S5 ) (R*N),

(4) Q1 : SF(R*N) — S5 (R*Y),
and in all cases Q is invertible. Moreover, if u € (SF) (R?*Y) and Q[u] € Sgll (R?Y), then
u € S5 (R?N).

Proof. The proof is analogous to that of Theorem 5.9 and Remark 5.10, since &1(§,n) =
q(&,m)K(&,n) and ¢(&,n) never vanishes. O

Theorem 5.14. Fiz the kernel k1 € §'(R*N) as in (5.12), where k is defined by (5.1). Writing
Q1[u] = K1 x Wig[u] we have that the following formula holds for u € S(R*Y):

(5.15) Qu[Bu] = ABQ[u],

where A is the operator (5.14), and AB is obtained by AB as in (5.11). Moreover B is S3-
reqular if and only if AB 1is 8311 -reqular.

Proof. The formula (5.15) follows from (5.13) and Proposition 5.8.

Now we suppose that B is Sg-regular and we prove that AB s Sgl-regular. Fixu € (S57) (R*Y)
and suppose that ABu € Sl (R?N). By Theorem 5.9 there exists w € (SF)'(R*") such that
Q[w] = u. By (5.15) we have that Q:[Bw] = ABQ[w] = ABu and hence Bw € S3(R2V)
from Theorem 5.13. Since B is S§-regular, then w € SF(R?*M). Applying Q we get that
u = Qw] € 81 (R*"), and so AB is Sgy!-regular.

Reciprocally, we assume that AB is Sgll—regular and we prove that B is Sj-regular. Fix
u € (S85)(R*V) and suppose that Bu € SF(R*). Then Q;[Bu] € S;'(R*) by Theorem 5.13.
Using formula (5.15) we obtain that ABQ[u] = Q,[Bu] € Sgl(R?M). Since Q[u] € (Sg!) (R*Y)
and AB is Sgll—regular we get that Qlu] € 8511 (R*Y). By Theorem 5.13 we conclude that
u € S§(R?M), and so B is S3-regular. O

Remark 5.15. In the particular case ¢ = 1 we have that A is the identity, and so Theorem 5.1/
implies that a linear partial differential operator B with polynomial coefficients is S5-reqular if

and only if B is 3511 -reqular.

We conclude with some examples of application of Propositions 5.7 and 5.8. We have already
observed in Propositions 4.11 and 4.12 that the operator with polynomial coefficients

P(x7y>D$7Dy) Zp(a:,y),
resp.
Q(x,y, DzaDy> - Q(Dm Dy)a

is Sy-regular if and only if p(z,y), resp. q(£,n), never vanishes. If we consider, as particular
case, a kernel of the form (5.1) where we assume that the polynomials p; are of the form

p;i(&,m5) = (&) + pi2(n;),
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for every j = 1,..., N, then the operators R; = R;(D,;) and T; = T;(D,,) defined in (5.2) and
(5.3) can be chosen as arbitrary differential operators with constant real coefficients, of any
order and without any other assumption on their symbols. Moreover, we have

R; = Rj(ij + Dyj> and Tj* = Tj(yj - :Cj),
again for arbitrary R; and 7 with real coefficients. Now let

p(za C) = Z Caﬁzacﬂa Cap € Ca Z:C € RN?

lo+B|<m

be a polynomial that never vanishes. Then, as in Corollary 4.13, from Propositions 5.7 and 5.8,
we obtain that the following operators are S5-regular:

T + o3} TN + an
P= Y ca5< 12y1+R1(Dx1+Dyl)) ...<N—yN+RN(DmN+DyN))

2
lo+B]<m
D, —D P D,.—D BN
<1Tw+Tl(y1—x1)> (NTW—i—TN(yN—xN)) :
D ) aq D an
Po= > cas <x1—7y—R1(DI1)) <xN—%—RN(D$N))

la+B]<m

D B1 D Ay
<LE1 + 2y1 —Rl(Dm)) (xN+ gN _RN(DIN>> ;

D,, o D, o
P3: Z Ca,@ B +yl_T1(Dy1) 5 +yN_TN(DyN)

lo+B]<m

D,, B1 D, BN
(Z-n+now) (B -+ 0,
Following the same procedure as in [3] we obtain that the twisted Laplacian (1.1), as well as
the operators in R?

(:c - %Dy + Q(Dgc))2 + (y + %Dx + R(Dy))2

and
(z = Dy +Q(D,))* + (y + R(Dy))?,

for arbitrary differential operators Q(D,) and R(D,) with real constant coefficients, are SJ'5o2-
regular, for every weight functions wy, wsy, o1, 09.
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