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REGULARITY OF GLOBAL SOLUTIONS OF PARTIAL DIFFERENTIAL
EQUATIONS IN NON ISOTROPIC ULTRADIFFERENTIABLE SPACES

VIA TIME-FREQUENCY METHODS

CLAUDIO MELE, ALESSANDRO OLIARO

Abstract. In this paper we study regularity of partial differential equations with polynomial
coefficients in non isotropic Beurling spaces of ultradifferentiable functions of global type. We
study the action of transformations of Gabor and Wigner type in such spaces and we prove
that a suitable representation of Wigner type allows to prove regularity for classes of operators
that do not have classical hypoellipticity properties.

Keywords: non isotropic Ultradifferentiable function; Wigner transform; regularity; global
spaces.
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1. Introduction

In this paper we are concerned with the regularity of linear partial differential operators with
polynomial coefficients in ultradifferentiable classes. The problem of regularity was first intro-
duced by Shubin [18] in the frame of Schwartz functions and tempered distributions; a linear
operator A : S ′ → S ′ is said to be regular if the conditions u ∈ S ′, Au ∈ S imply that
u ∈ S. In [18] Shubin formulates an hypoellipticity condition (in the global pseudodifferential
calculus developed there), proving that such condition is sufficient to have regularity of the
correponding operator. On the other hand, such hypoellipticity is far to be necessary, as there
are several examples of operators which are not hypoelliptic but are regular; for instance, in
[19] the regularity of the Twisted Laplacian
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is proved, despite the fact that L is not hypoelliptic in the sense of Shubin; in [9], a class
of twisted operators containing the Twisted Laplacian is studied, and a characterization of
regularity for twisted differential operators of second order is provided; also in this case, the
twisted operators consider in [9] are never hypoelliptic in the sense of Shubin. On the other
hand, the problem of characterizing regularity for classes of operators is quite hard. Even in
very particular cases (as for ordinary differential operators with polynomial coeffcients) neces-
sary and sufficient conditions for regularity are not known; an interesting work in this sense
is [16], where necessary and sufficient conditions for ordinary differential operators are found,
but under additional conditions on the roots of their Weyl symbol. The notion of regularity (in
global sense) can be defined each time we have a (global) space of functions and a corresponding
space of (ultra)distributions, and operators acting on the ultradistribution space. In particular,
this problem can be considered in the frame of ultradifferentiable classes. Ultradifferentiable
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spaces have been widely studied, starting from the work of Gevrey [12], who introduced an
intermediate scales of spaces between real analytic and C∞ functions in order to analyze the
regularity of solutions of partial differential equations. Then Komatsu [15], and later Beurling
[1] and Björck [2] introduced a class of ultradifferentiable functions, where the regularity (and
eventually the growth, when treating global spaces) is controlled by suitable weight sequences
or suitable weight functions. In [8], general results on the spaces defined through weight func-
tions are proved, and in [7] a comparison between spaces defined by weight sequences and by
weight functions is provided, proving that the two approaches have an intersections but there
are spaces that can be defined only through one of them. Then, a large amount of papers on
spaces of this kind have been produced, on properties of the spaces themselves, in connection
with the behavior of solutions of partial differential equations, or more recently also in connec-
tion with time-frequency analysis.

In this paper we study non isotropic spaces of global ultradifferentiable functions of Beurling
type, following the approach of [2, 8], and we analyze how tools from time-frequency analysis
can be profitably used to find large classes of examples of partial differential equations that are
regular in this ultradifferentiable setting. The connection between the partial differential equa-
tions world and the time-frequency analysis world has been profitably investigated in the last
years, and has produced interesting results; we refer for instance to [17], where the Hörmander
global wave front set has been re-defined through Gabor transform and Gabor frames, and
to [4] and [6], where tools from time-frequency analysis are used in order to study wave front
set and nuclearity properties in the frame of ultradifferentiable spaces. In this paper we fix a
collection of weight function ωj, σj for j = 1, . . . , N (see Definition 2.1), and we denote by Ω
and Σ the functions

Ω = ω1 ⊕ · · · ⊕ ωN , Σ = σ1 ⊕ · · · ⊕ σN ,
i.e., Ω(x) := ω1(x1) + · · ·+ ωN(xN), and analogously for Σ; then we consider the Fréchet space

SΣ
Ω (RN), defined as the set of all functions f ∈ L1(RN) such that f, f̂ ∈ C∞ and

‖ exp(λΩ)Dαf‖∞ <∞, for each λ > 0, α ∈ NN
0 ,

‖ exp(λΣ)Dαf̂‖∞ <∞, for each λ > 0, α ∈ NN
0 .

Each of the weight can be non-quasianalytic or quasianalytic, as the results of the present
paper hold in both cases; these spaces allow different behavior in different directions, as well
as different decays of the function f and of its Fourier transform f̂ . Observe that the Fourier
transform is no longer an automorphism on SΣ

Ω , as it is on the Björck space Sω, but maps SΣ
Ω

into SΩ
Σ . Moreover, the spaces SΣ

Ω contain as particular cases Beurling spaces of Gelfand-Shilov
type. We give different equivalent systems of seminorms for the space SΣ

Ω (RN), in the spirit of
the results contained in [3, 5], and we consider the problem of regularity in this setting. We
say that an operator is SΣ

Ω -regular if the conditions u ∈ (SΣ
Ω )′, Au ∈ SΣ

Ω imply that u ∈ SΣ
Ω . We

consider here partial differential operators with polynomial coefficients; our approach follows
an idea that is already present in some works related to engineering applications, see [10], [11].
In these papers some equations are analyzed, looking for the Wigner transform of the solution.
Instead of finding first a solution u, and then computing its Wigner transform, the equation
itself is Wigner-transformed, and, in some cases, the new equation allow to find directly the
the exact expression of the Wigner transform of the solution. This approach works well in
the cases of partial differential equations with polynomial coefficients, and has been already
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used to study regularity properties of solutions of partial differential equations, see for instance
[3, 9], where regularity in classical Schwartz spaces and in isotropic ultradifferentiable classes
is analyzed in dimension 1. Here we study the action of transformations from time-frequency
analysis, namely the Gabor transform

Vgf(x, ξ) =

∫
RN

exp(−itξ)f(t)g(t− x) dt

and the following transform of Wigner type

Wig[u](x, ξ) =

∫
RN

exp(−itξ)u
(
x+

t

2
, x− t

2

)
dt,

on the spaces SΣ
Ω , and we prove general results in arbitrary dimension that allow us to find

large classes of partial differential operators that are SΣ
Ω -regular. More precisely, we consider

here operators P in R2N with polynomial coefficients of the form

P (x, y,Dx, Dy) =
∑

|α+β+γ+µ|≤m

cαβγµx
αyβDγ

xD
µ
y ,

with x, y ∈ RN , cαβγµ ∈ C, and m ∈ N. We show that P is SΣ
Ω -regular if and only if P̃ is

SΣ1
Ω1

-regular for suitable weights Ω1 and Σ1, where P̃ satisfies

Wig[Pu] = P̃Wig[u].

This allows us to construct classes of operators that are regular in our ultradifferentiable setting.
For instance, we prove that given a polynomial p(z, ζ) =

∑
|α+β|≤m cαβz

αζβ in R2N , with cαβ ∈ C
and z, ζ ∈ RN , with p(z, ζ) 6= 0 for every (z, ζ) ∈ R2N , then the following operators are SΣ

Ω -
regular:

P1 =
∑

|α+β|≤m

cαβ

(
x+ y

2

)α(
Dx −Dy

2

)β
,

P2 =
∑

|α+β|≤m

cαβ(Dx +Dy)
α(y − x)β,

P3 =
∑

|α+β|≤m

cαβ

(
x− Dy

2

)α(
x+

Dy

2

)β
,

P4 =
∑

|α+β|≤m

cαβ

(
y +

Dx

2

)α(
Dx

2
− y
)β

.

Moreover, the Twisted Laplacian is Sσ1⊕σ2ω1⊕ω2
-regular, for every weight functions ω1, ω2, σ1, σ2.

We then prove similar results considering, instead of the transformation Wig, a general repre-
sentation in the Cohen class, defined as Q[u] = κ ? Wig[u], for a kernel κ ∈ S ′(R2N).

The paper is organized as follows. Section 2 is devoted to the study of the space SΣ
Ω and is

properties. In Sections 3 we analyze the action of the Gabor and Wigner transform on SΣ
Ω and

in Sections 4 and 5 we study the SΣ
Ω -regularity through Wigner-like transform and through

Cohen class representations, giving some examples.
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2. Weight functions and the space SΣ
Ω(RN)

In this section we introduce the non-isotropic space SΣ
Ω (RN) of ultradifferentiable functions of

Beurling type. We start with the definition of weight function in the sense of [8].

Definition 2.1. A continuous increasing function ω : [0,∞)→ [0,∞) is called a weight func-
tion if it satisfies the following properties:

(α) there exists K ≥ 1 such that ω(2x) ≤ K(1 + ω(x)) for every x ≥ 0;
(β) ω(x) = o(x) as x→∞;
(γ) there exist a ∈ R, b > 0 such that ω(x) ≥ a+ b log(1 + x), for every x ≥ 0;
(δ) ϕω(x) = ω ◦ exp(x) is a convex function.

Given a weight function we can extend ω : R → [0,∞) by defining ω(x) = ω(|x|) for all
x ∈ R (of course, in the same way we could extend ω to RN for every N). The condition

(β) is weaker than the condition of non-quasianalyticity
∫∞

1
ω(t)
1+t2

dt < ∞. When the latter
condition is satisfied, the spaces that we are going to define shall contain non trivial compactly
supported functions. All the results of this paper hold under condition (β), i.e., both in the
non-quasianalytic and in the quasianalytic case.

As standard, we define the Young conjugate ϕ∗ω of ϕω as

(2.1) ϕ∗ω(s) := sup
t≥0
{ts− ϕω(t)}, s ≥ 0.

We recall that ϕ∗ω is an increasing convex function on [0,+∞) and it satisfies ϕ∗∗ω = ϕω.

We now recall some known facts that shall be useful in the following. At first, there is no
loss of generality in assuming that ω|[0,1] ≡ 0; as a consequence, we easily have from (2.1)
that ϕ∗ω(0) = 0. Moreover the properties in the next proposition hold; they are well-known
and can be found in many references, we refer for instance to [5], where (in Section 2 and
in the Appendix) several basic properties of weights are collected and proved with minimal
assumptions.

Proposition 2.2. Let ω be a weight function. Then

(1) For each λ > 0, j ∈ N0 and x ≥ 0 we have

xj exp(−λω(x)) ≤ exp

(
λϕ∗

(
j

λ

))
;

(2) For each λ > 0 and x ≥ 1 we have

inf
j∈N

x−j exp

(
λϕ∗

(
j

λ

))
≤ exp

(
−
(
λ− 1

b

)
ω(x)− a

b

)
,

where a, b are the constants appearing in condition (γ);
(3) There exists a constant L > 0, depending on ω, such that for every λ > 0, ρ ≥ 1 and

j ∈ N0,

ρj exp

(
λϕ∗

(
j

λ

))
≤ Cρ,λ exp

(
λ′ϕ∗

(
j

λ′

))
,

for each 0 ≤ λ′ ≤ λ
L[log ρ+1] and for a suitable constant Cρ,λ > 0;
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(4) For each λ > 0 and j ∈ N0

j! ≤ Cλ exp

(
λϕ∗

(
j

λ

))
,

for a suitable constant Cλ > 0;
(5) For each x, y ≥ 0

ω(x+ y) ≤ K(1 + ω(x) + ω(y)),

where K is the constant appearing in condition (α). Observe that this condition is
weaker than subadditivity (i.e. ω(x+y) ≤ ω(x)+ω(y)). The weight functions satisfying
(α) are not necessarily subadditive in general.

Consider a collection of weight function ωj, σj for j = 1, . . . , N . We denote by Ω and Σ the
functions on RN defined by

(2.2) Ω = ω1 ⊕ · · · ⊕ ωN , Σ = σ1 ⊕ · · · ⊕ σN ,
in the sense that Ω(x) := ω1(x1) + · · · + ωN(xN), and analogously for Σ, for x ∈ RN . We
can suppose without loss of generality that all the ωj and all the σj satisfy condition (α) of
Definition 2.1 with the same constant K. Similarly we assume that ωj and σj satisfy condition
(γ) with the same constants a and b, for every j = 1, . . . , N .

We define the following space of rapidly decreasing ultradifferentiable functions of Beurling
type.

Definition 2.3. Let Ω, Σ be weight functions as in (2.2). We define SΣ
Ω (RN) as the space of

all functions f ∈ L1(RN) such that f, f̂ ∈ C∞(RN) and satisfy

‖ exp(λΩ)Dαf‖∞ <∞, for each λ > 0, α ∈ NN
0 ,(2.3)

‖ exp(λΣ)Dαf̂‖∞ <∞, for each λ > 0, α ∈ NN
0 .(2.4)

The corresponding (countable) family of seminorms

‖ exp(nΩ)Dαf‖∞, ‖ exp(mΣ)Dβ f̂‖∞,
with n,m ∈ N, α, β ∈ NN

0 , induces a topology of Fréchet space on SΣ
Ω (RN).

Remark 2.4. The weight functions ωj and σj in (2.2) of course do not need to be different. In
the case when some of the ωj (or some of the σj) coincide we can put together the corresponding
variables, in the following sense: if for instance ω2 = ω1, we can choose

Ω = ω1(x1) + ω1(x2) + ω3(x3) + · · ·+ ωN(xN),

as in (2.2), or also

Ω = ω1(|(x1, x2)|) + ω3(x3) + · · ·+ ωN(xN),

and the corresponding space SΣ
Ω (RN) does not change. We have indeed that

ω1(x1) + ω1(x2) ≤ 2ω1(|(x1, x2)|) ≤ 2ω1(|x1|+ |x2|) ≤ 2K(1 + ω1(x1) + ω1(x2)),

since ω1 is increasing and satisfies Proposition 2.2 (5). In particular, if ω1 = · · · = ωN = σ1 =
· · · = σN := ω, the space SΣ

Ω (RN) coincides with the space Sω considered for instance in [2], [3],
[5], [14].
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Remark 2.5. The condition (γ) ensures us that, for Ω and Σ as in (2.2), the space SΣ
Ω (RN)

is contained in S(RN), with continuous inclusion. Indeed, since log |x| ≤
∑N

j=1 log(1 + |xj|),

given f ∈ SΣ
Ω (RN) and α, β ∈ NN

0 , we have that

‖xαDβf‖∞ ≤ sup
x∈RN

exp(|α| log |x|)|Dβf(x)| ≤ C sup
x∈RN

exp

(
|α|
b

Ω(x)

)
|Dβf(x)| <∞,

for some constant C, where b is the constant appearing in condition (γ), common for all ωj.

Then we can rewrite the definition of SΣ
Ω (RN) as the set of all the rapidly decreasing functions

that satisfy (2.3) and (2.4).

Remark 2.6. The following facts can be easily proved.

(a) Given f ∈ S(RN), since FF(f) = (2π)NRf , where Rf(x) = f(−x) is the reflection

operator, we have that f ∈ SΣ
Ω (RN) if and only if f̂ ∈ SΩ

Σ (RN). Moreover the Fourier
transform F : SΣ

Ω (RN)→ SΩ
Σ (RN) is a continuous isomorphism.

(b) The space SΣ
Ω (RN) is closed under convolution, arithmetic product of functions, trans-

lation and modulation, where the translation and modulation operators are defined by
Tsf(x) := f(x− s) and Mtf(x) := eitxf(x), respectively, where s, t, x ∈ RN .

Definition 2.7. Let Ω, Σ be weight functions as in (2.2). We define (SΣ
Ω )′(RN) as the set of

the linear and continuous maps from SΣ
Ω (RN) to C.

The next two lemmas are proved in [14], in the case of subadditive weight functions; the
proof in our case is strictly analogous and is omitted.

Lemma 2.8. Let Ω, Σ be weight functions as in (2.2) and consider f, g ∈ SΣ
Ω (RN), λ > 0

sufficiently large. Then

‖ exp(λΩ)(f ? g)‖∞ ≤ Cλ‖ exp(KλΩ)f‖∞‖ exp(KλΩ)g‖∞,

‖ exp(λΣ)(f̂ ? ĝ)‖∞ ≤ Cλ‖ exp(KλΣ)f̂‖∞‖ exp(KλΣ)ĝ‖∞,
for a suitable positive constant Cλ.

Lemma 2.9. Let Ω, Σ be weight functions as in (2.2) and consider f, g ∈ SΣ
Ω (RN), λ > 0.

Then the following properties hold:

(1) For every α ∈ NN
0 ,

exp(λΩ(t))Dα(MξTxg)(t) =
∑
β≤α

(
α

β

)
(iξ)βMξTx

(
exp(λΩ(x+ ·))Dα−βg(·)

)
(t);

(2) For every α ∈ NN
0

‖ exp(λΩ)Dα(MξTxg)‖∞ ≤ C exp(KλΩ(x))
∑
β≤α

(
α

β

)
|ξβ|‖ exp(KλΩ)Dα−βg‖∞.

Proposition 2.10. Let Ω, Σ be weight functions as in (2.2); consider g ∈ SΣ
Ω (RN), and a

measurable function F : R2N → C such that for each λ > 0 there exists a constant Cλ > 0 so
that

(2.5) |F (x, ξ)| ≤ Cλ exp(−λ(Ω(x) + Σ(ξ))),
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for each (x, ξ) ∈ R2N . Then the integral

(2.6) f(t) :=

∫
R2N

F (x, ξ)MξTxg(t) dxdξ

defines a function f ∈ SΣ
Ω (RN).

Proof. Observe that the integral in (2.6) is absolutely convergent, and we can differentiate
under the integral sign. Fix λ > 0 and α ∈ NN

0 . We get from Lemma 2.9

‖ exp(λΩ)Dαf‖∞ ≤
∫
R2N

‖ exp(λΩ(t))F (x, ξ)Dα(MξTxg)(t)‖L∞(RNt ) dxdξ

≤ C
∑
β≤α

(
α

β

)∫
R2N

exp(KλΩ(x))|F (x, ξ)||ξβ|‖ exp(KλΩ)Dα−βg‖∞ dxdξ

≤ C ′λ,α

∫
R2N

|F (x, ξ)|P (x, ξ) dxdξ,

where C ′λ,α := C max
β≤α
‖ exp(KλΩ)Dα−βg‖∞ and

P (x, ξ) =
∑
β≤α

(
α

β

)
|ξβ| exp(KλΩ(x)) = exp(KλΩ(x))

N∏
j=1

(1 + |ξj|)αj .

From (2.5) we have that ∫
R2N

|F (x, ξ)|P (x, ξ) dxdξ <∞,

and so, for every λ > 0 and α ∈ NN
0 ,

(2.7) ‖ exp(λΩ)Dαf‖∞ <∞.
Now we observe that, since for x, ξ ∈ RN , F(Txg) = M−xĝ and F(Mξg) = Tξĝ,

exp(λΣ(t))Dαf̂(t) =

∫
R2N

exp(λΣ(t))F (x, ξ)Dα
t (exp(ixξ)M−xTξĝ) (t) dxdξ,

where we have used that TξM−x = exp(ixξ)M−xTξ. Then, proceedings as before, we get

‖ exp(λΣ)Dαf̂‖∞ ≤ Dλ,α

∫
R2N

|F (x, ξ)|Q(x, ξ) dxdξ,

with Dλ,α := C max
β≤α
‖ exp(KλΣ)Dα−β ĝ‖∞ and

Q(x, ξ) =
∑
β≤α

(
α

β

)
|xβ| exp(KλΣ(ξ)) = exp(KλΣ(ξ))

N∏
j=1

(1 + |xj|)αj .

Since g ∈ SΣ
Ω (RN) and F satisfies (2.5) we obtain

‖ exp(λΣ)Dαf̂‖∞ <∞
for every λ > 0 and α ∈ NN

0 which, together with (2.7), gives f ∈ SΣ
Ω (RN). �
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Theorem 2.11. Let Ω, Σ be weight functions as in (2.2) and consider g ∈ SΣ
Ω (RN), g 6= 0.

Then for f ∈ (SΣ
Ω )′(RN) the following conditions are equivalent:

(1) f ∈ SΣ
Ω (RN);

(2) Vgf satisfies (2.5).

Proof. (1) =⇒ (2): fix λ > 0. Then from Lemma 2.8

exp(2λΩ(x))|Vgf(x, ξ)| ≤ exp(2λΩ(x))

∫
RN
| exp(−itξ)f(t)g(t− x)| dt

≤ C2λ‖ exp(2KλΩ)f‖∞‖ exp(2KλΩ)Rg‖∞ <∞,

since f, g ∈ SΣ
Ω (RN). So for each (x, ξ) ∈ R2N and for every λ > 0,

|Vgf(x, ξ)| ≤ C ′λ exp(−2λΩ(x)).

Analogously, using the foundamental identity of the STFT we get

|Vgf(x, ξ)| = |(2π)−N exp(−ixξ)Vĝf̂(ξ,−x)| ≤ Dλ exp(−2λΣ(ξ)),

where Dλ = C2λ‖ exp(2λKΣ)f̂‖∞‖ exp(2λKΣ)Rĝ‖∞. Finally,

|Vgf(x, ξ)| =
√
|Vgf(x, ξ)|2 ≤

√
C ′λDλ exp(−λΩ(x)) exp(−λΣ(ξ)).

(2) =⇒ (1): from Proposition 2.10, with Vgf in place of F , and using the inversion formula
for the STFT (see for instance [13]) we get f ∈ SΣ

Ω (RN). �

Remark 2.12. Observe that in the proof of Theorem 2.11, when we prove that (1) =⇒ (2),
we only use the conditions:

‖ exp(λΩ)f‖∞ <∞, for eachλ > 0,

‖ exp(λΣ)f̂‖∞ <∞, for eachλ > 0.

Then if f satisfies these conditions, f ∈ SΣ
Ω (RN).

Now, for Ω and Σ as in (2.2) we consider the Young conjugates ϕ∗ωj and ϕ∗σj of ωj and σj
respectively, j = 1, . . . , N , and we define the following functions for y = (y1, . . . , yN) ∈ RN ,
yj ≥ 0 for every j = 1, . . . , N :

(2.8) Ω∗(y) = ϕ∗ω1
(y1) + · · ·+ ϕ∗ωN (yN), Σ∗(y) = ϕ∗σ1(y1) + · · ·+ ϕ∗σN (yN).

We have several equivalent conditions for f to belong to SΣ
Ω (RN), summarized in the next

result. Observe that the following theorem is proved, in the case of a single weight function,
in [3] (for L∞ norms) and in [5] (for Lp-Lq norms with p, q < ∞). Here we propose a unified
proof for every 1 ≤ p, q ≤ ∞, in the case of non isotropic ultradifferentiable spaces.

Theorem 2.13. Let Ω, Σ be weight functions as in (2.2) and consider f ∈ S(RN); let moreover
1 ≤ p, q ≤ ∞. Then the following conditions are equivalent:

(1) f ∈ SΣ
Ω (RN), i.e., it satisfies (2.3) and (2.4).
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(2) f satisfies the conditions:

‖ exp(λΩ)Dαf‖p <∞, for eachλ > 0, α ∈ NN
0 ,

‖ exp(λΣ)Dαf̂‖q <∞, for eachλ > 0, α ∈ NN
0 .

(3) f satisfies the conditions:

(2.9) ‖ exp(λΩ)f‖p <∞, for eachλ > 0,

(2.10) ‖ exp(λΣ)f̂‖q <∞, for eachλ > 0.

(4) f satisfies the conditions:

(2.11) ‖ exp(λΩ)xαf‖p <∞, for eachλ > 0, α ∈ NN
0 ,

(2.12) ‖ exp(λΣ)ξαf̂‖q <∞, for eachλ > 0, α ∈ NN
0 .

(5) f satisfies the conditions:
(a) For each λ > 0 and each β ∈ NN

0 there exists Cβ,λ > 0 such that for each α ∈ NN
0 :

(2.13)
∥∥∥exp

(
−λΣ∗

(α
λ

))
xβDαf

∥∥∥
p
≤ Cβ,λ;

(b) For each µ > 0 and each α ∈ NN
0 there exists Cα,µ > 0 such that for each β ∈ NN

0 :

(2.14)

∥∥∥∥exp

(
−µΩ∗

(
β

µ

))
xβDαf

∥∥∥∥
q

≤ Cα,µ.

(6) For each λ, µ > 0 there exists Cµ,λ > 0 such that for each α, β ∈ NN
0 :

(2.15)

∥∥∥∥exp

(
−λΣ∗

(α
λ

)
− µΩ∗

(
β

µ

))
xβDαf

∥∥∥∥
p

≤ Cµ,λ.

Before proving Theorem 2.13 we need two lemmas.

Lemma 2.14. Let Ω,Σ be weight functions as in (2.2) and f ∈ S(RN). If f ∈ SΣ
Ω (RN) then

for each λ, µ > 0 there exists Cµ,λ > 0 such that for each α, β ∈ NN
0

(2.16)

∥∥∥∥exp

(
−λΣ∗

(α
λ

)
− µΩ∗

(
β

µ

))
xβDαf

∥∥∥∥
∞
≤ Cµ,λ.

Proof. We start by proving that for each µ > 0 and each α ∈ NN
0 there exists Cα,µ > 0 such

that for each β ∈ NN
0 :

(2.17)

∥∥∥∥exp

(
−µΩ∗

(
β

µ

))
xβDαf

∥∥∥∥
∞
≤ Cα,µ.

From Proposition 2.2 (1) we have

|xβ| exp

(
−µΩ∗

(
β

µ

))
≤ exp(µΩ(x)),

and so

|xβDαf(x)| exp

(
−µΩ∗

(
β

µ

))
≤ exp(µΩ(x))|Dαf(x)| ≤ ‖ exp(µΩ)Dαf‖∞ ≤ Cα,µ;
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then (2.17) holds. Now we want to prove that for each λ > 0 and each β ∈ NN
0 there exists

Cβ,λ > 0 such that for each α ∈ NN
0 :

(2.18)
∥∥∥exp

(
−λΣ∗

(α
λ

))
xβDαf

∥∥∥
∞
≤ Cβ,λ.

We can write xβDαf(x) = F−1
ξ→xFt→ξ

(
tβDαf(t)

)
; then, using standard properties of the Fourier

transform and Leibniz rule we have

|xβDαf(x)| ≤
∑
γ≤α,β

(
β

γ

)
(2π)−N

∫
RN
|Dγ

ξ ξ
α||Dβ−γ

ξ f̂(ξ))| dξ

=
∑
γ≤α,β

β!

γ!(β − γ)!
(2π)−N

∫
RN

α!

(α− γ)!
|ξα−γ||Dβ−γ

ξ f̂(ξ))| dξ

≤ 2|α|
∑
γ≤α,β

(2π)−Nβ!

(β − γ)!

∫
RN
|ξα−γ||Dβ−γ

ξ f̂(ξ))| exp(2λ′Σ(ξ)− 2λ′Σ(ξ)) dξ.

By (2.4) we have that for each γ ≤ β

‖ exp(2λ′Σ(ξ))Dβ−γ
ξ f̂‖∞ ≤ C ′β,λ′

for some C ′β,λ′ > 0. By Proposition 2.2 (1) we have that for each γ ≤ α

|ξα−γ| exp(−λ′Σ(ξ)) ≤ exp
(
λ′Σ∗

( α
λ′

))
.

Therefore, we get

|xβDαf(x)| ≤ C ′′β,λ′2
|α| exp

(
λ′Σ∗

( α
λ′

))∫
RN

exp(−λ′Σ(ξ)) dξ,

for some C ′′β,λ′ > 0. Using Proposition 2.2 (3), we obtain that for each 0 ≤ λ ≤ λ′

L[log 2+1] and for
each j = 1, . . . , N

2|αj | exp

(
λ′ϕ∗σj

(
|αj|
λ′

))
≤ Cλ′ exp

(
λϕ∗σj

(
|αj|
λ

))
,

for some Cλ′ > 0. Since λ′ is arbitrary we can choose also λ in an arbitrary way; moreover, we
can choose λ′ sufficiently large in such a way that

∫
RN exp(−λ′Σ(ξ)) dξ < ∞. We finally have

that for each λ > 0 there exists Cβ,λ > 0 such that

|xβDαf(x)| ≤ Cβ,λ exp
(
λΣ∗

(α
λ

))
,

so we have proved (2.18).

Now let us remark that, setting 〈x〉 =
√

1 + |x|2 and M =
[
N+1

4

]
+ 1, we have

‖xβDαf‖2
2 ≤ C‖xβ〈x〉2MDαf‖2

∞.

Since 〈x〉2M =
∑
|γ|≤M

M !
γ!(M−|γ|)!x

2γ, we get

‖xβDαf‖2
2 ≤ C

∑
|γ|≤M

M !

γ!(M − |γ|)!
‖xβ+2γDαf‖2

∞.
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From condition (2.18), we then have that for each λ > 0 and β ∈ NN
0 there exists Cβ,λ > 0 such

that for each α ∈ NN
0

(2.19) ‖xβDαf‖2 ≤ C ′β,λ exp
(
λΣ∗

(α
λ

))
,

where C ′β,λ depends only on β, λ and M . Analogously, from condition (2.17), by the convexity

of the Young conjugate function, we get that for each µ′ > 0 and α ∈ NN
0 there exists Cα,µ′ > 0

such that for each β ∈ NN
0

‖xβDαf‖2
2 ≤ C

∑
|γ|≤M

M !

|γ|!(M − |γ|)!
C2
α,µ′ exp

(
2µ′Ω∗

(
β + 2γ

µ′

))

≤ C ′α,µ′ exp

(
µ′Ω∗

(
2β

µ′

))
,

where C ′α,µ′ depends only on α, µ′ and M . Then, setting µ = µ′

2
, we get that for every α ∈ NN

0

and µ > 0 there exists a constant C ′′α,µ > 0 such that for each β ∈ NN
0 ,

(2.20) ‖xβDαf‖2 ≤ C ′′α,µ exp

(
µΩ∗

(
β

µ

))
.

By integration by parts, Leibniz rule, Hölder’s inequality, (2.19) and (2.20) we obtain

‖xβDαf‖2
2 =

∫
RN
x2β∂αf(x)∂αf(x) dx

≤
∑

γ≤α,2β

(
α

γ

)(
2β

γ

)
γ!‖∂2α−γf‖2‖x2β−γf‖2

≤
∑

γ≤α,2β

(
α

γ

)(
2β

γ

)
γ!C ′0,λC

′′
0,µ exp

(
λΣ∗

(
2α− γ
λ

))
exp

(
µΩ∗

(
2β − γ
µ

))
.

Now by Proposition 2.2 (4) and (3), and using the convexity of the Young conjugate we get

‖xβDαf‖2
2 ≤

∑
γ≤α,2β

(
α

γ

)(
2β

γ

)
C ′0,λC

′′
0,µCλ exp

(
λΣ∗

(
2α

λ

))
exp

(
µΩ∗

(
2β

µ

))
≤ Cλ′,µ′ exp

(
λ′Σ∗

(
2α

λ′

))
exp

(
µ′Ω∗

(
2β

µ′

))
.

Then for each λ, µ > 0 there exists a constant C ′λ,µ > 0 such that

(2.21) ‖xβDαf‖2 ≤ C ′λ,µ exp

(
λΣ∗

(α
λ

)
+ µΩ∗

(
β

µ

))
.

It is easy to show that the hypothesis xβDαf ∈ L∞(RN) for all α, β ∈ NN
0 implies xβDαf ∈

Hs(RN) for all α, β ∈ NN
0 and each s > 0, where Hs(RN) is the standard Sobolev space.

Writing ‖.‖Hs for the Sobolev Hs norm, by Sobolev inequality there exists C ′ > 0 such that for
s > N

2

‖xβDαf‖∞ ≤ C ′‖xβDαf‖Hs .
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So in conclusion, fix an integer s >
[
N
2

]
+ 1. Then by (2.21)

‖xβDαf‖∞ ≤ C ′
∑
|γ|≤s

‖Dγ(xβDαf)‖2

≤ C ′′
∑
|γ|≤s

∑
δ≤γ,β

(
γ

δ

)(
β

δ

)
δ!C ′λ,µ exp

(
λΣ∗

(
α + γ − δ

λ

))
exp

(
µΩ∗

(
β − δ
µ

))
.

Proceeding as in the previous steps, using Proposition 2.2 (4) and the convexity of the Young
conjugate function we get (2.16). �

Lemma 2.15. Let Ω,Σ be weight functions as in (2.2) and f ∈ S(RN). Suppose that f satisfies
the following conditions:

(a) For each λ > 0 and each β ∈ NN
0 there exists Cβ,λ > 0 such that for each α ∈ NN

0 :

(2.22)
∥∥∥exp

(
−λΣ∗

(α
λ

))
xβDαf

∥∥∥
∞
≤ Cβ,λ;

(b) For each µ > 0 and each α ∈ NN
0 there exists Cα,µ > 0 such that for each β ∈ NN

0 :

(2.23)

∥∥∥∥exp

(
−µΩ∗

(
β

µ

))
xβDαf

∥∥∥∥
∞
≤ Cα,µ.

Then f ∈ SΣ
Ω (RN).

Proof. We prove initially that (2.3) holds. Let α ∈ NN
0 and fix µ > 0. By (2.23),

|Dαf(x)| ≤
∥∥∥∥exp

(
−µΩ∗

(
β

µ

))
xβDαf

∥∥∥∥
∞
|x−β| exp

(
µΩ∗

(
β

µ

))
≤ Cα,µ|x−β| exp

(
µΩ∗

(
β

µ

))
,

for each β ∈ NN
0 and x 6= 0. Since Cα,µ does not depend on β, we have that

|Dαf(x)| ≤ Cα,µ inf
β∈NN0

|x−β| exp

(
µΩ∗

(
β

µ

))
.

Using Proposition 2.2 (2), we get that

‖ exp(µΩ)Dαf‖∞ ≤ C ′α,µ,
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i.e., (2.3) is satisfied. Let us now prove (2.4). Fix β ∈ NN
0 ; for ξ 6= 0 and α ∈ NN

0 we have

|Dβ f̂(ξ)| =
∣∣∣∣∫

RN
xβf(x) exp(−ixξ) dx

∣∣∣∣ =

∣∣∣∣∫
RN
ξ−αxβf(x)Dα

x (exp(−ixξ)) dx
∣∣∣∣

≤
∑
γ≤α,β

β!

(β − γ)!

(
α

γ

)∫
RN
|x||β−γ|||Dα−γ

x f(x)||ξ−α| dx

≤ 2|α|
∑
γ≤α,β

β!

(β − γ)!

∫
RN

exp

(
−λ′Σ∗

(
α− γ
λ′

))
exp

(
λ′Σ∗

(
α− γ
λ′

))
×

× 〈x〉
|β−γ|+N+1

〈x〉N+1
|Dα−γ

x f(x)||ξ−α| dx,

where as usual 〈x〉 =
√

1 + |x|2. By condition (2.22), we obtain that

〈x〉|β−γ|+N+1|Dα−γ
x f(x)| exp

(
−λ′Σ∗

(
α− γ
λ′

))
≤ Cβ,λ′ ,

for some Cβ,λ′ > 0. Moreover, applying Proposition 2.2 (3), we have that for each 0 ≤ λ ≤
λ′

L[log 2+1]

|Dβ f̂(ξ)| ≤ C ′β,λ exp
(
λΣ∗

(α
λ

))
|ξ−α|,

for some C ′β,λ′ > 0. Since this holds for each α ∈ NN
0 , we get from Proposition 2.2 (2)

|Dβ f̂(ξ)| ≤ C ′β,λ inf
α∈NN0

|ξ−α| exp
(
λΣ∗

(α
λ

))
≤ Cβ,λ exp

(
−
(
λ− 1

b

)
σ1(ξ)− a

b

)
· · · exp

(
−
(
λ− 1

b

)
σN(ξN)− a

b

)
,

that implies

‖ exp(µΣ)Dβ f̂‖∞ ≤ C
′′

β,µ,

for some C
′′

β,µ > 0, i.e., (2.4) is satisfied, and so f ∈ SΣ
Ω (RN). �

Remark 2.16. In view of Theorem 2.13 we have that, despite in Lemmas 2.14 and 2.15 we only
prove an implication in one direction, they express in fact necessary and sufficient conditions.
On the other hand, in order to prove Theorem 2.13 for every 1 ≤ p, q ≤ ∞, we only need, for
L∞ norms, the results of Lemmas 2.14 and 2.15.

Remark 2.17. Let ω be a weight function as in Definition 2.1 and consider 1 ≤ p <∞. Then
exp(−λω) ∈ Lp(RN) if and only if λ > N

bp
, where b is the constant appearing in condition (γ)

of Definition 2.1.

Proof of Theorem 2.13. (3) =⇒ (1): we want to use Theorem 2.11. In particular, we fix
g ∈ SΣ

Ω (RN), g 6= 0 and we prove that (2.5) holds for Vgf(x, ξ). Consider r > N
bp′

where p′ is

the conjugate exponent of p, (if p = 1 we choose any r > 0). Using Hölder inequality we have

| exp(λΩ(x))Vgf(x, ξ)| ≤ exp(λNK)‖ exp((λK + r)Ω)g‖∞‖ exp(λKΩ)f‖p‖ exp(−rΩ)‖p′ <∞,
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thanks to Remark 2.17 and since f satisfies (2.9), g satisfies (2.3). Analogously, using the
foundamental identity of the STFT and q instead of p, we get, for r′ > N

bq′

| exp(λΣ(ξ))Vgf(x, ξ)| ≤

≤ (2π)−N exp(λNK)‖ exp((λK + r′)Σ)ĝ‖∞‖ exp(λKΣ)f̂‖q‖ exp(−r′Σ)‖q′ <∞,
thanks to Remark 2.17 and since f satisfies (2.10), g satisfies (2.4).

Hence we have that for each λ > 0

|Vgf(x, ξ)| =
√
|Vgf(x, ξ)|2 ≤ Cλ exp(−λΩ(x)) exp(−λΣ(ξ)).

for some Cλ > 0. From Theorem 2.11, we get f ∈ SΣ
Ω (RN).

(2) =⇒ (3): it is trivial, taking α = 0.

(1) =⇒ (2): we suppose that p, q < ∞ (otherwise the corresponding implication is trivial).
Fix λ > 0, α ∈ NN

0 and consider r > N
bp

. We have

‖ exp(λΩ)Dαf‖pp ≤ ‖ exp((λ+ r)Ω)Dαf‖p∞‖ exp(−rΩ)‖pp <∞.

In the same way, setting r′ > N
bq

‖ exp(λΣ)Dαf̂‖qq ≤ ‖ exp((λ+ r′)Σ)Dαf̂‖q∞‖ exp(−r′Σ)‖qq <∞.

(4) =⇒ (3): it is trivial, taking α = 0.

(3) =⇒ (4): fix α ∈ NN
0 and λ > 0. From condition (γ) we get

exp(λΩ(x))|xα| ≤ Cα exp(λ′Ω(x)).

Then
‖ exp(λΩ)xαf‖p ≤ Cα‖ exp(λ′Ω)f‖p <∞,

since f satisfies (2.9). Analogously

‖ exp(λΣ)ξαf̂‖q ≤ Cα‖ exp(λ′Σ)f̂‖q <∞,
since f satisfies (2.10).

(5) =⇒ (1): by Remark 2.6 it is sufficient to show that f̂ ∈ SΩ
Σ (RN). In order to do this,

we shall prove that f̂ satisfies the hypotheses of Lemma 2.15 with Ω and Σ interchanged. Fix

M >
[
N
2p′

]
+ 1. For each α, β ∈ NN

0 and each ξ ∈ RN we have

|ξβDαf̂(ξ)| ≤ ‖〈x〉−2M‖p′‖〈x〉2MDβ
x(xαf)‖p ≤ CM

∑
γ≤α,β

(
β

γ

)(
α

γ

)
γ!‖〈x〉2Mxα−γDβ−γf‖p

for some CM > 0. Since 〈x〉2M =
∑
|δ|≤M

M !
δ!(M−|δ|)!x

2δ, substituting in the previous estimate and

using (2.13), we obtain that for each λ > 0 and each α, γ, δ ∈ NN
0 there exists Cα−γ+2δ,λ > 0

such that

|ξβDαf̂(ξ)| ≤ CM
∑
γ≤α,β

∑
|δ|≤M

M !

δ!(M − |δ|)!

(
β

γ

)(
α

γ

)
γ!Cα−γ+2δ,λ exp

(
λΣ∗

(
β − γ
λ

))
.
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From the convexity of the Young conjugate function and by Proposition 2.2 (4), we see that

|ξβDαf̂(ξ)| ≤ CM
∑
γ≤α,β

∑
|δ|≤M

M !

δ!(M − |δ|)!

(
β

γ

)(
α

γ

)
Cλ exp

(
λΣ∗

(γ
λ

))
×

× Cα−γ+2δ,λ exp

(
λΣ∗

(
β − γ
λ

))
.

From the convexity of ϕ∗σj and by Proposition 2.2 (3), we finally get

|ξβDαf̂(ξ)| ≤ C ′α,λ′ exp

(
λ′Σ∗

(
β

λ′

))
,

for each λ′ > 0, α ∈ NN
0 , and for some C ′α,λ′ > 0. In particular, f̂ satisfies (2.23) with Σ∗ in

place of Ω∗. In the same way, from (2.14) we get that f̂ satisfies (2.22) with Ω∗ in place of Σ∗,
and so by Lemma 2.15 and Remark 2.6 we have the claim.

(1.) =⇒ (6.): from Lemma 2.14 we have that f satisfies (2.16). Fix λ, µ > 0 and consider

M >
[
N
2p

]
+ 1 and α, β ∈ NN

0 . Observe that

‖xβDαf‖p ≤ ‖〈x〉−2M‖p‖〈x〉2MxβDαf‖∞;

then, applying the same technique as above, we have that f satisfies (2.15)

(6.) =⇒ (5.): trivial. �

Proposition 2.18. Let Ω, Σ be weight functions as in (2.2). Then SΣ
Ω (RN) is closed under

differentiation Dα and multiplication by xα, with α ∈ NN
0 .

Proof. Let α ∈ NN
0 and fix f ∈ SΣ

Ω (RN). Since F(Dαf)(ξ) = ξαf̂(ξ) and Dβ(Dαf)(x) =
Dα+βf(x), thanks to Theorem 2.13 we get that Dαf ∈ SΣ

Ω (RN). Analogously, F(xαf)(ξ) =

(−1)|α|Dαf̂(ξ) and the same theorem implies that xαf ∈ SΣ
Ω (RN). �

3. Time-frequency representations and non isotropic ultradifferen-
tiable classes

In this section we analyze the action of some transformations, namely the Short-time Fourier
transform and a transform of Wigner type, on the space SΣ

Ω . Concerning the Short-time Fourier
transform we have the following remark.

Remark 3.1. Let Ω and Σ be weight functions in RN as in (2.2). By Theorem 2.11, we know
that for a non-zero window g ∈ SΣ

Ω (RN) and for f ∈ SΣ
Ω (RN) we have

(3.1) |Vgf(x, ξ)| ≤ Cλ exp(−λ(Ω(x) + Σ(ξ)))

for each λ > 0. Now we observe that since g ∈ SΣ
Ω (RN) then, from Remark 2.6, ĝ ∈ SΩ

Σ (RN).
Hence for each λ > 0 we have that

(3.2) |FVgf(y, η)| = |(2π)Nf(−η)ĝ(y)| ≤ C ′λ exp(−λΩ(η))C ′′λ exp(−λΣ(y)).
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Then by Theorem 2.13 we have that Vgf ∈ SΣ⊕Ω
Ω⊕Σ (R2N).

Observe that the Short-time Fourier transform is defined as a partial Fourier transform of a
function in R2N . We now analyze the action of partial Fourier transforms on ultradifferentiable
spaces. Given F ∈ S(R2N), we denote by F1F (resp. F2F ) the partial Fourier transform with
respect to the first (resp. second) N -variables; explicitly,

F1F (y, ξ) :=

∫
RN

exp(−ixy)F (x, ξ) dx,

F2F (x, η) :=

∫
RN

exp(−iξη)F (x, ξ) dξ.

Observe that F = F2F1 = F1F2 and hence F−1 = F−1
1 F−1

2 = F−1
2 F−1

1 .

Now we consider a collection of weight functions ωi,j, σi,j for i ∈ {1, 2} and j = 1, . . . , N ; we
write

(3.3) Ω(x, y) = ω1,1(x1) + · · ·+ ω1,N(xN) + ω2,1(y1) + · · ·+ ω2,N(yN),

(3.4) Σ(ξ, η) = σ1,1(ξ1) + · · ·+ σ1,N(ξN) + σ2,1(η1) + · · ·+ σ2,N(ηN).

(3.5) Ω1(x, y) = ω1,1(x1) + · · ·+ ω1,N(xN) + σ2,1(y1) + · · ·+ σ2,N(yN),

(3.6) Σ1(ξ, η) = σ1,1(ξ1) + · · ·+ σ1,N(ξN) + ω2,1(η1) + · · ·+ ω2,N(ηN).

Observe that we use the same notation Ω and Σ for weights of the form (2.2) in RN and of the
form (3.3)-(3.4) in R2N , since they are the same object. In R2N we shall need in the following
the associated weights Ω1, Σ1; it will always be clear what we mean when we write Ω, Σ.

Theorem 3.2. Let Ω, Σ be weight functions in R2N as in (3.3) and (3.4). We have the
following continuous maps.

(1) F2 : SΣ
Ω (R2N)→ SΣ1

Ω1
(R2N);

(2) F1 : SΣ
Ω (R2N)→ SΩ1

Σ1
(R2N).

Proof. The proofs of the two points are very similar; we show in detail point (1).

Consider F ∈ SΣ
Ω (R2N). Then F satisfies conditions (2.9) and (2.10). Now fix λ > 0 sufficiently

large (of course it is sufficient to prove the corresponding estimates on F2f for λ large). We
have

|F2F (x, η)| ≤
∫
RN
|F (x, ξ)| dξ ≤

∫
RN
C2λ exp(−2λ(Ω(x, ξ))) dξ

= C ′2λ exp(−2λ(ω1,1(x1) + · · ·+ ω1,N(xN))).

Moreover

|F2F (x, η)| = |F−1
1 FF (x, η)| ≤ (2π)−N

∫
RN
|FF (t, η)| dt

≤ (2π)−N
∫
RN
D2λ exp(−2λ(Σ(t, η))) dt = D′2λ exp(−2λ(σ2,1(η1) + · · ·+ σ2,N(ηN))).
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Therefore, we have

|F2F (x, η)| =
√
|F2F (x, η)|2 ≤

√
C ′2λD

′
2λ exp(−λΩ1(x, η)).

Now similarly, we obtain

|FF2F (y, η)| = |(2π)NF1F (y,−η)| ≤ (2π)N
∫
RN
|F (x,−η)| dx

≤ (2π)N
∫
RN
C2λ exp(−2λ(Ω(x, η))) dx

= C ′2λ exp(−2λ(ω2,1(η1) + · · ·+ ω2,N(ηN))),

and

|FF2F (y, η)| = |F2FF (y, η)| ≤
∫
RN
|FF (y, ξ)| dξ

≤
∫
RN
D2λ exp(−2λ(Σ(y, ξ))) dξ = D′2λ exp(−2λ(σ1,1(y1) + · · ·+ σ1,N(yN))).

Hence
|FF2F (y, η)| =

√
|FF2F (y, η)|2 ≤

√
C ′2λD

′
2λ exp(−λΣ1(y, η)).

Then by Theorem 2.13 we get F2F ∈ SΣ1
Ω1

(R2N). �

Remark 3.3. We have already shown in Remark 3.1, that if f, g ∈ SΣ
Ω (RN), for Ω and Σ as

in (2.2), then Vgf ∈ SΣ⊕Ω
Ω⊕Σ (R2N). We can re-obtain this result by means of Theorem 3.2, since

Vgf(x, ξ) = (F2F )(x, ξ), where F (x, t) = f(t)g(t− x) belongs to SΣ⊕Σ
Ω⊕Ω (R2N).

By standard duality arguments we have the following result.

Theorem 3.4. Let Ω, Σ be weight functions as in (3.3), (3.4). Then

(1) F2 : (SΣ
Ω )′(R2N)→

(
SΣ1

Ω1

)′
(R2N);

(2) F1 : (SΣ
Ω )′(R2N)→

(
SΩ1

Σ1

)′
(R2N).

Now we introduce a Wigner-like transform and study the corresponding mapping properties
in weighted ultradifferentiable spaces, as a preparation for applications to PDEs that we develop
in the last part of the paper.

Definition 3.5. Given u ∈ S(R2N), we define Wig[u] : R2N → C as

(3.7) Wig[u](x, ξ) =

∫
RN

exp(−itξ)u
(
x+

t

2
, x− t

2

)
dt.

Remark 3.6. Let us consider the symmetric coordinate change Tz acting on a function F on
R2N as

TzF (x, ξ) = F

(
x+

ξ

2
, x− ξ

2

)
.

Tz is a linear and bounded operator on L2(R2N). Moreover it is invertible with inverse given by

T−1
z F (x, ξ) = F

(
x+ ξ

2
, x− ξ

)
.



18 CLAUDIO MELE, ALESSANDRO OLIARO

We observe that for u ∈ S(R2N), Wig[u] = F2Tzu, and since both F2 and Tz can be extended
in a standard way to (ultra)distributions, we can consider Wig[u] acting on ultradistributions.
Moreover, Wig is invertible with inverse Wig−1 = T−1

z F−1
2 .

Proposition 3.7. Let Ω, Σ be weight functions as in (3.3), (3.4). Then the following properties
hold:

(1) Wig : S(R2N)→ S(R2N);
(2) Wig : S ′(R2N)→ S ′(R2N);
(3) Wig : SΣ

Ω (R2N)→ SΣ1
Ω1

(R2N);

(4) Wig : (SΣ
Ω )′(R2N)→

(
SΣ1

Ω1

)′
(R2N).

Proof. It follows from Remark 3.6, Theorem 3.2 and Theorem 3.4. �

Similarly we have the following result.

Proposition 3.8. Let Ω, Σ be weight functions as in (3.3),(3.4). Then the following properties
hold:

(1) Wig−1 : S(R2N)→ S(R2N);
(2) Wig−1 : S ′(R2N)→ S ′(R2N);
(3) Wig−1 : SΣ

Ω (R2N)→ SΣ1
Ω1

(R2N);

(4) Wig−1 : (SΣ
Ω )′(R2N)→

(
SΣ1

Ω1

)′
(R2N).

4. Regularity of PDE in weighted ultradifferentiable spaces

In this section we give an application of the results that we have proved to the theory of
PDEs. In particular we analyze the problem of regularity of solutions of partial differential
equations with polynomial coefficients, and see how representation of time-frequency type can
be profitably used in this field. Results in this direction have been studied in [9] and [3], in
the classical Schwartz space and in isotopic ultradifferentiable classes, in dimension 1; here we
provide a general framework for anisotropic spaces in arbitrary dimension N .

In order to state or results we need some notations. Let R : B → BL, L ∈ N, be a vector
of L operators acting on a space B; then there exist Rj : B → B, j = 1, . . . , L, and for every
w ∈ B we have

Rw = (R1w, . . . , RLw).

In the following B will be either C∞(RM), S(RM), or SΣ
Ω (RM). Then for every γ ∈ NL

0 , following
the multi-index notation we define the operator Rγ : B → B as the composition

Rγ = Rγ1
1 · · ·R

γL
L .

Observe that for every j = 1, . . . , L we have Rj = Rej , where ej, j = 1, . . . , L, is the j-th vector
of the canonical basis of RL (i.e., the vector having 1 in the j-th position and 0 elsewhere), so
we can write

R = (Re1 , . . . ,ReL).

If for every i, j = 1, . . . , L the commutation relation

(4.1) RiRj = RjRi
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holds, then for every γ, µ ∈ NL
0 we have

(4.2) RγRµ = Rγ+µ;

Now let T = (T1, . . . , TL) be another vector of L operators acting on B, and a, b ∈ C; then for
every γ ∈ NL

0 the operator (aR + bT)γ is the composition

(4.3) (aR + bT)γ = (aR1 + bT1)γ1 · · · (aRL + bTL)γL .

Definition 4.1. Let us consider a function F ∈ C∞(R2N), F = F (x, ξ) for x, ξ ∈ RN . We
define the multiplication and differentiation with respect to the first and second N variables as
the vectors of operators acting on F (x, ξ) as

MfF (x, ξ) = (x1F (x, ξ), . . . , xNF (x, ξ)),

MsF (x, ξ) = (ξ1F (x, ξ), . . . , ξNF (x, ξ)),

DfF (x, ξ) = (Dx1F (x, ξ), . . . , DxNF (x, ξ)),

DsF (x, ξ) = (Dξ1F (x, ξ), . . . , DξNF (x, ξ)).

Remark 4.2. For a function F ∈ C∞(R2N), F = F (x, ξ) for x, ξ ∈ RN , and a multi-index
α ∈ NN

0 we have

Mα
f F (x, ξ) = xαF (x, ξ), Mα

sF (x, ξ) = ξαF (x, ξ),

Dα
f F (x, ξ) = Dα

xF (x, ξ), Dα
sF (x, ξ) = Dα

ξ F (x, ξ).

Now consider an operator with polynomial coefficients

(4.4) P (x, y,Dx, Dy) =
∑

|α+β+γ+µ|≤m

cαβγµx
αyβDγ

xD
µ
y ,

with x, y ∈ RN , cαβγµ ∈ C, and m ∈ N. If, for j = 1, . . . ,4, the operators Aj and Bj are any of
Mf ,Ms,Df ,Ds and aj, bj ∈ R, j = 1, . . . , 4, we denote

P
(
a1A

1 + b1B
1, a2A

2 + b2B
2, a3A

3 + b3B
3, a4A

4 + b4B
4
)

=

=
∑

|α+β+γ+µ|≤m

cαβγµ(a1A
1 + b1B

1)α(a2A
2 + b2B

2)β(a3A
3 + b3B

3)γ(a4A
4 + b4B

4)µ,(4.5)

with the meaning (4.3).

Proposition 4.3. Fix u ∈ S(R2N), α ∈ NN
0 , and let Wig be the transformation defined by

(3.7). Then the following properties hold:

(1) Dα
f Wig[u] = Wig[(Df + Ds)

αu];
(2) Dα

sWig[u] = Wig[(Ms −Mf )
αu];

(3) Mα
f Wig[u] = Wig[

(
Ms+Mf

2

)α
u];

(4) Mα
sWig[u] = Wig

[(
Df−Ds

2

)α
u
]
.

Proof. We first observe that both Df + Ds, Ms−Mf ,
Ms+Mf

2
, and Df−Ds

2
satisfy the commu-

tation relation (4.1), so it is enough to prove the thesis for |α| = 1 and then the general case
follows by (4.2).
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(1) Let α = ej, where ej is the j-th vector of the canonical basis of RN . We can differentiate
under the integral sign, obtaining

D
ej
f Wig[u](x, ξ) = Dxj

∫
RN

exp(−itξ)u
(
x+

t

2
, x− t

2

)
dt

=

∫
RN

exp(−itξ)Dxj

(
u

(
x+

t

2
, x− t

2

))
dt = Wig[(Df + Ds)

eju](x, ξ).

(2) As in the previous case, differentiating under the integral sign we get

Dej
s Wig[u](x, ξ) = Dξj

∫
RN

exp(−itξ)u
(
x+

t

2
, x− t

2

)
dt

=

∫
RN
−tj exp(−itξ)u

(
x+

t

2
, x− t

2

)
dt

=

∫
RN

exp(−itξ)
(
xj −

tj
2

)
u

(
x+

t

2
, x− t

2

)
dt

−
∫
RN

exp(−itξ)
(
xj +

tj
2

)
u

(
x+

t

2
, x− t

2

)
dt = Wig[(Ms −Mf )

eju](x, ξ).

(3) We have

M
ej
f Wig[u](x, ξ) = xj

∫
RN

exp(−itξ)u
(
x+

t

2
, x− t

2

)
dt

=

∫
RN

exp(−itξ)1

2

(
xj −

tj
2

)
u

(
x+

t

2
, x− t

2

)
dt

+

∫
RN

exp(−itξ)1

2

(
xj +

tj
2

)
u

(
x+

t

2
, x− t

2

)
dt

= Wig

[(
Ms + Mf

2

)ej
u

]
(x, ξ).

(4) By integration by parts we obtain

Mej
s Wig[u](x, ξ) = ξj

∫
RN

exp(−itξ)u
(
x+

t

2
, x− t

2

)
dt

=
1

2

∫
RN

exp(−itξ)Dej
f u

(
x+

t

2
, x− t

2

)
dt

− 1

2

∫
RN

exp(−itξ)Dej
s u

(
x+

t

2
, x− t

2

)
dt = Wig

[(
Df −Ds

2

)ej
u

]
(x, ξ).

�
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Remark 4.4. From Proposition 4.3 (1) and (4) we get

Wig[Dα
f u] =

(
Ms +

Df

2

)α
Wig[u],

Wig[Dα
s u] =

(
Df

2
−Ms

)α
Wig[u];

analogously, from Proposition 4.3 (2) and (3) we get

Wig[Mα
f u] =

(
Mf −

Ds

2

)α
Wig[u],

Wig[Mα
s u] =

(
Mf +

Ds

2

)α
Wig[u],

for every α ∈ NN
0 . Indeed, for α = ej, j = 1, . . . , N , such formulas are an easy consequence of

Proposition 4.3, and the general case follows from (4.2), since all the operators in consideration
satisfy the commutation relation (4.1).

Remark 4.5. Note that for every α, β ∈ NN
0 and for every u ∈ S(R2N) we have

(4.6) (Df + Ds)
α(Ms −Mf )

βu = (Ms −Mf )
β(Df + Ds)

αu

and

(4.7) (Df −Ds)
α(Ms + Mf )

βu = (Ms + Mf )
β(Df −Ds)

αu.

Indeed, from Proposition 4.3 (1), (2), we have

Wig[(Df + Ds)
α(Ms −Mf )

βu] = Dβ
sD

α
f Wig[u] = Dα

f Dβ
sWig[u]

= Wig[(Ms −Mf )
β(Df + Ds)

αu],

and applying Wig−1 we get (4.6). Analogously, (4.7) follows from Proposition 4.3 (3), (4).

Given a linear partial differential operator with polynomial coefficients as in (4.4) we denote

P (Mf ,Ms,Df ,Ds) = P

(
Ms + Mf

2
,
Df −Ds

2
,Df + Ds,Ms −Mf

)
,

with the meaning (4.5).

Proposition 4.6. Let P (x, y,Dx, Dy) be a linear partial differential operator as in (4.4). Then
for each u ∈ S(R2N), the following formula holds:

(4.8) P (Mf ,Ms,Df ,Ds)Wig[u] = Wig
[
P (Mf ,Ms,Df ,Ds)u

]
.

Proof. From Proposition 4.3 we have that for each α, β, γ, µ ∈ NN
0

Mα
f Mβ

sD
γ
f D

µ
sWig[u] = Wig

[(
Ms + Mf

2

)α(
Df −Ds

2

)β
(Df + Ds)

γ (Ms −Mf )
µ u

]
and hence the thesis, since Wig is linear. �
Analogously if we denote

P̃ (Mf ,Ms,Df ,Ds) = P

(
Mf −

Ds

2
,Mf +

Ds

2
,Ms +

Df

2
,
Df

2
−Ms

)
,
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with the same scheme of the previous proof we can show the following result.

Proposition 4.7. Let P (x, y,Dx, Dy) be a linear partial differential operator with polynomial
coefficients. Then for each u ∈ S(R2N), the following formula holds:

(4.9) Wig [P (Mf ,Ms,Df ,Ds)u] = P̃ (Mf ,Ms,Df ,Ds)Wig[u].

From now on, we consider a collection of weight functions ωi,j, σi,j for i ∈ {1, 2} and j =
1, . . . , N , and we fix the weights Ω, Σ, Ω1 and Σ1 in R2N as in (3.3), (3.4), (3.5) and (3.6). Let
P (x, y,Dx, Dy) be a linear partial differential operator as in (4.4). As in the classical Schwartz
case, it is easy to show that

P : SΣ
Ω (R2N)→ SΣ

Ω (R2N)

P : (SΣ
Ω )′(R2N)→ (SΣ

Ω )′(R2N).

Definition 4.8. Let P (x, y,Dx, Dy) be a linear partial differential operator with polynomial
coefficients and let Ω, Σ be weight functions. We say that P is SΣ

Ω -regular if

(4.10) Pu ∈ SΣ
Ω (R2N) =⇒ u ∈ SΣ

Ω (R2N), for eachu ∈ (SΣ
Ω )′(R2N).

Theorem 4.9. Let P (x, y,Dx, Dy) be a linear partial differential operator with polynomial

coefficients, and let Ω, Σ be weight functions. If P is SΣ
Ω -regular then P is SΣ1

Ω1
-regular.

Proof. Suppose that P is SΣ
Ω -regular. Fix u ∈ (SΣ1

Ω1
)′(R2N) and suppose that Pu ∈ SΣ1

Ω1
(R2N).

From Proposition 4.6 we know that

PWig[u] = Wig
[
Pu
]
,

hence from Proposition 3.7 we have Wig
[
Pu
]
∈ SΣ

Ω (R2N). Moreover, again by Proposition

3.7, Wig[u] ∈ (SΣ
Ω )′(R2N). Since P is SΣ

Ω -regular, we then get that Wig[u] ∈ SΣ
Ω (R2N). Finally

applying Wig−1 we obtain from Proposition 3.8 that u ∈ SΣ1
Ω1

(R2N), and so P is SΣ1
Ω1

-regular. �

Theorem 4.10. Let P (x, y,Dx, Dy) be a linear partial differential operator with polynomial

coefficients and let Ω, Σ be weight functions. If P is SΣ
Ω -regular, then P̃ is SΣ1

Ω1
-regular.

Proof. Suppose that P is SΣ
Ω -regular. Fix u ∈ (SΣ1

Ω1
)′(R2N) and suppose that P̃ u ∈ SΣ1

Ω1
(R2N).

From Proposition 4.7 we know that for each w ∈ S(R2N)

Wig [Pw] = P̃Wig[w].

Consider w = Wig−1(u) ∈ (SΣ
Ω )′(R2N) from Proposition 3.8. Hence we obtain that

Wig [Pw] = P̃ u,

and so Wig [Pw] ∈ SΣ1
Ω1

(R2N). Applying again Wig−1 we get from Proposition 3.8 that Pw ∈
SΣ

Ω (R2N). Since P is SΣ
Ω -regular we then obtain that w = Wig−1(u) ∈ SΣ

Ω (R2N). Applying the

operator Wig we get from proposition 3.7 that u ∈ SΣ1
Ω1

(R2N), and so P̃ is SΣ1
Ω1

-regular. �

Now we give some examples of applications of our results in order to find classes of regular
partial differential operators with polynomial coefficients.
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Proposition 4.11. Consider a multiplication operator by a polynomial, i.e. P (x, y,Dx, Dy) =
p(x, y), for some polynomial p. Then P is SΣ

Ω -regular if and only if p(x, y) 6= 0.

Proof. Suppose that there exists a point (x, y) ∈ R2N such that p(x, y) = 0. Then p ·δ(x,y) = 0,
i.e. Pδ(x,y) = 0. Therefore, P is not SΣ

Ω -regular. In the opposite direction, fix u ∈ (SΣ
Ω )′(R2N)

and suppose that Pu ∈ SΣ
Ω (R2N). Hence there exists w ∈ SΣ

Ω (R2N) such that p(x, y) · u(x, y) =

w(x, y). Since p(x, y) 6= 0, it is easy to show that u(x, y) = w(x,y)
p(x,y)

∈ SΣ
Ω (R2N). �

Proposition 4.12. Consider an operator with constant coefficients, i.e. P (x, y,Dx, Dy) =
P (Dx, Dy), with symbol the polynomial p(ξ, η). Then P is SΣ

Ω -regular if and only if p(ξ, η) 6= 0.

Proof. We have that Pu = F−1(p · Fu). Using the previous Proposition 4.11 and Remark 2.6
we get the claim. �
We then obtain the following result.

Corollary 4.13. Let p(z, ζ) =
∑
|α+β|≤m cαβz

αζβ, for cαβ ∈ C and z, ζ ∈ RN a polynomial in

R2N , with p(z, ζ) 6= 0 for every (z, ζ) ∈ R2N . Then the following operators are SΣ
Ω -regular:

P1 =
∑

|α+β|≤m

cαβ

(
x+ y

2

)α(
Dx −Dy

2

)β
,

P2 =
∑

|α+β|≤m

cαβ(Dx +Dy)
α(y − x)β,

P3 =
∑

|α+β|≤m

cαβ

(
x− Dy

2

)α(
x+

Dy

2

)β
,

P4 =
∑

|α+β|≤m

cαβ

(
y +

Dx

2

)α(
Dx

2
− y
)β

.

Proof. It is an immediate consequence of Propositions 4.11, 4.12, and Theorems 4.9, 4.10. �

5. Regularity of time-frequency representations in the Cohen class
with kernel in S ′

In this section we extend the results of the preceding section to the case of representations in
the Cohen class based on the transformation (3.7).

Definition 5.1. Given a kernel κ ∈ S ′(R2N), we define the operator Q[u] = κ ? Wig[u], for
each u ∈ S(R2N). An operator Q is called a time-frequency representation in the Cohen class
with kernel κ.
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We shall consider in particular kernels κ(x, y) whose Fourier transform κ̂(ξ, η) is given by

(5.1) κ̂(ξ, η) = exp

(
−i

N∑
j=1

pj(ξj, ηj)

)
,

where pj, j = 1, . . . , N are polynomials in R2 of any order, with coefficients in R.
Now consider the polynomial pj = pj(s, t), for s, t ∈ R; we indicate with

(∂1pj)(s, t) =
∂pj
∂s

(s, t), (∂2pj)(s, t) =
∂pj
∂t

(s, t).

Then, for j = 1, . . . , N we define the operators

Rj = Rj(Dx, Dy) = (∂1pj)(Dxj , Dyj),(5.2)

Tj = Tj(Dx, Dy) = (∂2pj)(Dxj , Dyj),(5.3)

R∗j = R∗j (Dx, Dy) = (∂1pj)(Dxj +Dyj , yj − xj),
T ∗j = T ∗j (Dx, Dy) = (∂2pj)(Dxj +Dyj , yj − xj),

for x, y ∈ RN . Observe that Rj and Tj, are partial differential operators with constant coeffi-
cients in R2N , while R∗j and T ∗j are partial differential operators with polynomial coefficients in

R2N . We then define the corresponding vectors of operators

R = (R1, . . . , RN), T = (T1, . . . , TN),(5.4)

R∗ = (R∗1, . . . , R
∗
N), T∗ = (T ∗1 , . . . , T

∗
N).(5.5)

Remark 5.2. By Proposition 4.6 we have that for every u ∈ S(RN)

RWig[u] = Wig[R∗u], and TWig[u] = Wig[T∗u],

where Wig applied to a vector is intended as the vector of Wig applied to the components,
so that the equalities above are intended componentwise. Then, since R and T are vectors of
operators with constant coefficients, by the properties of the convolution we also have

RQ[u] = κ ∗RWig[u] = κ ∗Wig[R∗u] = Q[R∗u],

and analogously

TQ[u] = Q[T∗u].

Lemma 5.3. Let R, T as before, Mf , Ms as in Definition 4.1, and κ as in (5.1). Then

Mfκ = Rκ and Msκ = Tκ.

Proof. In order to prove the equality Mfκ = Rκ we have to show that for every j = 1, . . . , N ,

xjκ(x, y) = (∂1pj)(Dxj , Dyj)κ(x, y).

Applying the Fourier transform to both sides, this in turn is equivalent to

i∂ξj κ̂(ξ, η) = (∂1pj)(ξj, ηj)κ̂(ξ, η),

and this last equality trivially follows from (5.1). The other relation Msκ = Tκ can be proved
in the same way. �
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Proposition 5.4. Fix u ∈ S(R2N), and let κ be the kernel defined by (5.1). Then for every
α ∈ NN

0 the following properties hold:

(1) Dα
f Q[u] = Q[(Df + Ds)

αu];
(2) Dα

sQ[u] = Q[(Ms −Mf )
αu];

(3) Mα
f Q[u] = Q[

(
Ms+Mf

2
+ R∗

)α
u];

(4) Mα
sQ[u] = Q

[(
Df−Ds

2
+ T∗

)α
u
]
.

Proof. In the following the integrals are intended as the action of the distribution κ when κ
is not a function.

(1) and (2) are trivial consequences of Proposition 4.3, since Dα
f Q[u] = κ ? Dα

f Wig[u] and
Dα

sQ[u] = κ ?Dα
sWig[u].

Concerning point (3) we first observe that the vector of operators Ms+Mf

2
+ R∗ satisfies the

commutation relations (4.1), so it satisfies (4.2); this means that it is enough to prove the
thesis for |α| = 1, and the general case follows by induction.

For α = ej, j = 1, . . . , N , we get that

M
ej
f Q[u](x, ξ) =

∫
R2N

xjκ(t, s)Wig(x− t, ξ − s) dtds

=

∫
R2N

(xj − tj)κ(t, s)Wig(x− t, ξ − s) dtds

+

∫
R2N

tjκ(t, s)Wig(x− t, ξ − s) dtds

= κ ? (M
ej
f Wig[u]) + (M

ej
f κ) ? Wig[u].

Now we observe that, by Lemma 5.3, M
ej
f κ = Rejκ, and since Rej is an operator with constant

coefficients we have that (M
ej
f κ) ? Wig[u] = κ ? RejWig[u]. Then, applying Proposition 4.3

and Remark 5.2 we get

M
ej
f Q[u](x, ξ) = κ ? Wig

[(
Ms + Mf

2

)ej
u

]
+ κ ? Wig[(R∗)eju]

= Q

[(
Ms + Mf

2
+ R∗

)ej
u

]
.

To prove (4) we first observe that the vector of operators Df−Ds

2
+T∗ satisfies the commutation

relations (4.1), so it satisfies (4.2); as before it is enough to prove the thesis for |α| = 1, and
the general case follows by induction. For α = ej, j = 1, . . . , N , we get that

Mej
s Q[u](x, ξ) =

∫
R2N

ξjκ(t, s)Wig(x− t, ξ − s) dtds

=

∫
R2N

(ξj − sj)κ(t, s)Wig(x− t, ξ − s) dtds

+

∫
R2N

sjκ(t, s)Wig(x− t, ξ − s) dtds

= κ ? (Mej
s Wig[u]) + (Mej

s κ) ? Wig[u].
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By Lemma 5.3 we have M
ej
s κ = Tejκ, and since Tej is an operator with constant coefficients

we have that (M
ej
s κ) ? Wig[u] = κ ? TejWig[u]. Then, applying Proposition 4.3 and Remark

5.2 we get

Mej
s Q[u](x, ξ) = κ ? Wig

[(
Df −Ds

2

)ej
u

]
+ κ ? Wig[(T∗)eju]

= Q

[(
Df −Ds

2
+ T∗

)ej
u

]
.

�

Remark 5.5. The following relations hold:

Q[Mα
f u] =

(
Mf −

Ds

2
−R

)α
Q[u], Q[Mα

s u] =

(
Mf +

Ds

2
−R

)α
Q[u],(5.6)

Q[Dα
f u] =

(
Df

2
+ Ms −T

)α
Q[u], Q[Dα

s u] =

(
Df

2
−Ms + T

)α
Q[u];(5.7)

indeed, from Proposition 5.4 with α = ej, j = 1, . . . , N , Remark 5.2, and the linearity of Q, we
get

D
ej
f Q[u] = Q[D

ej
f u] +Q[Dej

s u],

Dej
s Q[u] = Q[Mej

s u]−Q[M
ej
f u],

M
ej
f Q[u] =

1

2
Q[Mej

s u] +
1

2
Q[M

ej
f u] + RejQ[u],

Mej
s Q[u] =

1

2
Q[D

ej
f u]− 1

2
Q[Dej

s u] + TejQ[u].

Then, combining these last relations we easily get (5.6) and (5.7) for α = ej; the general
case follows from the fact that the four vectors of operators (Mf − Ds

2
−R), (Mf + Ds

2
−R),

(Df

2
−Ms−T) and (Df

2
−Ms+T) satisfy the commutation relations (4.1), so they satisfy (4.2).

Remark 5.6. The reason for the particular choice of κ as in (5.1), with each polynomial
depending only on a single couple of variables (ξj, ηj) is related to Proposition 5.4 and Remark
5.5, since this choice ensures us that all the vectors of operators that we consider in those results
satisfy the commutation relation (4.1). It would be interesting to analyze the case when κ is
chosen in such a way that κ̂(ξ, η) = exp(−ip(ξ, η)) for a generic polynomial p in R2N with real
coefficients. However, in this case it looks very difficult to have good formulas corresponding to
the ones of Proposition 5.4.

Proposition 5.7. Let B(x, y,Dx, Dy) be a linear partial differential operator with polynomial
coefficients and let the kernel κ ∈ S ′(R2N) be defined by (5.1). Then for each u ∈ S(R2N), the
time-frequency representation Q[w] = κ ? Wig[w] satisfies:

(5.8) B(Mf ,Ms,Df ,Ds)Q[u] = Q
[
B(Mf ,Ms,Df ,Ds)u

]
,

where B is the linear partial differential operator with polynomial coefficients defined by

(5.9) B(Mf ,Ms,Df ,Df ) = B

(
Ms + Mf

2
+ R∗,

Df −Ds

2
+ T∗,Df + Ds,Ms −Mf

)
.
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Proof. The proof follows immediately from Proposition 5.4 and the linearity of Q. �

Proposition 5.8. Let B(x, y,Dx, Dy) be a linear partial differential operator with polynomial
coefficients and let the kernel κ ∈ S ′(R2N) be defined by (5.1). Then for each u ∈ S(R2N), the
time-frequency representation Q[w] = κ ? Wig[w] satisfies:

(5.10) Q[B(Mf ,Ms,Df ,Ds)u] = B̃(Mf ,Ms,Df ,Ds)Q[u],

where B̃ is the linear partial differential operator with polynomial coefficients defined by
(5.11)

B̃(Mf ,Ms,Df ,Ds) = B

(
Mf −

Ds

2
−R,Mf +

Ds

2
−R,

Df

2
+ Ms −T,

Df

2
−Ms + T

)
,

Proof. The proof follows immediately from Remark 5.5 and the linearity of Q. �

Now we want to study the action of Q on the spaces SΣ
Ω (R2N).

Theorem 5.9. Fix the kernel κ ∈ S ′(R2N) as in (5.1). Then the following properties hold:

(1) Q : S ′(R2N)→ S ′(R2N),
(2) Q : S(R2N)→ S(R2N),
(3) Q : (SΣ

Ω )′(R2N)→ (SΣ1
Ω1

)′(R2N),

(4) Q : SΣ
Ω (R2N)→ SΣ1

Ω1
(R2N),

and in all the cases Q is invertible.

Proof. The proof of (1) and (2) can be found in [3], in the case N = 1, and the proof works
in the same way in higher dimension.

(3) Fix u ∈ (SΣ
Ω )′(R2N). We observe that F(Q[u]) = κ̂F(Wig[u]) ∈ (SΩ1

Σ1
)′(R2N), since κ̂

has a polynomial growth and F(Wig[u]) ∈ (SΩ1
Σ1

)′(R2N) from Proposition 3.7 and Remark 2.6

extended to ultradistributions. Applying F−1 we get that Q[u] ∈ (SΣ1
Ω1

)′(R2N) as desired.

Now we prove the invertibility of Q. The injectivity follows from the injectivity of the Wigner-
like transform. To prove the surjectivity, fix w ∈ (SΣ1

Ω1
)′(R2N). Then ŵ ∈ (SΩ1

Σ1
)′(R2N). Since

1/κ̂ has still a polynomial growth, then also ŵ/κ̂ ∈ (SΩ1
Σ1

)′(R2N). By the surjectivity of the

Fourier transform there exists v ∈ (SΣ1
Ω1

)′(R2N) such that v̂ = ŵ/κ̂. By the surjectivity of the

Wigner-like transform, v = Wig[u] for some u ∈ (SΣ
Ω )′(R2N) and therefore

ŵ = κ̂v̂ = κ̂F(Wig[u]) = F(κ ? Wig[u]) = F(Q[u])

and by the injectivity of the Fourier transform w = Q[u], for u ∈ (SΣ
Ω )′(R2N).

(4) Fix u ∈ SΣ
Ω (R2N). We have that

Q[u] = κ ? Wig[u] = F−1(κ̂F(Wig[u])) ∈ SΣ1
Ω1

(R2N)

since κ̂ has a polynomial growth and F(Wig[u]) ∈ SΩ1
Σ1

(R2N) for u ∈ SΣ
Ω (R2N). The invertibility

can be proved as in the previous point. �



28 CLAUDIO MELE, ALESSANDRO OLIARO

Remark 5.10. By the invertibility properties of Theorem 5.9 we have that if u ∈ (SΣ
Ω )′(R2N)

and Q[u] ∈ SΣ1
Ω1

(R2N), then u ∈ SΣ
Ω (R2N).

Theorem 5.11. Let B(x, y,Dx, Dy) be a linear partial differential operator with polynomial

coefficients, and fix the kernel κ ∈ S ′(R2N) as in (5.1). If B is SΣ
Ω -regular then B is SΣ1

Ω1
-

regular.

Proof. Suppose that B is SΣ
Ω -regular. Fix u ∈ (SΣ1

Ω1
)′(R2N) and suppose that Bu ∈ SΣ1

Ω1
(R2N).

From Proposition 5.7 we know that

BQ[u] = Q
[
Bu
]
,

hence from Theorem 5.9 we get Q
[
Bu
]
∈ SΣ

Ω (R2N). Moreover, again by Theorem 5.9, we

have Q[u] ∈ (SΣ
Ω )′(R2N). Since B is SΣ

Ω -regular, we then get that Q[u] ∈ SΣ
Ω (R2N). Finally by

Remark 5.10 we obtain that u ∈ SΣ1
Ω1

(R2N), and so B is SΣ1
Ω1

-regular. �

Theorem 5.12. Let B(x, y,Dx, Dy) be a linear partial differential operator with polynomial

coefficients, and fix the kernel κ ∈ S ′(R2N) as in (5.1). If B is SΣ
Ω -regular then B̃ is SΣ1

Ω1
-

regular.

Proof. Suppose that B is SΣ
Ω -regular. Fix u ∈ (SΣ1

Ω1
)′(R2N) and suppose that B̃u ∈ SΣ1

Ω1
(R2N).

From Proposition 5.8 we know that for each w ∈ S(R2N)

Q [Bw] = B̃Q[w].

Consider w = Q−1[u]; from Theorem 5.9 we have w ∈ (SΣ
Ω )′(R2N). Hence we obtain that

Q [Bw] = B̃u,

and so Q [Bw] ∈ SΣ1
Ω1

(R2N). By Remark 5.10 we then have that Bw ∈ SΣ
Ω (R2N). Since B is

SΣ
Ω -regular we then obtain that w = Q−1[u] ∈ SΣ

Ω (R2N). Applying the operator Q we get from

Theorem 5.9 that u ∈ SΣ1
Ω1

(R2N), and so B̃ is SΣ1
Ω1

-regular. �

We can give a further generalization of the last results, by taking a kernel κ1 of the following
form; let κ be defined as in (5.1), and let q ∈ C[ξ, η] be a polynomial that never vanishes on
R2N . We define κ1 by

(5.12) κ̂1(ξ, η) = q(ξ, η)κ̂(ξ, η).

Then κ1(x, y) = q(Dx, Dy)κ(x, y) and, by Proposition 4.6, we have

(5.13) Q1[u] = κ1 ? Wig[u] = κ ? (q(Df ,Ds)Wig[u]) = κ ? Wig[Au] = Q[Au],

where

(5.14) A(Mf ,Ms,Df ,Ds) = q(Df + Ds,Ms −Mf ).

We can give the following result.

Theorem 5.13. Fix the kernel κ1 ∈ S ′(R2N) as in (5.12), where κ is defined by (5.1). Writing
Q1[u] = κ1 ? Wig[u], we have the following properties:

(1) Q1 : S ′(R2N)→ S ′(R2N),
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(2) Q1 : S(R2N)→ S(R2N),
(3) Q1 : (SΣ

Ω )′(R2N)→ (SΣ1
Ω1

)′(R2N),

(4) Q1 : SΣ
Ω (R2N)→ SΣ1

Ω1
(R2N),

and in all cases Q1 is invertible. Moreover, if u ∈ (SΣ
Ω )′(R2N) and Q1[u] ∈ SΣ1

Ω1
(R2N), then

u ∈ SΣ
Ω (R2N).

Proof. The proof is analogous to that of Theorem 5.9 and Remark 5.10, since κ̂1(ξ, η) =
q(ξ, η)κ̂(ξ, η) and q(ξ, η) never vanishes. �

Theorem 5.14. Fix the kernel κ1 ∈ S ′(R2N) as in (5.12), where κ is defined by (5.1). Writing
Q1[u] = κ1 ? Wig[u] we have that the following formula holds for u ∈ S(R2N):

(5.15) Q1[Bu] = ÃBQ[u],

where A is the operator (5.14), and ÃB is obtained by AB as in (5.11). Moreover B is SΣ
Ω -

regular if and only if ÃB is SΣ1
Ω1

-regular.

Proof. The formula (5.15) follows from (5.13) and Proposition 5.8.

Now we suppose that B is SΣ
Ω -regular and we prove that ÃB is SΣ1

Ω1
-regular. Fix u ∈ (SΣ1

Ω1
)′(R2N)

and suppose that ÃBu ∈ SΣ1
Ω1

(R2N). By Theorem 5.9 there exists w ∈ (SΣ
Ω )′(R2N) such that

Q[w] = u. By (5.15) we have that Q1[Bw] = ÃBQ[w] = ÃBu and hence Bw ∈ SΣ
Ω (R2N)

from Theorem 5.13. Since B is SΣ
Ω -regular, then w ∈ SΣ

Ω (R2N). Applying Q we get that

u = Q[w] ∈ SΣ1
Ω1

(R2N), and so ÃB is SΣ1
Ω1

-regular.

Reciprocally, we assume that ÃB is SΣ1
Ω1

-regular and we prove that B is SΣ
Ω -regular. Fix

u ∈ (SΣ
Ω )′(R2N) and suppose that Bu ∈ SΣ

Ω (R2N). Then Q1[Bu] ∈ SΣ1
Ω1

(R2N) by Theorem 5.13.

Using formula (5.15) we obtain that ÃBQ[u] = Q1[Bu] ∈ SΣ1
Ω1

(R2N). Since Q[u] ∈ (SΣ1
Ω1

)′(R2N)

and ÃB is SΣ1
Ω1

-regular we get that Q[u] ∈ SΣ1
Ω1

(R2N). By Theorem 5.13 we conclude that

u ∈ SΣ
Ω (R2N), and so B is SΣ

Ω -regular. �

Remark 5.15. In the particular case q ≡ 1 we have that A is the identity, and so Theorem 5.14
implies that a linear partial differential operator B with polynomial coefficients is SΣ

Ω -regular if

and only if B̃ is SΣ1
Ω1

-regular.

We conclude with some examples of application of Propositions 5.7 and 5.8. We have already
observed in Propositions 4.11 and 4.12 that the operator with polynomial coefficients

P (x, y,Dx, Dy) = p(x, y),

resp.
Q(x, y,Dx, Dy) = q(Dx, Dy),

is SΣ
Ω -regular if and only if p(x, y), resp. q(ξ, η), never vanishes. If we consider, as particular

case, a kernel of the form (5.1) where we assume that the polynomials pj are of the form

pj(ξj, ηj) = pj,1(ξj) + pj,2(ηj),
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for every j = 1, . . . , N , then the operators Rj = Rj(Dxj) and Tj = Tj(Dyj) defined in (5.2) and
(5.3) can be chosen as arbitrary differential operators with constant real coefficients, of any
order and without any other assumption on their symbols. Moreover, we have

R∗j = Rj(Dxj +Dyj) and T ∗j = Tj(yj − xj),
again for arbitrary Rj and Tj with real coefficients. Now let

p(z, ζ) =
∑

|α+β|≤m

cαβz
αζβ, cαβ ∈ C, z, ζ ∈ RN ,

be a polynomial that never vanishes. Then, as in Corollary 4.13, from Propositions 5.7 and 5.8,
we obtain that the following operators are SΣ

Ω -regular:

P1 =
∑

|α+β|≤m

cαβ

(
x1 + y1

2
+R1(Dx1 +Dy1)

)α1

. . .

(
xN + yN

2
+RN(DxN +DyN )

)αN
(
Dx1 −Dy1

2
+ T1(y1 − x1)

)β1
. . .

(
DxN −DyN

2
+ TN(yN − xN)

)βN
;

P2 =
∑

|α+β|≤m

cαβ

(
x1 −

Dy1

2
−R1(Dx1)

)α1

. . .

(
xN −

DyN

2
−RN(DxN )

)αN
(
x1 +

Dy1

2
−R1(Dx1)

)β1
. . .

(
xN +

DyN

2
−RN(DxN )

)βN
;

P3 =
∑

|α+β|≤m

cαβ

(
Dx1

2
+ y1 − T1(Dy1)

)α1

. . .

(
DxN

2
+ yN − TN(DyN )

)αN
(
Dx1

2
− y1 + T1(Dy1)

)β1
. . .

(
DxN

2
− yN + TN(DyN )

)βN
.

Following the same procedure as in [3] we obtain that the twisted Laplacian (1.1), as well as
the operators in R2 (

x− 1

2
Dy +Q(Dx)

)2

+

(
y +

1

2
Dx +R(Dy)

)2

and

(x−Dy +Q(Dx))
2 + (y +R(Dy))

2,

for arbitrary differential operators Q(Dx) and R(Dy) with real constant coefficients, are Sσ1⊕σ2ω1⊕ω2
-

regular, for every weight functions ω1, ω2, σ1, σ2.
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