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Abstract: Muscular Dystrophies (MDs) are a group of rare inherited genetic muscular pathologies
encompassing a variety of clinical phenotypes, gene mutations and mechanisms of disease. MDs
undergo progressive skeletal muscle degeneration causing severe health problems that lead to poor
life quality, disability and premature death. There are no available therapies to counteract the causes
of these diseases and conventional treatments are administered only to mitigate symptoms. Recent
understanding on the pathogenetic mechanisms allowed the development of novel therapeutic strate-
gies based on gene therapy, genome editing CRISPR/Cas9 and drug repurposing approaches. Despite
the therapeutic potential of these treatments, once the actives are administered, their instability, sus-
ceptibility to degradation and toxicity limit their applications. In this frame, the design of delivery
strategies based on nanomedicines holds great promise for MD treatments. This review focuses on
nanomedicine approaches able to encapsulate therapeutic agents such as small chemical molecules
and oligonucleotides to target the most common MDs such as Duchenne Muscular Dystrophy and
the Myotonic Dystrophies. The challenge related to in vitro and in vivo testing of nanosystems in
appropriate animal models is also addressed. Finally, the most promising nanomedicine-based strate-
gies are highlighted and a critical view in future developments of nanomedicine for neuromuscular
diseases is provided.

Keywords: nanoparticles; Duchenne Muscular Dystrophy; myotonic dystrophy; antisense oligonu-
cleotides; small molecules; CRISPR/Cas9

1. Introduction

Muscular dystrophies (MDs) are a group of chronic inherited genetic diseases, with a
worldwide estimated prevalence of 19.8–25.1 per 100,000 persons [1,2]. These multi-organ
diseases mainly affect muscles, especially skeletal muscles, which undergo a progressive
degeneration causing severe health problems that lead to poor life quality, loss of indepen-
dence, disability and premature death [3,4]. Among the various types of MDs described
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so far, the most commons are the Duchenne Muscular Dystrophy (DMD) and Myotonic
Dystrophies (DMs) [2,3,5].

Currently, no therapies are available to counteract the pathogenic causes of these dis-
eases, and conventional treatments based on immunosuppressants such as corticosteroids
or anti-inflammatory treatments are aimed to only mitigate symptoms [6–10]. Although
corticosteroids are considered as the “gold standard” to preserve muscle strength in MDs,
especially in DMD, their long-term administration is associated with serious adverse effects
such as leg oedema, glaucoma, depression, hypertension, hyperglycaemia, osteoporosis,
osteonecrosis and fractures [11–13]. Medical devices such as pacemaker, respiratory as-
sistance or wheelchairs, rehabilitative therapy and as a last resort surgery are also widely
used in the management of MDs patients [14–16]. Altogether, these approaches represent
the current restricted therapies and methods approved to reduce pain and improve the
quality of life. Recently, a variety of possible therapeutic strategies have been proposed
such as repurposing US Food and Drug Administration (FDA)-approved molecules for the
treatment of other diseases or developing novel gene therapy for exon-skipping strategy
or genome editing [17–22]. However, due to their rapid clearance or associated adverse
effects, further refinements are required to enter clinics.

Over the last several years, drug delivery nanosystems, referred to as nanomedicine,
have been extensively explored for the development of more effective and safer treatments
with main applications in cancers [23–26], central nervous system-related disorders [27–29]
and immune diseases [30–32]. More recently, nanomedicine has also been investigated for
the treatment of viral infections [33] such as the lately approved Moderna’s and Pfizer’s
Covid-19 nanoparticle-based vaccines [34–37]. In cancer therapy, nanomedicine holds po-
tential to improve current treatments by reducing side effects of chemotherapeutic agents.
Moreover, combination approaches and immunomodulation strategies have been success-
fully developed to boost their performances [38–40]. Nevertheless, only 15 nanoparticle-
based cancer therapies have received clinical approval and entered the market, such as the
recent liposomal Onivyde® and Vyxeos® formulations [41,42].

Currently, novel nanomedicines are optimized for the treatment of skeletal muscle
pathologies like MDs. However, multiple biological and pharmaceutical barriers challenge
nanomedicine delivery to skeletal muscles. Biological barriers are embodied by the complex
architecture of the skeletal muscle, which encompasses the skeletal muscle parenchyma
itself, connective tissue, blood vessels and nerves. One of the main hurdles for delivery
to skeletal muscles lies in the presence of the dense extracellular matrix (ECM), which
accounts for 1 to 10% of the muscle mass [43–45]. Mostly made of fibrous-forming proteins
(collagens, glycoproteins, proteoglycans and glycosaminoglycans) it hampers nanopar-
ticles (NPs) penetration by retaining them in the ECM via electrostatic and mechanical
interactions [46,47].

Pharmaceutical barriers encompass formulation and associated aspects related to
scaling up of nanomedicine products. Recently, formulation techniques based on scal-
able processes have been developed to allow transposition of nanomedicine to industrial
settings [48–50].

In addition to these barriers, an important requirement is that NPs have to be biocom-
patible to prevent additional muscle degeneration of severely injured skeletal muscles. For
instance, sarcolemma membrane of DMD patients is severely affected and therefore more
susceptible to damage by any treatment [51].

The present review aims at highlighting the major advances in the nanomedicine-
based strategies for treating MDs. We reviewed the most recent approaches to treat
MDs focused on oligonucleotides or antisense oligonucleotides, and small molecules and
how nanocarriers have been designed to deliver them to muscle cells. In addition, the
genome editing CRISPR/Cas9 system is also described. Finally, future perspectives for
nanomedicine optimisation are presented.
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2. Muscular Dystrophies Characterised by Gene Alteration

Most common MDs are represented by the two well-known DMD and DMs [1,3,4].
These two types of dystrophies are caused by diverse gene mutations and lead to different
molecular pathogenesis, as illustrated in Figure 1.

Figure 1. Schematic representation of the pathogenesis of both Myotonic Dystrophies and Duchenne Muscular Dystrophy.
(DM1: Myotonic Dystrophy type 1; DM2: Myotonic Dystrophy type 2.)

2.1. Duchenne Muscular Dystrophy

DMD is the most common form of MD characterised by progressive muscle degenera-
tion and weakness, firstly affecting proximal muscles. This X-linked recessive rare disorder
appears essentially in males with a worldwide prevalence of one in 5000 boys in early
childhood and the clinical signs are not revealed at birth [52]. In most cases, the diagnosis
is established around four years old, when the first symptoms start to appear. The disease
progression is fast and the patients completely lose their motor functions around 10 years
old. DMD patients develop also important cardiac and respiratory complications that
generally manifest around 10 years old and are prevalent in most patients by 20 years
old [53].
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DMD is caused by mutations in the dystrophin gene (DMD gene) located on chromo-
some Xp21.2 that codes for the dystrophin protein through its 79 exons [54]. Dystrophin
protein is essential for muscle homeostasis: it is localised on the plasma membrane of car-
diac and skeletal muscles (sarcolemma), connecting the cytoskeleton to the ECM through
the dystroglycan complex (DGC) and stabilising the muscle fibre during contraction. Lack
of dystrophin induces severe muscle weakness, inflammation and wasting, described
as cardinal signs of DMD. Diverse mutations on DMD gene have been reported world-
wide [55]. Over the years, DMD gene has been characterised, identifying which mutations
lead to a severe DMD phenotype [56,57]. Of DMD cases, 60–70% are caused by large
deletions of one or more exons. Point mutations affect 15–30% of DMD patients, and there
are smaller changes that do not involve an entire exon. Among them, nonsense mutations
cause a premature stop in the gene which results in reduced dystrophin production or no
production at all. Duplications affect only 10% of DMD patients and can occur throughout
all 79 exons of the dystrophin gene. Understanding the nature of mutations improves the
identification of therapeutic approaches able to rescue genetic mutations [58,59].

2.2. Myotonic Dystrophies (Type 1 and 2)

Myotonic dystrophies (DMs) are genetic disorders of autosomal dominance inheri-
tance and represent the second most common form of MDs in adulthood [60,61]. These
multisystemic diseases cause progressive dysfunctions of multiple organs and tissues (e.g.,
muscle tissues, skin, endocrine system, ocular system, central nervous system) among
which skeletal muscle is the most severely affected tissue [5]. Muscle damages are char-
acterised by progressive myopathy, muscle weakness, and progressive myotonia which
is defined as a slow-down of muscle relaxation after a normal contraction. Most serious
features concern the cardiopulmonary system and can lead to premature death, amounting
to 70% of deaths [62].

Two distinct forms of DM caused by similar mutations are identified: i) DM1, also
named Steinert disease (OMIM 160900), which is the most common and severe form; and
ii) DM2, termed proximal myotonic myopathy (OMIM 602668). These DMs are caused
by pathological expansions of small DNA sequences regarding two different genes [63].
DM1 is due to a (CTG)n expansion in the 3′ UTR region of the DMPK gene, while DM2
is caused by a (CCTG)n expansion in the first intron of the ZNF9/CNBP gene. Mutant
(CTG)n and (CCTG)n expansions are highly unstable, leading to different repeat sizes
constantly generated and increasing when transmitted from one generation to the next [64].
These mutant DNA expansions are transcribed into (CUG)n and (CCUG)n mutant RNA
expansions for DM1 and DM2, respectively, aggregated in the nucleus in specific hairpin
structures that are called nuclear foci [65].

The most accepted pathogenic hypothesis for DMs is an RNA-gain-of-function due to
mutant RNA expansions that alter RNA-binding splicing regulators [66]. As illustrated in
Figure 1, the main molecular hallmark of DMs is the sequestration of Muscleblind protein
(MBNL), resulting in a local reduction of these protein levels [67]. It is responsible for
several symptoms depending on the DM type and repeat size range, such as myotonia,
muscle weakness, cardiac arrhythmia, diabetes, cataracts, male hypogonadism, cognitive
disorders and hypersomnia [68]. Other splicing factors are mis-regulated in DMs, such
as the up-regulation of CUGBP1 [63] and hnRNP H protein [69,70]. Understanding the
molecular pathogenic mechanism helped the development and identification of diverse
therapeutic approaches such as the reduction of toxic RNA levels [71,72], the prevention of
the MBNL protein sequestration, or the inhibition of the signalling pathway that leads to
CUGBP1 up-regulation [73–75].

3. Targets and How to Reach Them: DNA and RNA

MDs are genetic disorders caused by localised mutations of DNA. Such DNA mu-
tations result in a lack of dystrophin protein in DMD and an alteration of the protein
production in DMs (Figure 1) [57,76]. No curative therapies are available to treat the
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pathogenic causes, and the identification of new therapeutic approaches to target genetic
mutations is urgently needed [10]. The most recent strategies to counteract MDs concern
gene therapy and repurposing of drugs, as summarised in Table 1. In order to reach the
target and achieve therapeutic effect, active agents must attain skeletal muscle tissue. A
representation of their localisation is reported in Figure 2.

Table 1. Therapeutic strategies for the treatment of MDs (DMD, Duchenne Muscular Dystrophy; DM, Myotonic Dystrophy;
ASO, antisense oligonucleotide; CRISPR, clustered regularly interspaced short palindromic repeats).

Approach Active Agent Target Pathology Limitations Development
Phase Reference

Antisense
oligonucleotides

Etelprisen

mRNA DMD

Rapid degradation by
exonuclease

Low cellular uptake
Activation of immune

systemInflammatory effects

FDA approved
(Clin. Trial

NCT02255552)
[77]

Drisapersen
Phase III

(Clin. Trial
NCT01254019)

[78,79]

cEt ASO CUG/CCUGexp DM Preclinical studies [80,81]

CRISPR/Cas9

Not approved DNA DMD

Higher accumulation in
proliferating cells than in fully

differentiated cells
Rapid degradation

Preclinical studies [82–85]

Not approved CTGexp DNA DM
Uncompleted repair of protein

expression
Low transfection efficiency

Preclinical studies [86]

Small molecules

Aminoglycoside
antibiotics

Non-sense
mutations on

mRNA
DMD Ototoxicity

Nephrotoxicity Preclinical studies [87–89]

Ataluren
Non-sense

mutations on
mRNA

DMD High dosage required
EMA approved

(Clin. Trial
NCT01826487)

[90,91]

Pentamidine CUGexp RNA DM Nephrotoxicity
Off-label use Preclinical studies [18,92]

Furamidine and
erytromicin CTGexp DNA DM Off-label use Preclinical studies [93–95]

ISOX and
vorinostat

MBNL1-splicing
factors DM1 Off-label use Preclinical studies [96]

Figure 2. Organization of the skeletal muscle tissue and the target-tissue related to the class of
experimental molecules (ASO, antisense oligonucleotide; CRISPR, clustered regularly interspaced
short palindromic repeats).
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3.1. Gene Therapy and Genome Editing for MDs

Gene therapy aims at targeting gene mutations. Genetic strategy and genome editing
offer the advantage of a durable and possibly curative approach. They aimed at improving
patient’s quality of life by i) reducing the administration frequency, thus increasing their
compliance to the treatment [97,98], and ii) providing a personalised therapy for the
correction of genetic mutations [99].

Application of gene therapy in muscle pathologies is performed by exon-skipping [58]
and CRISPR/Cas9 system [59] Exon-skipping is based on the use small of pieces of mod-
ified oligonucleotides, termed antisense oligonucleotides (ASOs), which recognise and
bind specific sequences of mRNA [58,100]. ASOs exert their activity in the nucleus by:
(i) blocking protein maturation and splicing alteration of pre-mRNA, (ii) degrading tar-
geted RNA by RNase H-enzyme and reducing mRNA level [101]. Despite their promising
features, drawbacks related to ASO’s instability, limited distribution to all diseased tissues,
rapid body clearance and difficulties of cellular internalisation have been described [102].
To overcome these issues, chemical modifications on ASO chemical structure have been
studied. Several ASO drugs were modified using the phosphorothioate backbone modi-
fication where one of the non-bridging oxygen atoms of the phosphodiester linkage was
replaced with sulphur. This modification increased the half-life of ASOs [103] and reduced
their degradation by exonucleases [104]. However, ASO-based therapies present potential
toxicities such as the off-target RNA hybridisation and the possibility to alter protein
expression [105]. In addition, they can be recognised by the immune system, inducing
proinflammatory effects [106].

In DMD patients affected by an out-of-frame mutation of DMD gene, ASO therapy
can restore the reading frame of mRNA leading to the expression of a partially functional
dystrophin protein [107]. Eteplirsen was approved in 2016 by the FDA as the first anti-
sense therapy for DMD. Eteplirsen is a 30-nucleotide phosphorodiamidate morpholino
(PMO) ASO that resulted in an increased dystrophin production in all patients treated by
weekly intravenous (I.V.) infusion for at least 24 weeks [77]. Drisapersen, a 2′-O-methyl-
phosphorothioate ASO, is another exon-skipping therapy for DMD in clinical development.
Phase 3 study (DMD114044; NCT01254019) evaluated the efficacy of drisapersen after
subcutaneous (S.C.) injection. The six-minute walk distance (6MWD) was the primary
endpoint considered, and no differences were reported between placebo and treated pa-
tients. Data analysis considering secondary endpoints such as the North Star Ambulatory
Assessment (NSAA), 4-stair climb ascent velocity and 10-metre walk/run velocity, showed
lack of statistical significance due to the greater data variability and subgroup heterogeneity.
However, statistically significant results were obtained in the young patients treated in the
early stage of the pathology [78]. Further studies were focused on the preclinical optimisa-
tion of drisapersen, testing its efficacy on young and older DMD mouse model, mdx. This
mouse model is characterised by an induced nonsense point mutation in the dystrophin
gene, which leads to a loss of functional protein expression [108]. Preclinical investigation
showed a comparable efficiency of exon-skipping mechanism in young and older mice, but
functional and physical improvement was only reported for treated young mice, meaning
that the stage of pathology is relevant for treatment efficacy. In vivo studies highlighted
that an early intervention with drisapersen led to functional benefits despite the low level
of dystrophin restoration. In addition, the application of drisapersen was also limited
by the reported side effects at the injection site and mostly proteinuria, which increased
α1-microglobulin levels [79]. Although ASO therapy and exon-skipping reached important
outcomes, their applicability is limited to patients affected by out-of-frame mutation and
requires continuous administrations throughout the lifetime of the patients [109,110].

ASO therapy is also reported for the treatment of DM where it targets and neutralises
toxic CUG/CCUGexp RNAs which sequestrate splicing factors [111]. Although there is
no approved ASO therapy for DM1, in vitro and in vivo results are promising [112–114].
It has been reported that ASOs containing 2′- 4′- constrained ethyl (cEt) modifications
can be employed to target DMPK genes and substantially reduce CUGexp RNA nuclear
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foci in patient-derived DM1 myoblasts [80]. Klein et al. developed an arginine rich Pip6a
cell-penetrating peptide-conjugated PMO ASO to overcome the poor distribution of ASOs
in skeletal muscle. Pipa6-conjugated ASO directed against CUGexp allowed an effective
concentration of ASOs in muscle fibres recovering MBNL1-dependent splicing defects [81].

In contrast to ASO therapy, genome editing induces a permanent correction of
gene mutation [115]. Initially, engineered zinc finger nucleases (ZFNs) and transcription
activator-like effector (TALENs) have been used to permanently remove splicing sequences
in DMD gene and to restore dystrophin expression [116,117]. Recently, Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) in association with specific DNA endonu-
clease protein called Cas9, targeting DNA sequencing, has been investigated to restore
the genetic mutation [118–120]. Cas9 nuclease requires a single guide RNA (sgRNA) to
form a complex with DNA by recognition with a defined 20 bp DNA sequence, known as
protospacer. The protospacer sequence is immediately followed by a short sequence called
protospacer-adjacent motif (PAM), needed by Cas9 for DNA cleavage and for genome
editing to start [121].

Promising results of CRISPR/Cas9 in MD treatment were reported. Dystrophin
recovery by CRISPR/Cas9 system was observed in a new DMD mouse model characterised
by a lacking exon 44 of the dystrophin gene, one of the hotspot regions for DMD gene
mutation. In this study, Cas9 and sgRNA, the main gene editing components, were encoded
by adeno-associated viruses serotype 9 (AAVs). The ratio between AAVs encoding for Cas9
and for sgRNA had an important effect on gene correction. Higher level of sgRNA ensured
higher Cas9 activity, which increased dystrophin restoration due to long-lasting presence
of sgRNA that allows continuous editing in myofibers. Combination of optimized sgRNA
and AAV vectors for delivery increased long-term correction of dystrophin mutation in
mice [82]. AAV9 have been already associated to CRISPR/Cas9 system for dystrophin
recovery in a deltaE50-MD canine model of DMD, which leads to loss of exon 50. An
sgRNA was optimised to target a region adjacent to the exon 51 splice acceptor site, and it
resulted in high frequency of reframing events. Dystrophin protein expression was restored
to 60% by intramuscular (I.M.) injection of AAV9-Cas9 and AAVs-sgRNA-51 [83]. Besides,
CRISPR/Cas9 ability to target repeated DNA sequences also provides a possible strategy in
DM therapy [122]. Dastidar et al. evaluated CRISPR/Cas9 activity, delivered through viral
vector to excise CTG repeats in DM1 patient-derived cells, leading to the normalisation of
DMPK gene expression and the degradation of toxic RNAs. The study demonstrated the
potential application of CRISPR/Cas9 excision in trinucleotides repeat expansion up to
1200 repeats [88].

Genome editing by CRISPR/Cas9 strategy requires an efficient delivery system. AAV
are used most often and have a low cargo capacity as compared with other viral vectors,
requiring a high AAV dose to deliver sgRNA for gene reprogramming in vivo [21], increas-
ing the risk of immunogenicity [123]. Traditional genome editing based on CRISPR/Cas9
technologies introduces double-stranded (ds) DNA breaks at a target locus as the first step
to gene correction. However, the potential applications of Cas9 nucleases are limited in
part by their reliance on DNA breaks, which could cause deletions, insertions or chromoso-
mal rearrangements. Due to recent advances, CRISPR/Cas9-associated base editing (BE)
approaches have emerged. These strategies do not require a dsDNA backbone but mediate
the direct conversion of base pairs, advancing the treatment of genetic disorders associated
with single nucleotide mutations [124,125]. Cytosine and adenine base-editors are the most
used tools to exert mutation transition (Cytosine (C) > Thymine (T) and Adenine (A) >
Guanine (G)), guided by a new CRISPR/Cas9 system which targets the non-edited DNA
strand [126]. Ryu et al. demonstrated the application of BE in DMD treatment, using a dual
trans-splicing AAV to deliver adenine base editors (ABE). ABE treatments achieve a precise
A-to-G base mutation, restoring dystrophin expression in 17% of myofibers, following I.M.
into tibialis anterior in mdx mice [127]. Moreover, due to increased interest in BE, non-viral
vectors are under investigation to replace viral constructs as delivery systems [21]. Jiang
et al. demonstrated a successful delivery of ABE using lipid nanoparticles in Tyrosinemia
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I mice, correcting the gene mutation and showing the promise of the BE approach [128].
Despite the far-reaching capabilities of the BE strategy, a major limitation of this technique
has been the ability to generate precise edits beyond the allowed transition mutations.
Anzalone et al. described a new genome editing strategy called prime editing. This search-
and-replace technology directly writes new genetic information into targeted DNA using
a catalytically impaired Cas fused to an engineered reverse transcriptase enzyme, and a
prime editing guide RNA (pegRNA) able to recognise and bind the target site [129]. This
technology with its simplicity and precision holds great promise for the correction of point
mutation in human genetic disorders.

3.2. Drug Repurposing

Another current approach in MD treatment is drug repurposing, a strategy for identi-
fying new applications for approved or investigational drugs that are outside the scope of
the original medical indication. Drug repurposing has promising expectations regarding
efficacy, safety, cost and translation to the clinical setting. This is because repurposed
drugs have been already studied in preclinical models and humans for safety assessments.
Moreover, in many cases the formulation aspects are already developed [130].

In order to select the right candidate in a repurposing strategy, a systematic approach
that combines computational techniques and experimental studies is required. Com-
putational approaches are based on data-analysis (gene expression, chemical structure,
genotype or proteomic data, or electronic health records (EHRs)), to validate the repurpos-
ing hypothesis. Experimental approaches are also required to identify target interactions
and efficacy in appropriate models [131]. Table 1 lists the most common drugs used for
repurposing strategies in DMD and DM.

About 10% of DMD patients present a nonsense mutation, which induces a prema-
ture stop codon in dystrophin mRNA leading to non-functional protein [132–134]. Some
compounds are able to bind the stop codon, forcing the translational machinery to incorpo-
rate amino acids into the assembling protein, overcoming the stop signal and obtaining a
functional protein [87]. Restoration of dystrophin protein was studied using gentamicin,
an aminoglycoside antibiotic made of a mixture of major and minor aminoglycoside com-
ponents [88]. Barton-Davis et al. demonstrated the possibility of treating DMD nonsense
mutation using gentamicin. The drug was administered by S.C. injection to mdx mice at dif-
ferent dosages to identify the optimal dose to restore the full-length dystrophin [87,89]. To
determine the efficacy on the suppression of premature stop codon in mdx mice, evaluation
of dystrophin protection against contraction-induced damage was examined. The number
of damaged fibres was reduced in treated mdx mice, as compared with wild type mice.
Prolonged use of gentamicin implicates nephrotoxicity, limiting the long-term administra-
tion required for genetic diseases [135]. To address toxicity issues, new aminoglycosides
and non-aminoglycosides were explored. Friesen et al. demonstrated the efficacy and
greater read through-safety window than other compounds, of a minor gentamicin com-
ponent called gentamicin X2, which shows a lower toxicity than gentamicin [136]. From
the evaluation of neuromast toxicity (cytotoxic concentration, CC50), as a substitute for
ototoxicity, CC50 of gentamicin X2 was significantly reduced compared to gentamicin.
Minor component X2 has great potential for clinical utility in treating genetic diseases
caused by nonsense mutations. Among non-aminoglycoside compounds, ataluren is a
novel, orally administered, synthetic molecule that suppresses nonsense mutation in a
way similar to aminoglycosides and increases dystrophin production [90]. Data from a
phase III trial did not show improvement in 6MWD of treated patients, but less physical
deterioration was demonstrated for patients receiving ataluren than for those receiving
placebo. Results reported in this trial confirmed the clinical benefit of ataluren in terms of
preservation of muscle function in DMD patients [91]. Further studies should evaluate the
long-term benefits the drug.
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In DM, the toxic foci made of CUG/CCUGexp RNA aggregates are able to sequestrate
MBNL1 splicing factor, thus altering the protein expression [61]. As an example, pentami-
dine, furamidine and erythromycin can inhibit the sequestration of splicing factors such
as MBNL1 by CUGexp RNA sequence. Docking analyses are useful to predict the binding
conformation of small molecules to appropriate binding sites. They have been reported for
rational screens of molecules that might selectively bind CUG structures and consequently
improve biological activity in DM1 models [137].

Recently, pentamidine, a diamine compound that FDA approved for the treatment of
trypanosomiasis and leishmaniasis infections [138], has been proposed for MD treatment
and its efficacy was evaluated in vitro and in vivo. Pentamidine treatment reduced CUGexp

RNA level and rescued mis-splicing events in HeLa DM1 transfected cells, which expressed
960 interrupted CUG repeats. The number of nuclear foci was reduced by 21% [139]. The
efficacy of pentamidine treatment was evaluated on DM1 mouse model HSALR (human
skeletal actin long repeat length) that expresses ~250 CUG repeats into the final exon of
human skeletal actin [18]. Pentamidine was administered by intraperitoneal (I.P.) injec-
tion and the correction of chloride-1 and Serca1 mRNA mis-splicing was essayed. The
treatment partially reversed mis-splicing events. In vivo studies highlighted a narrow
dosage window for pentamidine which cannot be used over 30 mg/kg twice a day. To over-
come dosage toxicity, chemical modifications were performed to enhance the specificity
to CUGexp RNA and to reduce the dosage. Based on the chemical backbone of pentami-
dine, other drugs showing chemical similarities were selected. Furamidine is a diamine
compound that rescues the mis-splicing events in vitro and in vivo models [92]. In HSALR

mice, furamidine increased MNBL1 functional expression by inhibiting transcription of
CTGexp DNA and by disrupting the MNBL-CUGexp complex [93]. Compared to pentami-
dine, furamidine presented the lowest number of off-target gene expression changes [94].
In combination with erythromycin, furamidine enhanced the effects on MNBL-CUGexp

complex disruption, reducing nuclear foci presence in patient-derived DM1 cells, without
specific toxic effects [95]. Considering the reduction of MBNL1 in DM1 affected cells,
small molecules improve the pathological condition by overexpression of splicing factors.
For example, ISOX and vorinostat were tested in normal and DM1 fibroblasts, increasing
MBNL1 expression and revealing positive effects on DM1 models [96].

Globally, repurposing of small molecules for the treatment of DM requires extensive
investigation concerning their off-label use and the need of novel approaches to define
their therapeutic potential for a different disease.

4. New Treatments based on Nanocarriers as Alternative Strategies to Facilitate
Skeletal Muscle Targeting

Over the last years, the application of nanomedicine as a promising innovative ap-
proach to treat different pathologies such as MDs has been investigated. The architectural
and structural complexities of skeletal muscles challenge nanomedicine delivery, especially
due to the important presence of ECM [45,140]. To restrict interactions with ECM, adminis-
tration of NPs by I.V. appears as a potential strategy for targeting skeletal muscle. The dense
blood capillary network of skeletal muscles increases NPs access to muscle fibres [141,142].
However, once in the blood circulation, NPs can be rapidly cleared through the mononu-
clear phagocyte system via opsonisation or complexation with plasma proteins [143–146].
Physical and chemical instability [147,148], immunogenicity [149,150] or premature degra-
dation [151] are other limiting factors that might interfere with NPs delivery.

In addition, long-term administration is required to cure chronic disorders such as
MDs, which makes biocompatibility and biodegradability of the nanosystems impor-
tant requirements [152]. NPs should persist long enough to reverse muscle damages
without involving any additional muscle degeneration, before undergoing gradual degra-
dation [51,153]. Therefore, their design has to be optimised to associate or encapsulate
active compounds and to deliver them to skeletal muscles. As illustrated in Figure 3,
various NPs structures have been described [154]. RNA- and DNA-based nanocarriers
are obtained via electrostatic and hydrophobic-hydrophobic interactions with polymers or
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lipids [155–157]. In the case of delivery of the small molecules, their chemical properties,
such as their molecular size, structure and n-octanol-water partition coefficient have an
impact on the selection criteria for nanocarrier strategy [158,159]. Interestingly, synthetic
nanocarriers interacting by electrostatic and hydrophobic-hydrophobic interactions have
been demonstrated to deliver complex CRISPR/Cas9 systems under various forms such as
DNA, mRNA or ribonucleoproteins [160–162].

Figure 3. Work flow for the design of innovative nanomedicine and therapeutic readout. (ASOs,
antisense oligonucleotides; CRISPR, clustered regularly interspaced short palindromic repeats).

As illustrated in Figure 3, many experimental molecules and macromolecules have
been selected as candidates for MD therapies, and a wide range of nanocarriers has allowed
their delivery to skeletal muscles, promoting in most of the cases their therapeutic potential.

The present section aims at highlighting nanosystems used for DMD and DM applica-
tions that reached preclinical studies. An overview of the various described nanosystems
is reported in Table 2.
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Table 2. Recapitulative table of the diverse described nanosystems tested in vivo for treating MDs (PEI, polyethylen-
imine; PEG, polyethylene glycol; PLGA, poly(lactic-co-glycolic acid); PMMA, poly(methyl methacrylate); NIPAM, N-
isopropylacrylamide; PEA, poly(ethylene adipate); PLys, poly(l-lysine); PPE-EA, poly(2-aminoethyl propylene phosphate);
PAMAM-OH, hydroxyl-terminated poly(amidoamine); DMPC, L-a-dimyristoylphosphatidylcholine; (C12(EO)23), poly-
oxyethylene(23) lauryl ether; NPs, nanoparticles; ASO, antisense oligonucleotide; PMO, phosphorodiamidate morpholino
oligomer; GA, glatiramer acetate; CRISPR, clustered regularly interspaced short palindromic repeats; I.M., intramuscular
injection; I.V., intravenous injection; I.P., intraperitoneal).

Class of
Nanocarriers

Nanocarrier
Composition

Muscle
Pathology

Loaded
Molecules

Therapeutic
Target

Mouse
Model Advantages and Limitations Admin.

Route Ref.

Polymeric

PEI-PEG DMD 2′-OMe ASO Dystrophin
pre-mRNA mdx

(+) high dystrophin-positive
fibers increased

(+) long term residual efficacy
over 6 weeks

(-) low general transfection
efficiency

I.M. [163]

PEI-
PEG/PLGA DMD 2′-OMe ASO Dystrophin

pre-mRNA mdx (-) no improvement
compared to PEI-PEG-ASO I.M. [164]

PEI-Pluronic® DMD PMO ASO Dystrophin
pre-mRNA mdx

(+) dystrophin-positive fibers
increased up to 4-fold after

I.M.
(+) dystrophin-positive fibers
increased up to 3-fold in all

skeletal muscles after I.V.
(+) dystrophin-positive fibers
increased up to 5-fold in heart

after I.V.
(+) low muscle tissue, liver

and kidney toxicity
(-) mild general transfection

efficiency

I.M./I.V. [165]

DMD 2′-OMe ASO Dystrophin
pre-mRNA mdx (+) dystrophin-positive fibers

increased up to 10-fold I.M. [166]

PEG-
polycaprolactone

PEG-
(polylactic

acid)

DMD PMO ASO Dystrophin
pre-mRNA mdx

(+) dystrophin-positive fibers
increased up to 3-fold

(+) low muscle tissue toxicity
(-) mild general transfection

efficiency

I.M. [167]

PMMA DMD 2′-OMe ASO Dystrophin
pre-mRNA mdx

(+) dystrophin-positive fibers
increased up to 7-fold

(-) slow biodegradability
I.P. [168]

PMMA/NIPAM DMD 2′-OMe ASO Dystrophin
pre-mRNA mdx

(+) dystrophin-positive fibers
increased up to 4-fold

(+) body-wide dystrophin
restoration after I.V.

(+) exon-skipping level
enhanced up to 20-fold

(+) long term residual efficacy
over 90 days

I.P./I.V. [169,
170]

PEA

DMD 2′-OMe ASO Dystrophin
pre-mRNA mdx (+) dystrophin-positive fibers

increased up to 3–10-fold I.M. [171]

DMD PMO ASO Dystrophin
pre-mRNA mdx

(+) dystrophin-positive fibers
increased up to 3-fold

after I.M.
(+) body-wide

dystrophin-positive fibers
increased up to 3-fold

after I.V.

I.M./I.V. [171]

Muscle
atrophy/

DMD
pDNA Cell nucleus mdx (+) transfection efficiency

enhanced up to 6-fold I.M. [172]

PLys-PEG Muscle
atrophy pDNA Cell nucleus Balb/c (+) transfection efficiency

enhanced up to 10-fold I.V. [173]
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Table 2. Cont.

Class of
Nanocarriers

Nanocarrier
Composition

Muscle
Pathology

Loaded
Molecules

Therapeutic
Target

Mouse
Model Advantages and Limitations Admin.

Route Ref.

PPE-EA Muscle
atrophy pDNA Cell nucleus Balb/c

(+) transfection efficiency
enhanced up to 13-fold

(+) long term residual efficacy
over 14 days

I.M. [174]

Atelocollagen
Muscle

atrophy/
DMD

siRNA Cytoplasm mdx (+) higher mass muscle
increase I.M./I.V. [175]

PAMAM-OH Muscle
atrophy

Angiotensin
(1–7) Cytoplasm Balb/c (+) higher anti-atrophic

effects I.P. [176]

Lipidic

PEG-bubble
liposomes

DMD PMO ASO Dystrophin
pre-mRNA mdx

(+) dystrophin-positive fibers
increased up to 1.5-fold
(+) exon-skipping level
enhanced up to 5-fold

I.M. [177]

DM1 PMO ASO Clcn1
pre-mRNA HSALR (+) increased expression of

Clcn1 protein up to 1.4-fold I.M. [178]

Nanolipoden-
drosomes DMD MyoD and

GA Cytoplasm SW-1 (+) slight mass muscle
increase I.M. [179]

Nanoliposomes DMD Glucocorticoide Cell nucleus mdx

(+) lower inflammatory
induced response

(+) lower bone catabolic
effects

I.V. [180]

Hybrid
liposomes
DMPC and
(C12(EO)23)

DMD Gentamicin Ribosomes mdx

(+) dystrophin-positive fibers
increased up to 4-fold

(+) lower ototoxicity and
nephrotoxicity

I.P. [181]

Perfluorocarbon DMD Rapamycin mTORC1
complex mdx

(+) high muscle strength
increase

(+) high cardiac contractile
performance increase

I.V. [182]

Lipid NPs DMD CRISPR/Cas9
Dystrophin

DNA
sequence

∆Ex44 (+) dystrophin expression
restored up to 5% I.M. [183]

Inorganic Gold DMD CRISPR/Cas9
Dystrophin

DNA
sequence

mdx (+) HDR in the dystrophin
gene enhanced up to 18-fold I.M. [184]

4.1. Antisense Oligonucleotides

ASO-based therapy is a powerful tool for inducing post-transcriptional modifications
and thereby regulating target genes. There are several classes of ASOs for therapeutic
purposes which differ from their phosphate backbone and ribose sugar group modifica-
tions [185]. Most ASOs used for DMD and DM are 2′O-methyl (2′O-Me), phosphorothioate
(PS) ASO and PMO oligomer modified ASOs. Depending on their chemistry, different
strategies can be obtained to modulate gene expression.

The phosphodiester and phosphorothioate internucleotide linkages confer a highly
negative charge to PS or 2′O-Me ASOs. Hence, the most common approach to incorporate
such ASOs into NPs remains to form stable complexes with cationic polymers or lipids.
Polyplexes have been currently used for this purpose [186]. Poly(ethylene imine) (PEI) was
one of the first cationic polymers explored for gene therapy because of its efficient binding
association to nucleic acids and good transfection efficiency [187]. Nonetheless, the high
positive surface potential results in significant toxicity, especially for in vivo skeletal muscle
delivery, due to interactions with many biological components. To reduce the surface poten-
tial, poly(ethylene glycol) (PEG) has been added to the formulation [188,189]. Lutz’s group
developed PEI-PEG NPs obtained by the complexation of 2′O-Me ASOs with a cationic
copolymer of PEI and PEG, to restore dystrophin expression in mdx mice [163,190,191].
PEI was conjugated to nonionic linear PEG to provide NPs with a steric shield, greatly
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improving their biocompatibility. PEI-PEG-ASOs were shown to locally improve the levels
of dystrophin expression up to 20% of normal dystrophin expression in WT animals after
I.M. injection without eliciting toxicity. However, cationic PEI-PEG showed poor muscle
distribution, evidenced by large untransfected areas in muscles, due to the nanoparticle
entrapment into the ECM by non-specific binding [163].

In line with Lutz’s group, Sirsi et al. proposed a strategy to shield the positive
charges of PEI-PEG-ASO polyplexes by encapsulating them into PLGA nanospheres [164].
In vitro release studies in physiological medium showed a low PEI-PEG-ASO release from
PLGA nanospheres. Such slow release was correlated to the Mw of PLGA; high PLGA
Mw (72 kDa) impaired complex release, while lower PLGA Mw (17 kDa) reached 66.5%
release over 26 days. This different release span could be ascribed to the kinetic rate of
hydrolysis of PLGA. However, in vivo studies in mdx mouse following I.M. injection of
free or PLGA (17 kDa) encapsulated PEI-PEG-ASOs showed that dystrophin expression
was not improved, probably related to an incomplete ASO release of PEI-PEG-ASOs from
PLGA. Despite this lack of dystrophin expression, polyplexes encapsulation through PLGA
nanospheres appears to be an efficient sustained delivery strategy of interest for treating
chronic diseases.

Wang et al. designed PEI conjugated with Pluronic® polycarbamates (PCM) to deliver
2′O-Me ASOs in mdx mice [166]. After I.M. administration, PEI-PCM NPs showed a local
increased number of dystrophin-positive fibres up to three-eight fold, superior to ASO
alone or unmodified ASO-PEI NPs. The addition of the carbamate hydrophobic groups
contributed to ASO complexation to the NPs and enhanced transfection efficiency. 2′O-Me
ASOs were also complexed using poly(ester-amine) (PEA), a constructed polymer obtained
from PEI conjugated with Pluronic®. This polyplex demonstrated an efficacy similar to
that of PCM with a number of dystrophin-positive fibres up to 3–10 fold higher than ASO
alone [171].

Cationic polymethylmethacrylate (PMMA) NPs are other promising systems intended
for nucleic acids delivery [192]. Rimessi et al. proved that cationic PMMA (named T1 NPs)
complexed with 2′O-Me PS ASOs, administered by I.P. injection, restored dystrophin ex-
pression in body-wide striated muscles of mdx mice [168]. Dystrophin appeared expressed
at moderate levels on the membrane of myofibers of the diaphragm, gastrocnemius and
quadriceps and was restored at lower levels on the membrane of cardiomyocytes, showing
the wide muscle distribution of T1 NPs. However, PMMA NPs are slowly degradable
and might form small aggregates at high concentration in blood circulation, limiting their
clinical use [192]. Based on these results, Ferlini et al. designed PMMA/N-isopropil-
acrylamide+ (NIPAM) NPs (ZM2 NPs) to improve the potential of PMMA-based NPs [169].
PMMA core was shielded with NIPAM cationic copolymer and used to bind and convey
2′O-Me PS ASOs to mdx mice following I.P. administration. ZM2-ASOs NPs induced
efficient and widespread dystrophin restoration at low dose of ASOs in both striated and
smooth muscles, with a dystrophin expression up to 40% of muscle fibres and an exon-
skipping level up to 20% after seven days. Moreover, these nanocarriers showed long-term
residual efficacy over 90 days, demonstrating their potential as gene delivery systems for
ASO delivery [170].

Other non-ribose modified ASOs less frequently used for MDs applications are PMO.
These ASO modifications are aimed at increasing their nuclease resistance and mRNA
binding efficacy, but provide poor cellular uptake and rapid blood clearance related to the
uncharged nature conferred by the morpholino rings [193,194]. In contrast to negatively
charged ASOs, the use of cationic entities as a delivery vehicle is not suitable with this
well-established ASO delivery strategy. For efficient delivery of these neutral oligonu-
cleotide analogues, lipophilic interactions through PMO and hydrophobic carriers are
privileged [195]. Kim et al. showed, as proof of concept, the potential of non-ionic PEG-
polycaprolactone and PEG-(polylactic acid) polymersomes for the I.M. administration of
PMO for DMD application into mdx mice [167]. The polymersomes successfully enhanced
dystrophin expression in the entire muscle length increasing three-fold the number of
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dystrophin-positive fibres as compared with free-PMO. Furthermore, these degradable car-
riers were biocompatible upon injection in the muscle, showing long-circulating properties
with an improvement of dystrophin expression over three weeks after a single injection.

Wang et al. proved previously described PCM NPs for PMO delivery in mdx mice to be
a strategy for DMD therapy [165]. Hydrophobic region of the carbamate groups enabled the
formation of ASO-PCM carriers. These NPs dramatically improved dystrophin expression
in muscles after I.M. injections with up to 57% of dystrophin-positive fibres, four-fold
superior to ASO alone. After I.V. administration, up to 15% of myofibers were dystrophin-
positive, resulting in a transfection efficiency 3-fold superior to ASO alone. In heart muscle,
PCMs demonstrated an improvement of dystrophin-positive cardiomyocytes up to 5-fold
superior, nevertheless leading to only 5% of dystrophin-positive cells. Hydrophobic PCM
NPs showed high toxicity, whereas more hydrophilic PCM NPs were found ineffective to
deliver PMO, emphasising the importance of a polymer’s hydrophobic and hydrophilic
balance to improve charge-neutral PMO delivery.

Amphiphilic PEA NPs previously described for 2′-OMe ASO complexation, also
proved to be efficient in delivering PMOs for DMD application in mdx mice [171]. PEA-
PMOs induced three-fold more dystrophin positive myofibers than PMOs alone after
both I.M. and I.V. injection, with the widespread presence of dystrophin-positive fibres in
diaphragm, biceps and heart after systemic delivery.

Other works demonstrated that bubble liposomes combined with ultrasound exposure
are an effective tool to enhance the delivery of PMOs in both HSALR and mdx mice for
DM and DMD applications, respectively. The interesting transfection efficiency properties
of these liposomes containing ultrasound imaging gas rely on their ability to cavitate
under ultrasound exposure. This combination produces transient pores in cell membranes,
enabling the direct entry of the therapeutic compounds into the cytoplasm without in-
volvement of the endosomal pathway [196,197]. Koebis et al., demonstrated that bubble
liposomes-PMO I.M. delivered in HSALR mice locally improved the alternative splicing of
the chloride channel 1 (Clcn1) gene, downregulating the high Clcn1 protein level in DM
muscles and thereby enhancing one of the multiple DM features [178]. To our knowledge,
this is the only study on ASO delivery using nanomedicine for DM applications that has
been tested in vivo. Negishi et al. showed the potency of identical bubble liposomes
to deliver PMO for DMD application [177]. This combination of bubble liposomes and
PMOs, followed by ultrasound exposure, locally restored dystrophin expression in mdx
mice muscles with an exon 23-skipping improvement to less than two times and a number
of dystrophin positive fibres ~five-fold superior as compared with PMO alone. Thus, the
co-administration of bubble liposomes combined with ultrasound exposure may provide
an effective non-invasive method for PMO therapy.

Overall, to effectively deliver ASOs in skeletal muscle, nanomedicine is a fundamental
tool to ensure protection from degradation while improving both tissue and intracellular
uptake. The equilibrium of the degree of hydrophobicity, Mw and charge potential is the
key to ensure an optimum compromise between stable complex formation, efficiency and
tissue compatibility. With regard to all studies presented above, nanomedicine has achieved
encouraging improvement of ASO’s efficiency with special attention to skeletal muscles.
Furthermore, systemic administration has showed promising results on the body-wide
carrier distribution into skeletal, smooth and also cardiac muscles.

4.2. Oligonucleotides

RNA and DNA-based therapeutics are efficient and versatile strategies to regulate
gene expression, making this class of drugs attractive for a variety of applications. Similar
to negatively charged ASOs, strategies for oligonucleotides delivery are mainly based on
electrostatic interactions [198–201].

Kinouchi et al. used atelocollagen (ATCOL) to condense a siRNA downregulating
myostatin, a negative regulator of skeletal muscle growth [175]. ATCOL is a highly purified
collagen chosen for its biocompatibility with skeletal muscle, as collagen occurs naturally
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as one of its principal components [43]. Moreover, it has been reported that ATCOL
displays low in vivo immunogenicity and toxicity [202,203]. ATCOL-siRNA NPs markedly
decreased the protein levels of myostatin and thereby increased muscle mass within two
weeks after a single I.M. injection in mdx mice. The authors also demonstrated the potential
of systemic ATCOL-siRNA delivery to repress myostatin expression, inducing muscle
hypertrophy in normal mice.

Poly(2-aminoethyl propylene phosphate) (PPE-EA) polymer has also demonstrated
good potential for pDNA delivery to the muscle tissue in healthy Balb/c mice [204]. The
high PPE-EA molecular weight ensures suitable hydrolytic stability of the PPE-EA/pDNA
complexes. Furthermore, the cleavage of the PPE-EA phosphoester bond in physiological
conditions gives this polymer interesting biodegradability properties. In vivo gene transfer
efficiency was evaluated using LacZ, coding for β-galactosidase, as a model gene. After I.M.
injection, PPE-EA/pDNA demonstrated a significantly higher and delayed β-galactosidase
expression in muscles, up to 17-fold superior to DNA alone, highlighting the great potential
of PPE-EA polymer as muscle gene delivery [174].

Itaka et al. designed PEG-poly(L-lysine) (PEG-PLys)/pDNA NPs-mediated gene
delivery systems for skeletal muscle in order to find novel strategies to inhibit tumour
growth through the extensive capillary network wrapped around the muscle fibres [173].
The authors designed PEG-PLys to reconcile DNA binding affinity within cationic PLys
core, and tolerance under physiologic conditions through the electrically neutral shell of
PEG [205]. The transgene expression efficacy in the skeletal muscle of healthy Balb/c mice
was evaluated using pDNA encoding luciferase and GFP, as a model gene. After injection
into the blood stream of murine muscle limbs, PEG-PLys/pDNA induced a luciferase
expression up to 10-fold higher than pDNA alone in the injected muscle over 25 days.
Moreover, PEG-PLys/pDNA promoted an increased number of fluorescent-positive muscle
fibres compared to pDNA alone, a better time-dependent profile of transgene expression
without any overt signs of toxicity. Thus, PEG-PLys NPs provide prolonged transgene
expression in skeletal muscle, which is promising for the field of muscle pathologies.

Hyperbranched poly(ester amine)s (demonstrated an efficient PEAs) obtained from
chemical modifications of PEI also demonstrated interesting properties as pDNA delivery
carriers in C2C12 murine muscle cells and mdx mice [172]. The authors cross-linked
low-molecular-weight PEI polymers to raise a dispersed positive charge density into the
core and enhanced gene transfection efficiency while reducing PEI associated cytotoxicity.
These biodegradable NPs effectively condensed a pDNA coding for GFP and showed a low
in vitro cytotoxicity on muscle cells. PEAs/pDNA complexes in vitro transfection with
up to 87% of fluorescent-positive C2C12 muscle cells, suggesting a transfection efficiency
2–3-fold higher than that of cells transfected with PEI/pDNA. Finally, these nanosystems
also proved to have good potential for muscle gene delivery, showing a substantial increase
in fluorescent-positive muscle fibres after I.M. administration.

In a way similar to ASOs, the main strategies adopted to deliver oligonucleotides into
skeletal muscle rely on the use of materials ensuring electrostatic and hydrophobic interac-
tions. Finding a compromise between hydrophobic and charge degree is crucial in gene
delivery to ensure carriers stability and great transfection efficiency while sustaining high
tissue integrity. Although these studies have been presented as promising proof-of-concept
for skeletal muscle delivery, further investigations using oligonucleotides designed for
treating MDs could warrant the use of such nanocarriers to critically cure affected muscles.

4.3. Small Molecules

Drug repurposing is an effective strategy to reuse existing licensed drugs for novel
medical indication while reducing development time, costs and minimising risk of fail-
ure [112,206]. In addition, nanomedicine has been used to enhance therapeutic potential of
drugs with restricted pharmacological profile and encompass toxicity limitations and poor
availability [207–210].
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One of the first small molecules encapsulated for MD applications was gentamicin, to
enhance its poor delivery profile to the muscle tissue and to decrease its toxicity [120,181]. In
order to overcome these drawbacks, Yukihara et al. encapsulated gentamicin into liposomes
made of phosphatidylcholine or phosphocholine and PEG. Efficient accumulation of these
nanosystems in the cytoplasm and cytoplasmic membranes of myofibers after I.P. injection
was observed. Gentamicin-loaded liposomes increased the percentage of dystrophin
positive myofibers up to 7.7% compared to 2.4% for gentamicin alone and were able to
suppress the drug related ototoxicity and nephrotoxicity. However, despite the positive
features of liposomes, which led to an enhanced pharmacological profile of gentamicin,
this small molecule is candidate for only nonsense DMD mutations, thus restricting its
clinical potential only to a narrow population of DMD patients [211].

Regulating downregulated myogenic recovery factors such as Myogenic differen-
tiation 1 (MyoD) appears to be a good strategy to restore muscle differentiation and
regeneration [212]. For this purpose, Afzal et al. designed nanolipodendrosomes loaded
with synthetised MyoD and glatiramer acetate (GA), a synthetic drug that increases the
level of anti-inflammatory cytokines [179]. The results demonstrated that these loaded
nanosystems significantly improved muscle mass of lower-limbs in healthy SW-1 mice
after I.M. injection, while no improvement was observed in the other muscles. Authors
suggested that further research would warrant the use of nanolipodendrosomes loaded
with these two candidate drugs to ameliorate muscle regeneration.

Bibee et al. developed lipid NPs of perfluorocarbon (PFC) to deliver rapamycin [182],
an immunosuppressant and anti-inflammatory agent that proved to restore defective
autophagy mechanism in mdx mice, associated with many side effects [213]. The main
advantage of PFC NPs is their exceedingly good stability in blood, as they were origi-
nally developed as a blood substitute [214,215]. After systemic injection, nanocarriers
were able to rescue a correct autophagy flux in mdx mice, thus improving both skeletal
muscle strength and cardiac contractile performance. On the other hand, no equivalent
improvement was achieved with conventional oral rapamycin administration delivered
at a concentration even 10-fold superior, corresponding to the pharmacological doses.
Furthermore, these muscle performance improvements were observed in young or adult
wild-type mice as well as in aged mice, demonstrating the broad efficiency of this therapy.
Clinically, potential deleterious consequences of rapamycin could be mitigated by the lower
required dose administration of rapamycin once loaded into PFC NPs.

Lowering the severe side effects associated with chronic glucocorticosteroid admin-
istration has been investigated by Turjeman et al., encapsulating methylprednisolone
hemisuccinate (MPS) into PEGylated nanoliposomes (NSSL) [180]. These smaller lipo-
somes (80 nm) benefit from the inflamed tissues’ unique vascular abnormality, achieving
muscle passive targeting and accumulation into the inflamed tissue [216,217]. NSSL/MPS
were mostly internalised into the diaphragm of young mdx mice after I.V. injection, due to
the multiple tissue damages occurring in this organ at this stage, resulting in NPs leakage
from capillaries. A significant decrease of TGF-β1 protein level was observed in serum, as
a result of protective effects against inflammation. NSSL/MPS significantly ameliorated
osteoporosis in elderly mdx mice, whereas MPS alone further increased bone catabolic
effects, increasing DMD phenotype. Finally, differences in NSSL/MPS treatment doses
showed diverse muscle benefits: lower doses demonstrating advantages in terms of muscle
strength, whereas higher doses showing benefits in terms of mobility.

Márquez-Miranda et al. developed hydroxyl-terminated poly(amidoamine) (PAMAM-
OH) dendrimer as a carrier for angiotensin (1–7), an anti-atrophic bioactive heptapeptide
highly beneficial in the treatment of skeletal muscle pathologies [176]. PAMAM-OH den-
drimers were used to increase angiotensin (1–7) short half-life, hydrolytic stability and poor
systemic distribution. To observe the anti-atrophic effect of angiotensin (1–7), the authors
unilaterally immobilised lower hind limbs of normal mice for 14 days. Loaded nanosys-
tems demonstrated the ability to restore muscle strength and recover fibres diameter of
immobilised limbs to levels similar to non-immobilised limbs after I.P. administration,
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whereas angiotensin (1–7) alone did not induce any recovery. Moreover, bone micro-
architectural structure in elderly mdx mice was less damaged over 58 weeks of NSSL-MPS
administration compared to mice treated with MPS. Altogether, these findings highlight the
potency of PAMAM-OH/angiotensin (1–7) nanocarriers as an efficient general treatment
of dystrophies for mitigating muscle atrophy.

Many therapeutic approaches have been explored through the screening of small
molecules to reverse pathological consequences of MDs. Despite several advantages
including lower costs, ease of therapy management and faster development process, small
molecules are intended only to target downstream effects at the splicing or protein level
and not to correct mutations at the DNA or RNA levels. In the studies presented above,
nanomedicine has allowed for an increase in the therapeutic impact of experimental small
molecules or well-known effective molecules, while significantly decreasing potential
deleterious side effects.

4.4. CRISPR/Cas9 System

CRISPR/Cas9 system is a recent and powerful genome editing tool of great interest
to treat genetic disorders such as DMD and DM [100,218]. The delivery of Cas9/sgRNA
ribonucleoprotein complexes via non-viral delivery systems has been investigated to boost
its clinical applications [219,220]. Challenges rely principally on the large size of Cas9
protein and the difficulty to prevent ribonucleoprotein complexes from degrading during
the entire formulation and delivery process [183]. Lee et al. used gold NPs (GNP) to
develop innovative carriers for the delivery of the entire CRISPR/Cas9 system (named
CRISPR-Gold) to restore dystrophin expression by inducing in vivo homologous directed
repair (HDR) in mdx mice [184]. Authors selected GNP as they can be easily coated with a
densely packed layer of DNA and can be internalised by a variety of cell types [221,222].
To obtain complex CRISPR-Gold, the authors coated GNP with a thiol-terminated DNA to
efficiently hybridize thiol-terminated donor DNA and trigger its rapid release once into the
cytoplasm by disulfide-bond cleavage. Cas9 protein/sgRNA was then adsorbed onto the
NPs, then finally covered with PAsp(DET) endosomal disruptive polymer. CRISPR-Gold
demonstrated the ability to efficiently deliver in vitro and in vivo both the protein and the
nucleic acid of the CRISPR/Cas9 system, through their affinity with the GNP coating of
packed layer DNA. Injected simultaneously with cardiotoxin to induce further muscle
damage, CRISPR-Gold revealed in mdx mice an HDR efficiency up to 18 times higher
than CRISPR/Cas9 system itself with 5.4% restoration of the dystrophin gene. Moreover,
cryosections of CRISPR-Gold-injected muscles showed a robust dystrophin expression
nearly similar to that of wild-type mice muscle and reduced levels of muscle fibrosis, a sign
of better tissue health. CRISPR-Gold delivered under clinically relevant conditions (without
cardiotoxin) were shown to enhance animal strength and agility in mdx mice with HDR
efficiency of 1% in the dystrophin gene and minimal off-target genomic damage. Finally,
this work evidenced the absence of a broad immune response that could be potentially
induced by the Cas9 bacterial protein, suggesting the possible safety of multiple injections
of CRISPR-Gold. In conclusion, the authors designed NPs able to bind all CRISPR/Cas9
components but also to intracellularly deliver them through endosomal disruptive and
disulphide reduction mechanisms. Complex and innovative CRISPR-Gold has the potential
to regenerate wild-type dystrophin to a fully functional level, appearing as a promising
treatment for genetic diseases such as DMD.

Recently, Wei et al. efficiently delivered Cas9/sgRNA ribonucleoprotein complexes to
muscle, brain, liver and lungs using lipid NPs [183]. By adjusting the molecular components
and ratios of lipids, the authors achieved tissue-specific gene editing in liver and lungs
of healthy mice C57BL/6J after systemic injection. More interestingly, these nanosystems
were evaluated in ∆Ex44 DMD mice and were proven to restore dystrophin expression up
to ~5% after I.M. administration.

To our knowledge, NPs here presented are the only CRISPR/Cas9 delivery systems
using non-viral NPs that have been described for MD applications. Although CRISPR/Cas9
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is currently one of the most efficient tools for genome editing, non-viral delivery strategies
are needed to improve precise gene correction.

5. Limitations In In Vitro and In Vivo Testing of Novel Treatments

The evaluation of nanomedicine behaviour in appropriate in vitro and in vivo models
able to mimic physiology and phenotypes of MDs is an important requirement for their
clinical translation. For preliminary studies and screening of different drugs, in vitro
and ex vivo models based on immortalised or mutant human and animal cells, muscle
preservation systems or tissue engineered constructs have been set-up as alternatives to
rare patient cells. In addition, different animal models have been also set up to provide
accurate in vivo MD models. An overview of the common used in vitro, ex vivo or in vivo
models for testing novel MD treatments is provided in Figure 4.

Figure 4. Strategies and accurate models to explore MD treatments. Broad in vitro, ex vivo and
in vivo MD models to promote the translation of nanomedicine-based therapies (MD, muscular
dystrophies; X-MET, ex vivo-vascularized muscle engineered tissue).

In vitro studies provide a unique preliminary resource to clarify the potential risk
of NPs administration [223]. Primary cells are the most representative cell model for
studying the molecular hallmarks of these pathologies as they are directly isolated from
the patient’s tissue [224]. However, their use is limited by the poor availability of muscle
tissue due to the small samples collected by biopsy and the limited proliferative capacity
of the satellite cells isolated from the explanted tissue [225–229]. To overcome these
limitations, different strategies have been proposed. Genetic mutation characteristics of the
pathology can be exogenously introduced into immortalised cell lines such as HeLa, C2C12
myoblasts or induced pluripotent stem cells (iPS). Even if these experimental models do not
reproduce the entire genomic context, these transfected cells express the main features of
the pathogenic mechanism, providing a cell-based model for studying the splicing defects
of MDs [18,86,230]. Another approach consists in the immortalisation of primary muscle
cells by reducing their replicative senescence with the use of telomere shortening, inhibiting
the dominant p16 pathway [223,231–233]. Skin fibroblasts from patient skin biopsies can
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also differentiate into multinucleated myotubes by inducing the myogenic regulator factor
MyoD [223,224,234,235]. However, these 2D monolayer cultures inaccurately representing
in vitro tissue cells and cellular response to therapeutic treatments might be erroneous
due to the unnatural microenvironment [236,237]. In this context, 3D culture systems have
gained increasing interest as they are able to provide accurate models of organs or tissue
physiology and associated disorders. However, they are not exempt from limitations, such
as lack of nutrients and oxygen distribution, and accumulation of wastes into the core of 3D
culture [236,238,239]. Diverse biomimetic engineered muscle constructs, such as scaffold or
organoid cell culture, have demonstrated structural and functional characteristics similar to
native muscle, mimicking the tissue complexity [240–242]. These skeletal muscle organoids
offer an attractive alternative to preliminary in vivo studies for disease modelling and
in vitro drug screening.

Ex-vivo models have also reproduced accurate natural environment models for broad
applications, overcoming 3D cell culture challenges related to heterogeneous oxygen,
nutrient and metabolic waste distribution [237,243–245]. One possible approach for muscle
investigations is culturing skeletal muscle explants as intact muscle fibres (myofibers) or
intact muscles, preserving cell/tissue architecture and its relationship with the surrounding
anatomical structures [246]. Moreover, fluid dynamic systems may improve the organ
preservation, overcoming the loss of vasculature function by mimicking the physiological
flow for nutrient supply and catabolite withdrawal, thus supporting the metabolic activity
of the explanted tissues [243,247]. Recently, Carton et al. demonstrated the great benefit in
terms of structural preservation obtained by maintaining explanted soleus murine muscle
in a bioreactor under dynamic conditions [248]. The progressive structural deterioration
of the muscle tissue was markedly slowed, prolonging its preservation up to two days.
This innovative system allows experimental testing on the living organism with positive
ethical impact, overcoming animal injuries related to therapeutic trial. Bioengineered three-
dimensional vascularised skeletal muscle tissue (named X-MET) has also been developed by
Carosio et al., using heterogeneous primary cell populations such as myoblasts, fibroblasts
and endothelial cells [249]. This vascularised ex-vivo system closely mimicking the cellular
complexity of the muscle tissue showed biomechanical properties and activity similar
to adult skeletal muscles. Furthermore, X-MET transplanted into damaged muscle has
demonstrated interesting properties to restore muscle functionality.

To further investigate therapeutic efficacy, in vivo testing remains the most repre-
sentative means of study for understanding the complex cellular and tissue mechanisms’
interactions [250,251]. Over the last years, various animal models of MDs have contributed
to clarifying the molecular phenotypes involved in these pathologies and investigating
drug screening [252–254]. Several DMD animal models have been developed by reproduc-
ing the deficient dystrophin expression. As previously reported, the mdx mouse (BL10-mdx)
is the most commonly used DMD animal model and is characterised by the presence
of a stop codon located in exon 23 that leads to loss of full-length dystrophin whereas
smaller isoforms are still expressed [89,255]. Recently, D2-mdx mouse models issued from a
different genetic background (DBA2/J) have demonstrated a more pronounced phenotype
closer to patients [256]. Furthermore, Desguerre et al. described a model of chronic me-
chanical muscle injury to trigger muscle fibrosis at the same time of dystrophin-deficiency
expression in mdx hindlimb muscle [257]. DMD canine model (cDMD, GRMD) also car-
ries dystrophin deficit and expresses clinical phenotypes more severely than mdx mouse,
better aligning with the progressive course of DMD and thereby better translating to hu-
mans [252,258,259]. Two zebrafish dystrophin mutants, sapje and sapje-like (sapc/100),
carry a mutation in the dystrophin gene, which results in a premature stop codon, thus
mimicking muscle dysfunction with a severe phenotype [260,261]. Other less common
DMD animal models include Caenorhabditis elegans, Drosophila melanogaster, feline, rat and
pig models [252].

Regarding DM, animal models have been developed by reproducing CUG expansion,
MBNL-deficient or CELF-overexpressing phenotypes. Two main mouse models are com-
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monly used for the study of DM1 and DM2: DMSXL mice, carrying ~ 1000–1800 CTG
repeats with multisystemic transgene expression, and HSALR mice that express human
skeletal actin (HSA) transcripts containing ~ 250 trinucleotide repeats within the 3′ DMPK
UTR with skeletal muscle transgene expression [262,263]. These murine models reproduce
the DM1 and DM2 pathogenesis similarly to the human phenotype [264–268]. Two ze-
brafish models of MBNL loss of function, typical of DM1, have been generated to study the
pathological aspects that characterise skeletal and heart muscles in DM [269,270]. Other
transgenic animals, such as Caenorhabditis elegans and Drosophila melanogaster have also
been engineered to mimic some characteristics of DM phenotypes [252,262].

Although no animal model is able to completely recapitulate the aspects of the mul-
tisystemic phenotypes typical of MDs, their use is required to provide critical in-depth
assessment of proof-of-principle concept studies and preclinical experiments. The actual
growing interest and knowledge for development of in vitro and ex vivo alternatives to re-
duce clinical animal experimentation could warrant novel and better methods for assisting
in assessment of MDs therapy.

6. Future Perspectives

The recent understanding of the pathogenic mechanisms of MDs highlights the urgent
need of new and more effective treatments [20,100]. Nanomedicine demonstrated to
enhance the therapeutic potential of gene therapy and drug repurposing approaches. As
an example, pentamidine-loaded nanomedicines were used to explore the activity of the
drug, not only as an anti-leishmaniasis agent but also as an anticancer agent to reduce
drug associated toxicity, such as its severe nephrotoxicity [271,272]. Ongoing investigations
are aimed at demonstrating the efficacy of this novel formulation to treat DM1 (study
in progress).

New therapeutic approaches needed a continuous administration throughout pa-
tient’s life, making the biocompatibility and biodegradability of delivery systems a crucial
feature to preserve skeletal muscle from additional alterations. As presented in this review,
the main advantages of nanosystems rely on their physico-chemical properties, namely
composition, size and surface potential that can be modulated to avoid nanocarrier toxicity,
and to load specific actives and deliver them in a target site.

To disclose the potential of nanomedicine application to MDs treatment, the gap
between in vitro and in vivo testing has to be filled. In addition, to understand the fate
of nanosystems once administered to MDs mice, biodistribution studies need to be ad-
dressed. To date, only a few investigations reported NPs biodistribution into skeletal
muscles through different administration routes as I.V., I.P. and I.M. (tibialis anterior and
gastrocnemius muscles) [173,273,274]. After systemic administration, NPs spread into
tissues through blood systemic circulation, then, extravasate into the ECM before reaching
muscle fibres. It has been suggested that the dense blood capillary network wrapping
skeletal myofibers could be favourable to NPs accumulation and distribution following
I.V. injection [196]. Hydrodynamic injection is also known to facilitate gene delivery by
transient enhancement of the plasma membrane’s permeability [142,275,276]. However,
the applied pressure due to the hindrance of the blood flow might cause oedema and
inflammation, restricting the translation of this technique to clinic [277].

Overcoming the ECM barrier remains another important goal to improve NPs distri-
bution in skeletal muscle fibres. Surface engineered nanosystems have been designed to
actively promote the interaction between nanosystems and cells [278]. The high specificity
of antibodies for their corresponding antigen provides a selective and potent approach
for therapeutic NPs targeting [279]. As an example, the murine monoclonal antibody
(3E10), capable of binding the surface of muscle cells, has been reported to improve ac-
tive targeting [280,281]. However, no scientific studies on antibody-functionalised NPs
have been conducted for skeletal muscle targeting so far. More commonly used, short
peptides sequences (e.g., ASSLNIA or SKTFNTHPQSTP) have proved promising as NPs
functionalization for specific tissue-targeting [282–284]. Several examples of peptides
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targeting muscle cells have been reported [285–287] and association to nanosystems may
lead to improved selectivity of NPs for skeletal muscle. Polymeric nanosystems have been
functionalised with active targeting agents that preferentially bind active molecules or
receptors expressed on the surface of muscle cells. Active targeting-dependent uptake
has been demonstrated using PLGA nanocarriers functionalised with a muscle-homing
peptide M12 [288]. Biodistribution studies revealed a preferential accumulation of targeted
NPs in skeletal muscle cells in mdx mice, compared to untargeted nanocarriers, increasing
the accumulation of polymeric NPs and enhancing therapeutic efficacy [274].

As presented in this review, nanomedicine holds promise for the development of
efficient and safe MD treatments. With the rise in biologic products development, there
is an increasing interest for effective biocompatible delivery systems that can be better
suited for biologics leading to more effective therapeutic strategies. Further development
of nanomedicine in this area is expected to result from complementary expertise in differ-
ent research fields. Indeed, a multi-disciplinary study in drug discovery, nanomedicine,
biotechnology, biology and medicine is key to providing valid and reliable strategies that
can offer unprecedented opportunities to MD patients.
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